
Veri�cation of Pointers

Nils Klarlund�& Michael I. Schwartzbachy

fklarlund,misg@daimi.aau.dk
Aarhus University, Department of Computer Science,

Ny Munkegade, DK-8000 Aarhus, Denmark

Abstract

Our recent work links type checking in programming languages to

veri�cation based on automata. In this survey, we give an overview of

our methods and suggest directions for furture rearch.

In our approach, we view data types as invariants and devise a

logical and decidable framework for expressing global properties of

a store consisting of records and pointers. We can express common

properties, for example about doubly-linked lists and their algorithms.

Such properties seemed to have called for a full Hoare logic beyond

the reach of type checking and decidability.

Our work is based on monadic second-order logic. Thus veri�cation

boils down to calculations on �nite-state automata. This raises speci�c

questions about combinatorial techniques for representing state spaces

if these calculations are ever to be carried out on more than simple

examples.

Topics: program veri�cation, data types.

�The author is supported by a fellowship irom the Danish Research Council.
yThe author is partially supported by the BRICS Center under the Danish Research

Foundation.

1

1 Introduction

In programming languages, data types impose invariants on the store. The

store is a graph whose nodes are record values and whose edges are pointer

values. Unfortunately, existing type systems o�er precious little help in ver-

ifying and analyzing shapes of pointer structures. This is unfortunate since

many errors are a result of inappropriate pointer manipulation. For example,

it is to be expected that on a university examination in data structures, very

few students would be able to correctly state an algorithm for reversing a

doubly-linked list.

Since so many errors appear trivial, it seems unfair that no tool exists to

assist in the construction of pointer algorithms. Even for simple text-book

exercises about data structures, the state of the art in veri�cation and type

checking o�ers virtually no help in practice. Are these problems unassailable?

Not completely, since compilers do already o�er some help in checking

code. But to arrive at better analyses, we should not be intimidated by

undcidability results. Our goals are, after all, more modest: provide as much

automated assistance as computationally possible.

To approach this goal, we must �rst identify ways of formulating proper-

ties amenable to automated analyses. We have chosen monadic second order

logic on trees as the vehicle for expressing interesting properties of pointers

and data structures. This logic is decidable, and thus our e�orts have con-

centrated on two issues: one is to show that pointers can be expressed and

the other is to show that the changes to the store a�ected by a program can

also be expressed.

In this survey we give an overview of our methods. We study examples

that are typical for the di�culties inherent in pointer manipulations. We

also discuss some of the combinatorial problems inherent in our approach

and indicate directions for future research.

1.1 Traditional Approaches

In most existing languages, such as those in the PASCAL family, a program

de�nes a �nit collection of record types, and each pointer variable is restricted

to indicate values of a single of these types. Thus, PASCAL types do not

2

capture properties of shape.

In contrast, recursive data type impose severe global constraints on the

store, since records and pointers are restricted to form regular families of

trees.

Thus, in the liberal PASCAL tradition, intricate structures can be

programmed, but only weak invariants can be veri�ed by the type checker.

With recursive data types, stronger invariants are veri�ed, but only simple

graphs can be represented in the store.

1.2 Graph Types

In [10], we suggested graph types for lessening this conict. As with recursive

data types, graph types allow the store to consist of certain regular families

of graphs, but more than merely trees. Our technique divides the pointers

into two disjoint classes: ordinary and auxiliary. The ordinary pointers form

a canonical spanning tree of every value, called the backbone, and are spec-

i�ed as values of a recursive data type. The auxiliary pointers are speci�ed

through routing expressions, which are regular expressions over an alphabet

of directives. This dichotomy corresponds well to practice: ordinary pointers

are the building material for lists and trees, whereas auxiliary pointers cor-

respond to speci�c short cuts (such as a pointer to the previous element in

a doubly-linked list) or loosely restricted pointers across the backbone (such

as indices into other data structures).

Graph types extend the notion of recursive data types by allowing short

cuts to be speci�ed in type speci�cations. Graph types su�er two major

limitations: only the backbone can be directly manipulated in programs,

and auxiliary pointers always depend functionally on this backbone. Thus

only short cuts can be expressed.

1.3 Invariants as Data Types

In type checking, undecidability is an important limiting factor. In [9], we

exhibit a powerful, yet still decidable, framework for typing data structures.

We here use invariants as data types: data types are assertions about the

entire store. Of course, even recursive data types may be construed as sim-

3

ple invariants about the store. As we show in the present overview, many

useful and interesting properties can be expressed and in principle be veri�ed

automatically.

1.4 The Theory

In [11], we devise a logical graph formalism based on the notion of edge

constraints to specify a large class of graph families. Many graphs occurring

in practice, such as trees where each node contains an extra unconstrained

edge, cannot be described by any of the known context-free graph grammars,

but can be described as a logical speci�cation based on edge constraints. Also

we de�ne graph transformations, called transductions, which model local

changes to the store.

The main result of [11] is that the problem of transductional correctness

is decidable: there is an algorithm that given a transduction and graph spec-

i�cations A and B determines whether for any graph satisfying A, any new

graph resulting from the transduction satis�es B.

1.5 The Semantical Results

In [9], we show through some quite involved technical results that for a simple

programming language, an advanced type system for pointers can be built.

The programming language contains all essential pointer manipulations: al-

location, deallocation, dereferencing, and assignment. In addition, the lan-

guage contains limited iteration. We demonstrate that a powerful logic, the

Monadic Second-Order Logic of Recursive Data Types (M2L-RDT), can be

used to express assertions about pointers. The backbone is directly described

and auxiliary pointers are described as pointer constraints, which are M2L-

RDT formulas of a special form. Our assertions are used to de�ne the global

picture of backbones, auxiliary pointers, pointer variables, and their mutual

relations. We extend the usual syntax for type and variable declarations to

include assertions about the global store and auxiliary pointers.

From this we may extract a single well-formedness assertion expressing

the total declarative information. Type checking now amounts to preserva-

tion of validity of this assertion.

4

Even though the assertional language itself may seem undecidable, the

main result in [9] is that the programming constructs in our language are

expressible as transductions. Thus the validity of Hoare triples { and hence

type checking { is decidable.

1.6 In This Survey

In this survey we give new examples to show that our approach is a practical

and concise way of specifying some common data structures and their algo-

rithms. The technical results in [11] and [9] are quite involved, but through

this survey the reader should be convinced of what is the essence of our

methods: that many substantial properties of data structures are regular in

the technical sense (and in the informal sense) and therefore amenable to

automated analysis.

Thus our work is similar, in spirit and technically, to the �eld of veri�-

cation of concurrent algorithms, where a key technique is also to identify as

much regularity as possible.

We envisage a system where the programmer may use the strong auto-

mated responses to gradually modify or annotate the code. We do not know

to which extent such a system is feasible in practice.

But in principle, our results ensure that aspects of many di�erent kinds

of program analysis are captured for our extended straight-line code. For ex-

ample, the store is completely analyzed for tag elimination, aliases, dangling

references, and unclaimed memory. Whenever a triple is invalid, intelligent

diagnostics can be produced in the form of a smallest counter-example con-

sisting of a pre- and a post-store. This information may allow a programmer

to correct the code or to strengthen program assertions.

For a full language involving while-loops our method is of course only

approximate, but we do give an example in this survey showing that it may

still be useful.

5

2 Related Work

There have been surprisingly few attempts to restrict the assertions or the

programs su�ciently to obtain complete or decidable Hoare logics. One ex-

ample that we know of is [4], which considers �rst-order assertions for awhile-

language on integers, but whose assertions and programming constructs can

only express properties in Presburger arithmetic (for which decidability fol-

lows from that of second-order monadic tree logic).

The concepts of backbone auxiliary pointers are implicit in [3], which

suggests a programming language construct, called a path, describing the

value of an auxiliary pointer. For example, to maintain a correct description

of a pointer to the last element of a list x, a variable x.path containing the

selectors to be followed, i.e. the route, is updated every time the list is

changed. The authors show that this use of shadow variables provides a

natural reasoning style in Hoare logic.

Hyperedge-replacement grammars [5] de�ne classes of graphs whose monadic

second-order logic is decidable, but they do not capture many common data

structures describable by our techniques such as trees with unconstrained

auxiliary pointers leading from every cell.

Analysis of straight-line code starting in a single store or in all stores

is a well-known technique from compiler optimization [1]. However, it is

uncommon to allow general assertions on the pre-store and to o�er a uniform

framework for many kinds of analysis.

It is often possible to view type checking as program veri�cation of

simple assertions. Traditionally, other phrasings are chosen: prose, as seen in

numerous manuals; deduction, as derived from logic [13, 2]; and constraints,

which emphasize algorithmic aspects [12]. The veri�cation contents become

more evident as assertions become richer.

3 Speci�cation of Stores

We use a simple model of records and pointers. A store is a directed graph

whoes nodes are called cells and are divided into three disjoint sets:

� record cells, which are labeled with types and variants and have outgo-

6

ing edges, called pointers, labeled with �eld names;

� free cells, which correspond to the unused part of the store and have

neither incoming nor outgoing pointers; and

� a single null cell, which has no outgoing pointers.

The pointers from record cells must lead to either null or other record

cells, and each pointer is either ordinary or auxiliary. Usually, the graph

induced by the ordinary pointers is required to form a spanning forest cor-

responding to the underlying recursive data types. The store is accessed

through named data and pointer variables, both of which indicate cells. The

only di�erence is that data variables always contain the roots of the spanning

forest, whereas pointer variables may indicate arbitrary cells. The following

is a sketch of a store:

In this example, there are three data variables xi and a single pointer

variable p. Correspondingly, there are three trees in the spanning forest.

The record values are pictured as white circles and are labeled with a type

T and variant v (as shown in one case), the free cells as black circles, and

the single null cell as a ground symbol. The pointers of ordinary �elds are

indicated as solid arrows and auxiliary �elds as dashed arrows. The backbone

consists of the entire store except for auxiliary pointers. The free cells are

used to explicitly model allocation and deallocation in the store. Since we

only consider shapes, the model abstracts away from values such as integers

and booleans.

7

3.1 Our Approach

We use monadic second-order logic on trees to specify the stores. The chal-

lenge is of course to discover a syntactic formalism that permits the speci�-

cations to be as intuitive and familiar as ordinary type speci�cations.

The underlying backbones are speci�ed through ordinary recursive data

types. We view such a type as abbreviating an involved predicate on stores

imposing restrictions on their connectivity and labeling. This predicate can

always be written out in monadic second-order logic.

A major theoretical obstacle is that auxiliary pointers cannot be men-

tioned directly in the logic. If this was allowed, then undecidability would

follow. To circumvent this problem, we have devised a more indirect tech-

nique with predicates involving two extra variables src and dst indicating

the source (i.e. the node containing the pointer �eld) and destination of an

auxiliary pointer (i.e. the node that is pointed to).

We have developed many helpful notations for expressing such predi-

cates. The regular routing erpressions from [10] are convenient; for example,

post-order traversal of a tree is easily expressed. The \ultimate" syntax

will only be shaped through extended practical experience, which we have

yet to fully gain. Note that the meaning of such speci�cations | regard-

less of syntactic sophistications | always boils down to regularity: a single

well- formedness predicate on stores expressed in our extension of monadic

second-order logic on trees.

Example: List with Designated Element

The type H of linear lists in which the header contains an anxiliary pointer

to some element of the list is sketched as follows:

type H ! (�rst: L, some: \leads to some node below �rst")

type L ! (fhead: Int, next: L)

! null

The backbone is generated by the underlying recursive data type denoted by

the �rst, head, and next �elds; hence, it is a list. Note that the type L has

two variants, one of which is null. To specify the predicate on the auxiliary

8

pointer some, we use the routing expression srch�rst.next�idst, which states

that src and dst must be related by the routing expression �rst.next�. This

means that the destination can be reached from the source by following a

path of the form �rst.next: : :next. Thus, the formal speci�cation is as follows:

type H ! (�rst: L, some: scr h�rst.next�i dst)

type L ! (head: Int, next: L)

! null

Simple routing expressions capture many interesting data types, such

as cyclic lists, leaf-to-root-linked trees, leaf-linked trees, and threaded trees.

Our work on graph types [10] focused on the special cases where auxiliary

pointers are functionally determined by the backbone, such as in the next

example.

Example: Doubly-Linked Lists

Let us return to doubly-linked lists, which we specify as follows:

type D ! (head: Int, next: D, prev: (^scr ^ null? dst)_(dst.next=src)))

! null

Here the pointers of the next �elds span the backbone. The prev �eld is

auxiliary and the pointer must satisfy: the source is the �rst node (^scr) and

the destination is null (null?dst) or the next �eld of the destination points

to the source (null.next=src). A typical value is:

Example: Trees with Blue and Green Leaves

As a �nal and more involved example, consider the recursive data type C

consisting of binary trees whose leaves are either blue or green. We wish to

9

have a data variable x of this type and a pointer variable p that always points

to a blue leaf of x or to the root if no such leaf exists. The pointer variable

p is declared with a formula that constrains its possible destinations.

type C ! (left, right: C)

! blue()

! green()

var x: C

var p: xh#� :blue?idst _ (:(9� : x(#� :blue?i�) ^ x?dst)

The type C has three variants two of which are named blue and green.

There are two disjoint cases for p. The �rst (xh#� :blue?idst) is to start at

the root of the data variable x and follow a downwards path (#�) until a

node of variant blue is reached. The other is a conjunction of two parts.

The �rst part (:(9� : x(#� :blue?i�) is the negation of an existential formula

(quantifying over cells) and expresses that x does not have any blue leaves.

The second part (x?dst) states that the destination must be the root of x.

4 Veri�cation of Programs

We now have a technique for specifying interesting data types as predicates on

stores. The next step is to provide a programming language for manipulating

such stores. We have pursued two approaches:

1. In the case of graph types, it su�cies to use ordinary operations on re-

cursive data values, since the auxiliary pointers are functionally deter-

mined by the backbone and can be automatically updated at run-time.

See [10] for more details.

2. A more general approach is to use an ordinary imperativewhile-language

with the usual pointer manipulations. The challenge is to type-check

such programs.

In [9] we show how a substantial part of this programming language can

be translated into the graph transductions introduced in [11]. Our decid-

ability result for transductional invariance [11] in principle allows completely

10

automatic veri�cation of Hoare triples of programs written in this restricted

language. For obvious reasons, the fragment we can handle is not Turing

complete; it is basically straight-line code extended with certain regular con-

trol strutures, which are also described as routing expressions For full while-

loops, we must resort to well-known veri�cation techniques; however, once

a loop invariant has been phrased, then the decidability of Hoare triples

accomplishes the remaining task automatically.

Example: Construction of List with Designated Ele-

ment

To construct a list y with four elements and the second being designated, we

use the code:

type H ! (�rst: L, some: srchfirst:next�i dst)
type L ! (head: Int, next: L)

! null

var x : L
var y : H

x := L(11,L(22,L(33;L(null))))
y := H(x,x ! next.next)

These constructors require no further assertions in order to be automat-

ically veri�ed.

Example: Reversal of Doubly-Linked Lists

Even when auxiliary pointers are functionally dependent on the backbone,

the code that one can write based solely on the operations of recursive data

types is often too ine�cient. For example, if we want to reverse doubly-linked

lists, then the easy recursive traversal algorithm involves copying of record

cells. Instead, we would like to reverse pointers in place.

We indicate next how our decidable Hoare logic is used to verify the

rather messy details of such an algorithm. Consider again the type of doubly-

linked lists:

11

Type D ! head: Int,next: D, prev: (^src ^ null?dst) _ (dst.next = src))

null

We wish to reverse the value of a variable x of type D. A complete veri�cation

of such a program involves arithmetical properties that goes beyond our logic.

e.g. the fact that the length of the list remains the same. However, we can

automatically verify that we maintain well-formedness of shape. This is a

necessary requirement for correctness and also a �nely masked �lter for many

errors. The proposed program looks as follows.

var x: D

var p,q,r: D? dst

p :=null;

q := x;
whilefD-wf ? p ^ D-wf ? qg

:null? q do

:null? q do

r := q ! next;
q.next := p;
if:null? p then p.prev := q end;

if:null? r then r.prev := null end;
q.prev := null;

p := q;
q := r

end

x := p

Here p, q, and r are pointer variables that point to records of type D

(D?dst). Intuitively, the algorithm works according to the picture:

where p indicates the part of the list that has already been reversed and

q indicates the remaining part. The formal invariant (fD-wf?p^ D-wf?qg)

12

states only that p and q point to well-formed D-values. Our algorithm can

verify this code, and in particular we may conclude that x is a well-formed

value of type D upon completion of the loop.

Observe that if any of the assignment statements or their mutual order

is corrupted in the trivial manner that so often occurs, then the code could

no longer be veri�ed and counter-examples could be provided. Note that

during an iteration of the loop, the invariant does not hold. However, the

veri�cation algorithm collects su�cient information to determine that the

invariant is restored after each complete iteration. In particular, the store

su�ers from neither unclaimed garbage nor dangling references.

Note that we have included the statements if :null? r then r.prev := null

end and q.prev := null to maintain the invariant. The �rst of these could

be omitted and the second could be replaced by if :null? p then p.prev

:= null end after the loop. In that case, we would modify the invariant so

that it states: with the modi�cation of the store corresponding to the two

statements, well-formedness holds.

4.1 Example: Updating Trees with Blue and Green

Leaves

This last example shows how concrete counter-examples may be generated.

Recall the blue-green trees:

type C ! (left, right: C)

! blue()

! green()

var x: C
var p: xh#�.blue?idst_(:(9� : x(#�.blue?i�)^ x?dst

At some point, the transformation:

x := C(left: blue()), right: x)

which extends x with a blue left-sibling, might seem reasonable. However, we

have committed an archetypical and notoriously subtle error. The above code

13

is rejected by the type checker, which o�ers the following pre- and post-store

demonstrating what could go wrong: See next �gure.

We see that the problem is the pointer p, which must point to a blue

leaf or to the root. This holds in the pre-store, but in the post-store the

indicated node is neither blue nor is it the root.

5 Where Does Decidability Come From?

Already around 1960, it was discovered that usual regular languages have

a logical characterization (for references, see [14]) in terms of a monadic

second-order logic. The fundamental correspondence is that to any formula,

open or closed, there is an automaton that recognizes the set of all interpre-

tations (suitable encoded) that satisfy the formula. The calculation of these

automata involves cross product construction (for ^ and _), determinization

(for :), and projection (for 9). In addition, the Myhill-Nerode theorem is

used in practice to always keep the automata as small as possible.

This correspondence also holds for the monadic second-order logic on

trees, which allows second-order quanti�cation over sets of nodes.

The decision procedures have recently been implemented in prototype

tools at our department and at the University of Kiel. The theory, the de-

cision procedures are nonelementary, since each quanti�er alternation intro-

duces an exponential state space blowup. In practice, quanti�er alternation

is bounded, but the decision procedures still have an hyper-exponential lower

bound, if for example, there are two quanti�er alternations (such as 898).

Our techniques

The monadic second-order logic of recursive data types is undecidable when

interpreted over arbitrary stores (not necessarily tree-formed) since even the

14

�rst-order theory of �nite graph is undecidable. However, when restricted to

trees, the logic becomes decidable. After a transformation by a program, the

store is no longer tree-formed. But for the programs we consider, the changes

can be described inside the logic itself. In fact, our results in [11] show that

even the auxiliary pointers can be treated in a similar way, although they

cannot be directly described in the logic.

6 Directions for Future Work

Our formalism shows that regularity|in the technical sense|is inherently

present in many data structures and their algorithms.

From our point of view, we see two important challenges in veri�cation

theory:

� Look for more methods of identifying regularity.

Identi�cation of regularity can be seen a state space reduction (from

usually in�nite spaces) to the �nite state spaces of automata. It might

be possible to weaken su�ciently the semantics of Hoare logic such

that errors about data structures with in�nite ranging values can also

be formulated in a decidable framework. As with the work discussed

here, the main observation is that assignment statements only a�ect

the store locally. Thus reasoning about \local errors" should be possi-

ble to some extent, since undecidability stems from considering tilings

or the like of unbounded global spaces. One example of a local error is

if two elements in an ordered list are not in the right order.

Two other recent examples of identifying regularity that we have been

involved with are type inference [12], which build on complex reason-

ing about in�nite systems that turn out to be regular, and veri�cation

of simple parameterized concurrent systems [7], where invariants on an

unbounded number of processors are veri�ed automatically by a system

based on second-order monadic logic.

� Look for more methods of reducing �nite state spaces.

15

If the representations of automata remain small, the decision proce-

dures that we suggest work in practice, sec [7]. Usually, the initial

description is small and a possible counter-example would also be small.

Thus a major open question is whether we can avoid explicitly con-

structing big product spaces during the calculations. For example, a

frequent problem in �nite-state veri�cation is the state explosion that

results from logical structures of the form 9x1; : : : ; xn : P1 ^ � � � ^ Pm,

where the Pjs are represented by non-deterministic automata. (A dis-

junction inside the existential quanti�er would be handled by distribut-

ing, the quanti�er over the disjunction). If the formulas share no vari-

ables, then it is exponentially more e�cient to �rst determinize each Pj

and then form the product than to do it the other way round. But what

if information is shared among the Pj through common variables? The

only general technique is to form the non-deterministic product space

and then determinize a doubly exponential endeavor.

A veri�cation method based on explicit formation of product spaces

cannot deal with this situation in practice. A similar problem has been

addressed in [6] . Possible venues solving such problems may also be

based on the implicit product spaces of asynchronons automata in trace

theory; see [8] for a determinization construction. Unfortunately little

is known about reducing the state spaces of such automata.

References

[1] A. V. Aho and .J. D. Ullman.

Principles of Compiler Design.

Addison-Wesley, 1977.

[2] L. Cardelli.

Typeful programming. Technical Report No. 45,

Digital Equipment Corporation, Systems Research Center, 1989.

[3] R. Cartwright, R. Hood, and P. Matthews.

Paths: An abstract alternative to pointers.

16

In Proc. 8th ACM Symp. on Princ. of Programming Languages, pages

14-27, 1981.

[4] J. C. Cherniavsky and S. N. Kamin.

A complete and consistent Hoare axiomatics for a simple programming

language.

JACM, 26:119-128, 1979.

[5] B. Courcelle.

Graph rewriting: An algebraic and logic approach.

In Handbook of Theoretical Computer Science, Elsevier, pages 193-242,

1990.

[6] A.J Hu and D.L. Dill.

E�cient veri�cation with BDDs using implicitly conjoined invariants.

In Computer Aided Veri�cation 1993, LNCS 697, 1993.

[7] M.E. Joergensen, J.L. Jensen, and N. Klarlund.

Practical uses of monadic second-order logics on strings.

In preparation, 1994.

[8] N. Klarlund, M. Mukund, and M. Sohoni.

Determinizing asynchronous automata.

Submitted, 1994.

[9] N. Klarlund and M. Schwartzbach.

Data types as invariants.

unpublished, 1993.

[10] N. Klarlund and M. Schwartzbach.

Graph types.

In Proc. 20.th Symp. on Princ. of Prog.Lang., pages 196-205. ACM,

1993.

[11] N. Klarlund and M. Schwartzbach.

Graphs and decidable transductions based on edge constraints.

In Proc. CAAP'94 (TAPSOFT), 1994

To appear.

[12] D. Kozen, J. Palsberg, and M. I. Schwartzbach.

E�cient inference of partial types.

17

Journal of Computer and System Science.

To appear. Also in Proc. FOCS'92, 33rd IEEE Symposium on Founda-

tions of Computer Science, pages 363-371,

Pittsburgh, Pennsylvania, October 1992.

[13] R. Milner.

A theory of type polymorphism in programming.

Journal of Computer and System Sciences, 17:348-375, 1978.

[14] W. Thomas.

Automata on in�nite objects.

In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,

volume B. pages 133-191. MIT Press/Elsevier, 1990.

18

