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Abstract

Our recent work links type checking in programming languages to
verification based on automata. In this survey, we give an overview of
our methods and suggest directions for furture rearch.

In our approach, we view data types as invariants and devise a
logical and decidable framework for expressing global properties of
a store consisting of records and pointers. We can express common
properties, for example about doubly-linked lists and their algorithms.
Such properties seemed to have called for a full Hoare logic beyond
the reach of type checking and decidability.

Our work is based on monadic second-order logic. Thus verification
boils down to calculations on finite-state automata. This raises specific
questions about combinatorial techniques for representing state spaces
if these calculations are ever to be carried out on more than simple
examples.
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1 Introduction

In programming languages, data types impose invariants on the store. The
store is a graph whose nodes are record values and whose edges are pointer
values. Unfortunately, existing type systems offer precious little help in ver-
ifying and analyzing shapes of pointer structures. This is unfortunate since
many errors are a result of inappropriate pointer manipulation. For example,
it is to be expected that on a university examination in data structures, very
few students would be able to correctly state an algorithm for reversing a
doubly-linked list.

Since so many errors appear trivial, it seems unfair that no tool exists to
assist in the construction of pointer algorithms. Even for simple text-book
exercises about data structures, the state of the art in verification and type
checking offers virtually no help in practice. Are these problems unassailable?

Not completely, since compilers do already offer some help in checking
code. But to arrive at better analyses, we should not be intimidated by
undcidability results. Our goals are, after all, more modest: provide as much
automated assistance as computationally possible.

To approach this goal, we must first identify ways of formulating proper-
ties amenable to automated analyses. We have chosen monadic second order
logic on trees as the vehicle for expressing interesting properties of pointers
and data structures. This logic is decidable, and thus our efforts have con-
centrated on two issues: one is to show that pointers can be expressed and
the other is to show that the changes to the store affected by a program can
also be expressed.

In this survey we give an overview of our methods. We study examples
that are typical for the difficulties inherent in pointer manipulations. We
also discuss some of the combinatorial problems inherent in our approach
and indicate directions for future research.

1.1 Traditional Approaches

In most existing languages, such as those in the PASCAL family, a program
defines a finit collection of record types, and each pointer variable is restricted
to indicate values of a single of these types. Thus, PASCAL types do not



capture properties of shape.

In contrast, recursive data type impose severe global constraints on the
store, since records and pointers are restricted to form regular families of
trees.

Thus, in the liberal PASCAL tradition, intricate structures can be
programmed, but only weak invariants can be verified by the type checker.
With recursive data types, stronger invariants are verified, but only simple
graphs can be represented in the store.

1.2 Graph Types

In [10], we suggested graph types for lessening this conflict. As with recursive
data types, graph types allow the store to consist of certain regular families
of graphs, but more than merely trees. Our technique divides the pointers
into two disjoint classes: ordinary and auxiliary. The ordinary pointers form
a canonical spanning tree of every value, called the backbone, and are spec-
ified as values of a recursive data type. The auxiliary pointers are specified
through routing expressions, which are regular expressions over an alphabet
of directives. This dichotomy corresponds well to practice: ordinary pointers
are the building material for lists and trees, whereas auxiliary pointers cor-
respond to specific short cuts (such as a pointer to the previous element in
a doubly-linked list) or loosely restricted pointers across the backbone (such
as indices into other data structures).

Graph types extend the notion of recursive data types by allowing short
cuts to be specified in type specifications. Graph types suffer two major
limitations: only the backbone can be directly manipulated in programs,
and auxiliary pointers always depend functionally on this backbone. Thus
only short cuts can be expressed.

1.3 Invariants as Data Types

In type checking, undecidability is an important limiting factor. In [9], we
exhibit a powerful, yet still decidable, framework for typing data structures.
We here use invariants as data types: data types are assertions about the
entire store. Of course, even recursive data types may be construed as sim-



ple invariants about the store. As we show in the present overview, many
useful and interesting properties can be expressed and in principle be verified
automatically.

1.4 The Theory

In [11], we devise a logical graph formalism based on the notion of edge
constraints to specify a large class of graph families. Many graphs occurring
in practice, such as trees where each node contains an extra unconstrained
edge, cannot be described by any of the known context-free graph grammars,
but can be described as a logical specification based on edge constraints. Also
we define graph transformations, called transductions, which model local
changes to the store.

The main result of [11] is that the problem of transductional correctness
is decidable: there is an algorithm that given a transduction and graph spec-
ifications A and B determines whether for any graph satisfying A, any new
graph resulting from the transduction satisfies B.

1.5 The Semantical Results

In [9], we show through some quite involved technical results that for a simple
programming language, an advanced type system for pointers can be built.
The programming language contains all essential pointer manipulations: al-
location, deallocation, dereferencing, and assignment. In addition, the lan-
guage contains limited iteration. We demonstrate that a powerful logic, the
Monadic Second-Order Logic of Recursive Data Types (M2L-RDT), can be
used to express assertions about pointers. The backbone is directly described
and auxiliary pointers are described as pointer constraints, which are M2L-
RDT formulas of a special form. Our assertions are used to define the global
picture of backbones, auxiliary pointers, pointer variables, and their mutual
relations. We extend the usual syntax for type and variable declarations to
include assertions about the global store and auxiliary pointers.

From this we may extract a single well-formedness assertion expressing
the total declarative information. Type checking now amounts to preserva-
tion of validity of this assertion.



Even though the assertional language itself may seem undecidable, the
main result in [9] is that the programming constructs in our language are
expressible as transductions. Thus the validity of Hoare triples — and hence
type checking — is decidable.

1.6 In This Survey

In this survey we give new examples to show that our approach is a practical
and concise way of specifying some common data structures and their algo-
rithms. The technical results in [11] and [9] are quite involved, but through
this survey the reader should be convinced of what is the essence of our
methods: that many substantial properties of data structures are regular in
the technical sense (and in the informal sense) and therefore amenable to
automated analysis.

Thus our work is similar, in spirit and technically, to the field of verifi-
cation of concurrent algorithms, where a key technique is also to identify as
much regularity as possible.

We envisage a system where the programmer may use the strong auto-
mated responses to gradually modify or annotate the code. We do not know
to which extent such a system is feasible in practice.

But in principle, our results ensure that aspects of many different kinds
of program analysis are captured for our extended straight-line code. For ex-
ample, the store is completely analyzed for tag elimination, aliases, dangling
references, and unclaimed memory. Whenever a triple is invalid, intelligent
diagnostics can be produced in the form of a smallest counter-example con-
sisting of a pre- and a post-store. This information may allow a programmer
to correct the code or to strengthen program assertions.

For a full language involving while-loops our method is of course only
approximate, but we do give an example in this survey showing that it may
still be useful.



2 Related Work

There have been surprisingly few attempts to restrict the assertions or the
programs sufficiently to obtain complete or decidable Hoare logics. One ex-
ample that we know of is [4], which considers first-order assertions for a while-
language on integers, but whose assertions and programming constructs can
only express properties in Presburger arithmetic (for which decidability fol-
lows from that of second-order monadic tree logic).

The concepts of backbone auxiliary pointers are implicit in [3], which
suggests a programming language construct, called a path, describing the
value of an auxiliary pointer. For example, to maintain a correct description
of a pointer to the last element of a list x, a variable x.path containing the
selectors to be followed, i.e. the route, is updated every time the list is
changed. The authors show that this use of shadow variables provides a
natural reasoning style in Hoare logic.

Hyperedge-replacement grammars [5] define classes of graphs whose monadic
second-order logic is decidable, but they do not capture many common data
structures describable by our techniques such as trees with unconstrained
auxiliary pointers leading from every cell.

Analysis of straight-line code starting in a single store or in all stores
is a well-known technique from compiler optimization [1]. However, it is
uncommon to allow general assertions on the pre-store and to offer a uniform
framework for many kinds of analysis.

It is often possible to view type checking as program verification of
simple assertions. Traditionally, other phrasings are chosen: prose, as seen in
numerous manuals; deduction, as derived from logic [13, 2]; and constraints,
which emphasize algorithmic aspects [12]. The verification contents become
more evident as assertions become richer.

3 Specification of Stores

We use a simple model of records and pointers. A store is a directed graph
whoes nodes are called cells and are divided into three disjoint sets:

e record cells, which are labeled with types and variants and have outgo-



ing edges, called pointers, labeled with field names;

e free cells, which correspond to the unused part of the store and have
neither incoming nor outgoing pointers; and

e a single null cell, which has no outgoing pointers.

The pointers from record cells must lead to either null or other record
cells, and each pointer is either ordinary or auziliary. Usually, the graph
induced by the ordinary pointers is required to form a spanning forest cor-
responding to the underlying recursive data types. The store is accessed
through named data and pointer variables, both of which indicate cells. The
only difference is that data variables always contain the roots of the spanning
forest, whereas pointer variables may indicate arbitrary cells. The following
is a sketch of a store:

X3
X2

In this example, there are three data variables x; and a single pointer
variable p. Correspondingly, there are three trees in the spanning forest.
The record values are pictured as white circles and are labeled with a type
T and variant v (as shown in one case), the free cells as black circles, and
the single null cell as a ground symbol. The pointers of ordinary fields are
indicated as solid arrows and auxiliary fields as dashed arrows. The backbone
consists of the entire store except for auxiliary pointers. The free cells are
used to explicitly model allocation and deallocation in the store. Since we
only consider shapes, the model abstracts away from values such as integers
and booleans.



3.1 Our Approach

We use monadic second-order logic on trees to specify the stores. The chal-
lenge is of course to discover a syntactic formalism that permits the specifi-
cations to be as intuitive and familiar as ordinary type specifications.

The underlying backbones are specified through ordinary recursive data
types. We view such a type as abbreviating an involved predicate on stores
imposing restrictions on their connectivity and labeling. This predicate can
always be written out in monadic second-order logic.

A major theoretical obstacle is that auxiliary pointers cannot be men-
tioned directly in the logic. If this was allowed, then undecidability would
follow. To circumvent this problem, we have devised a more indirect tech-
nique with predicates involving two extra variables src and dst indicating
the source (i.e. the node containing the pointer field) and destination of an
auxiliary pointer (i.e. the node that is pointed to).

We have developed many helpful notations for expressing such predi-
cates. The regular routing erpressions from [10] are convenient; for example,
post-order traversal of a tree is easily expressed. The “ultimate” syntax
will only be shaped through extended practical experience, which we have
yet to fully gain. Note that the meaning of such specifications — regard-
less of syntactic sophistications — always boils down to regularity: a single
well- formedness predicate on stores expressed in our extension of monadic
second-order logic on trees.

Example: List with Designated Element

The type H of linear lists in which the header contains an anxiliary pointer
to some element of the list is sketched as follows:

type H — (first: L, some: “leads to some node below first”)
type L — (fhead: Int, next: L)
— null

The backbone is generated by the underlying recursive data type denoted by
the first, head, and next fields; hence, it is a list. Note that the type L has
two variants, one of which is null. To specify the predicate on the auxiliary



pointer some, we use the routing expression src(first.next*)dst, which states
that src and dst must be related by the routing expression first.next*. This
means that the destination can be reached from the source by following a
path of the form first.next. . .next. Thus, the formal specification is as follows:

type H — (first: L, some: scr (first.next*) dst )
type L — (head: Int, next: L)
— null

Simple routing expressions capture many interesting data types, such
as cyclic lists, leaf-to-root-linked trees, leaf-linked trees, and threaded trees.
Our work on graph types [10] focused on the special cases where auxiliary
pointers are functionally determined by the backbone, such as in the next
example.

Example: Doubly-Linked Lists

Let us return to doubly-linked lists, which we specify as follows:

type D — (head: Int, next: D, prev: (“scr A null? dst)V(dst.next=src)))
— null

Here the pointers of the next fields span the backbone. The prev field is
auxiliary and the pointer must satisfy: the source is the first node (“scr) and
the destination is null (null?dst) or the next field of the destination points
to the source (null.next=src). A typical value is:

é‘next o~ hext o~ next next I
€2 s €7) s €5 @—’1
III‘prev prev Uprev Uprev

Example: Trees with Blue and Green Leaves

As a final and more involved example, consider the recursive data type C
consisting of binary trees whose leaves are either blue or green. We wish to



have a data variable x of this type and a pointer variable p that always points
to a blue leaf of x or to the root if no such leaf exists. The pointer variable
p is declared with a formula that constrains its possible destinations.

type C — (left, right: C)
— blue()
— green()

var x: C
var p: z(}*.blue?)dst V (=(3a : z(}* .blue?)a) A x7dst)

The type C has three variants two of which are named blue and green.
There are two disjoint cases for p. The first (x(|* .blue?)dst) is to start at
the root of the data variable x and follow a downwards path (]*) until a
node of variant blue is reached. The other is a conjunction of two parts.
The first part (=(Ja : x(]*.blue?)) is the negation of an existential formula
(quantifying over cells) and expresses that x does not have any blue leaves.
The second part (z7dst) states that the destination must be the root of x.

4  Verification of Programs

We now have a technique for specifying interesting data types as predicates on
stores. The next step is to provide a programming language for manipulating
such stores. We have pursued two approaches:

1. In the case of graph types, it sufficies to use ordinary operations on re-
cursive data values, since the auxiliary pointers are functionally deter-
mined by the backbone and can be automatically updated at run-time.
See [10] for more details.

2. A more general approach is to use an ordinary imperative while-language
with the usual pointer manipulations. The challenge is to type-check
such programs.

In [9] we show how a substantial part of this programming language can

be translated into the graph transductions introduced in [11]. Our decid-
ability result for transductional invariance [11] in principle allows completely
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automatic verification of Hoare triples of programs written in this restricted
language. For obvious reasons, the fragment we can handle is not Turing
complete; it is basically straight-line code extended with certain regular con-
trol strutures, which are also described as routing expressions For full while-
loops, we must resort to well-known verification techniques; however, once
a loop invariant has been phrased, then the decidability of Hoare triples
accomplishes the remaining task automatically.

Example: Construction of List with Designated Ele-
ment

To construct a list y with four elements and the second being designated, we
use the code:

type H — (first: L, some: src(first.next*) dst)
type L — (head: Int, next: L)

— null
var x : L
vary: H

x := L(11,L(22,L(33;L(null))))
y := H(x,x — next.next)

These constructors require no further assertions in order to be automat-
ically verified.

Example: Reversal of Doubly-Linked Lists

Even when auxiliary pointers are functionally dependent on the backbone,
the code that one can write based solely on the operations of recursive data
types is often too inefficient. For example, if we want to reverse doubly-linked
lists, then the easy recursive traversal algorithm involves copying of record
cells. Instead, we would like to reverse pointers in place.

We indicate next how our decidable Hoare logic is used to verify the
rather messy details of such an algorithm. Consider again the type of doubly-
linked lists:
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Type D — head: Int,next: D, prev: (“src A null?dst) V (dst.next = src))
null

We wish to reverse the value of a variable x of type D. A complete verification
of such a program involves arithmetical properties that goes beyond our logic.
e.g. the fact that the length of the list remains the same. However, we can
automatically verify that we maintain well-formedness of shape. This is a
necessary requirement for correctness and also a finely masked filter for many
errors. The proposed program looks as follows.

var x: D
var p,q,r: D7 dst

p :=null;

q =X

while{D-wf? p A D-wf? q}

—null? q do

—null? q do
r := q — next;
d.next := p;
if=null? p then p.prev := q end;
if —null? r then r.prev := null end;
q.prev := null;
p=q;
q:=r

Here p, q, and r are pointer variables that point to records of type D
(D?dst). Intuitively, the algorithm works according to the picture:

'prev. prev!
X -~

where p indicates the part of the list that has already been reversed and
q indicates the remaining part. The formal invariant ({D-wf?pA D-wf?q})
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states only that p and q point to well-formed D-values. Our algorithm can
verify this code, and in particular we may conclude that x is a well-formed
value of type D upon completion of the loop.

Observe that if any of the assignment statements or their mutual order
is corrupted in the trivial manner that so often occurs, then the code could
no longer be verified and counter-examples could be provided. Note that
during an iteration of the loop, the invariant does not hold. However, the
verification algorithm collects sufficient information to determine that the
invariant is restored after each complete iteration. In particular, the store
suffers from neither unclaimed garbage nor dangling references.

Note that we have included the statements if —=null? r then r.prev := null
end and q.prev := null to maintain the invariant. The first of these could
be omitted and the second could be replaced by if —null? p then p.prev
:= null end after the loop. In that case, we would modify the invariant so
that it states: with the modification of the store corresponding to the two
statements, well-formedness holds.

4.1 Example: Updating Trees with Blue and Green
Leaves

This last example shows how concrete counter-examples may be generated.
Recall the blue-green trees:

type C — (left, right: C)
— blue()
— green()
var x: C
var p: x(}*.blue?)dstV(—=(Ja : z(]*.blue?)a)A x?dst

At some point, the transformation:
x 1= C(left: blue()), right: x)

which extends x with a blue left-sibling, might seem reasonable. However, we
have committed an archetypical and notoriously subtle error. The above code
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is rejected by the type checker, which offers the following pre- and post-store
demonstrating what could go wrong: See next figure.

X X
p

We see that the problem is the pointer p, which must point to a blue
leaf or to the root. This holds in the pre-store, but in the post-store the
indicated node is neither blue nor is it the root.

5 Where Does Decidability Come From?

Already around 1960, it was discovered that usual regular languages have
a logical characterization (for references, see [14]) in terms of a monadic
second-order logic. The fundamental correspondence is that to any formula,
open or closed, there is an automaton that recognizes the set of all interpre-
tations (suitable encoded) that satisfy the formula. The calculation of these
automata involves cross product construction (for A and V), determinization
(for =), and projection (for 3). In addition, the Myhill-Nerode theorem is
used in practice to always keep the automata as small as possible.

This correspondence also holds for the monadic second-order logic on
trees, which allows second-order quantification over sets of nodes.

The decision procedures have recently been implemented in prototype
tools at our department and at the University of Kiel. The theory, the de-
cision procedures are nonelementary, since each quantifier alternation intro-
duces an exponential state space blowup. In practice, quantifier alternation
is bounded, but the decision procedures still have an hyper-exponential lower
bound, if for example, there are two quantifier alternations (such as V3v).

Our techniques

The monadic second-order logic of recursive data types is undecidable when
interpreted over arbitrary stores (not necessarily tree-formed) since even the
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first-order theory of finite graph is undecidable. However, when restricted to
trees, the logic becomes decidable. After a transformation by a program, the
store is no longer tree-formed. But for the programs we consider, the changes
can be described inside the logic itself. In fact, our results in [11] show that
even the auxiliary pointers can be treated in a similar way, although they
cannot be directly described in the logic.

6 Directions for Future Work

Our formalism shows that regularity—in the technical sense—is inherently
present in many data structures and their algorithms.

From our point of view, we see two important challenges in verification
theory:

e Look for more methods of identifying regularity.

Identification of regularity can be seen a state space reduction (from
usually infinite spaces) to the finite state spaces of automata. It might
be possible to weaken sufficiently the semantics of Hoare logic such
that errors about data structures with infinite ranging values can also
be formulated in a decidable framework. As with the work discussed
here, the main observation is that assignment statements only affect
the store locally. Thus reasoning about “local errors” should be possi-
ble to some extent, since undecidability stems from considering tilings
or the like of unbounded global spaces. One example of a local error is
if two elements in an ordered list are not in the right order.

Two other recent examples of identifying regularity that we have been
involved with are type inference [12], which build on complex reason-
ing about infinite systems that turn out to be regular, and verification
of simple parameterized concurrent systems [7], where invariants on an
unbounded number of processors are verified automatically by a system
based on second-order monadic logic.

e Look for more methods of reducing finite state spaces.
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If the representations of automata remain small, the decision proce-
dures that we suggest work in practice, sec [7]. Usually, the initial
description is small and a possible counter-example would also be small.

Thus a major open question is whether we can avoid explicitly con-
structing big product spaces during the calculations. For example, a
frequent problem in finite-state verification is the state explosion that
results from logical structures of the form dxy,...,z, : Py A -+ A Py,
where the P;s are represented by non-deterministic automata. (A dis-
junction inside the existential quantifier would be handled by distribut-
ing, the quantifier over the disjunction). If the formulas share no vari-
ables, then it is exponentially more efficient to first determinize each P;
and then form the product than to do it the other way round. But what
if information is shared among the P; through common variables? The
only general technique is to form the non-deterministic product space
and then determinize a doubly exponential endeavor.

A verification method based on explicit formation of product spaces
cannot deal with this situation in practice. A similar problem has been
addressed in [6] . Possible venues solving such problems may also be
based on the implicit product spaces of asynchronons automata in trace
theory; see [8] for a determinization construction. Unfortunately little
is known about reducing the state spaces of such automata.
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