
What’s Connectionism got to do

with IT?!

A. R. Kian Abolfazlian
Computer Science Department

Aarhus University
Ny Munkegade, Bldg. 540

DK-8000 Århus C
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Abstract

In this paper, I shall prove, why the old fashion Artificial Intelligence cannot
be the right answer.
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1 Motivation

The criticism of the old fashion Artificial Intelligence, or as John Hau-
geland has called it GOFAI1, has almost begun with the birth of this area
of research. The very bold theories of people like Newell, Simon, Fodor,
Pylyshyn, Winograd, Minsky, Schank, et. al. about Human understanding
and cognition in writings like [11, Newell (1958)], [12, Newell (1980)], [13,
Newell & Simon (1981)], [21, Simon (1979)], [22, Simon (1981)], [1, Fodor
et al. (1974)], [2, Fodor (1975)], [3, Fodor (1980)], [4, Fodor (1981)], [5, Fo-
dor (1983)], [6, Fodor (1987)], [7, Fodor & Pylyshyn (1988)], [14, Pylyshyn
(1979)], [15, Pylyshyn (1989)], [16, Pylyshyn et al. (1989)], [17, Pylyshyn
(1984)], [8, Minsky (1966)], [9, Minsky (1967)], [10, Minsky (1968)], [23,

1Good Old Fashion AI.
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Winograd (1972)], [24, Winograd (1973)], [25, Winograd (1979)], [18, S-
chank & Childers (1984)], [19, Schank (1986)], [20, Schank (1990)] and so
on, have awoken a lot of attention towards GOFAI. There has been a lot of
discussions between researchers pro and against GOFAI, each party trying
to prove that the other party is wrong. These discussions have been going
on for years now, and it does not seem, that they are going to end in any
near future.
In the beginning of 80’s something very interesting happened. Connectio-
nism began to come to the surface of the Earth again, and its development
accelerated in a manner never seen before, and with it researchers in GO-
FAI started attacking Connectionism, as if it was their biggest opponent.
Yes, the old arch-rival of GOFAI was reincarnated. They tried right from
the start of rising period for Connectionism to show, that Connectionism
does not have a complete account for Human cognition, and Cognitive
Science should almost turn the face from Connectionism, for that road is
doomed to fail. I wonder, whether there is any substance in these kind of
ideas. As a matter of fact, I shall suppose, that GOFAI has spoken the
truth, and I shall follow my way from that point towards the unknown
future.

2 Results

Let’s now assume, that it is in fact true, that Human beings are Turing
machines. What evil thing could happen as a consequence of this?! Well,
let’s find out.

Assumption 1 (GOFAI’s Fundamental Assumption (GFA)) Human
beings are Turing machines.

There are actually very interesting question about Turing machines, which
we will now look at2. Let’s assume, that M = (K,Σ, δ, s) is a Turing
machine.

Lemma 1 ((A 1)) The question, “Given a Turing machine M and a
fixed input string w0, does M halt on w0?” is Turing-undecidable.

Lemma 2 ((A 2)) The question, “Given a Turing machine M, is its
output language Turing-decidable?”, is Turing undecidable.

2The Proofs for the following Lemma’s will appear in an Appendix as the last section of this
paper.
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Lemma 3 ((A 3)) The question, “Given a Turing machine M, is its
output language Context-free?”, is Turing-undecidable.

Lemma 4 ((A 4)) The question, “Given a Turing machine M and a
string w ∈ OUT (M), is it correct for u ∈ Σ∗, that

(sM,#u#) `∗M (hM,#w#)

is Turing-undecidable.

Lemma 5 ((A 5)) The question, “Given a Turing machineM, doesM
decide L(M)?” is Turing-undecidable.

Lemma 6 ((A 6)) The question, “Given a Turing machineM, doesM
decide OUT (M)?” is Turing-undecidable.

Lemma 7 ((A 7)) The question, “Given a Turing machine M and a
fixed string w0 ∈ Σ∗, is w0 in the OUT (M)?” is Turing-undecidable.

Lemma 8 ((A 8)) The question, “Given a Turing machine M, is it an
Universal Turing machine?” is Turing-undecidable.

But we have also,

Remark 1 (Abolfazlian (R 1)) (GFA) implies, that if a question about
Turing machines is Turing-undecidable, then it cannot be answered by Hu-
man beings either.

Remark 2 (Abolfazlian (R 2)) If a question about Turing machines is
Turing-undecidable, then it will still be Turing-undecidable, if we substitute,
in the question, the Turing machine by Universal Turing machine (UTM).

Remark 3 (Abolfazlian (R 3)) We Human beings can simulate any Turing
machine on any input string, given an encoded version of the Turing ma-
chine and the input string. Thus we must be UTMs.

Now we have, that:

Theorem 1 (Abolfazlian (K 1)) Human beings cannot answer the question,
“Given a Human being, is his/hers behaviour human?”.
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Proof: Lemma (A 2) & Remarks (R 1&2&3) do the job. It goes like this:

Lemma 9 ((A 2.1)) The question, “Given a Turing machine
M, is its output language Turing-decidable?”, cannot be an-
swered by Human beings.

Proof: Lemma (A 2) & Remark (R 1).

Lemma 10 ((A 2.2)) The question, “Given a Universal Turing
machineM, is its output language Turing-decidable?”, cannot
be answered by Human beings.

Proof: Lemma (A 2.1) & Remark (R 2).

Now we have the theorem by using Lemma (A 2.2) & Remark
(R 3).

Theorem 2 (Abolfazlian (K 2)) Human beings cannot answer the question,
“Given a Human being, is his/her behaviour Context-free?”.

Proof: Lemma (A 3) & Remarks (R 1&2&3) do the job. It goes like this:

Lemma 11 ((A 3.1)) The question, “Given a Turing machine
M, is its output language Context-free?”, cannot be answered
by Human beings.

Proof: Lemma (A 3) & Remark (R 1).

Lemma 12 ((A 3.2)) The question, “Given a Universal Turing
machine M, is its output language Context-free?”, cannot be
answered by Human beings.

Proof: Lemma (A 3.1) & Remark (R 2).

Now we have the theorem by Lemma (A 3.2) & Remark (R 3).
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Theorem 3 (Abolfazlian (K 3)) Human beings cannot answer the question,
“Given a Human being and an example of his/hers behaviour, what has
caused this particular behaviour?”.

Proof: Lemma (A 4) & Remarks (R 1&2&3) do the job. It goes like this:

Lemma 13 ((A 4.1)) The question, “Given a Turing machine
M and a string w ∈ OUT (M), is it correct for u ∈ Σ∗, that

(sM,#u#) `∗M (hM,#w#)

cannot be answered by Human beings.

Proof: Lemma (A 4) & Remark (R 1).

Lemma 14 ((A 4.2)) The question, “Given a Universal Turing
machine M and a string w ∈ OUT (M), is it correct for
u ∈ Σ∗, that

(sM,#u#) `∗M (hM,#w#)

cannot be answered by Human beings.

Proof: Lemma (A 4.1) & Remark (R 2).

Now we have the theorem by Lemma (A 4.2) & Remark (R 3).

Theorem 4 (Abolfazlian (K 4)) Human beings cannot answer the question,
“Given a Human being and an arbitrary pattern of Human behaviour, can
he/she decide (answer), whether he/she can produce that particular be-
haviour?”.

Proof3: Lemma (A 6) & Remarks (R 1&2&3).

Theorem 5 (Abolfazlian (K 5)) Human beings cannot answer the question,
“Given a Human being and a fixed pattern of Human behaviour, does he/she
produce that particular behaviour?”.

3I have not explained the proofs for this and following Theorems in so many details as for
Theorem (K 1), because the proofs go in very similar manner.
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Proof: Lemma (A 7) & Remarks (R 1&2&3).

Theorem 6 (Abolfazlian (K 6)) Human beings cannot answer the question,
“Given a Human being, is he/she really a Human being?!!”.

Proof: Lemma (A 8) & Remarks (R 1&2&3).

3 Conclusion

Now I wonder, if it would still be a “very” good idea to follow up the re-
search program of GOFAI. May be people like Fodor and Pylyshyn should
be more worried about consistency of their own ideas, instead of trying
to show, that Connectionism has problems! Maybe after all Connectio-
nism hasn’t got anything to do with GOFAI’s troubles, and GOFAI was
unfortunately dead before it was ever born. But then again, it is a free
World!!!
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Appendix

The following definitions are taken from the book, “ELEMENTS OF T-
HE THEORY OF COMPUTATION”, by Harry R. Lewis & Christos H.
Papadimitriou, Prentice-Hall International Editions, 1981.

Definition 1 (Turing machines) A Turing machine is a quadruple (K,Σ, δ, s),
where

K is a finite set of states, not containing the halt state h;

Σ is an alphabet, containing the blank symbol #, but not contai-
ning the symbols L and R;

s ∈ K is the initial state;

δ is a function from K ×K to (K ∪ {h})× (Σ ∪ {L,R}).

Definition 2 (Configuration ) A configuration of a Turing machine
M = (K,Σ, δ, s) is a member of

(K ∪ {h})× Σ∗ ×Σ× (Σ∗(Σ− {#}) ∪ {e})

where e is the empty string. A configuration whose state component is h
will be a halted configuration

Definition 3 LetM = (K,Σ, δ, s) be a Turing machine and let (q1, w1, a1, u1)
and (q2, w2, a2, u2) be configurations of M. Then

(q1, w1, a1, u1) `M (q2, w2, a2, u2)

if and only if, for some b ∈ Σ ∪ {L,R}, δ(q1, a1) = (q2, b) and either

1. b ∈ Σ, w1 = w2, u1 = u2, and a2 = b;

or

2. b = L,w1 = w2a2, and either

• u2 = a1u1, ifa1 6= # or u1 6= e, or

• u2 = e, ifa1 6= # and u1 = e;
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or

3. b = R,w2 = w1a1, and either

• u1 = a2u2, or

• u1 = u2 = e and a2 = #.

Note that if b = L and w1 = e, then (q1, w1, a1, u1) yields no configuration,
since there is no w2 ∈ Σ∗ and a2 ∈ Σ such that w1 = w2a2. Such a
configuration will be called a hanging configuration. On the other hand,
every configuration, that is not a halted or a hanging configuration yields
exactly one configuration in one step.

Definition 4 For any Turing machine M, `∗M is the reflexive, tran-
sitive closure of `M; we say that configuration C1 yields configuration
C2 if C1 `∗M C2. A computation y M is a sequence of configurations
C0, C1, · · · , Cn for some n ≥ 0 such that

C0 `M C1 `M C2 `M · · · `M Cn.

We say that the computation is of length n or has n steps.

Definition 5 (Turing-computable function) Let Σ0 and Σ1 be al-
fabets not containing the blank symbol #. Let F be a function from Σ∗0 to
Σ∗1. A Turing machine M = (K,Σ,δ,s) is said to compute F if Σ0,Σ1

⊆ Σ and for w ∈ Σ∗0 , if F(w) = u , then

(s,#w#) `∗M (h,#u#)

If some such Turing machineM exists, then F is said to be a Turing-computable
function.

Definition 6 (Turing-decidable languages) Let Σ0 be a fixed alfabet
not containing blank symbol #. Let Y and N be two fixed symbols not
in Σ0. Then the language L ⊆ Σ0 is Turing decidable if and only if
the function χL : Σ∗0 −→ {Y,N} is Turing-computable, where for each
w ∈ Σ∗0,

χL(w) =
 Y if w ∈ L

N if w 6∈ L
If χL is computed by a Turing machine M, then M is said to decide L,
or to be a decision procedure for L.
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Definition 7 If M = (K,Σ,δ,s) is a Turing machine and w ∈ Σ∗0, then
M is said to halt on input w if and only if (s,#w#) yields some halted
configuration. Similarly,M is said to hang on input w if (s,#w#) yields
some hanging configuration.

Definition 8 (Turing acceptable languages) We say that a Turing
machine M accepts a string w ∈ Σ∗0, if M halts on input w. Thus M
accepts a language L ⊆ Σ∗0 if and only if

L = {w ∈ Σ∗0 :M accepts w}

and a language is said to be Turing-acceptable if there is some Turing
machine that accepts it.

And now to the Prooves of the Lemmas presented in this paper;

Proof of Lemma (A 1): Let’s suppose, that we have a Turing machine
M′, which can decide, whether if an arbitary Turing machine M halts
on our fixed input string w0. Then we can decide, whether if an arbitary
Turing machine M0 halts on the empty tape. Given M0 we construct a
new Turing machineM0

∗, which acts on w0 as follows:

1. It erases w0 from the input tape.

2. It simulates M0 on the empty tape.

It is now obvious, that M0
∗ halts on w0 if and only if M0 halts on the

empty tape, and M′ can decide, whether if M0
∗ halts on w0. Thus M′

can decide, whether ifM0 halts on the empty tape. This is a contradiction
(LP 6.3.1.3).

Proof of Lemma (A 2): Lets OUT (M) be the M’s output language.
Let’s suppose, that M′ can decide OUT (M) for an arbitary M. We can
now use M′ to decide the language, which an arbitary Turing machine
M0 accepts (L(M0)). This is, because there is a Turing machine M̃0, for
which we have

OUT (M̃0) = L(M0) (cf. LP 6.2.2)

M′ decides OUT (M̃0), which means, that M′ decides L(M0). This is a
contradiction (LP 6.3.2.1).
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Proof of Lemma (A 3): Analog to the proof of Lemma (A 2).

Proof of Lemma (A 4): Let us suppose, that there is a Turing machine
M′ that can decide

(sM,#u#) `∗M (hM,#w#).

Then we can decide whether a Turing machineM0 halts on the empty tape.
Consider the Turing machine M1.

M1: M−M0M+M
whereM− erase whatever is on the tape andM+ writes whateverM− has
erased. Now we have, that ifM0 halts on empty tape, thenM′ can decide,
whether if

(sM1,#u#) `∗M1
(hM1,#w#).

This means, that M′ can decide whether if M0 halts on the empty tape.
This is a contradiction.

Proof of Lemma (A 5): Let’s suppose, that there is a Turing machine
M∗, which does the job for us. This means, that given a Turing machine
M, M∗ can decide L(M), a.e. M∗ can decide whether M halts on an
arbitary input string w. Thus M∗ can also decide whether M halts on
empty input string (the halting problem). This is a contradiction.

Proof of Lemma (A 6): Analog to the proof of Lemma (A 5).

Proof of Lemma (A 7): We know, that W0 ∈ OUT (M) if and only if
some Turing machine M∗ accepts w0 (cf. LP 6.2.2). Thus, the qusetion
asked here, is equivalant to the question, “Given a Turing machineM and
a fixed input string w0, doesM halt on w0?”, which is Turing-undecidable
(Lemma (A 1)).

Proof of Lemma (A 8): M is an Universal Turing machine (UTM) if
and only if

L(M) = {ρ(M′)ρ(w)| M′ accepts w}
If we suppose, that M∗ can decide, whether if M is an UTM, then it
means, that it can decide L(M), which means, that it can decide, whether
ρ(M0)ρ(#) ∈ L(M) for an arbitary Turing machine M0. This means,
that M∗ can decide, whether if M0 halts on #. This is a contradiction.
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