
E�cient Training of Feed-Forward

Neural Networks

Ph.D. Thesis

by

Martin M�ller

Computer Science Department

Aarhus University

DK-8000 �Arhus, Denmark

November 21, 1997

Preface

Since the discovery of the back-propagation method, many modi�ed and new algorithms
have been proposed for training of feed-forward neural networks. The problem with slow
convergence rate has, however, not been solved when the training is on large scale prob-
lems. There is still a need for more e�cient algorithms. This Ph.D. thesis describes
di�erent approaches to improve convergence. The main results of the thesis is the devel-
opment of the Scaled Conjugate Gradient Algorithm and the stochastic version of this
algorithm. Other important results are the development of methods that can derive and
use Hessian information in an e�cient way. The main part of this thesis is the 5 papers
presented in appendices A-E. Chapters 1-6 give an overview of learning in feed-forward
neural networks, put these papers in perspective and present the most important results.
The conclusion of this thesis is:

� Conjugate gradient algorithms are very suitable for training of feed-forward net-
works.

� Use of second order information by calculations on the Hessian matrix can be used
to improve convergence.

I would like to thank Brian Mayoh for being a very inspiring advisor. Also many thanks
to Ole �sterby who has been a great help on many technical issues. During my visit
to Carnegie Mellon University, Pittsburgh, I received inspiration and advice from many
people, which I can not all thank here. A great thanks, however, to my advisor at CMU,
Scott Fahlman.

Thank you to the Royal Danish Research Council and the Carlsberg Foundation, who
made this research possible by providing �nancial support.

Martin M�ller

DAIMI, �Arhus Universitet
Juli 1993

1

Contents

1 Resume in danish 7

1.1 Oversigtsartikel : 7
1.1.1 Kapitel 2 : 7
1.1.2 Kapitel 3 : 7
1.1.3 Kapitel 4 : 7
1.1.4 Kapitel 5 : 7
1.1.5 Kapitel 6 : 8

1.2 Artikel 1 : 8
1.3 Artikel 2 : 8
1.4 Artikel 3 : 9
1.5 Artikel 4 : 9
1.6 Artikel 5 : 9

2 Notation and basic de�nitions 11

3 Training Methods for Feed-Forward Networks: An Overview 13

3.1 Gradient descent : 13
3.1.1 Back-Propagation : 14
3.1.2 Convergence rate : 15
3.1.3 Gradient descent with momentum : : : : : : : : : : : : : : : : : : : 17
3.1.4 Adaptive learning rate and momentum : : : : : : : : : : : : : : : : 18
3.1.5 Learning rate schedules for on-line gradient descent : : : : : : : : : 20
3.1.6 The quickprop method : 21
3.1.7 Estimation of optimal learning rate and reduction of large curvature

components : 22
3.2 Conjugate Gradient : 24

3.2.1 Non-interfering directions of search : : : : : : : : : : : : : : : : : : 25
3.2.2 Convergence rate : 28
3.2.3 Scaled conjugate gradient : 30
3.2.4 Stochastic conjugate gradient : 33

3.3 Newton related methods : 34
3.4 On-line versus o�-line discussion : 36
3.5 Conclusion : 41

4 Calculation of Hessian information 43

4.1 Hessian times a vector : 44
4.1.1 Adaptive preconditioning : 46

3

4.2 Inverse Hessian information : 49
4.2.1 Inverse Hessian times a vector : 50

4.3 Conclusion : 50

5 Di�erent Error Functions 53

5.1 The CFM error function : 55
5.2 The Exponential error function : 55
5.3 Conclusion : 56

6 Conclusion 59

A A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning 61

A.1 Abstract : 61
A.2 Introduction : 61

A.2.1 Motivation : 61
A.3 Optimization strategy : 62
A.4 The Backpropagation algorithm : 63
A.5 Conjugate direction methods : 63

A.5.1 Conjugate gradients : 65
A.5.2 The CGL algorithm : 67
A.5.3 The BFGS algorithm : 67

A.6 The SCG algorithm : 67
A.7 Test results : 70

A.7.1 Comparison metric : 70
A.7.2 The parity problem : 71
A.7.3 SCG performance versus di�erent values of � : : : : : : : : : : : : : 72

A.8 Conclusion : 72

B Supervised Learning on Large Redundant Training Sets 75

B.1 Abstract : 75
B.2 Motivation : 75
B.3 Redundancy : 76
B.4 Stochastic SCG method : 78

B.4.1 Conjugate Gradient with block update : : : : : : : : : : : : : : : : 79
B.4.2 Update validation : 80
B.4.3 Estimate of blocksize : 82

B.5 Complexity : 84
B.6 Experiments : 84

B.6.1 Random generated training sets. : 84
B.6.2 The nettalk problem : 84
B.6.3 Currency exchange rate prediction : : : : : : : : : : : : : : : : : : 86

B.7 Conclusion : 87

C Exact Calculation of the Product of the Hessian Matrix and a Vector

in O(N) Time 91

C.1 Abstract : 91
C.2 Introduction : 91
C.3 Notation : 92

C.4 Calculation of the Hessian times a vector : : : : : : : : : : : : : : : : : : : 93
C.5 Improvement of existing learning techniques : : : : : : : : : : : : : : : : : 97

C.5.1 The scaled conjugate gradient algorithm : : : : : : : : : : : : : : : 97
C.5.2 Eigenvalue estimation : 98

C.6 Conclusion : 99

D Adaptive Preconditioning of the Hessian Matrix 101

D.1 Abstract : 101
D.2 Introduction : 101
D.3 Notation : 102
D.4 Condition number and convergence rates : : : : : : : : : : : : : : : : : : : 103
D.5 Preconditioning : 104
D.6 Gradient descent and conjugate gradient : : : : : : : : : : : : : : : : : : : 106
D.7 Adaptive preconditioning : 107
D.8 Experiments : 111

D.8.1 Gradient descent : 111
D.8.2 Scaled conjugate gradient : 113
D.8.3 On-line preconditioning : 115

D.9 Conclusion : 116

E Improving Network Solutions 117

E.1 Abstract : 117
E.2 Introduction : 117
E.3 Comparison of two e�cient learning algorithms : : : : : : : : : : : : : : : 118

E.3.1 The Quickprop algorithm : 118
E.3.2 The Scaled Conjugate Gradient Algorithm : : : : : : : : : : : : : : 119
E.3.3 Comparison : 120

E.4 Imposing constraints on network solutions : : : : : : : : : : : : : : : : : : 121
E.5 Generalization : 124
E.6 Conclusion : 125

Chapter 1

Resume in danish

Form�alet med denne Ph.D. afhandling er udvikling af metoder til e�ektiv tr�ning af feed-
forward neurale netv�rk. Afhandlingen best�ar af 5 selvst�ndige artikler (appendix A-E)
samt en oversigtsartikel.

1.1 Oversigtsartikel

Form�alet med artiklen er at s�tte resultaterne beskrevet i appendix A-E ind i en st�rre
sammenh�ng og beskrive relevant litteratur.

1.1.1 Kapitel 2

Kapitlet pr�senterer den notation, som er benyttet gennem hele afhandlingen.

1.1.2 Kapitel 3

Kapitel 3 er en gennemgang af de mest g�ngse og e�ektive tr�ningsmetoder i litteraturen.
I dette kapitel pr�senteres resultaterne fra appendix A og B, som omhandler udvikling
af en special designet konjugeret gradient algoritme og en stokastisk version af denne.

1.1.3 Kapitel 4

Kapitel 4 pr�senterer nye ideer og metoder til e�ektiv beregning af 2. ordens information
fra fejlfunktionen. Det har v�ret den g�ngse opfattelse, at 2. ordens information er for
tidskr�vende at benytte, fordi det umiddelbart ser ud til at kr�ve beregning af Hessian
matricen. Det viser sig nu, at der er mange muligheder for at tr�kke information ud
uden explicit at skulle beregne hele matricen. I dette kapitel pr�senteres resultaterne fra
appendix C og D.

1.1.4 Kapitel 5

Kapitel 5 beskriver problemstillinger omkring brug af fejlfunktion (objektfunktion) til
tr�ning af neurale netv�rk. Det bliver understreget, at de g�ngse funktioner, s�a som
least mean square og entropy funktionen, ofte ikke er hensigtsm�ssige til neurale netv�rks

7

tr�ning. I den forbindelse pr�senteres resultaterne fra appendix E, hvor en alternativ
fejlfunktion beskrives.

1.1.5 Kapitel 6

Kapitel 6 giver en overordnet konklusion af arbejdet. Her konkluderes bla., at algoritmen

til tr�ning af neurale netv�rk stadig ikke eksisterer, men at det med afhandlingen er
blevet nemmere at v�lge en passende algoritme alt efter problemstillingen.

Man skal overveje, om tr�ning skal foreg�a i on-line eller o�-line mode. On-line er som
regel bedst p�a klassi�kationsproblemer med store, redundante tr�ningss�t. Hvis on-line
mode bliver valgt, st�ar valget mellem stochastic scaled conjugate gradient algoritmen (se
sektion 3.2.4), eller en omhyggelig \tunet" on-line gradient descent algoritme kombineret
med teknikker som beskrevet i sektion 3.1.7. Hvis o�-line mode bliver valgt, b�r valget
falde p�a en 2. ordens metode, som scaled conjugate gradient algoritmen beskrevet i sektion
3.2.3.

Der konkluderes ogs�a, at 2. ordens information kan beregnes uden explicit at skulle
beregne hele Hessian matricen. S�adanne teknikker er yderst lovende og kan have stor be-
tydning for udvikling af bedre tr�ningsmetoder samt betydning for metoder til optimering
af netv�rksarkitektur.

1.2 Artikel 1

Artiklen \A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning" er blevet
udgivet i tidsskriften Neural Networks (Vol. 6, pp. 525-533, 1993).

Artiklen giver en introduktion til konjugerede gradient algoritmer. Konjugerede gra-
dient algoritmer er yderst velegnede til store optimerings problemer, idet de involverer 2.
ordens information uden explicit at involvere Hessian matricen. Problemet med brugen
af konjugerede gradient algoritmer til tr�ning af neurale netv�rk har v�ret, at disse in-
volverer en linie s�gning til estimering af en passende skridtl�ngde. En s�adan linies�gning
er tidskr�vende, idet den involverer
ere beregninger af fejlen og/eller gradienten til fejlen.

Artiklen pr�senterer en ny variation af en konjugeret gradient algoritme, der undg�ar
denne linies�gning. Algoritmen introducerer en skalerings mekanisme i stil med den fundet
i Levenberg-Marquardt algoritmen og kombinerer denne med en \model-trust region"
tilgang. Algoritmen udkonkurrerer andre eksisterende konjugerede gradient algoritmer
samt gradient descent p�a
ere test problemer.

1.3 Artikel 2

Artiklen \Supervised Learning on Large Redundant Training Sets" er blevet udgivet i
tidsskriftet International Journal of Neural Systems (Vol. 4, pp. 15-25, 1993).

SCG algoritmen, som beskrevet i artikel 1, er en o�-line algoritme, hvilket betyder,
at alle data skal processeres gennem netv�rket f�r en opdatering kan foreg�a. P�a store,
redundante datas�t kan dette alvorligt h�mme konvergensen set i forhold til algoritmer,
der kan opdatere on-line efter processering af enkelte datam�nstre. Artiklen pr�senterer
en stokastisk version af SCG algoritmen, som kan opdatere p�a mindre blokke af data.

1.4 Artikel 3

Artiklen \Exact Calculation of the Product of the Hessian Matrix and a Vector in O(N)
Time" er blevet indsendt til tidsskriftet Neural Computation og udgivet som en teknisk
rapport p�a DAIMI, Aarhus Universitet.

I
ere sammenh�nge er det n�dvendigt at kende Hessian matricen gange en vektor.
Dette g�lder f.eks. i SCG algoritmen samt i estimering af egenv�rdier til Hessian ma-
tricen. Hessian gange en vektor kan approximeres numerisk ved en en-sidet di�erence
ligning, men indtil fornylig har det ikke v�ret mulig at beregne denne st�rrelse eksakt
uden f�rst eksplicit at skulle beregne Hessian matricen.

Artiklen giver en algoritme til eksakt beregning af Hessian matricen gange en vektor,
og beviser at denne er korrekt. Algoritmen opererer i samme tidsorden som beregning
af gradienten til fejlfunktionen. En tilsvarende algoritme er uafh�ngigt og p�a samme tid
blevet udviklet af Barak Pearlmutter, Siemens Corporation Research, Princeton.

1.5 Artikel 4

Artiklen \Adaptive Preconditioning of the HessianMatrix" er blevet indsendt til tidsskriftet
Neural Computation.

Konditionstallet af Hessian matricen har en afg�rende indvirkning p�a konvergensen af
gradient descent samt konjugerede gradient algoritmer. En velkendt teknik til at forbedre
konvergensen i konjugerede gradient algoritmer er pr�konditionering af Hessian matricen,
hvor denne transformeres vha. af en passende pr�konditioneringsmatrice. De g�ngse
metoder virker kun p�a positive de�nite matricer og er for tidskr�vende i neurale netv�rks
sammenh�ng.

Artiklen beskriver problemerne omkring pr�konditionering af inde�nite matricer og
pr�senterer en nymetode til adaptiv pr�konditionering af Hessian matricen under tr�ning.
Metoden illustreres ved eksempler.

1.6 Artikel 5

Artiklen \Supervised Learning: Improving Neural Network Solutions" er blevet lavet i
samarbejde med Scott Fahlman, Carnegie Mellon University, Pittsburgh. En modi�ceret
udgave af artiklen er blevet indsendt til tidsskriftet Neural Computation.

Least mean square funktionen er en ofte brugt fejlfunktion til tr�ning af neurale
netv�rk. Ved klassi�ceringsproblemer er denne langt fra optimal, idet minimering af
fejlen ikke n�dvendigvis medf�rer minimering af fejlklassi�ceringer. Funktionen er ikke
monoton mht. klassi�kation.

Artiklen pr�senterer en ny fejlfunktion, som er soft-monoton, dvs. \graden" af mono-
toni kontrolleres af en bruger afh�ngig parameter. I den forbindelse pr�senteres ogs�a en
benchmark test mellen SCG algoritmen og Quickprop algoritmen.

Chapter 2

Notation and basic de�nitions

The networks we consider are multilayered feed-forward neural networks with arbitrary
connectivity. The network @ consist of nodes nlm arranged in layers l = 0; : : : ; L. The
number of nodes in a layer l is denoted Nl. In order to be able to handle the arbitrary
connectivity we de�ne for each node nlm a set of source nodes and a set of target nodes.

Slm = fnrs 2 @j nrs connects to nlm; r < l; 1 � s � Nrg (2.1)

T l
m = fnrs 2 @j nlm connects to nrs; r > l; 1 � s � Nrg

The training set associated with network @ is

f(u0ps; s = 1; : : : ; N0; tpj; j = 1; : : : ; NL); p = 1; : : : ; Pg (2.2)

The output from a node nlm when a pattern p is propagated through the network is

ulpm = f(vlpm) , where v
l
pm =

X
nrs2Slm

wlr
msu

r
ps + wl

m; (2.3)

and wlr
ms is the weight from node nrs to node n

l
m. w

l
m is the usual bias of node nlm. f(v

l
pm) is

an appropriate activation function, e.g., hyperbolic tangent. The net-input vlpm is chosen
to be the usual weighted linear summation of inputs. The calculations to be made could,
however, easily be extended to other de�nitions of vlpm. Let an error function E(w) be

E(w) =
PX
p=1

Ep(u
L
p1; : : : ; u

L
pNL

; tp1; : : : ; tpNL
) ; (2.4)

where w is a vector containing all weights and biases in the network, and Ep is some
appropriate error measure associated with pattern p from the training set. Coordinates
of vectors and matrices will depending on the context also be referred to by the simpler
notation [w]i and [A]ij.
The gradient vector E

0

(w) of an error function E(w) is an N � 1 vector given by

E
0

(w) =
PX
p=1

@Ep

@[w]1
; : : : ;

@Ep

@[w]N

!T
: (2.5)

The Hessian matrix E
00

(w) of an error function E(w) is

E
00

(w) =
PX
p=1

0
BBB@

@2Ep

@[w]21
� � � @2Ep

@[w]1@[w]N
...

. . .
...

@2Ep

@[w]1@[w]N
� � � @2Ep

@[w]2
N

1
CCCA : (2.6)

11

A set p1;p2; : : : ;pN of vectors are said to be mutually conjugate with respect to a matrix
A if

pTi Apj = 0 , when i 6= j: (2.7)

The condition number � of a matrix A is

� =

������max

�min

����� ; (2.8)

where �max and �min are the largest and smallest eigenvalue of A respectively.

Chapter 3

Training Methods for Feed-Forward

Networks: An Overview

This chapter reviews di�erent methods for training feed-forward neural networks. The
viewpoint is that of optimization which allows us to use results from the optimization liter-
ature. These results give information about computational complexity, congergence rates
and safety procedures to ensure convergence and avoid numerical instabilities. Through-
out the chapter we use results from the well written paper about �rst- and second order
methods written by Battiti [Battiti 92]. We emphasize that this review is not a full survey
of all existing techniques to train feed-forward networks, but a presentation of material
that puts the results presented in appendix A and B into a broader context.

The presentation will focus on methods which are especially well suited for training of
feed-forward networks. Factors that are important in this classi�cation are computational
complexity and the number of problem dependent parameters. In the description of the
di�erent methods we separate between �rst order and second ordermethods, i.e., between
methods based on a linear model and methods based on a quadratic model of the error
function.

3.1 Gradient descent

Gradient descent is one of the oldest optimization methods known. The use of the
method as a basis for multivariate function minimization dates back to Cauchy in 1847
[Cauchy 1847], and has been the subject of intense analysis. Gradient descent is based
on a linear approximation of the error function given by

E(w +4w) � E(w) +4wTE
0

(w): (3.1)

The weight update is
4w = ��E 0

(w) ; � > 0: (3.2)

The step size or learning rate � can be determined by a line search method but is usually
set to a small constant. In the latter case the algorithm is, however, not guaranteed to
converge. If � is chosen optimally in each step the method is often called the steepest

descent method. The method can be used in o�-line or on-line mode. The o�-line mode
is the one presented in (3.2), where the gradient vector is an accummulation of partial
gradient vectors, one for each pattern in the training set. In the on-line mode, gradient

13

descent is performed successively on each partial error function associated with one given
pattern in the training set. The update formula is then given by

4w = ��E 0

p(w) ; � > 0; (3.3)

where E
0

p(w) is the error gradient associated with pattern p. If � tends to zero over time,
the movement in weight space during one epoch1 will be similar to the one obtained with
one o�-line update. However, in general the learning rate has to be large to accelerate
convergence, so that the paths in weight space of the two methods di�er. The on-line
method is often preferable to the o�-line method when the training set is large and contains
redundant information. This is especially true on problems where the targets only have
to be approximated such as classi�cation problems. For further discussion about issues
concerning on-line and o�-line techniques see section 3.4.

3.1.1 Back-Propagation

Until only recently gradient descent was only applicable to single layer feed-forward net-
works, because a method for the calculation of the gradient E

0

(w) for multi-layer networks
did not exist before that time. A method to calculate the gradient in general was derived
independently several times, by Bryson and Ho [Bryson and Ho 69], Werbos [Werbos 74],
Parker [Parker 85] and Rumelhart [Rumelhart et al. 86]. The method is now known as
the back-propagation method, and is central to much current work on learning in neural
networks. There is some confusion about what the name back-propagation method actu-
ally refers to in the literature. Some researchers connects the name to the calculation of
the gradient E

0

(w), others use the name to refer to the gradient descent algorithm itself.
We use the name to refer to the gradient calculation. The following lemma summarizes
the back-propagation method.

Lemma 1 The gradient E
0

p(w) of one particular pattern p can be calculated by one for-
ward and one backward propagation. The forward propagation formula is:

ulpm = f(vlpm) , where

vlpm =
P

nrs2Slm w
lr
msu

r
ps + wl

m ,

The backward propagation formula is:

[E
0

p(w)]
lh
mi = �lpmu

h
pi ; [E

0

p(w)]
l
m = �lpm ;

where �lpm is given recursively by:

�lpm = f 0(vlpm)
P

nrs2T lm w
rl
sm�

r
ps ; l < L ; �Lpj =

@Ep

@vL
pj

; 1 � j � NL:

The gradient of the error corresponding to the whole training set is of course a sum of
the partial gradients calculated in lemma 1. Lemma 1 can easily be derived using the
chain rule backwards in the network. The main idea of propagating error information
back through the network can be extended to the calculation of other important error
information features such as second order information. We will get back to that in chapter
4.

1An epoch is equal to one full presentation of all patterns in the training set.

Figure 3.1: The steepest descent trajectory on a simple quadratic surface. Notice that
the search directions are perpendicular to each other and to the tangent planes of the
contours.

3.1.2 Convergence rate

We now turn to the rate of convergence of the gradient descent algorithm. Considering
that the negative gradient is the direction of fastest decrease in error, we would intuitively
expect to get a fast convergence, if the learning rate � is chosen optimally. This is,
however, not the case. If we assume that the error is locally quadratic, then the contours
of E(w), given by E(w) = c are N dimensional ellipsoids with the minimum of the
quadratic as the center. The axes of the ellipsoids are in the direction of the N -mutually
orthogonal eigenvectors of the Hessian and the length of the axes are equal to the inverse
of the corresponding eigenvalues [Luenberger 84]. The gradient E

0

(w) in a point w on the
ellipsoid is perpendicular to the tangent plane in w. This means that the gradient descent
direction �E 0

(w) will not in general point directly to the minimum of the quadratic
(the center of the ellipsoid). The search directions chosen tend to interfere so that a
minimization in a current direction can ruin past minimizations in other directions. In
fact, the minimization is done in a kind of \zig-zagging" way, where the current search
direction is perpendicular to the last search direction. This is easily veri�ed by the
following. Let dk = �E 0

(wk) be the direction of search in the kth iteration. If we
minimize in the direction of dk with respect to �, then

d

d�
E(wk + �dk) = dTkE

0

(wk + �dk) = 0) dTkdk+1 = 0

Figure 3.1 illustrates the whole situation. As we shall see in section 3.2, one of the major
advantages with conjugate gradient methods is that they approximate non-interfering
directions of search.

If we assume that the error function is quadratic with constant and positive de�nite
Hessian, 2 then it is possible to show that the condition number of the Hessian matrix
has a major impact on the convergence rate. We can write the error in a neighborhood
of a point w as

E(wk) = E(w) + (wk �w)TE
0

(w) +
1

2
(wk �w)TE

00

(w)(wk �w) : (3.4)

2This is, however, not always the case (see section 4).

If w� is the minimum of the error, then E
0

(w) = �E 00

(w)(w� � w) and E(wk) can be
written in the alternative form

E(wk) =
1

2
(wk �w�)TE

00

(w)(wk �w�) + E(w)� 1

2
(w� �w)TE

00

(w)(w� �w) : (3.5)

The last two terms of (3.5) are constants and can be ignored when minimizing E(wk). If
the learning rate � is chosen optimal then

� =
E
0

(wk)TE
0

(wk)

E
0(wk)TE

00(w)E 0(wk)
: (3.6)

In order to obtain a bound of the convergence rate we need the following lemma.

Lemma 2 The Kantorovitch-Bergstrom inequality states

(xTAx)(xTA�1x)
(xTx)2

� (�max + �min)2

4�max�min

where A is a symmetric positive de�nite matrix and �max and �min are the largest and
smallest eigenvalue respectively.

Proof. See [Aoki 71] or [Luenberger 84]. 2

Based on lemma 2 we can now make the connection between convergence rate and con-
dition number.

Lemma 3 Assume that the error function is quadratic with constant Hessian E
00

(w). At
every step in the gradient descent algorithm it holds that

E(wk+1)� E(w�)
E(wk)� E(w�)

�
�
�� 1

�+ 1

�2
;

where � is the condition number of E
00

(w).

Proof. Using (3.6) and the fact that

E
0

(wk) = E
00

(w)(wk �w�) and

E(wk)� E(w�) =
1

2
E
0

(wk)
TE

00

(w)�1E
0

(wk) ;

we get

E(wk)� E(wk+1)

E(wk)�E(w�)
=

2�E
0

(wk)TE
00

(w)(wk �w�)� �2E
0

(wk)TE
00

(w)E
0

(wk)

E 0(wk)TE
00(w)�1E 0(wk)

=
(E

0

(wk)TE
0

(wk))2

(E 0(wk)TE
00(w)E 0(wk))(E

0(wk)TE
00(w)�1E 0(wk))

� 4�max�min

(�max + �min)2
;

where �max and �min are the largest and smallest eigenvalue of E
00

(w). The result is now
easily derived from the last inequality [Luenberger 84]. 2

OVERVIEW 17

Lemma 3 states that the gradient descent method converges linearly with a ratio not

greater than
�
��1
�+1

�2
. It can be shown that if the condition number � is high, then the

method is very likely to converge at a rate close to the bound [Akaike 59]. So the bigger
di�erence between the largest and smallest eigenvalue, the slower convergence of the
gradient descent method. Geometrically this means that the more the contours of E(wk)
are skewed the slower the convergence of gradient descent. Even if only one eigenvalue is
large and all others are of equal size, the convergence will be slow.

3.1.3 Gradient descent with momentum

In [Plaut et al. 86] the gradient descent update is changed to

4wk+1 = ��E 0

(wk) + �4wk ; � > 0 ; 0 < � < 1 ; (3.7)

where � is the so called momentum term. The addition of this momentum term incor-
porates second order information into the method since current as well as past gradient
information is taken into account. The change was introduced to avoid oscillations in
narrow steep regions of weight space and to increase convergence in
at regions. In
[Watrous 87] an analysis of the e�ect of the momentum term was given. We shortly sum-
marize these results. The weight update formula given by (3.7) is a special version of a
�rst order di�erence equation [Press et al. 88],3 which solution is given by

4wk+1 = �k4w1 � �
kX
i=1

�k�iE
0

(wi) : (3.8)

Written in terms of the weights this becomes

wk+1 = wk � �
kX
i=0

�k�iE
0

(wi) (3.9)

Equation (3.9) is a �rst order di�erence equation in w with solution

wk+1 = w0 � �
kX

j=0

kX
i=0

�j�iE
0

(wi) = w0 � �
kX

j=0

�j
k�jX
i=0

E
0

(wi) (3.10)

In
at regions in weight space the gradient can be approximated with a constant, say E
0

.
Under this assumption we have

wk+1 = w0 � �E
0

kX
j=0

(k � j + 1)�j (3.11)

Splitting equation (3.11) up in two �nite sums,4 and evaluating we get

wk+1 = w0 � �E
0

(k + 1)

1 � �k+1

1� �
� �(1� �k)

(1� �)2
+
k�k+1

1� �

!
(3.12)

= w0 � �E
0

k + 1

1 � �

!
1� 1 � �k+1

k + 1

�

1 � �

!
:

3The solution for the general equation xk+1 = akxk + bk is: xk+1 =
Q

k

j=1 ajx1 +
P

k

i=1

Q
k

j=i+1 ajbi.
4We here use that:

P
k

j=0 x
j = 1�xk+1

1�x
and

P
k

j=0 jx
j = x(1�xk)

(1�x)2
�

kx
k+1

1�x
; jxj < 1.

The e�ect of � is now clear. In
at regions of weight space the convergence rate is
accelerated with a factor approaching 1

1��, when k gets large. In narrow steep regions the
e�ect of � is to average out components of the gradient with alternating signs.

As we shall see in section 3.2, gradient descent with momentum is an approximation
of a conjugate gradient update. In conjugate gradient methods, however, � and � are
chosen automatically. The problem with the gradient descent with momentum is that �
and � has to be guessed by the user. Furthermore, the optimal values of � and � might
change in each iteration.

3.1.4 Adaptive learning rate and momentum

Many heuristic schemes to adapt the learning rate and/or the momentum dynamically
have been proposed in the literature, such as [Cater 87], [Franzini 87], [Chan and Fallside 87],
[Jacobs 88], [Vogl et al. 88], [Battiti 89], [Silva and Almeida 90] and [Tollenaere 90]. It
will go too far to describe them all here. We will, however, brie
y describe some of the
best known approaches.

One heuristic to adapt both learning rate and momentum has been proposed by Chan
and Fallside [Chan and Fallside 87]. The main idea of the learning rate adaptation is to
calculate the angle �k between the current gradient and the last weight update and use
this as information about the error surface characteristics. If 90� � �k � 270�, arrival at
a ravine wall is likely and the learning rate should be decreased. If �k approaches 0� or
360�, arrival at a plateau is likely and the learning rate should be increased. Chan and
Fallside suggest the following adaptation of �.

�k = �k�1(1 +
1

2
cos �k) (3.13)

When a constant momentum is used, the weight update vector can be dominated by
the momemtumterm and even point uphill instead of downhill. The idea of the adaptation
of the momentum is therefore to insist of having the magnitude of the momentum term
smaller than the magnitude of the gradient term. In this case the gradient term will
always be the dominating factor in the weight update vector. The adaptation of the
momentum is given by

�k = �0�k
j4E(wk)j
j4wk�1j ; 0 < �0 < 1: (3.14)

This method yields good results compared to standard gradient descent, but is however
not without problems. The setting of �0 and �0 might be crucial for the success of
this adaptation scheme. Chan and Fallside incorporates a backtracking scheme into the
algorithm to prevent too large learning rates caused from too high an initial �0 value. If
the error is larger than the previous error, the learning rate �k is then reduced by a half.
See [Chan 90] for a comparison of this method with other adaptive methods.

Several researchers have explored the idea of having a learning rate and/or a momen-
tum for each unit or even for each weight in the network. The motivation for this strategy
is that parameters appropriate for any one weight dimension might not be appropriate for
other dimensions. Note that having di�erent learning rates for each unit or each weight,
means that the weights are not modi�ed in the direction of the negative gradient any
longer. Thus, such a system is not doing gradient descent any more. Instead, the weights

OVERVIEW 19

are updated based on gradient information together with estimated information about
the curvature.

One scheme, that has learning rates and momentum for each unit is described in
[Ha�ner et al. 88]. They develop heuristic schemes for adaptation of both learning rate
and momentum. The idea for the learning rate scheme is to limit the norm of the learning
rate times the gradient to a �xed value, say !. This can be achieved by adapting the
learning rate �lm associated with unit number m in layer l with

�lm =
�

1 + �

!

rP
nrs2Slm

�
dE

dwlrms

�2 ; � > 0; ! > 0: (3.15)

Ha�ner et al. states that a value of ! equal to one yields good results. They do, however,
not say anything about the value of the other user-dependent parameter �, which value
might be crucial for the convergence rate.

The momentum term is adapted in a similar fashion. The overall idea is, that the more
the network changes the smaller should the momentum be. A characteristic symptom of
too large a momentum is divergence of the term jwj2 over time. Thus in the kth iteration
and for each unit, Ha�ner et al. de�nes a control measure by

Ql
m(k) =

X
nrs2Slm

[wlr
ms(k)]

2 � X
nrs2Slm

[wlr
ms(k � 1)]2 (3.16)

= 2
X

nrs2Slm
wlr
ms(k � 1)4wlr

ms(k) +
X

nrs2Slm
[4wlr

ms(k)]
2

In order to limit Ql
m(k), the momentum is chosen such as to be inverse proportional to

the �rst term in (3.16). The adaptation formula is

�lm =
1

1 + jPnrs2Slm w
lr
ms(k � 1)4wlr

ms(k)j
; > 0: (3.17)

This adaptation formula does not ensure that the control measure Ql
m(k) is limited to

a �xed value as was the case for learning rate adaptation. Through several experiments
Ha�ner et al. concludes that the method yields faster convergence than standard gradient
descent and also gives a higher percentage of converging trials.

Another heuristic method of adapting learning rates is the delta-bar-delta method
proposed by Jacobs [Jacobs 88]. In this case there are independent learning rates for each
single weight. Jacobs develops a gradient descent like updating rule for the learning rates
for each unit in the network. Let � be a diagonal matrix of learning rate values. Then
we can approximate the derivative dE

d�
by

dE

d�
� dE

dwT
k

dwk

d�
(3.18)

The derivative with respect to each learning rate �lrms is then given by

�E

��lrms

= � �E

�wlr
ms(k)

�E

�wlr
ms(k � 1)

: (3.19)

dE

d�
can then be updated simultanously with the weights by the gradient descent update

rule

4�lrms =

�E

�wlr
ms(k)

�E

�wlr
ms(k � 1)

;
 > 0: (3.20)

This update scheme is called the delta-delta rule and is, unfortunately, of limited practical
use. The problem is, that the convergence of the process is crucially dependent of the
value of
. Jacobs overcomes this problem, by de�ning a new update rule, which only
in principle works in a similar fashion as the delta-delta rule. The delta-bar-delta rule is
given by

4�lrms =

8><
>:

 �k�1�k > 0 ;
 > 0
���lrms �k�1�k < 0 ; � > 0
0 otherwise

(3.21)

where �k =
�E

�wlrms(k)
and �k = (1 � �)�k + ��k�1 ; 0 < � < 1, i.e. �k is a running average of

the current and past gradients. If the current gradient has opposite sign as the running
average gradient the learning rate is decreased exponentially. If the current gradient has
the same sign as the running average gradient then the learning is increased linearly. The
di�erence between the delta-delta rule and the delta-bar-delta rule is that the latter takes
average gradients into account and updates the learning rates independently of the size
of the current gradient.

Jacobs reports a signi�cant increase of convergence compared to standard gradient
descent. There is, however, some problems with the delta-bar-delta method that are
unclari�ed. A problem that immediately can be identi�ed, is how to select the values of
the two user-dependent parameters
 and �. The value of these parameters might be very
crucial for the success of this scheme. Jacobs does not give any description of how to set
these parameters.

3.1.5 Learning rate schedules for on-line gradient descent

In this section we present some promising learning rate schedules introduced by Darken et
al. [Darken et al. 92]. These schedules are only functions of time and not of previous val-
ues of learning rates or other parameters. The schedules are based on results from stochas-
tic approximation theory, see for example [Robbins and Monro 51] and [Goldstein 87].

In standard stochastic approximation theory results are given about the convergence
properties of on-line gradient descent. On-line gradient descent on the least mean square
error function is guaranteed to converge if the learning rate �k satis�es

1X
k=1

�k =1 ; and
1X
k=1

�2k = 0: (3.22)

When the learning rate �k is only a function of time, it can be shown that the optimal
rate of convergence is proportional to k�1, i.e., jwk �w�j2 / k�1, where w� is the desired
minimum. When the learning rate is allowed to depend on current or previous values
of the learning rate or other parameters, as in the adaptive schemes described in the
last section, very little is known theoretically about the optimal convergence rate. In
[Goldstein 87] it is shown that in order to converge at an optimal rate, we must have
�k ! c

k
asymptotically, for c greater than some threshold c�, which depends on the error

function and on the training set. Chung shows that c� is equal to 1
2�min

, where �min is

OVERVIEW 21

the smallest eigenvalue of the Hessian of the error function [Chung 54]. The usual choice
of learning rate schedule in stochastic approximation theory is �k = c

k
. However, this

scheme often converges slowly. Darken et al. propose a more sophisticated schedule that
guarantees asymptotically optimal rate of convergence. The schedule is called Search-

Then-Converge (STC) and is given by

�k = �0
1 + c

�0

k

�

1 + c

�0

k

�
+ � k

2

�2

(3.23)

The main idea of this schedule is to delay the major decrease in the learning rate until
a minimum has been located. �k is approximately equal to �0 at times small compared
to
p
� , this is called the \search phase". For times greater than

p
� , the learning rate

decreases as c

k
, which is called the \convergence phase". Darken et al. demonstrates major

improvements in convergence rate using this schedule compared to traditional learning
rate schedules. There are, however, some problems with the method of setting initial
parameters such as c, �0 and � . Darken et al. addresses the problem of setting the c
parameter. As mentioned above c should be greater than c� = 1

2�min
. In fact, Darken et

al. shows that the system exhibits a kind of phase transition at c = c�. This means that
an arbitrarily small change in c, which moves it to the opposite side of c� has a dramatic
e�ect on the behaviour of the system. Darken et al. argue that using a direct method
of estimating c� is too time consuming since this involves estimation of the smallest
eigenvalue of the Hessian. For this reason, they outline an ad hoc method of determining
whether a particular value of c is less than c�. They use a heuristic scheme to adapt c
based on characteristics of the weight vector trajectory. It is, however, in our opinion an
open question whether the direct method of estimating the smallest eigenvalue is too time
consuming afterall. The smallest eigenvalue of the Hessian can be estimated by use of the
Power method on the matrix B = (�I�E 00

(wk)), where � > �max [Ralston et al. 78] (see
also chapter 4 and appendix C). This estimation can be relaxed to an on-line situation
by replacing B with a running average of the form

Bk = (1�
)Bk�1 +
(�I � E
00

p (wk)) ; 0 <
 < 1: (3.24)

If the Power method is run simultanously with the update of weights, then this scheme
would cost O(N) time more per weight update, i.e. twice as much calculation work per
iteration [Pearlmutter 93], [M�ller 93c].

Darken et al. do not address the setting of the parameters �0 and � , because these
values do not a�ect the asymptotic behavior of the system. The values do, however,
have a major a�ect on the rate of convergence and methods for the initial setting of
these parameters are needed in order for the method to have any real practical use. Some
practical hints about how to set these parameters are the following [Darken 93]. �0 should
be taken as large as possible, but avoiding instability.

p
� should be some fraction of the

total number of iterations that are planned to be run. In the setting of � , prior knowledge
about the problem can be used. This could be knowledge about how noisy the problem
is, or if it is easy to locate a minimum and so forth.

3.1.6 The quickprop method

Quickprop is not strictly a gradient descent method, but can be viewed somewhere be-
tween a gradient descent method and a Newton method [Fahlman 89]. It has, in our

opinion not received the attention it deserves. We give a detailed description here.
In order to avoid the time and space consuming calculations involved with the Newton

algorithm two approximations are made. The Hessian matrix is approximated by ignoring
all non-diagonal terms making the assumption that all the weights are independent. Each
term in the diagonal is approximated by a one sided di�erence formula given by

d2E(w)

dw2
� E

0

(wk)�E 0

(wk�1)
wk �wk�1

(3.25)

where wk is a given weight at time step k. d2E(w)

dw2 can actually be calculated precisely
with a little more calculation work [Le Cun 89], but is in the quickprop method not
more e�cient than the approximation. Geometrically the two approximations can be
interpreted as follows. The error versus weight curve for each weight is approximated by
a quadratic, which is assumed to be independent on changes in other weights. The main
idea is to compute the minimum of this quadratic for each weight and update the weights
by the following formula

4wk = �(�kE 0

(wk) + �k) ; (3.26)

where �k is

�k =

(
�0 E

0

(wk)E
0

(wk�1) > 0
0 otherwise

(3.27)

and �k is

�k =

8<
:

wk�wk�1
E
0
(wk)�E0(wk�1)E

0

(wk)
����E0(wk)�E0(wk�1)E

0
(wk�1)

���� < �

1+�

�4wk�1 otherwise
(3.28)

The constant �0 is similar to the learning rate in gradient descent. If E
0

(wk)E
0

(wk�1) > 0,
i.e., the minimum of the quadratic has not been passed, a linear term is added to the
quadratic weight change. On the other hand, if E

0

(wk)E
0

(wk�1) � 0, i.e., the minimum
of the quadratic has been passed, only the quadratic weight change is used to go straight
down to the minimum. � is usually set equal to 2, which seems to work well in most
applications.

The algorithm is usually used combined with a primeo�set term added to the �rst
derivative of the sigmoid activation function. As noted in chapter 4 and appendix E,
the use of primeo�set can in
uence the quality of the solutions found. Despite the two
very crude approximations the quickprop algorithm has shown very good performance in
practice. One drawback with the algorithm is, however, that the �0 parameter is very
problem dependent. An adaptive scheme to estimate this parameter would signi�cantly
increase the usefullness of this method. It might be possible to combine one of the adaptive
learning rate schemes, described above to adapt �0.

3.1.7 Estimation of optimal learning rate and reduction of

large curvature components

The eigenvalues of the Hessian matrix can be interpreted as the curvature in the direction
of the corresponding eigenvectors. The eigenvectors are the main axes of the contours
of equal error, which are approximately ellipsoids with the minimum of the error as a
center. Only if all the eigenvalues are of equal size, does the gradient descent direction

OVERVIEW 23

point directly to the minimum (see �gure 3.1). So as concluded in the analysis of the
convergence rate of the gradient descent method, the main factor limiting the convergence
rate of gradient descent is that the curvature of the error has di�erent values in di�erent
directions. The largest curvature limits the maximum value of the learning rate, while
the smallest curvature dominates the learning time. The optimal learning rate for o�-line
gradient descent can be shown to be equal to the inverse of the largest eigenvalue. In this
section we describe methods to reduce the in
uence of large curvature components and
also how to estimate the optimal learning rate.

The true direction to the minimum can be computed by multiplying the gradient de-
scent vector by the inverse of the Hessian matrix, assuming that the Hessian is invertible.
We then get the Newton direction (see chapter 3.3). The inverse of the Hessian can be
expressed in terms of the eigenvectors and corresponding eigenvalues. By the spectral
theorem from linear algebra we have that E

00

(wk) has N eigenvectors that form an or-
thogonal basis in <N [Horn and Johnson 85]. This implies that the inverse of the Hessian
matrix E

00

(wk)�1 can be written in the form

E
00

(wk)
�1 =

NX
i=1

eie
T
i

jeij2�i ; (3.29)

where �i is the ith eigenvalue of E
00

(wk) and ei is the corresponding eigenvector. Equation
(3.29) implies that the Newton search directions dk can be written as

dk = �E 00

(wk)
�1E

0

(wk) = �
NX
i=1

eie
T
i

jeij2�iE
0

(wk) = �
NX
i=1

eTi E
0

(wk)

jeij2�i ei ; (3.30)

where E
0

(wk) is the gradient vector. So the Newton search direction can be interpreted
as a sum of projections of the gradient vector onto the eigenvectors weighted with the
inverse of the eigenvalues. To calculate all eigenvalues and corresponding eigenvectors
costs O(N3) time which is infeasible for large N. Le Cun et al. argues that only a few
of the largest eigenvalues and the corresponding eigenvectors are needed to achieve a
considerable speed up in learning. The idea is to reduce the weight change in directions
with large curvature, while keeping it large in all other directions. A choice of search
direction could be

dk = �(E 0

(wk)� �
kX
i=1

eTi E
0

(wk)

jeij2 ei) ; 0 � � � 1: (3.31)

where i now runs from the largest eigenvalue �1 down to the kth largest eigenvalue �k,
and � is some appropriate constant (Le Cun et al. suggest � = �k+1

�1
). Equation (3.31)

reduces the component of the gradient along the directions with large curvature. See also
[Le Cun et al. 91] for a discussion of this. The learning rate can now be increased with a
factor of �1

�k+1
, since the components in directions with large curvature have been reduced

with the inverse of this factor.
Another approach also proposed by Le Cun et al. is to use a small part of the sum in

equation (3.30) as search direction, so that

dk = �
kX
i=1

eTi E
0

(wk)

jeij2�i ei ; (3.32)

with k � N . In theory, this can accelerate the convergence by a factor �1
�k+1

, compared

to standard gradient descent.
The largest eigenvalue and the corresponding eigenvector can be estimated by an iter-

ative process known as the Power method [Ralston et al. 78]. The Power method can be
used successively to estimate the k largest eigenvalues if the components in the directions
of already estimated eigenvectors are substracted in the process. Below we show an al-
gorithm for estimation of the ith eigenvalue and eigenvector. The Power method is here
combined with the Rayleigh quotient technique [Ralston et al. 78]. This can accelerate
the process considerably.
Choose an initial random vector e0i . Repeat the following steps for m = 1; : : : ;M , where
M is a small constant:

emi = E
00

(wk)e
m�1
i ; emi = emi �

Pi�1
j=1

eT
j
em
i

jejj2 ej

�mi =
(em�1

i
)Tem

i

jem�1
i

j2 ; emi = 1
�m
i

emi :

�Mi and eMi are respectively the estimated eigenvalue and eigenvector. Theoretically it
would be enough to substract the component in the direction of already estimated eigen-
vectors once, but in practice roundo� errors will generally introduce these components
again. The term E

00

(wk)emi can be approximated by a one-sided di�erence equation of
the form

E
00

(wk)e
m
i �

E
0

(wk + �emi)� E
0

(wk)

�
; 0 < �� 1 (3.33)

See [M�ller 93a] for an explanation. It has recently been shown independently by Pearl-
mutter and M�ller that the term also can be calculated exactly in the same order of time
as the approximation [Pearlmutter 93], [M�ller 93c] (see also chapter 4).

The method of large curvature reduction can be relaxed to an on-line situation by
replacing all terms of the form E

00

(w)v, where v is a vector, with a running average of
the form

E
00

(w)v = (1 �
)E 00

(w)v+
E
00

p (w)v ; 0 <
 < 1; (3.34)

where E
00

p (w) is the Hessian matrix associated with pattern p. Le Cun et al. reports
signi�cant increase in convergence even if only a few eigenvector are used.

Instead of changing the search direction dk, one can of course also use the above
techniques to estimate the optimal learning rate � = ��1max for gradient descent. Le Cun
et al. describes a technique based on equation (3.34) to esimate ��1max and uses this as an
estimate of the optimal on-line learning rate. It should here be noted, that the learning
rate � = ��1max is not necessarily an optimal choice in the on-line version of gradient descent.
Le Cun et al. reports, however, very impressive results with this scheme. The on-line
estimation of the largest eigenvalue based on (3.34), seems to converge very quickly, i.e.,
after presentation of a small fraction of the whole training set. The largest eigenvalue
seems to be mainly determined by network architecture and initial weigths, and by low-
order statistics of the training data.

3.2 Conjugate Gradient

Conjugate gradient methods can be regarded as being somewhat intermediate between
the method of gradient descent and Newton's method described in chapter 3.3. They

OVERVIEW 25

are motivated by the desire to accelerate the typically slow convergence associated with
the gradient descent method while avoiding the information requirements associated with
the evaluation, storage and inversion of the Hessian matrix as required by the Newton
method. The standard conjugate gradient method was originally developed by Hestenes
and Stiefel to solve a set of equations with a positive de�nite matrix of coe�cients
[Hestenes and Stiefel 52]. Since then, conjugate gradient methods have become a stan-
dard method for non-linear function minimization.

In this section we give a brief introduction to the conjugate gradient methods and
describe the convergence properties of the methods. The scaled conjugate gradient method
is described in the last part of this section. We refer to appendix A-B for further details
about conjugate gradient methods. In appendix A, an introductory part to conjugate
gradient methods is also given. The introduction to follow di�ers deliberately from this
introduction, in order to broaden the readers view of the methods and give additional
insight.

3.2.1 Non-interfering directions of search

One of the problems with the gradient descent method was, that the gradient descent
directions were interfering, so that a minimization in one direction could spoil past mini-
mizations in other directions. This problem is solved in the conjugate gradient methods
and is the heart of these methods. Under the assumption that the error function is
quadratic, conjugate gradient methods produce non-interfering directions of search. This
implies that in the kth iteration, the error has been minimized over the whole subspace
spanned by all previous search directions. The necessary and su�cient condition to have
non-interfering directions of search is, that the directions have to be mutually conjugate
with respect to the Hessian matrix. So if p1;p2; : : : ;pN is a set of directions, we have

pTi E
00

(w)pj = 0 , when i 6= j: (3.35)

This is easy to verify by the following. If we minimize the error optimally in the direction
of say pi, then we have

d

d�
E(wi + �pi) = 0) E

0

(wi+1)
Tpi = 0 (3.36)

In order to keep the error to be minimized in this direction, equation (3.36) has to be
satis�ed for all coming minimizations. So after minimization in a new direction pj, we
need the condition

E
0

(wj+1)
Tpi = 0 (3.37)

to be satis�ed. Figure 3.2 illustrates the situation.
So we need to show that (3.35) , (3.37). This can be shown by induction. Assume

that equation (3.37) is satis�ed for all wk; k < j + 1. The initial step, k = i + 1, is
immediately true by equation (3.36). Now E(wj+1) can be approximated by

E(wj+1) = E(wj + �jpj) � E(wj) + �jp
T
j E

0

(wj) +
1

2
�2jp

T
j E

00

(wj)pj: (3.38)

Observe that the �j , that minimizes the quadratic (3.38) is given by

�j =
�E 0

(wj)Tpj
pTj E

00(wj)pj
(3.39)

wk�1
s�
�
�
�
�
�
�
�
��

pk�1

s

wk

E
0

(wk)Tpk�1 = 0

PPPPPPPPPPPPqs

pk

wk+1

E
0

(wk+1)Tpk = 0

E
0

(wk+1)Tpk�1 = 0

Figure 3.2: Non-interfering direction pk�1 and pk. The formula in the box indicates the
non-interference condition.

Di�erentiation of (3.38) gives

E
0

(wj+1) � E
0

(wj) + �jE
00

(wj)pj : (3.40)

Multiplying by pi gives the desired result

E
0

(wj+1)
Tpi = 0 , (3.41)�

E
0

(wj) + �jp
T
j E

00

(wj)
�T
pi = 0 ,

pTj E
00

(wj)pi = 0

The search directions can be determined recursively such that (3.35) is satis�ed. The
idea is to choose pk to be the projection of the current gradient descent vector onto the
subspace orthogonal to the subspace spanned by the previous diretions p1;p2; : : : ;pk�1.
The following lemma describes how [Fletcher 75].

Lemma 4 Assume that the error function is quadratic with constant Hessian E
00

(w). Let
the direction vectors be recursively de�ned by

pk = �E
0

(wk) + �k�1pk�1 (3.42)

where

�k�1 =
jE 0

(wk)j2 � E
0

(wk)TE
0

(wk�1)
jE 0(wk�1)j2 ; ��1 = 0: (3.43)

Then the following three conditions hold

pTkE
00

(w)pi = 0 ; i < k; (3.44)

E
0

(wk)
TE

0

(wi) = 0 ; i < k; (3.45)

�E 0

(wk)
Tpk = jE 0

(wk)j2 : (3.46)

The conditions are referred to as mutually conjugacy, orthogonal gradient and descent

conditions.

OVERVIEW 27

Proof. We prove the lemma by induction. The initial step for p0 and p1 is easy to verify
using the fact that p0 = �E

0

(w0). We leave that to the reader. Assume that the lemma
is true for all i < k. We �rst prove the orthogonal gradient condition. Using (3.40) and
(3.42) we have

E
0

(wk)
TE

0

(wi) =
�
E
0

(wk�1) + �k�1p
T
k�1E

00

(w)
�T
E
0

(wi)

= E
0

(wk�1)TE
0

(wi) + �k�1pTk�1E
00

(w)
�
�i�1pi�1 + pi

�
:

When i < k� 1, this is zero by (3.44) and (3.45), and when i = k� 1, it is zero by (3.39),
(3.44) and (3.46). Thus, the orthogonal gradient condition (3.45) is true. Using (3.42)
and (3.40)

pTkE
00

(w)pi = (�E 0

(wk) + �k�1pk�1)
TE

00

(w)pi

= � 1

�i
E
0

(wk)
�
E
0

(wi+1)�E 0

(wi)
�
+ �k�1pTk�1E

00

(w)pi (3.47)

When i < k� 1, this is zero by (3.44) and (3.45), and when i = k� 1, it is zero by (3.39),
(3.43), (3.45) and (3.46). So the mutually conjugacy condition is true. Finally, by (3.42)
and (3.36)

�E 0

(wk)
Tpk = �E 0

(wk)
T
�
�E 0

(wk)
T + �k�1pk�1

�
= E

0

(wk)
TE

0

(wk): (3.48)

Thus, the descent condition is true, which ends the proof. 2

Lemma 4 does not hold for non-quadratic functions. However, the direction vectors
produced by lemma 4 will be approximately non-interfering, since a non-quadratic error
function can be approximated by a quadratic as in (3.38). Based on lemma 4 the standard
conjugate gradient method can be formulated as follows.

1. Select initial weight vector w0;
r0 = �E 0

(w0);
p0 = r0;

2. �k = min�E(wk + �pk);

3. wk+1 = wk + �kpk;
rk+1 = �E 0

(wk+1);

4. if (k mod N = 0) then
pk+1 = rk+1 ;

else

�k =
jrk+1j2�rTk+1

rk
jrkj2 ;

pk+1 = rk+1 + �kpk ;

5. k = k + 1 ; terminate or go to 2.

The learning rate in step 2 is usually determined by a one dimensional line search, which
can be very time consuming. The scaled conjugate gradient algorithm described in the
end of this section and in appendix A, avoids this line search and estimates the learning

rate by use of formula (3.39) and a scaling mechanism. If the conjugate gradient method
is performed on a quadratic function, the method will terminate in at most N iterations,
since by then, the whole weight space has been minimized, because of the non-interference
condition. When the method is used on non-quadratic functions, this might not be the
case, and the search direction is reset to the gradient descent direction. In practice, how-
ever, the method often terminates in i� N iterations, also on non-quadratic functions.

3.2.2 Convergence rate

We now turn to the convergence rate of conjugate gradient methods. In order to be
able to say anything about the convergence rate, we again have to assume that the error
function is quadratic and additionally that the Hessian matrix is constant over time. We
refer to the Hessian by E

00

(w). Thus, the bounds that we present, are not stricly valid
for non-quadratic error functions, but merely approximations.

The convergence rate depends very much on the distribution of the eigenvalues of the
Hessian matrix. If the eigenvalues fall into multiple or close groups, the convergence rate
will be fast. This can be realized by the following. Using (3.42) and the relation

E
0

(wk+1) � E
0

(wk) + �kE
00

(w)pk; (3.49)

we see, that the conjugate direction vectors

pk 2 Kk(E
00

(w); E
0

(w0)); (3.50)

where

Kk(E
00

(w); E
0

(w0)) = span(E
0

(w0); E
00

(w)E
0

(w0); : : : ; E
00

(w)k�1E
0

(w0)) (3.51)

is the Krylov subspace [Sluis and Horst 86]. The weight vectors, generated in the conju-
gate gradient algorithm, then have the folllowing property.

wk = w0 + Pk(E
00

(w))E
0

(w0) 2 w0 +Kk(E
00

(w); E
0

(w0)); (3.52)

where Pk(E
00

(w)) is a matrix polynomial of degree k. Corresponding to E
0

(w0) there
are uniquely determined eigenvalues �1 < �2 < : : : < �m and normalized eigenvectors
e1; : : : ; em of E

00

(w) such that

E
0

(w0) =
mX
i=1

�iei: (3.53)

These eigenvalues and eigenvectors are the active ones. The possible other eigenvalues
and eigenvectors do not participate in the conjugate gradient process. Obviously the
maximum dimension of the Krylov subspace for increasing k is equal to m, and the
conjugate gradient algorithm will terminate in m iterations. If the Hessian only has a few
distinct eigenvalues, then m can be expected to be small.

As was the case for the gradient descent algorithm, the convergence rate can be
bounded by the condition number of the Hessian. The following lemma states how.

Lemma 5 Assume that the error function is quadratic with constant Hessian E
00

(w). At
every step in the conjugate gradient algorithm it holds that

E(wk+1)�E(w�)
E(wk)� E(w�)

� 4

 p
�� 1p
� + 1

!2

;

where � is the condition number of E
00

(w), and w� is the minimum of the error.

OVERVIEW 29

Proof. We have by (3.5) that

E(wk+1)� E(w�) =
1

2
(wk+1 �w�)TE

00

(w)(wk+1 �w�) (3.54)

By (3.52) and since E(wk+1) minimizes the error over the Krylov subspace, we get

E(wk+1)� E(w�) = min
Pk+1

1

2
(w0 �w�)TE

00

(w) (3.55)

�
I + E

00

(w)Pk+1(E
00

(w))
�2
(w0 �w�):

The Hessian E
00

(w) can be written in the form

E
00

(w) =
NX
i=1

�ieie
T
i ; (3.56)

where ei and �i are the eigenvectors and corresponding eigenvalues of the Hessian. Simi-
larly can the term (w0 �w�) be written as

w0 �w� =
NX
i=1

�iei; (3.57)

with appropriate coe�cients �i. So equation (3.55) is

E(wk+1)� E(w�) = min
Pk+1

1

2

NX
i=1

�iei

!T NX
i=1

�ieie
T
i

!
(3.58)

I +

NX
i=1

�ieie
T
i

!
Pk+1

NX
i=1

�ieie
T
i

!!2 NX
i=1

�iei

!

= min
Pk+1

1

2

NX
i=1

�i�iei

!T
I +

NX
i=1

�iPk+1(�i)eie
T
i

!2 NX
i=1

�iei

!

= min
Pk+1

1

2

NX
i=1

(1 + �iPk+1(�i))
2
�i�

2
i

� min
Pk+1

max
�2[�min;�max]

(1 + �Pk+1(�))
2 1

2

NX
i=1

�i�
2
i

= min
Pk+1

max
�2[�min;�max]

(1 + �Pk+1(�))
2 (E(w0)� E(w�)) :

Summarising equation (3.58), we have the following relation

E(wk+1)� E(w�)
E(w0)� E(w�)

� min
Pk+1

max
�2[�min;�max]

(1 + �Pk+1(�))
2
: (3.59)

We now need to �nd a polynomial Qk+1(�) = 1 + �Pk+1(�), that is small in the interval
[�min; �max], subject to the constraint that Qk+1(0) = 1. Chebyhevs polynomials Ck,
de�ned by

Ck(x) =
1

2

�
(x+

p
x2 � 1)k + (x�

p
x2 � 1)k

�
(3.60)

are well suited for such problems [Golub and Loan]. They are small in the interval [�1; 1],
but grow rapidly o� this interval. As a consequence, the polynomial

Qk+1(�) =
Ck+1 ((�max + �min � 2�)=(�max � �min))

Ck+1 ((�max + �min)=(�max � �min))
(3.61)

sati�es Q0 = 1 and tends to be small in the interval [�min; �max]. Using Chebychevs
polynomials, we get

E(wk+1)� E(w�)
E(w0)� E(w�)

� max
�2[�min;�max]

(Qk+1(�))
2 (3.62)

= max
�2[�min;�max]

Ck+1 ((�max + �min � 2�)=(�max � �min))

Ck+1 ((�max + �min)=(�max � �min))

!2

=

1

Ck+1 ((�max + �min)=(�max � �min))

!2

� 4

 p
� � 1p
�+ 1

!2(k+1)

:

The desired result is now easily obtained from the last inequality. 2

Lemma 5 predicts only linear convergence by a �xed factor
�p

��1p
�+1

�2
. In order to state

something about the so-called superlinear convergence behaviour, it is necessary to look
further in to the distribution of the eigenvalues. We refer to [Sluis and Horst 86] for a
more detailed evaluation of the convergence behaviour of conjugate gradient methods.

3.2.3 Scaled conjugate gradient

The scaled conjugate gradient algorithm (SCG) is described in detail in appendix A or
[M�ller 93a]. For that reason, we will only brie
y describe the main ideas in the algorithm
here. We will, however, discuss various possible improvements of the algorithm.

The estimation of the learning rate in the standard conjugate gradient algorithm is
done with a line search routine. A line search performs a one dimensional iterative search
for a learning rate in the direction of the current search direction. There are several
drawbacks by doing a line search. It introduces new problem-dependent parameters, e.g.,
a parameter to determine how many iterations to perform before termination. Kinsella
has shown, that this can have a major impact on the performance of conjugate gradient
algorithm [Kinsella 92]. Furthermore, the line search does in each iteration involve several
calculations of the error and/or the derivative to the error, which is time consuming.5

SCG substitutes the line search by a scaling of the step that depends on success in error
reduction and goodness of the quadratic approximation to the error. The algorithm
encorporates ideas from the model-trust region methods in optimization and \safety"
procedures that are absent in standard conjugate gradient.

If the error function would be strictly quadratic with a positive de�nite Hessian matrix,
the learning rate given by formula (3.39) would be optimal. Using this formula for non-
quadratic error functions, however, causes problems, because the Hessian matrix can be
inde�nite and the quadratic approximation to the error might not always be good. The

5Each calculation costs O(PN) time.

OVERVIEW 31

key idea of SCG consists of the introduction of a scalar, �k, which is used to regulate the
positive de�niteness of the Hessian.6 The Hessian is substituted with

E
00

(wk) + �kI; (3.63)

so that the learning rate is given by

�k =
�E 0

(wk)pk
pTkE

00(wk)pk + �kjpkj2
(3.64)

�k is in each iteration raised or lowered according to how good the second order approxi-
mation is to the real error. The parameter �k that measures the ratio between the real
error change and the predicted quadratic error change is given by

�k =

�
pTkE

00

(wk)pk + �kjpkj2
�
(E(wk)� E(wk+1))

(�E 0(wk)Tpk)
2 : (3.65)

An increase or decrease of the scaling parameter �k is controlled by the value of �k. The
term E

00

(wk)pk in (3.64) can either be approximated by a one sided di�erence equation
of the form

E
00

(wk)pk �
E
0

(wk + �kpk)� E
0

(wk)

�k
; �k =

�

jpkj2
; 0 < �� 1 (3.66)

or calculated exactly as described in appendix C, [M�ller 93c] or [Pearlmutter 93]. The
exact calculation is only a bit more complicated than the approximation and both schemes
costs O(PN) time, where P is the number of patterns in the training set and N is the
number of weights.

We will now turn to a discussion of possible improvements of the algorithm. The
formula (3.64) for the learning rate can be viewed as a 1-step Newton line search estimation
[M�ller 90a]. A j-step Newton estimation is de�ned as

�j = �j�1 +
�E 0

(wk + �j�1pk)pk
pTkE

00(wk + �j�1pk)pk + �kjpkj2
; �0 = 0: (3.67)

Using (3.67) in SCG with j as a user dependent parameter, would be to introduce a
procedure similar to the line search, that SCG was designed to avoid. However, it might
be better to set j to another constant than j = 1. To check if this is the case, a series
of expriments were run on the two-spirals problem [Lang and Witbrock 89] with various
values of j. A series of 10 runs were tested for each value of j, and the runs were terminated
when all the patterns were classi�ed correctly within a margin of 0.8.7 The results are
illustrated in table 3.1. We observe that the convergence with respect to the number of
epochs improves with increasing j, except for j = 3. The convergence does, however, not
improve enough to justify the additional computation time used in each iteration.

Peter Williams has suggested several interesting improvements to the SCG algorithm
[Williams 91]. One is an improvement of the update formula of the scaling parameter
�k, which is included in appendix A and [M�ller 93a]. Another is an adaptive scheme

6This is essentially a Levenberg-Marquardt approach [Fletcher 75]
7The exponential error function described in appendix E was used in these experiments.

j <epoch> <cu> failures
1 1052 4208 1
2 804 4824 0
3 840 6720 1
4 732 7320 0

Table 3.1: Average of 10 runs on the two-spirals problem with various values of the
j parameter. The <cu> part is the average number of complexity units, which is an
abstract measure that also takes the computational costs per epoch into account (one
<cu> is equivalent to one forward or one backward propagation of all patterns in the
training set).

-

6

s

s

s

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

E
0

(wk)Tpk

E
0

(wk + �kpk)
Tpk

�k �k

Figure 3.3: The extrapolation used to determine �k by the one sided di�erencing scheme.

for the setting of the parameter � in the one sided di�erence formula (3.66). We will
present his �ndings here. In [M�ller 93a] it was experimentally shown that the value of
� was not problem dependent as long as it was set to a small value. Williams argues,
however, that a small gain in convergence can be achieved by adapting �. If the error was
strictly quadratic, the one sided di�erencing would be an exact calculation of E

00

(wk)pk
no matter the value of �. So in this case there is no particular advantage in having �� 1.
When the error is non-quadratic, Williams argue that the value of � does not matter
either. When the scaling parameter �k � 0 the learning rate calculation is equivalent to
�tting a straight line to E

0

(wk)
Tpk and E

0

(wk + �kpk)
Tpk to give �k as the estimated

zero crossing of the line (see �gure 3.3). The ideal �k would be one for which �k = �k.
Note that �k is the new learning rate that we want to estimate. This suggest a way of
adapting �. One adaptation rule given by Williams is

�k+1 = �k

�
�k

�k

��
; 0 � � � 1: (3.68)

Choosing � = 0 is equivalent to using the initial value �0 throughout. Non-zero
values of � adapt �k so that, on average, the values of �k and �k tend to be equalized.
Note that if � is approximately equal to the expected learning rate, then a �nite di�erence
estimate may provide a more faithful picture of the error surface than an extrapolated local
quadratic model, such as the exact calculation of E

00

(wk)pk, especially if the quadratic
approximation of the error is bad. In any case, Williams reports a minor speedup in
convergence using this adaptation scheme. In appendix C, however, the author �nds that
the exact calculation of E

00

(wk)pk in average yields the fastest convergence.

OVERVIEW 33

3.2.4 Stochastic conjugate gradient

In section 3.1 we saw, that the gradient descent algorithm could be used in two di�erent
modes, on-line and o�-line. Conjugate gradient algorithms are in their standard form
only applicable in o�-line mode, because of the near optimal choice of learning rate in
each iteration. In o�-line mode the amount of computation time used in each iteration is
dependent of the number of patterns in the training set. When the training set is large and
contains a lot of redundant information this leads to redundant computations in an o�-line
algorithm. So although the convergence rate of conjugate gradient algorithms with respect
to the number of iterations used is much better than that of gradient descent algorithms,
it can often be observed that on-line gradient descent beats more sophisticated second-
order algorithms on large redundant problems. The second-order algorithms \drown" in
their own computations. It is however, possible to make stochastic versions of second-order
algorithms, that updates weights based on smaller subsets of the training set. In appendix
B and [M�ller 93b] a stochastic version of the scaled conjugate gradient algorithm is
described. We summarise this algorithm here. In section 3.4 on-line and o�-line techniques
are discussed in more detail.

The approach of updating the weights based on smaller subsets of data has been ex-
plored by several researchers. Kramer and Sangiovani-Vincentelli describes a two stage
scheme, where the �rst stage involves training the network on the current subset of data
until convergence and the second stage involves picking new patterns to successively in-
crease the training subset [Kramer et al. 88]. Ha�ner et al. describes a similar scheme
[Ha�ner et al. 88]. A problem with such schemes is that the network tends to get over-
specialized when trained to convergence on small subsets of data. The training should be
terminated and the subset increased when overspecialization occures. This point is, how-
ever, not easy to detect. Kuhn and Herzberg describes a scheme combined with conjugate
gradient applied to a speech recognition problem, where the subset size is proportional to
the number of output classes [Kuhn and Herzberg 90]. Similar for these schemes is, that
the size of the data subsets and which patterns to include in them, is determined in a very
ad hoc fashion, e.g., taking one pattern from each output class or adding a predetermined
and constant number of patterns to the current subset. Furthermore, the schemes do not
consider any validation of the size and patterns chosen, which means that the training
process might diverge without detection.

Using standard sampling techniques as described in [Cochran 77], it is possible to de-
�ne schemes that can validate each update and base the size of the data subset on these
validations. We call such schemes update-validation. One such scheme was described in
appendix B and [M�ller 93b], where it was combined with the scaled conjugate gradient
algorithm. The scheme is illustrated in �gure 3.4. The scheme involves two blocks (sub-
sets) of data, an update block and a sample block. An update of the weights is based on
the update block and the sample block is used to validate each update. This validation
involves the calculation of an update probability P̂i, that is an estimate of the probability
that an update will decrease the error on the whole training set. This probability can be
estimated under the assumption that the error of blocks of data is normaly distributed
around the error of the whole training set, and then selecting the sample block as a simple
random sample. The update probability can then be estimated by

P̂i =
1p
2�

Z 4�̂i
�i

�1
e�

1
2
t2dt ; (3.69)

Figure 3.4: The update-validation scheme used in appendix B. P̂i is an estimated proba-
bility that an update based on the current subset of data will decrease the error on the
whole training set. The weights are updated with probability P̂i.

where �̂i is the change in error of the current sample block before and after a possible
update, and �2i is the error variance of the sample block. The size of the update block is
optimized by means of a binary search method. The size of the sample block is chosen
such that the error of a sample block is very close to the error of the training set with a
high probability.

Only a little change in conjugate gradient algorithms is needed in order to be able to
update on subsets of data of maybe varying size. The error function has to be normalized
so that we operate on average error rather than total error. If the error is normalized then
the error on subsets of data will be approximations to the error on the whole training
set. The better the approximations are the better and more reliable will a conjugate
gradient algorithm converge. Combining the above update-validation scheme with the
scaled conjugate gradient algorithm yields good results as concluded in appendix B and
[M�ller 93b]. The major advantage of combining second-order training algorithms with
stochastic schemes is, that a minimum is quickly localized because of more frequent up-
dates, and the convergence is fast down into this minimum because of the second order
properties of the algorithms.

As discussed later in section 3.4, it might be possible to improve the above update-
validation scheme in various ways. One idea worth mentioning here also is the possible
use of active data selection techniques to determine appropriate update blocks. Rather
than selecting patterns by random sampling, the training could be made more e�cient
by selecting patterns that maximizes the information content of the update block.

3.3 Newton related methods

In this section we brie
y describe the Newton method and some of its variations that
are relevant in a neural network context. We conclude with a decription of the one-

step memoryless BFGS method, which operates in O(N) time and is very similar to the
conjugate gradient methods [Battiti 92]. The Newton method is in its original form not
applicable for training of neural networks, because it involves an inversion of the Hessian

OVERVIEW 35

matrix, which is computational expensive. The Newton search direction pk is de�ned by
the linear system

E
00

(wk)pk = �E
0

(wk) ; (3.70)

which originates when minimizing the quadratic approximation to the error function. If
the error is strictly quadratic and the Hessian is positive de�nite this algorithm converges
in one iteration, starting from any initial weight vector. For non-quadratic error functions,
the algorithm converges quadratically if the Hessian is positive de�nite and su�ciently
close to the desired minimum. Whenever the Hessian is inde�nite or ill-conditioned severe
problems arise, such as too large learning rates and numerical problems. Many modi�ed
Newton algorithms exist that incorporate techniques to ensure a su�ciently positive def-
inite and non-singular Hessian matrix. A class of such algorithms is the quasi-Newton

methods. Quasi-Newton methods are based on the idea of accumulating curvature infor-
mation as the iterations proceed, using the observed behaviour of E(wk) and E

0

(wk). The
methods builds up an approximation of the Hessian or to the inverse of the Hessian. In
the following we describe how to approximate the inverse of the Hessian. In the beginning
of the kth iteration of a quasi-Newton method, an approximate inverse Hessian matrix
Hk is available, which is intended to re
ect the inverse curvature information already
accumulated. The search direction pk is then computed from the Newton formula

pk = �HkE
0

(wk): (3.71)

The initial matrix H0 is usually taken to be the identity matrix, so that the �rst iteration
is equivalent with a gradient descent update. Hk is then updated recursively in each
iteration so that it approximates the inverse curvature along the current search direction
pk. If we assume that the error function is quadratic, then we have by (3.40) that

E
00

(wk)
�1 �E 0

(wk+1)� E
0

(wk)
�
= �kp

T
k = (wk+1 �wk): (3.72)

Based on (3.72), Hk+1 is required to satisfy the so-called quasi-Newton condition

Hk+1

�
E
0

(wk+1)� E
0

(wk)
�
= (wk+1 �wk): (3.73)

There are several ways to update Hk in order to satisfy this condition. We will not
describe these in detail here, but only mention the one that leads us to the one-step
memoryless BFGS formula. It is generally believed that the most e�ective formula is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula given by

Hk+1 = Hk +

1 +

yTkHkyk

yTk sk

!
sks

T
k

sTk yk
� sky

T
kHk +Hkyks

T
k

yTk sk
; (3.74)

where yk =
�
E
0

(wk+1)� E
0

(wk)
�
and sk = (wk+1�wk). Formula (3.74) ensures that Hk

is symmetric and positive de�nite. The BFGS algorithm involves storage of a N�N matrix
and O(PN2) in computation requirements. So in its current form, the BFGS algorithm
is not applicable to training of neural networks, at least not on large networks. It is,
however, possible to simplify formula (3.74) so that the time and memory requirements
are O(PN) and O(N) respectively. The idea is to apply the BFGS formula to the identity
matrix I, rather than to Hk. Thus Hk+1 is determined without reference to the previous

Hk, and hence the update procedure is memoryless. By (3.71) and setting Hk = I in
(3.74), the search direction is given by

pk+1 = �E 0

(wk+1)�

1 +

yTk yk

yTk sk

!
sTkE

0

(wk+1)sk
sTkyk

(3.75)

+
yTkE

0

(wk+1)sk + sTkE
0

(wk+1)yk
yTk sk

:

The one-step memoryless BFGS method is usually combined with a line search to estimate
appropriate learning rates. See [Battiti 89] for further reading about this. When exact line
searches are made, i.e., an optimal learning rate is found in each iteration, the algorithm
is the same as the conjugate gradient algorithm. This is easily veri�ed by using the
observation that pTkE

0

(wk+1) = 0, which implies that pTk yk = �pTkE
0

(wk). The algorithm
is considered to have similar convergence properties as the conjugate gradient algorithms.
This is also consistent with results reported by Battiti, who concludes that SCG and the
one-step memoryless BFGS yields comparable results [Battiti 92].

3.4 On-line versus o�-line discussion

As mentioned in section 3.1, training methods of feed-forward neural networks can roughly
be divided up into two categories, on-line and o�-line techniques. There is some confusion
about the terms \on-line" and \o�-line". The term \on-line" refers historically to methods
where the weights are updated based only on information from one single pattern, while
\o�-line" refers to methods where the weights are updated based on information from the
whole training set. We will use the \on-line" term in a broader sense, referencing it to
methods that update weights independent of the training set size. Some researchers also
use the terms stochastic and batch as alternative names for on-line and o�-line. Several
examples of both on-line and o�-line methods have been described in the past sections.
The gradient descent method can be used in both on-line and o�-line mode. The conjugate
gradient algorithms and other second order algorithms are in standard form all o�-line
algorithms, but can also with some modi�cations be used in on-line mode as described
in section 3.2.4. O�-line schemes described in the past sections include all the adaptive
learning rate schemes in section 3.1.4, the quickprop method in section 3.1.6 and scaled
conjugate gradient in 3.2.3. Methods that also apply to on-line mode are the learning
rate schedules in section 3.1.5, the optimal learning rate estimation and reduction of large
curvature components in section 3.1.7, and the stochastic conjugate gradient scheme in
3.2.4.

There are drawbacks and bene�ts with both types of update schemes. O�-line algo-
rithms are easier to analyse concerning convergence properties, they can choose an optimal
learning rate in each iteration and can yield very high accuracy solutions. They su�er,
however, from the fact that the time to prepare a weight update increases with increasing
training set size. This turns out to be crucial on many large scale problems. On-line
methods can be used when the patterns are not available before training starts, and a
continuous adaptation to a stream of input-output relations is desired. The randomness
in the updates can help escape local minima and the time to prepare a weight update
is not a�ected by increasing training set size. On-line methods are not good to produce

Figure 3.5: The search direction of o�-line algorithms is an accumulation of partial search
directions. If redundancy is present, a sum of a small fraction of these partial directions
might produce a direction p̂k, that is \close" to the desired search direction pk, i.e., within
a small neighborhood of the desired direction.

high accuracy solutions, e.g, function approximation, and the setting of the learning rate
is not well understood.

O�-line methods like standard conjugate gradient or quasi-Newton methods should in
theory yield the fastest convergence. This is, however, not the case on large scale problems
that are characterized by large and very redundant training sets. The problem that arises
is illustrated in �gure 3.5. If many of the patterns in the training set possess redundant
information the contributions to the search direction will be similar, and waiting for all
contributions before updating can be a waste of time. There is obviously a tradeo�
between the accuracy of the search direction and the computational costs to calculate it.
In other words, redundancy in training sets produces redundant computations in o�-line
algorithms.

In addition to the description of the stochastic scaled conjugate gradient algorithm,
appendix B and [M�ller 93b] presents a method of measuring the amount of redundancy
in training sets. We will summarize these redundancy aspects here. First it is important
to recognize that the redundant computations in an o�-line algorithm cannot be expected
to be a constant even though the redundant information in the training set is constant.
The redundant computations will also depend on the network dynamics, i.e., of the cur-
rent weights. So a measure of redundancy of training sets alone cannot be expected to
give su�cient information about the amount of redundant computations made by an o�-
line algorithm. Such a measure could, however, give a �rst estimate of what to expect of
the training process. A measure of redundancy can be based on the standard informa-
tion theory [Shannon and Warren 64]. We de�ne a redundancy measure for classi�cation
problems with M di�erent output classes and P discrete input vectors of length L, each
attribute having V possible values. The Conditional Population Entropy (CPE) is de�ned
as

CPE = �
MX
m=1

p(cm)
LX
l=1

VX
v=1

p(xlvjcm) log p(xlvjcm) ; (3.76)

where p(cm) is the probability that an input vector belongs to the mth class and p(xlvjcm)
is the probability that the lth attribute of an input vector x has value v given that x
belongs to the mth class. If we imagine that the whole training set is split up into M
disjoint sets, one for each class, then CPE is the average information content of these
sets. We can also interprete CPE as the average number of bits needed to code one input
pattern given knowledge about the classes. Clearly the value of CPE states something
about the degree of similarity between the input patterns. If CPE is small, only a small
number of bits is needed to code the input patterns, and hence there must be great
similarity between the patterns. Based on these observations, a redundancy measure RE
can be de�ned as

RE =
log V � CPE

L

log V
; (3.77)

where log V is the necessary number of bits needed to code one attribute if all values
are equally likely and CPE

L
is the average number of bits needed to code one attribute.

One drawback with this redundancy measure is that it does not take correlations between
attributes into account. Nevertheless, in appendix B and [M�ller 93b] it is found that
there is a strong correlation between the value of RE and the e�ciency of various o�-line
and on-line algorithms, when trained on the particular problems. The measure can be
expanded to work on non-classi�cation problems also by splitting the input and/or the
output ranges up in a set of discrete intervals.

The neural network community seems to be split up into two blocks regarding the
question of which direction research should go concerning on-line and o�-line algorithms.
Since many practical neural network problems are characterized by large redundant train-
ing sets, some researchers think that the e�ort should be put into �nding better speed
up techniques to apply with on-line gradient descent. One such approach is the on-line
estimation of learning rate and reduction of large curvature components by Le Cun et al.

described in section 3.1.7. This is a very promising approach and should be investigated
further. The other group, to which the author belongs, believes that the power of second
order methods can and should be used also on large scale problems. The approach is to
make the second order methods stochastic, i.e., update on smaller blocks of data. The
general approach can be characterized as follows.

� Accumulate error, gradient and/or Hessian information for a length of time that is
adaptively chosen. The time interval should be large enough to ensure safe weight
updates with near optimal learning rates but small enough to avoid redundant
computations.

� Use a second order algorithm like SCG to update the weights.

One such approach is the stochastic SCG algorithm (SSCG) described in section 3.2.4.
In SSCG a validation scheme is de�ned to validate each update. This scheme involves
random sampling of additional patterns that are not used in the current update process.
This should in principle not be necessary, since enough information should already be
available in the data used to prepare an update. If the data is redundant, the estimated
search directions produced by accumulation of partial directions will converge.8 This
means that the angle �k between the estimated search direction and the real direction

8We assume here that we have an in�nite stream of data available.

OVERVIEW 39

(see �gure 3.5) converges to zero. It might be possible to de�ne an adaptive scheme
that involves the convergence of �k to determine when to stop collecting new patterns.
A problem here is that the convergence of �k will not necessarily be monotonic, so the
scheme has to take small
uctuations of �k into account. These ideas is a subject for
further research.

Another approach to solve the problem with redundant data is to control what data is
used in training, this is often referred to as active data selection. This approach could be
used to improve the SSCG method and other second order stochastic methods. Rather
than selecting data by random sampling, the training could be made more e�cient by
actively selecting data, that maximizes the information density of the training subset.
Active data selection has been extensively studied in economic theory and statistics, see
for example [Fedorov 72]. In a neural network context Plutowski et al. and MacKay have
recently proposed di�erent schemes to select data [Plutowski et al.], [MacKay 92]. We
shortly summarize.

Plutowski et al. considers the problem of selecting training subsets from a large noise-
free data set [Plutowski et al.]. They assume that a large amount of data has already
been gathered, and work on principles for selecting a subset of data for e�cient training.
A drawback with the method is that the entire data set has to be examined in order to
decide which example to add to the current training subset. Plutowski et al. reports,
however, an order of magnitude faster convergence than if the network was trained on the
entire data set. Plutowski et al. uses in the training process the least mean square error
function

E(w) =
1

2n

nX
p=1

(g(xp)� f(xp;w))
2
; (3.78)

where (xp; g(xp)) is the pth input-output relation and f(xp;w) is the network output on
xp.9 A criterion for selecting training examples that works well in conjunction with the
error function used for training is the Integrated Squared Bias (ISB) given by

ISB(Xn) =
Z
(g(x)� f(x;wn))

2
�(dx) ; (3.79)

where Xn is a data subset of size n, wn is the set of weights that minimizes (3.78) on
Xn, and � is a distribution over the inputs. Clearly, �nding a subset Xn that minimizes
(3.79) gives us a subset representative of the whole data set. Finding such a subset
is computational impractical. Plutowski et al. approximates a solution by successively
adding new examples xn+1 to the training subset so as to maximize the decrement in
ISB given by 4ISB(xn+1jXn) = ISB(Xn) � ISB(Xn [fxn+1g). Using �rst order
Taylor expansions this decrement can be approximated by

4ISB(xn+1jXn) �
�
(g(xn+1)� f(xn+1;wn))f

0

(xn+1;wn)
TE

00

(Xn;wn)
�1
�T

PX
p=1

f
0

(xp;wn)(g(xp)� f(xp;wn)) (3.80)

=
�
E
0

(xn+1;wn)
TE

00

(Xn;wn)
�1� PX

p=1

E
0

(xp;wn)

9We assume w.l.g. that the network has one output unit.

where the sum runs over patterns in the whole data set. This approximation depends on
the weight update rule. Formula (3.80) is derived when using a Newton weight update rule.
Because the mean least square error function is used, the Hessian can be approximated
by E

0

(Xn;wn)E
0

(Xn;wn)
T . A similar rule could also be derived for gradient descent or

conjugate gradient. These rules would be more simple and save computation, but also
not as accurate. From the last term in (3.80) we see that maximizing4ISB is equivalent
to picking the example having individual error gradient most highly correlated with the
error gradient of the entire data set.

It is possible to simplify (3.80) even more by ignoring all network gradient information.
Interestingly, we then end up with a maximum error criterion selecting examples with
maximum network error. This criterion is much cheaper to compute than (3.80) and
works at least on some test problems in [Plutowski et al.] as well as the original criterion.
It is, however, not clear whether the network gradient information can be ignored in
general. Plutowski et al. also show that selecting examples by the ISB criterion works
better than straightforward random sampling, which suggests that the validation scheme
described in section 3.2.4 could be improved by exchanging the random sampling with a
more sophisticated approach. Such an approach should, however, be independent of the
size of the data set, so the ISB approach would need to be \relaxed" somehow in order
to be usable.

MacKay uses a di�erent approach than Plutowski et al. including noise in his model,
but �nally ends up with a similar result. He uses a Bayesian perspective to obtain an
information based criterion about what example to pick next. The posterior probability

of the weights P (wjX;@) can in Bayesian terms be expressed as

P (wjX;@) = P (Xjw;@)P (wj@)
P (Xj@) ; (3.81)

where X is a subset of data and @ is the network. The normalizing term P (Xj@) is a
constant and can be ignored in what follows. P (Xjw;@) is often denoted the sample
likelihood and is associated with the error of the data and P (wj@) is the prior probability
of the weights, which is associated with regularization functions, such as weight decay
[Weigend et al. 90]. The sample likelihood and the prior are de�ned as

P (Xjw;@) = exp(��ED(w)) (3.82)

P (wj@) = exp(��Ew(w)) ;

where � is the inverse of a noise parameter, ED(w) is an error function on the form (3.78),
� is a regularization parameter, and Ew(w) is a regularization function, such as weight
decay. If we de�ne M(w) to be

M(w) = �ED(w) + �Ew(w)) ; (3.83)

then the posterior probability is given by

P (wjX;@) = exp(�M(w)) ; (3.84)

Let Xn be a subset of examples of size n. Then P (wjXn;@) is the posterior probability
when these n examples are used in training. The idea now, is to construct a measure of

OVERVIEW 41

the information gained by adding a new example to the subset. Such a measure can be
constructed by means of entropy functions. The entropy Sn of P (wjXn;@) is de�ned as

Sn = �
Z
P (wjXn;@) log P (wjXn;@)dw : (3.85)

The higher the value of Sn the more \uncertainty" is accociated with the weights. See
for example [Gallager 68] for further reading about entropy functions. The information
gained by adding a new example xn+1 can now be expressed as the change in entropy
4Sn = Sn � Sn+1.

Let wn denote the weights that minimizesM(w), i.e., maximizes P (wjXn;@), on the
subset Xn. MacKay approximates the information gain by using a quadratic approxima-
tion of M(w) expanded around wn, and a �rst order approximation of the new Hessian
matrix M

00

(wn+1) from M
00

(wn). Based on these somewhat crude approximations we
�nally get the formula

4Sn � 1

2
log

�
1 + �f

0

(xn+1;wn)
TM

00

(wn)
�1f

0

(xn+1;wn)
�
: (3.86)

If we compare this formula with formula (3.80) for 4ISB, we observe that there is
a great similarity. The only main di�erence is that 4ISB involves error gradients of
the new example while 4Sn involves network gradients. Nevertheless, since the term
f
0

(xn+1;wn)TM
00

(wn)�1f
0

(xn+1;wn) can be interpreted as the variance of the network
when example xn+1 is sampled, we obtain the maximum information gain by picking
the example with the largest error. This is consistent with Plutowski et al.'s results.
MacKay generalizes these results to selecting examples in speci�c regions of input space
an selecting multiple examples. MacKay emphasizes, however, that some care should be
taken when applying these techniques. The information gain estimates the utility of a
data example assuming that the network model is correct, i.e., that the network is able
to implement the desired and usually unknown input-output mapping. If the model is
actually an approximation then the method might lead to undesirable results. For further
reading about the Bayesian approach see [Buntine and Weigend 91b], [MacKay 91a] and
[MacKay 91b].

3.5 Conclusion

Training algorithms for feed-forward neural networks can roughly be divided up in two
categories, gradient descent algorithms and second-order algorithms, like conjugate gra-
dient. There is up to date no simple answer to the question of which algorithm to prefer
in general. Gradient descent exhibits linear convergence, but can, nevertheless, converge
faster than second-order algorithms, when used in on-line mode and redundancy is present
in the data. The author recognizes two approaches, that should be explored further

� Improve the on-line gradient descent techniques. The work of Darken et al. and Le
Cun et al. in section 3.1.5 and 3.1.7 respectively are promising approaches in this
area.

� Develop stochastic versions of standard second-order methods, that can operate on
subsets of data. The stochastic version of the scaled conjugate gradient algorithm
described in section 3.2.4 is a promising example of such an approach.

The second point might in the future turn out to be the best approach in general, because
of the second-order convergence properties of these algorithms.

Chapter 4

Calculation of Hessian information

Second order derivatives of the error function appears frequently in many di�erent aspects
of neural networks. For instance, in second-order training algorithms like the scaled conju-
gate gradient [M�ller 93a], in recent gradient descent acceleration techniques like the one
described in section 3.1.7, in techniques for estimating generalization error [Moody 92],
and in techniques for network pruning [Le Cun et al. 92], [Hassibi and Stork 93]. Finding
methods for e�cient extraction of Hessian information is therefore of profound impor-
tance. In this chapter, we present di�erent techniques to calculate Hessian information.
In this context, we present the results obtained in appendix C and D. Surprisingly, with-
out too much calculation work it is possible to extract a lot of di�erent information
from the Hessian, such as exact multiplication by the Hessian, estimation of the small-
est and largest eigenvalues and corresponding eigenvectors, and even estimation of the
eigenvalue spectrum. The algorithm for multiplication by the Hessian, derived indepen-
dently by Pearlmutter and M�ller, is central in most of these extractions [Pearlmutter 93]
[M�ller 93c].

An exact formula for the calculation of the diagonal elements of the Hessian was
derived in [Le Cun 89]. Later exact formulae for the calculation of all the Hessian elements
were independently derived in [Bishop 92] and [Buntine and Weigend 91a]. We shortly
summarize these results here. Let nlm and nhi be two units, where n

l
m is assumed to be in

the same layer or in a lower layer than nhi . We want to calculate the second derivative
@2Ep

@wlrms@w
hj

ik

with respect to incoming weights wlr
ms and w

hj
ik . The remaining terms of the

Hessian, in which nlm is above nhi can be obtained from the symmetry of the Hessian
without further calculation. By straightforward derivations using the chain rule, we get

@2Ep

@wlr
ms@w

hj
ik

=
@vlpm

@wlr
ms

@

@vlpm

@Ep

@whj
ik

!
(4.1)

= urps

0
@ @2Ep

@vhpi@v
l
pm

u
j

pk + f
0

(vjpk)
@Ep

@vhi

@v
j
pk

@vlpm

1
A :

The following lemma describes how to calculate (4.1).

Lemma 6 Assume that nlm is in the same layer or in a lower layer than nhi . The Hessian

element @2Ep

@wlrms@w
hj

ik

can be calculated by one forward and one backward propagation. The

forward propagation is

43

� ulpm = f(vlpm) , where v
l
pm =

P
nrs2Slm w

lr
msu

r
ps + wl

m;

� �jlkm =
P

nrs2Sjk
f
0

(vrps)w
jr

ks�
rl
sm ;

�rrss = 1 and �rtsv = 0 ; for all ntv higher in the network than nrs.

The backward propagation is

@2Ep

@wlrms@w
hj

ik

= urps(�
h
i f

0

(vjpk)�
jl
km + u

j
pk�

lh
mi) ;

where �lm and �lhmi are

� �lm = f
0

(vlpm)
P

nrs2T lm w
rl
sm�

r
s ;

�Lt = @Ep

@vLpt
; 1 � t � NL:

� �lhmi = f
00

(vlpm)�
hl
im

P
nrs2T lm w

rl
sm�

r
s + f

0

(vlpm)
P

nrs2T lm w
rl
sm�

rh
si ; l < L;

�Lhti = �Lhti

�
f
00

(vLpt)
@Ep

@uLt
+ f

0

(vLpt)
2 @2Ep

(@uLt)
2

�
; 1 � t � NL:

Lemma 6 describes how to calculate the Hessian with respect to one pattern. The Hessian
with respect to all patterns is of course a sum of these partial Hessian's. The lemma is
constructed due to results in [Bishop 92]. For more detailed and general formulae see
[Buntine and Weigend 91a]. The total number of forward and backward propagations
scales with the number of units in the network. Each propagation cost O(N) opera-
tions per pattern. The calculation of all the Hessian elements cost O(N2) operations per
pattern.

Because of the time and memory requirements needed to calculate the Hessian, it is
desirable to �nd methods that can extract Hessian information without explicitly having
to calculate it. In many applications second order information is not needed in the form of
the Hessian matrix itself, but rather in the form of the Hessian times a vector. Pearlmutter
and M�ller have independently shown that this product can be calculated exacly inO(PN)
time, without explicitly having to calculate the Hessian [M�ller 93c], [Pearlmutter 93]. In
the next section these results are summarized.

4.1 Hessian times a vector

The Hessian times a vector can be approximated by a one-sided di�erence equation of the
form

E
00

(wk)d � E
0

(wk + �d)� E
0

(wk)

�
; 0 < � � 1 (4.2)

This approximation costs O(PN) time to calculate and is in many cases a good esti-
mate. The approximation can, however, be numericaly unstable even when high precision
arithmetic is used. If the relative error of E

0

(wk) is " then the relative error of equation
(4.2) can be as high as 2"

�
[Ralston et al. 78]. So the relative error gets higher when � is

lowered. It is possible to calculate the Hessian times a vector exactly in the same order
of time as the approximation. The following lemma states how.

Lemma 7 The product E
00

(wk)d, where d is a vector, can be calculated by one forward

and one backward propagation. The forward propagation is

ulpm = f(vlpm) , where v
l
pm =

P
nrs2Slm w

lr
msu

r
ps + wl

m;

'lpm =
P

nrs2Slm (dlrmsu
r
ps + wlr

msf
0(vrps)'

r
ps)+ dlm ; l > 0 ; '0

pi = 0 ; 1 � i � N0.

The backward propagation is

[E
00

(wk)d]lhmi = �lpmf
0(vhpi)'

h
pi + (�lpm + �lpm)u

h
pi ; [E

00

(wk)d]lm = �lpm + �lpm ,

where �lpm �lpm and �lpm are given by

� �lpm = f 0(vlpm)
P

nrs2T lm w
rl
sm�

r
ps ; l < L ;

�Lpj = (f 0(vLpj)2
@2Ep

(@uL
pj
)2
+ f 00(vLpj)

@Ep

@uL
pj

)'Lpj :

� �lpm = f 0(vlpm)
P

nrs2T lm w
rl
sm�

r
ps ; l < L ;

�Lpj =
@Ep

@vL
pj

:

� �lpm =
P

nrs2T lm (f 0(vlpm)wrl
sm�

r
ps + (drlsmf

0(vlpm) + wrl
smf

00(vlpm)'
l
pm)�

r
ps) ; l < L ;

�Lpj = 0 :

A proof of the lemma is given in [M�ller 93c]. The proof is a bit involved. Pearlmutter
derives the results using a simpler technique, which we will describe here. Pearlmutter
uses the fact that the Hessian times a vector can be written in the form

E
00

(wk)d = lim
�!0

E
0

(wk + �d)� E
0

(wk)

�
=

@

@�
E
0

(wk + �d)

�����
�=0

(4.3)

Let the linear di�erential operator Rf�g be de�ned as

Rff(wk)g = @

@�
f(wk + �d)

�����
�=0

(4.4)

We observe that this operator transforms the gradient of the error function into the
desired product of the Hessian and the vector. Thus, an algorithm that calculates the
gradient E

0

(wk) can be transformed to an algorithm that calculates E
00

(wk)d. The back-
propagation algorithm stated in lemma 1 calculates the error gradient. Applying the Rf�g
operator to each formula in lemma 1 gives us exactly the result in lemma 7. Some useful
rules to use when doing this is

Rff(cwk)g = cRff(wk)g (4.5)

Rff(wk) + g(wk)g = Rff(wk)g+Rfg(wk)g
Rff(wk)g(wk)g = Rff(wk)gf(wk) + f(wk)Rfg(wk)g
Rff(g(wk))g = f

0

(g(wk))Rfg(wk)g
R

(
df(wk)

dt

)
=

dRff(wk)g
dt

This elegant technique with the Rf�g operator can be applied to other than feed-forward
networks, such as recurrent networks and Boltzmann machines. It is, however, beyond
the scope of this thesis to go into this discussion. We refer to [Pearlmutter 93] for such a
discussion.

There are many applications for the algorithm stated in lemma 7. Just to mention
a few, it can be used to improve line search algorithms, to calculate the learning rate in
the scaled conjugate gradient algorithm (see section 3.2.3), to estimate eigenvalues and
corresponding eigenvectors of the Hessian (see section 3.1.7), and even to estimate the
whole eigenvalue spectrum. The spectrum can be estimated by means of an algorithm
described in [Skilling 89]. It starts by calculating terms of the form vi = E

00

(wk)iv0,
where v0 is a random weight vector, and uses products vi � vj as estimates of the moments
of the eigenvalue spectrum. Based on these estimations the spectrum can be recovered.
Another application is adaptive preconditioning, which is described in appendix D and
summarized in the next section.

4.1.1 Adaptive preconditioning

Both in gradient descent and conjugate gradient algorithms, there is a strong correlation
between the condition number of the Hessian matrix and the convergence rate of the
algorithms (see lemma 3 and lemma 5). The idea of preconditioning is to transform the
Hessian into a matrix, which is well-conditioned, minimize the error in this transformed
system and then at last transform back. The transformation is done on the Newtonian
equations

E
00

(wk)(wk+1 �wk) = �E 0

(wk) ; (4.6)

which originates, when minimizing the quadratic approximation to the error. The mostly
used preconditioning scheme is symmetric transformation. The preconditioned system is
then given by

ATE
00

(wk)Ay = �ATE
0

(wk) ; (wk+1 �wk) = Ay ; (4.7)

where A is a N �N matrix, usually called the preconditioning matrix. A should be
chosen such that ATE

00

(w)A has low condition number and is positive de�nite. Notice
that symmetric preconditioning corresponds to minimizing the error in the direction of A
times the original search direction. Several other preconditioning schemes exist, but no
one seems to be preferable to others. Preconditioning has been well studied in the theory
of conjugate gradient algorithms, see for example [Axelsson 80] and [Concus et al. 76].
Preconditioning can directly be build into the gradient descent and the conjugate gradient
algorithms. Gradient descent with momentum combined with symmetric preconditioning
is

4wk = ��AATE
0

(wk) + �4wk�1 ; � > 0 ; 0 < � < 1: (4.8)

Conjugate gradient combinedwith the symmetric preconditioning is described in appendix
D.

The problem with preconditioning is to determine an appropriate preconditioning
matrix A. A should be chosen such that AAT is close to the inverse Hessian. If E

00

(w)
is positive de�nite, one could use AT = L�1, where L is the Choleski factor of E

00

(w)
[Fletcher 75]. The Choleski factor costs, however, O(N3) time to compute, which is
infeasible in a neural network context, and the Hessian is in many cases also inde�nite.

A new idea, proposed in appendix D and [M�ller 93d], is to adapt A during training. We
will shortly describe this idea in the following.

First we have to choose the form of A, i.e., should A be symmetric, diagonal, tri-
diagonal etc. It is clear, that A has to be sparse in some sense, since in a neural network
context it is too costly to adapt a full N �N matrix. In appendix D, we chose A to be
diagonal of the form A = diag(�(a1); �(a2); : : : ; �(aN)), where �(x) is a sigmoid function,
but other forms could easily be considered.1 Let the matrix Gk be de�ned as

Gk = ATE
00

(wk)A : (4.9)

The adaptation of A should go in the direction of low condition number of Gk. Adapting
A to minimize the condition number would require the estimation of the largest as well
as the smallest eigenvalue of the Hessian. It is possible to estimate both terms with the
Power method (see section 3.1.7), but the estimate of the smallest eigenvalue is often
unstable. A better choice is to adapt A to minimize the function M(A) de�ned by

M(A) =

����� �max

<�>

����� ; (4.10)

where �max is the largest eigenvalue of Gk, < � >= 1
N
Tr(Gk) is the average eigenvalue

and Tr(Gk) is the trace of Gk. The gradient of M(A) is

M
0

(A) = sign(
�max

<�>
)

1

<�>2

d�max

dA
<�> �d <�>

dA
�max

!
: (4.11)

The trace and the derivative of the trace of Gk are easy calculated by use of lemma 6. The
estimate of the largest eigenvalue and its derivatives is the hardest part in this adaptation.
The derivative of the largest eigenvalue with respect to one diagonal term ai of A turns
out to be

d�max

dai
=

2�0(ai)[eTmax]i[E
00

(wk)Aemax]i
jemaxj2 ; (4.12)

which can be calculated using lemma 7. The adaptation of A can be done by means of
an extended Power method of the form

� Choose an initial random vector e0max.

� Repeat the following steps for t = 1; : : : ; T , T > 0 :

� Repeat the following steps for m = 1; : : : ;M , M > 0 :

� emmax = Gke
m�1
max ;

� �mmax =
(em�1max)

Temmax

jem�1max j2 ;

� emmax =
1

�mmax
emmax ;

� d�Mmax

dA
=

(eMmax)
T dGk

dA
eMmax

jeMmaxj2 ;

� ai = ai � �it sign(
�Mmax

<�>
) 1
<�>2

�
d�Mmax

dai
<�> �d<�>

dai
�Mmax

�
; 1 � ai � N .

1This particular form of the diagonals assure that A is invertible and positive de�nite.

The inner loop estimates the largest eigenvalue, while the outer loop adapts A by gradient
descent. Again the results in lemma 7 can be applied, this time to calculate the term
Gke

m�1
max . The individual learning rate �it for each ai is updated by

�it =

(
1:1 �it�1 if 4ai(t)4ai(t� 1) > 0
0:1 �it�1 otherwise

(4.13)

As an additional constraint, the ai's are limited to be in the range [�6; 6] in order to
keep the derivatives �0(ai) away from zero. In practice the process is run simultaneously
with the updates of weights, so that A is updated say for every K weight updates. The
extra time and memory requirements added to the learning algorithm per weight update
is then MT

K
O(PN), which is in the same order as performing MT

K
gradient calculations

more. The parameters T and M can often be set to small values. A con�guration, that
yields MT

K
= 1 is not unusual.

M�ller reports increase in convergence both for gradient descent and for the scaled con-
jugate gradient algorithm, when combined with adaptive preconditioning (see appendix
D). The increase of convergence is most signi�cant for gradient descent, where the speedup
can be of several orders of magnitude. This increase can, however, not always be guaran-
teed. The process might even in some situations make the convergence worse. Problems
arise, when the Hessian is inde�nite, i.e., when �min < 0. Then there is no minimum to
be found in the neighborhood of the current point, only a saddle point. It is not at all
clear, how to interprete the condition number in this situation and how to predict the
e�ect of a minimization of (4.10). Experiments in appendix D show that minimization
of (4.10) often improves convergence, but not in general. The problem comes from inter-
mediate eigenvalues which are near zero. If the minimization of (4.10) pushes these even
closer to zero, then it is likely that the convergence will slow down instead of increase. A
way to solve this problem might be to minimize the ratio of the largest eigenvalue to the
eigenvalue closest to zero. So M(A) could be de�ned as

M(A) =
����max�max

��� ; (4.14)

where �max is the largest eigenvalue of the inverse of Gk. When the Hessian is positive
de�nite this function is equal to the condition number of the Hessian. �max is, however,
not easy to estimate in reasonable time. The power method could be used to estimate

�
2

max by applying it to the matrix (�2maxI � G2
k). Unfortunately, this process takes too

long to converge to be usable in practice. A practical technique to minimize the prob-
lem with inde�nite Hessian matrices and convergence to saddle points is to restrict the
preconditioning to
at regions in weight space. See appendix D for a further discussion
about that.

The adaptive preconditioning method can also be combined with on-line update by
exchanging each term E

00

(wk)d, where d is a vector, with a running average as described
in section 3.1.7. It should be possible to improve this method further by adapting A in
a more e�cient way, e.g., with second order methods, or by changing the de�nition of
A to yield a stronger transformation than just a diagonal scaling. Another idea is to
change the de�nition of the meta-error function M(A) to a more sophisticated function.
In section 3.2 under the analysis of the convergence of conjugate gradient algorithms, we
observed that the more the eigenvalues were grouped, the faster convergence could be
expected. Motivated by this observation, M(A) could be de�ned as var(�), the variance

of the eigenvalues. Clearly, minimization of the variance would get the eigenvalues closer
around the mean. It is possible to estimate var(�) in an iterative fashion similar to
the estimation of the largest eigenvalue. The following lemma due to Girard states how
[Girard 89].

Lemma 8 Let x denote a weight vector of N independent random values from the stan-

dard normal distribution.2 Let T (x) be de�ned by

T (x) =
xTGkx

xTx
;

Then T (x) is an unbiased estimator of <�> with variance �2:

�2 =
2

N + 2
var(�):

So M(A) could be de�ned as

M(A) =
1

K

KX
i=1

T (xi)
2 �

1

K

KX
i=1

T (xi)

!2

: (4.15)

for some appropriate constant K. Minimization of M(A) can again be done by means
of an iterative method similar to the extended power method above, where the weights
are updated simultanously in order to minimize the computational costs. This will be a
subject for further research.

4.2 Inverse Hessian information

In many situations it is not the Hessian, but the inverse of the Hessian that is de-
sirable to estimate. This is the case in most Newton inspired second-order optimiza-
tion methods and in recent pruning techniques, such as Optimal Brain Surgeon (OBS)
[Hassibi and Stork 93]. In the OBS pruning technique, the inverse Hessian is estimated
based on prior knowledge about the error function. If the error function is the least mean
square function, then the Hessian matrix can be approximated by its Jacobian in the form

E
00

(wk) =
PX
p=1

E
00

p (wk) �
PX
p=1

E
0

p(wk)E
0

p(wk)
T : (4.16)

This corresponds to the well known Gauss-Newton approximation in nonlinear least
squares optimization [Gill et al. 81]. The inverse can then be approximated iteratively by
one pass through the training set by the following recursive formula3

H�1
p+1 = H�1

p � H�1
p E

0

p+1(wk)E
0

p+1(wk)
TH�1

p

1 + E
0

p+1(wk)TH�1
p E

0

p+1(wk)
; (4.17)

2See for example [Knuth 81] for algorithms to draw random variables from the normal distribution.
3We have here used the standard Sherman-Morrison inversion identity: (A + ab

T)�1 = A�1 �

A
�1ab

T

A
�1

1+b
T

A�1a
.

where H�1
p is the approximation of the inverse of the matrix

Pp
i=1E

00

i (wk). It is then clear

that H�1
P is an approximation to E

00

(wk)
�1. Initially H0 is picked as a \small" matrix

which inverse is known. This approximation costs O(PN2) operations.
An alternative method, that is independent of the error function can be derived from

Newton's method [Kreyszig 88]. To �nd the reciprocal x of a given number a, we may
apply Newton's method on the function f(x) = x�1 � a. The iteration is then given by

xm+1 = xm(2� axm) :

This suggest an analogous iteration formula for determining the inverse X = E
00

(wk)�1

of E
00

(wk), namely
Xm+1 = Xm(2I � E

00

(wk)Xm) : (4.18)

This process converges if an only if X0 is chosen such that the eigenvalues of (I �
E
00

(wk)Xm) are of absolute value less than 1. Unfortunately, a suitable choice of X0

is generally di�cult, and the method is mostly used for improving an inaccurate inverse
obtained by another method.

4.2.1 Inverse Hessian times a vector

It is frequently necessary to �nd the inverse Hessian times a vector, which is the key
calculation of Newton's method and also in the OBS technique. No exact formula exist
for the calculation of E

00

(wk)�1d. It is not possible to �nd a formula like the one stated in
lemma 7 for the calculation of the Hessian times a vector. Lemma 7 can, however, be used
implicitly to estimate a solution iteratively by minimizing the function jjE 00

(wk)x� djj2
[Pearlmutter 93]. This can be done in at most N iterations, so all in all in order O(PN2)
operations.

4.3 Conclusion

Hessian information is important in many aspects of neural network training. It can
be used to improve convergence as well as the generalization ability of the network. It
has often been assumed that it is too time consuming to extract Hessian information
in a neural network context. This is not at all true. A lot of Hessian information can
be extracted without explicitly having to calculate the matrix. This includes the Hessian
times a vector, the largest and smallest eigenvalues of the Hessian and even the estimation
of the whole eigenvalue spectrum.

Extraction of inverse Hessian information is a more complicated matter. It is possible
to estimate the whole inverse matrix in less than O(N3), which is the order of time to
calculate it exactly through numerical methods. The inverse Hessian times a vector can
be estimated through an iterative method during training, but it is not clear how \safe"
this method is.

Based on the above extraction methods, an adaptive preconditioning scheme was in-
troduced in order to improve convergence. This approach is promising but needs to be
improved and investigated further. One problem, that the scheme needs to consider more,
is how to precondition inde�nite Hessian matrices. One idea was to minimize the eigen-
values while keeping them away from zero. This involves the estimation of the largest

eigenvalue of the inverse Hessian. Methods to do that exist, but they are not e�cient. So
trying to �nd an e�cient method would be a natural way to continue this research.

The author feels that only \the top of the iceberg" has been investigated in this area
and further research should be able to come up with even better methods to extract and
use Hessian information.

Chapter 5

Di�erent Error Functions

The choice of error function used in training feed-forward neural networks has a major in-

uence on the convergence rate and on the �nal generalization ability of the network. This
has been investigated by several researchers, such as [Solla et al. 88], [Yu and Simmons 90],
[Brady and Raghavan 88], [M�ller and Fahlman 93] and [Hampshire 92]. In this chapter,
we summarize some of this work with focus on the results in [M�ller and Fahlman 93] and
appendix E.

Brady shows that gradient descent used on the least mean square error function can
fail to separate families of vectors, even if there exists a hyperplane that separates them
and no local minima exists. Brady's results are in fact not dependent on the training
algorithm but only on the error function. The problem with the least mean square error
function can be illustrated with an example where the optimal set of weights does not
yield zero error. Then non-separating suboptimal solutions can exist with lower error than
the optimal solution. So solutions with minimum least mean square error does not imply
having a minimum number of misclassi�cations. The situation can be illustrated by the
following simple �gure [Hampshire and Waibel 90]. We have a network with two output
units having output between 0 and 1. The outputs are mapped onto the x- and y-axis
respectively. If the desired target pattern is (10) then all outputs to the right of the line
y = x can be considered correct. If and only if the contours of equal error are straight lines
parallel to y = x, then there exist no regions with misclassi�cation and lower error than
other regions with correct classi�cation. Hampshire de�nes error functions that satisfy
such a condition to be monotonic. Hampshire strongly suggests that non-monotonic
behavior in training can be the cause for the often seen \overlearning", i.e., where the
recognition performance on a disjoint test set peaks and then degrades, while training set
performance continues to improve.

The least mean square error function is non-monotonic as is the case with the entropy
function described below. We shall later see that the exponential error function de�ned in
[M�ller and Fahlman 93] satis�es a soft-monotonic condition in the sense that the function
is asymptotically monotonic in the limit for a certain parameter associated with the
function.

Even if a solution with zero error exists, the problem with suboptimal solutions still
exists in the form of local minima and in practice in the form of very
at regions in
weight space. Suboptimal solutions in
at regions are often characterized by having a few
patterns classi�ed very wrong and many correct. The regions are
at because the network
gradients are small for extreme wrong outputs. Minimization of the least mean square

53

Figure 5.1: Illustration of non-monotonicity. The x-axis is the output from the �rst unit
and the y-axis is the output from the second. The curves corresponds to regions with
equal least mean square error. Clearly, there are regions where the network misclassi�es,
but where the error is lower than in other regions where the network classi�es correctly.
For example, the error in the point x1 is lower than the error in x2. For a monotonic error
function, the contours would have to be straight lines.

error function might very well converge to such regions because the training algorithms
are greedy algorithms, updating weights in the direction of fastest error decrease, and no
mechanism in the error function prevents the update of weights into these regions.

The entropy error function was introduced by Solla et al. to improve convergence in
these
at regions [Solla et al. 88]. The entropy function for outputs between �1 and 1 is
given by

E(w) =
1

2

PX
p=1

JX
j=1

(1 + tpj) log

1 + opj

1 + tpj
+ (1� tpj) log

1 � opj

1 � tpj

!
(5.1)

The advantage with this function is, that the network gradients are cancelled out in the
error gradients, so that error gradients for very wrong outputs are high. Notice that the
entropy error function does not prevent the weights to converge into
at regions in weight
space but makes it easier to escape from these regions.

5.1 The CFM error function

The classi�cation �gure of merit error function (CFM) applies to classi�cation prob-
lems with an orthogonal output representation [Hampshire and Waibel 90].1 This new
approach to training neural networks, also often referred to as di�erential learning, maxi-
mizes a function of the minimumdi�erence between the output from the unit representing
the right class and other units output. In this way, learning focuses most on the reduction
of misclassi�cation, rather than on attempts to mimic the target outputs exactly. The
CFM function can be written in the form

CFM(w) =
PX
p=1

�

1 + e��4p+�
; (5.2)

where 4p is the minimum di�erence between correct output and other outputs, and �,
� and � are constants. It can be shown that the CFM function is a monotonic error
function. Hampshire provides experimental evidence that CFM minimizes the number of
misclassi�cations better than the least mean square and the entropy function. Hampshire
conjectures, that di�erential learning forms better and more general internal representa-
tions of the training data, yielding a better generalization ability of the network. However,
no theoretical evidence for this exists. Training with the CFM error function is, unfortu-
nately, much slower than training with the least mean square or entropy function.

5.2 The Exponential error function

The problem with the least mean square function and the entropy function is that nothing
prevents the weights to converge to regions in weight space where a few of the patterns
are misclassi�ed in the extreme while the rest are classi�ed correctly. Instead of insisting
on strict monotonicity as in the CFM function, we can de�ne error functions that satisfy a
soft-monotonic condition, where a certain parameter controls the degree of monotonicity.

1An orthogonal output representation is one having exactly one output unit representing each single
class. A classi�cation is then considered correct if the output of the unit that represents the correct class
is higher than all other outputs.

The key idea is to incorporate appropriate constraints into the error function, so that
the weights are constrained away from bad regions in weight space. In appendix E and
[M�ller and Fahlman 93] an error function, called the exponential error function, was
de�ned with these properties. The function is given by

E(w) =
1

2

X
p;j

e��(opj�tpj+�)(tpj+��opj) (5.3)

where � and � are positive parameters. The derivative to (5.3) with respect to a given
opj is

dE(w)

dopj
= ��(tpj � opj)e��(opj�tpj+�)(tpj+��opj) (5.4)

It is easy to see that the global minimum for (5.3) is when tpj = opj, 8p; j. � de�nes
the width of the acceptable error around the desired target and � controls the steepness of
the exponentially growing error in the penalized regions outside the interval. If � is small
equation (5.4) resembles the derivative of the least square function. But the higher � gets
the more active is the constraint imposed on the penalized regions. When no errors are in
the penalized regions � is decreased, so that the outputs are pulled towards the targets.
Note that the exponential error function indirectly balances the errors especially when �
is large. A high � value gives large partial error derivatives inside the penalized regions
and small partial error derivatives when outside the regions. So the higher the � value
the more the errors will tend to arrange themselves around the boundary of the penalized
regions. This gives a balanced distribution of the errors. For regression problems it is
well known in statistics that a balanced set of errors can yield better generalization, this
is often referred to as variance heterogeneity [Seber and Wild 89]. It is an open question
whether this is true also for classi�cation problems.

In the limit when � increases to in�nity, the exponential error function is monotonic
as illustrated in �gure 5.2. Surely, for a �xed number of patterns in the training set,
we can select a large enough � so that the error function is monotonic. The problem is
how large � should be to ensure monotonicity in a given problem. Selecting too high a �
slows down the convergence, because of too hard constraints imposed on the acceptable
paths down to the minimum. On the other hand, too small a � results in non-monotonic
behavior of the error function. One promising approach would be to adapt � similarly
to the penalty parameters in constrained optimization, starting with a small � and then
successively increasing � during training. This approach has not been tried yet. It seems
that just setting � to a \reasonable" size yields good results.

In appendix E experimental evidence is provided showing that use of the exponential
error function can increase convergence and improve the generalization ability of the
networks. Notice that the exponential error function also works for non-classi�cation
problems and that the soft-monotonicity condition can be obtained for any accuracy
required by adjustment of the � parameter.

5.3 Conclusion

It is well known that the least mean square error function and the entropy error function
are both Bayes optimal in the sense that minimization with these functions produces

Figure 5.2: Illustration of soft-monotonicity in the limit for � ! 1. Notice that the
condition for correct classi�cation is di�erent from that in �gure 5.1.

solutions that approach the greatest lower bound on generalization error as the training
set approaches in�nity. This is of course a nice property but it is not necessarily relevant
or at least not enough to classify an error function as being appropriate in practice.
That an error function is Bayes optimal does not give any information about convergence
properties, trajectories in weight space (e.g., if training often leads to local minima or
at
regions in weight space), or generalization ability when trained on smaller sets of data. It
assumes that the minimization of this error function always leads to nice regions in weight
space, where the global minimum is to be found. This is not true for the least mean square
neither for the entropy function, at least not on classi�cation problems. Minimization of
these functions often leads to suboptimal solutions characterized by having a few patterns
classi�ed extremely wrong and many correctly. The problem is that minimization of the
error functions does not implyminimization of misclassi�cations. They are notmonotonic.

We have described a monotonic error function, known as the CFM error function or
di�erential learning originally invented by John Hampshire. This function works only on
classi�cation problems with orthogonal output representation. We have also described
a new error function, called exponential error function, that exhibits a form of soft-
monotonicity, where the monotonic behavior is dependent on the value of a certain pa-
rameter associated with the function.

Chapter 6

Conclusion

This introductory part of the Ph.D. thesis has explored the issue about e�cient training
of feed-forward neural networks. The results described in appendices A-E have been
summarized in this context.

One main conclusion is, that the algorithm for training does not exist yet. It is still
a problem dependent matter, what algorithm to use for training. But the choice of
algorithm is, however, not that di�cult anymore. One has to consider, if the training has
to be in on-line or o�-line mode. On-line is usually the best on classi�cation problems
characterized by training sets containing a lot of redundant information. If on-line mode
is used, the choice is between the stochastic scaled conjugate gradient algorithm described
in section 3.2.4 and appendix B and a carefully tuned on-line gradient descent algorithm
combined with techniques like the reduction of large curvature components described in
section 3.1.7. If o�-line mode is used, then the choice is to use a second order algorithm,
and then the scaled conjugate gradient algorithm described in section 3.2.3 is a good
choice.

We have shown that second order information from the Hessian matrix in various ways
can be extracted and used in training in an e�cient way. Further research should de�nitely
be done in this area. E�cient extraction of second order information can be used to speed
up convergence and also to improve generalization. The adaptive preconditiong scheme
described in section 4.1.1 is one example of such an approach to improve convergence. This
method could be improved signi�cantly by �nding an e�cient method for the estimation
of eigenvalues of the inverse Hessian matrix.

The issues concerning use of di�erent error functions should also be explored further.
There is no doubt about the major impact, the choice of error function has on conver-
gence and generalization. The CFM error function and the exponential error function are
good starting points for research in this direction. Many questions need to be answered
regarding error functions. How does the error distribution in
uence the quality of the so-
lutions found ? What error distribution is best for classi�cation problems and regressions
problems ?

59

Appendix A

A Scaled Conjugate Gradient

Algorithm for Fast Supervised

Learning

The paper [M�ller 93a] was written in the fall of 1990, and was submitted to Neural
Networks at that time. Because of an unfortunate mistake by the post o�ce, the paper
was �rst published in June 1993. The following is a slightly modi�ed version of this paper.

A.1 Abstract

A supervised learning algorithm (Scaled Conjugate Gradient, SCG) is introduced. The
performance of SCG is benchmarked against that of the standard backpropagation al-
gorithm (BP) [Rumelhart et al. 86], the conjugate gradient algorithm with line search
(CGL) [Johansson et al. 91] and the one-step Broyden-Fletcher- Goldfarb-Shanno mem-
oryless quasi-Newton algorithm (BFGS) [Battiti 89]. SCG is fully automated, includes
no user dependent parameters and avoids a time consuming line search, which CGL and
BFGS use in each iteration in order to determine an appropriate step size. Experiments
show that SCG is considerably faster than BP, CGL and BGFS.

A.2 Introduction

A.2.1 Motivation

Several adaptive learning algorithms for feed-forward neural networks have recently been
discovered [Hinton 89]. Many of these algorithms are based on the gradient descent algo-
rithm well known in optimization theory. They usually have a poor convergence rate and
depend on parameters which have to be speci�ed by the user, as no theoretical basis for
choosing them exists. The values of these parameters are often crucial for the success of the
algorithm. An example is the standard backpropagation algorithm [Rumelhart et al. 86]
which often behaves very badly on large-scale problems and whose success depends of the
user dependent parameters learning rate and momentum constant. The aim of this paper
is to develop a supervised learning algorithm that eliminates some of these disadvantages.

61

From an optimization point of view, learning in a neural network is equivalent to
minimizing a global error function, which is a multivariate function that depends on the
weights in the network. This perspective gives some advantages in the development of
e�ective learning algorithms because the problem of minimizing a function is well known
in other �elds of science, such as conventional numerical analysis [Watrous 87].

Since learning in realistic neural network applications often involves adjustment of
several thousand weights, only optimization methods that are applicable to large-scale
problems are relevant as alternative learning algorithms. The general opinion in the
numerical analysis community is that especially one class of optimization methods, called
the Conjugate Gradient Methods, are well suited to handle large-scale problems in an
e�ective way [Hestenes and Stiefel 52], [Fletcher 75], [Gill et al. 81], [Powell 77].

Several conjugate gradient algorithms have recently been introduced as learning al-
gorithms in neural networks [Johansson et al. 91], [Battiti 89], [M�ller 90b]. Johansson,
Dowla and Goodman describes the theory of general conjugate gradient methods and how
to apply the methods in feed-forward neural networks. They conclude that the standard
conjugate gradient method with line search (CGL) is an order of magnitude faster than
the standard backpropagation algorithm (BP) [Rumelhart et al. 86] when tested on the
parity problem. Battiti has introduced a variation of the standard conjugate gradient
method, the one-step Broyden-Fletcher-Goldfarb-Shanno memoryless quasi-Newton algo-
rithm (BFGS), as an alternative learning algorithm [Battiti 89]. He concludes that BFGS
also yields a speed-up of about one order of magnitude compared to BP when tested on
the parity problem. Both CGL and BFGS raise the calculation complexity per learning
iteration considerably, since they have to perform a line search in order to determine an
appropriate step size. A line search involves several calculations of either the global error
function or its derivative, both of which raise the complexity.

This paper introduces a new variation of the conjugate gradient method (Scaled Con-
jugate Gradient, SCG), which avoids the line search per learning iteration by using a
Levenberg-Marquardt approach [Fletcher 75] in order to scale the step size. During the
development of SCG a tutorial to the theory of conjugate gradient related algorithms is
given.

A.3 Optimization strategy

Most of the optimization methods used to minimize functions are based on the same
strategy. The minimization is a local iterative process in which an approximation to
the function in a neighbourhood of the current point in weight space is minimized. The
approximation is often given by a �rst or second order Taylor expansion of the function.
The idea of the strategy is illustrated in the pseudo algorithm presented below, which
minimizes the error function E(w) [Fletcher 75].

1. Choose initial weight vector w1 and set k = 1.

2. Determine a search direction pk and a step size �k so that E(wk +�kpk) < E(wk).

3. Update vector: wk+1 = wk + �kpk.

4. If E
0

(wk) 6= 0 then set k = k + 1 and go to 2
else return wk+1 as the desired minimum.

SUPERVISED LEARNING 63

Determining the next current point in this iterative process involves two independent
steps. First a search direction has to be determined, i.e, in what direction in weight space
do we want to go in the search for a new current point. Once the search direction has
been found we have to decide how far to go in the speci�ed search direction, i.e, a step

size has to be determined.

A.4 The Backpropagation algorithm

If the search direction pk in the above pseudo algorithm is set to the negative gradient
E
0

(wk) and the step size �k to a constant �, then the algorithm becomes the gradient
descent algorithm. In the context of neural networks this is the Backpropagation algo-
rithm without momentum term. Minimization by gradient descent is based on the linear
approximation E(w+y) � E(w)+E

0

(w)Ty, which is the main reason why the algorithm
often shows poor convergence. Another reason is that the algorithm uses a constant step
size, which in many cases is ine�cient and makes the algorithm less robust. The inclusion
of a momentum term in the backpropagation algorithm is an ad hoc attempt to force the
algorithm to use second order information from the network. Unfortunately, the momen-
tum term is not able to speed up the algorithm considerably, and causes the algorithm
to be even less robust, because of the inclusion of another user dependent parameter, the
momentum constant. Backpropagation including the momentum term will be referred to
as BP.

Usually two versions of BP are considered, the "o�-line" version and the "on-line"
version. They di�er in how often the weights are updated. The "o�-line" version updates
the weights after all patterns have been propagated through the network, i.e, using infor-
mation from all the patterns in the training set. The "on-line" version updates after every
single pattern, i.e., using only information from one pattern. The "on-line" version is not
consistent with optimization theory but it has nevertheless shown to be superior to the
"o�-line" version on some speci�c problems. These problems seems to be characterized
by big training sets containing a lot of redundant information [Le Cun 89]. The "o�-line"
version is, however, superior on problems which does not have these properties.1 This
paper will use the "o�-line" version of BP in the comparison with other algorithms. For a
more detailed discussion and comparison with the "on-line" version of BP see [M�ller 93b].

A.5 Conjugate direction methods

The Conjugate direction methods are also based on the above general optimization strat-
egy but choose the search direction and the step size more carefully by using information
from the second order approximation E(w+ y) � E(w) + E

0

(w)Ty+ 1
2
yTE

00

(w)y.

Quadratic functions have some advantages over general functions. Denote the quadratic
approximation to E in a neighbourhood of a point w by Eqw(y), so that Eqw(y) is given
by

Eqw(y) = E(w) + E
0

(w)Ty+
1

2
yTE

00

(w)y : (A.1)

1Such as the parity problem, which is used in this paper as a benchmark problem.

In order to determine minima to Eqw(y), the critical points for Eqw(y) must be found,
i.e., the points where

E
0

qw(y) = E
00

(w)y+ E0(w) = 0 : (A.2)

The critical points are the solution to the linear system de�ned by (A.2). If a conjugate
system is available the solution can be simpli�ed considerably [Hestenes and Stiefel 52],
[Johansson et al. 91]. Johansson, Dowla and Goodman show this in a very understandable
manner. Let p1; : : : ;pN be a conjugate system. Because p1; : : : ;pN form a basis in IRN ,
the step from a starting point y1 to a critical point y� can be expressed as a linear
combination of p1; : : : ;pN

y� � y1 =
NX
i=1

�ipi ; �i 2 IR: (A.3)

Multiplying (A.3) with pTj E
00

(w) and substituting E
0

(w) for �E 00 00(w)y� gives

pTj (�E
0

(w)� E
00

(w)y1) = �jp
T
j E

00

(w)pj) (A.4)

�j =
pTj (�E

0

(w)� E
00

(w)y1)

pTj E
00(w)pj

=
�pTj E

0

qw(y1)

pTj E
00(w)pj

:

The critical point y� can be determined in N iterative steps using (A.3) and (A.4).
Unfortunately y� is not necessarily a minimum, but can be a saddle point or a maximum.
Only if the Hessian matrix E

00

(w) is positive de�nite then Eqw(y) has a unique global
minimum. This can be realized by

Eqw(y) = Eqw(y� + (y� y�)) (A.5)

= E(w) + E
0

(w)T (y� + (y� y�))

+
1

2
(y� + (y� y�))

TE
00

(w)(y� + (y� y�))

= E(w) + E
0

(w)Ty� + E
0

(w)T (y� y�) +
1

2
yT�E

00

(w)y�

+
1

2
yT�E

00

(w)(y� y�) +
1

2
(y� y�)

TE
00

(w)y� +
1

2
(y� y�)

TE
00

(w)(y� y�)

= Eqw(y�) + (y� y�)
T (E

00

(w)y� + E
0

(w)) +
1

2
(y� y�)

TE
00

(w)(y� y�)

= Eqw(y�) +
1

2
(y� y�)

TE
00

(w)(y� y�) ;

where the two last equalities come respectively from the fact that E
00

(w) is symmetric
and E

00

(w)y� + E
0

(w) = 0 by (A.2). It follows from (A.5) that if y� is a minimum then
1
2
(y� y�)

TE
00

(w)(y� y�) > 0 for every y, hence E
00

(w) has to be positive de�nite. The

Hessian E
00

(w) will in the following be assumed to be positive de�nite, if not otherwise
stated.

The intermediate points yk+1 = yk + �kpk given by the iterative determination of
y� are in fact minima for Eqw(y) restricted to every k-plane �k: y = y1 + �1p1 + � � � +
�kpk [Hestenes and Stiefel 52]. How to determine these points recursively is shown in the
following theorem. Its proof can be found in [Hestenes and Stiefel 52].

SUPERVISED LEARNING 65

Theorem 1 Let p1; : : : ;pN be a conjugate system and y1 a point in weight space. Let

the points y2; : : : ;yN+1 be recursively de�ned by

yk+1 = yk + �kpk ,

where �k = �k
�k
, �k = � pTkE

0

qw(yk) and �k = pTkE
00

(w)pk. Then yk+1 minimizes Eqw

restricted to the k-plane �k given by y1 and p1; : : : ;pk [Hestenes and Stiefel 52].

The conjugate direction algorithm as proposed in [Hestenes and Stiefel 52] can be for-
mulated as follows. Select an initial weight vector y1 and a conjugate system p1; : : : ;pN .
Find successive minima for Eqw on the planes �1; : : : ; �N using theorem 1, where �k,
1 � k � N , is given by y = y1 + �1p1 + � � �+ �kpk, �i 2 IR. The algorithm assures that
the global minimum for a quadratic function is detected in, at most, N iterations. If all
the eigenvalues of the Hessian E

00

(w) fall into multiple groups with values of the same
size, then there is a great probability that the algorithm terminates in much less than N
iterations. Practice shows that this is often the case [Fletcher 75].

A.5.1 Conjugate gradients

The conjugate direction algorithm above assumes that a conjugate system is given. But
how does one determine such a system? It is not necessary to know the conjugate weight
vectors p1; : : : ;pN in advance as they can be determined recursively. Initially p1 is set
to the steepest descent vector �E 0

qw(y1). Then pk+1 is determined recursively as a linear

combination of the current steepest descent vector �E 0

qw(yk+1) and the previous direction

pk. More precisely, pk+1 is chosen as the orthogonal projection of �E 0

qw(yk+1) on the
(N�k)-plane �N�k conjugate to �k. Theorem 2, given in [Hestenes and Stiefel 52], shows
how this can be done.

Theorem 2 Let y1 be a point in weight space and p1 and r1 equal to the steepest descent

vector �E 0

qw(y1). De�ne pk+1 recursively by

pk+1 = rk+1 + �kpk ,

where rk+1 = �E 0

qw(yk+1), �k =
jrk+1j2�rTk+1

rk
rT
k
rk

and yk+1 is the point generated in theorem

1. Then pk+1 is the steepest descent vector to Eqw restricted to the (N � k)-plane �N�k
conjugate to �k given by y1 and p1; : : : ;pk [Hestenes and Stiefel 52].

The conjugate vectors obtained using theorem 2 are often referred to as conjugate

gradient directions. Combining theorem 1 and theorem 2 we get a conjugate gradient

algorithm. In each iteration this algorithm can be applied to the quadratic approximation
Eqw of the global error function E in the current point w in weight space. Because the
error function E(w) is non-quadratic the algorithm will not necessarily converge in N

steps. If the algorithm has not converged after N steps, the algorithm is restarted, i.e.,
initializing pk+1 to the current steepest descent direction rk+1 [Hestenes and Stiefel 52],
[Fletcher 75]. This also means that theorems 1-2 are only valid in the ideal case when
the error E is equal to the quadratic approximation Eqw. This is, of course, not often the
case but it does hold that the nearer the current point is to the minimum the better is
the quadratic approximation Eqw of the error E. This property is in practice adequate
to give a fast convergence. A standard conjugate gradient algorithm (CG) can now be
described as follows.

1. Choose initial weight vector w1.
Set p1 = r1 = � E

0

(w1), k = 1.

2. Calculate second order information:

sk = E
00

(wk)pk,

�k = pTk sk.

3. Calculate step size:

�k = pTk rk,

�k =
�k
�k
.

4. Update weight vector:

wk+1 = wk + �kpk,

rk+1 = �E 0

(wk+1).

5. If k mod N = 0 then restart algorithm: pk+1 = rk+1

else create new conjugate direction:

�k =
jrk+1j2�rTk+1

rk
jrkj2 ,

pk+1 = rk+1 + �kpk.

6. If the steepest descent direction rk+1 6= 0 then set k = k + 1 and go to 2
else terminate and return wk+1 as the desired minimum.

Several other formulas for �k can be derived [Hestenes and Stiefel 52], [Fletcher 75],
[Gill et al. 81], but when the conjugate gradient methods are applied to non-quadratic
functions the above formula, called the Hestenes-Stiefel formula, for �k is considered
superior. When the algorithm shows poor development the formula forces the algorithm
to restart because of the following relation

rk+1 � rk) �k � 0) pk+1 � rk+1 : (A.6)

For each iteration in CG the Hessian matrix E
00

(wk) has to be calculated and stored.
It is not desirable to calculate the Hessian matrix explicitly, because of the calculation
complexity and memory usage involved; actually calculating the Hessian would demand
O(N2) memory usage and O(PN2) in calculation complexity. Usually this problem is
solved by approximating the step size with a line search. Using the fact that wk+1 =
wk + �kpk is a minimum for the k-plane p1; : : : ;pk, it is possible to show that

E
0

(wk+1)
Tpk = 0 (A.7)

(A.7) shows that �k is the solution to

min
�
E(wk + �pk) (A.8)

So �k is the minimum for E along the line wk + �pk. �k is in fact only an approximated
solution to (A.8) since E is non-quadratic. The techniques for solving (A.8) are known
as line search techniques [Gill et al. 81]. Appendix A.A gives a description of the line
search algorithm used in this paper. All line search techniques include at least one user
dependent parameter, which determines when the line search should terminate. The value
of this parameter is often crucial for the success of the line search.

SUPERVISED LEARNING 67

A.5.2 The CGL algorithm

The conjugate gradient algorithm (CG) shown above is often used combined with line
search. That means the step size is approximated with a line search technique avoiding
the calculation of the Hessian matrix. Johansson et al. has used this scheme using a cubic
interpolation algorithm [Johansson et al. 91]. We use the conjugate gradient algorithm
combined with the safeguarded quadratic univariate minimization mentioned in appendix
A.A. This algorithm will be referred to as CGL.

A.5.3 The BFGS algorithm

Battiti has proposed another method from the optimization literature known as the
one-step Broyden-Fletcher-Goldfarb-Shanno memory-less quasi- Newton method (BFGS)
[Battiti 89]. The algorithm is also based on conjugate directions combined with line
search. The direction is updated by the following rule

pk = Skrk +Akyk + SkBkqk ; (A.9)

where rk = �E 0

(wk), yk = wk �wk�1 and qk = E
0

(wk)�E 0

(wk�1). The coe�cients Sk,
Ak and Bk are de�ned as

Ak = (1 + Sk
qTk qk

yTk qk
)Bk � Sk

qTk rk

yTkqk
; (A.10)

Bk =
yTk rk

yTkqk
; Sk =

yTkqk

qTkqk

Sk, which is referred to as the scaling factor, is not strictly necessary [Luenberger 84].
Battiti has used Sk = 1 with good results. Again the safeguarded quadratic univariate
minimization algorithm has been used in our experiments to estimate an appropriate step
size.

A.6 The SCG algorithm

It is possible to use another approach in estimating the step size than the line search
technique. The idea is to estimate the term sk = E

00

(wk)pk in CG with a non-symmetric
approximation of the form

sk = E
00

(wk)pk �
E
0

(wk + �kpk)�E 0

(wk)

�k
; 0 < �k � 1 : (A.11)

The approximation tends in the limit to the true value of E
00

(wk)pk. The calculation
complexity and memory usage of sk are respectively O(PN) and O(N). If this strategy
is combined with the standard conjugate gradient approach (CG) we get an algorithm
directly applicable to a feed-forward neural network. This slightly modi�ed version of the
original CG algorithm will also be referred to as CG.

The CG algorithm was tested on an appropriate test problem. It failed in almost every
case and converged to a non-stationary point. Cause of this failure is that the algorithm
only works for functions with positive de�nite Hessian matrices, and that the quadratic

approximations on which the algorithm works can be very poor when the current point
is far from the desired minimum [Gill et al. 81]. The Hessian matrix for the global error
function E has shown to be inde�nite in di�erent areas of the weight space, which explains
why CG fails in the attempt to minimize E.

We propose a new solution to this problem. The approach is new not only in the
context of learning in feed-forward neural networks but also in the context of the un-
derlying optimization theory which we have discussed so far. The idea is to combine the
model-trust region approach, known from the Levenberg- Marquardt algorithm,2 with the
conjugate gradient approach. Let us introduce a scalar �k in CG, which is supposed to
regulate the inde�niteness of E

00

(wk). This is done by setting

sk =
E
0

(wk + �kpk)� E
0

(wk)

�k
+ �kpk ; (A.12)

and adjusting �k in each iteration looking at the sign of �k, which directly reveals if
E
00

(wk) is not positive de�nite. If �k � 0 then the Hessian is not positive de�nite and �k
is raised and sk is estimated again. If the new sk is renamed as sk and the raised �k as
�k then sk is

sk = sk + (�k � �k)pk : (A.13)

Assume in a given iteration that �k � 0. It is possible to determine how much �k should
be raised in order to get �k > 0. If the new �k is renamed as �k then

�k = pTk sk = pTk (sk + (�k � �k)pk) = �k + (�k � �k)jpkj2 > 0) (A.14)

�k > �k � �k

jpkj2
:

(A.14) implies that if �k is raised with more than � �k
jp

k
j2 then �k > 0. The question is:

how much should �k be raised to get an optimal solution? This question can not yet be
answered, but it is clear that �k in some way should depend on �k, �k and jpkj2. A choice
found to be reasonable is

�k = 2(�k � �k

jpkj2
) : (A.15)

This leads to

�k = �k + (�k � �k)jpkj2 = �k + (2�k � 2
�k

jpkj2
� �k)jpkj2 (A.16)

= ��k + �kjpkj2 > 0 :

The step size is given by

�k =
�k

�k
=

�k

pTk sk + �kjpkj2
; (A.17)

with sk given by formula (A.11). The values of �k directly scale the step size in such a
way that the bigger �k is the smaller the step size, which agrees well with our intuition
of the function of �k.

The quadratic approximation Eqw, on which the algorithm works, may not always be
a good approximation to E(w) since �k scales the Hessian matrix in an arti�cial way. A

2The Levenberg-Marquardt algorithm is a variation of the standard Newton algorithm.

SUPERVISED LEARNING 69

mechanism to raise and lower �k is needed which gives a good approximation, even when
the Hessian is positive de�nite. De�ne

�k =
E(wk)� E(wk + �kpk)

E(wk)� Eqw(�kpk)
=

2�k (E(wk)� E(wk + �kpk))

�2k
: (A.18)

Here �k is a measure of how well Eqw(�kpk) approximates E(wk + �kpk) in the sense,
that the closer �k is to 1, the better is the approximation. �k is raised and lowered
following the formula

if �k > 0:75 then �k =
1
4
�k

if �k < 0:25 then �k = �k +
�k(1��k)

jp
k
j2 .

The formula for �k < 0:25 increases �k such that the new step size is equal to the minimum
to a quadratic polynomial �tted to E

0

(wk)Tpk, E(wk) and E(wk + �kpk) [Williams 91].
The SCG algorithm is as shown below.

1. Choose weight vector w1 and scalars 0 < � � 10�4, 0 < �1 � 10�6, �1 = 0.
Set p1 = r1 = �E 0

(w1), k = 1 and success = true.

2. If success then calculate second order information:

�k =
�

jp
k
j ,

sk =
E
0

(wk+�kpk
)�E0(wk)

�k
,

�k = pTk sk.

3. Scale �k: �k = �k + (�k � �k)jpkj2.
4. If �k � 0 then make the Hessian matrix positive de�nite:

�k = 2(�k � �k
jp

k
j2),

�k = ��k + �kjpkj2 ; �k = �k.

5. Calculate step size:

�k = pTk rk,

�k =
�k
�k

.

6. Calculate the comparison parameter: �k =
2�k(E(wk)�E(wk+�kpk))

�2
k

.

7. If �k � 0 then a successful reduction in error can be made:

wk+1 = wk + �kpk,

rk+1 = �E 0

(wk+1),

�k = 0, success = true.

If k mod N = 0 then restart algorrithm: pk+1 = rk+1
else create new conjugate direction:

�k =
jrk+1j2�rTk+1

rk
jrkj2 ,

pk+1 = rk+1 + �kpk.

If �k � 0:75 then reduce the scale parameter: �k =
1
4
�k.

else a reduction in error is not possible: �k = �k ; success = false.

8. If �k < 0:25 then increase the scale parameter: �k = �k +
�k(1��k)

jp
k
j2 .

9. If the steepest descent direction rk 6= 0 then set k = k + 1 and go to 2
else terminate and return wk+1 as the desired minimum.

The value of � should be as small as possible taking the machine precision into ac-
count. When � is kept small (� 10�4), experiments indicate that the value of � is not
critical for the performance of SCG. Because of that, SCG seems not to include any user
dependent parameters which values are crucial for the success of the algorithm. This is
a major advantage compared to the line search based algorithms which include that kind
of parameters.

For each iteration there is one call of E(w) and two calls of E
0

(w), which gives a
calculation complexity per iteration of O(5PN). When the algorithm is implemented this
complexity can be reduced to O(4PN) because the calculation of E(w) can be built into
one of the calculations of E

0

(w). In comparison with BP, SCG involves twice as much
calculation work per iteration since BP has a calculation complexity of O(2PN) per
iteration. The calculation complexity of CGL and BFGS is about O(3-15PN) since the
line search, on average, involves 3-15 calls of E(w) or E

0

(w) per iteration [Gill et al. 81].
When �k is zero, SCG is equal to the standard conjugate gradient algorithm (CG)

shown before. Figure A.1 illustrates SCG functioning on an appropriate test problem.3

Graph A) shows the error development versus learning iteration. The error decreases
monotonically towards zero, which is characteristic for SCG because an error increase is
not allowed. At several iterations the error is constant for one or two iterations.4 In these
instances the Hessian matrix has not been positive de�nite and �k has been increased using
equation (A.13). The development of �k is shown in graph B). �k is varying between 0
and 25 iterations and is 0 in the rest of the minimization. This reveals that E

00

(w) has not
been positive de�nite in the beginning of the minimization. This is not surprising since
the closer the current point is to the desired minimum the greater is the probability that
E
00

(w) is positive de�nite. We observe that whenever equation (A.13) is used to increase
�k a large reduction in error is achieved immediately afterwards.

A.7 Test results

A.7.1 Comparison metric

In order to compare the performance of the di�erent algorithms some kind of comparison
metric is needed. Obviously the number of iterations is not a valid metric considering
that the calculation complexity per iteration is not the same for any of the algorithms.
Forward or backward passing of all the patterns through the network costs in the order

3The test problem was the logistic map problem described in [Battiti and Masulli 90]
4Iteration 6, 13, 20 and 24.

Figure A.1: SCG functioning on the logistic map problem. A) Error curve. B) � curve.

of O(PN) which is an order of magnitude greater than any other calculation in a given
iteration for any of the algorithms. For that reason it seems reasonable to de�ne the
comparison metric using the amount of forward and backward passings of patterns. De�ne
a complexity unit (cu) to be one forward or backward passing of all patterns in the training
set. Then calculating the error costs 1 cu while calculating the derivative costs 2 cu. The
complexity unit will be used to compare the performance of the di�erent algorithms.

A.7.2 The parity problem

The aim of this test was to compare the performance of SCG with BP, CGL and BFGS.
The algorithms were tested on 3, 4, 5, 6, 7, 8, 9 bit parity problems using 20 di�er-
ent initial weight vectors.5 Three layer neural network architectures were used for each
problem.6 A training set containing all possible input patterns was used, i.e., 2n patterns.
The comparison metric described above was used in comparing the performance of the
algorithms. The algorithms were terminated when the average error was less than 10�4

or the number of iterations had exceeded an appropriate large number of iterations. BP
was run with learning rate 0.2 on parity 3-6, 0.05 on parity 7 and 0.01 on parity 8-9. The
lowering of the learning rate was done in order to get BP to converge. The momentum
was set to 0.9 for all problems. The line search parameter � in CGL and BFGS was set
to 0.25. The results are illustrated in table 1. We observe that SCG is 2-3 times faster
than CGL and BFGS on all problems.

It would also be interesting to see how the learning time is scaled by SCG, CGL, BFGS
and BP. According to Hinton the learning time for BP should be approximately O(PN2),
i.e., the total number of function calls, each costing O(PN) time, should be approximately
O(N). This depends, however, on the nature of the task [Hinton 89], [Tesauro 87]. Judd
shows that in the worst case it is exponential [Judd 87]. Figure A.2 uses logarithmic plot
to illustrate the number of complexity units versus the number of input units for each of

5Though only 10 di�erent initial weight vectors was used for BP on parity 8 and 9 because of the large
amount of cpu-time involved in these experiments.

6n-n-1 architectures where n is the number of bits.

Bits BP SCG CGL BFGS
av/std/fai av/std/fai/sp av/std/fai/sp av/std/fai/sp

3 3475/1020/0 413/306/1/8.4 1232/1383/1/2.8 736/473/0/4.7
4 16427/10185/1 1727/725/2/9.5 3320/3147/1/4.9 3004/3458/0/5.5
5 9864/5651/2 2131/1494/1/4.6 3682/2029/0/2.7 3246/2387/3/3.0
6 28671/20727/6 2811/1548/2/10.2 5435/6036/1/5.3 5601/3021/2/5.1
7 48478/38293/4 3801/3593/1/12.9 9903/12545/1/4.9 9343/10902/2/5.2
8 134130/64572/2 6206/3077/1/21.6 12518/14012/2/10.7 11426/8575/4/11.7
9 189453/53535/4 8105/5879/0/23.4 25855/22094/3/7.3 25748/24165/0/7.4

Table A.1: Results from the parity problem. av = average number of cu's. std = standard
deviation. fai = number of failures. sp = speed-up relative to BP.

the two network architectures. The curves are clearly all sublinear indicating that all four
algorithms scale polynomial on this particular problem.

The BP curve and the increasing speed-ups in table A.1 indicate that the scaling of
BP is worse than for the other algorithms. There seems to be no signi�cant di�erence in
scaling of SCG, CGL and BFGS.

A.7.3 SCG performance versus di�erent values of �

The aim of this test was to determine how crucial the value of the �-parameter is to the
performance of SCG. 12 di�erent values for � were used on the parity 5 problem using 20
di�erent initial weight vectors. The average results are shown in �gure A.3. We observe
that the average performance of SCG is not signi�cantly a�ected when the value of �
is small (� 10�4). For � � 10�4 the number of failures was in the range 0-2 and the
standard deviation was 330. When � was less than 10�12 roundo� errors began to have
an e�ect.7

A.8 Conclusion

An optimization approach was used to introduce a learning algorithm (SCG) which is more
e�ective than the standard backpropagation (BP), standard conjugate gradient with line
search (CGL) and the one-step Broyden-Fletcher- Goldfarb-Shanno memoryless quasi-
Newton algorithm (BFGS). SCG does not contain any user dependent parameters which
values are crucial for the success of SCG. By using a step size scaling mechanism, SCG
avoids a time consuming line search per learning iteration, which makes the algorithm
faster than other second-order algorithms recently proposed (CGL,BFGS).

Acknowledgement

I would like to thank Brian Mayoh (AAU), Kim Plunkett (AAU) and Ole �sterby (AAU)
for many good discussions and advice. I am also grateful to Roberto Battiti (University of

7All the experiments were run on a SUN-4 machine.

Figure A.3: SCG on parity 5 with di�erent �-values.

Trento, Italy) and Eric Johansson (LLNC) who have been very helpful giving constructive
comments and advice.

Appendix A.A. Line search

A well known line search technique is that of Successive polynomial approximation where
the function E(w) is approximated by a simple function e(w), which agrees exactly with
E(w) in either function value or function value and derivatives at a certain number
of points. e(w) is normally chosen to be a quadratic or cubic polynomial depending
on whether or not the derivatives of E(w) are available or easily calculated. We will
use a quadratic polynomial and thereby avoiding calculating the derivatives of the error
function, which involves twice as many calculations than calculating the error. De�ne the
function f(x) as

f(x) = E(wk + xpk) : (A.19)

Assume that the minimum for f(x) is bracketed by (u; f(u)), (v; f(v)) and that a third
point (x; f(x)) in between is known. The minimum� for the quadratic polynomial passing
through the three points is given by x+ s=q where s,q is

s = (v � x)2(f(u) � f(x))� (u� x)2(f(v)� f(x)) (A.20)

q = 2 ((u� x)(f(v)� f(x))� (v � x)(f(u)� f(x)))

Successive applications of (A.20) can be shown to be superlinearly convergent when some
mild conditions of E(w) are satis�ed. The disadvantage of the line search techniques is
obviously that each successive step involves several calculations of the error which is of
the order of O(PN) calculations. Even initializing the line search algorithm, i.e, brack-
eting the minimum, can cost several calculations of the error. Because of the calculation
complexity involved in each step, the line search should terminate after a small amount
of steps. The termination criteria used in this paper is [Gill et al. 81]

E(wk)� E(wk + �jpk) <= ��jE
0

(wk)pk ; 0 < � � 1

2
; (A.21)

where �j is the quadratic minimum for the j'th iteration in the successive line search.
Terminating the line search before the actual minimum is found is called inexact line
search. When the function to be minimized is non-quadratic, like the error function,
making an exact line search is not worth while because the direction of search is also only
an approximation to the exact direction. A slightly extended version of the quadratic
line search technique is used in the experiments called safeguarded quadratic univariate

minimization [Gill and Murray 74].

Appendix B

Supervised Learning on Large

Redundant Training Sets

The paper [M�ller 93b] was written in the spring of 1992 and has been published recently
in International Journal of Neural Systems. The following is a non modi�ed version of
this paper.

B.1 Abstract

E�cient supervised learning on large redundant training sets requires algorithms where
the amount of computation involved in preparing each weight update is independent of
the training set size. O�-line algorithms like the standard conjugate gradient algorithms
do not have this property, while on-line algorithms like the stochastic backpropagation
algorithm do. A new algorithm combining the good properties of o�-line and on-line
algorithms is introduced.

B.2 Motivation

In the last few years many new learning algorithms for feed-forward neural networks
have been introduced. One major approach has been to transform classical optimiza-
tion algorithms into learning algorithms. In particular the conjugate gradient algo-
rithms have in various versions shown to be e�ective [Battiti 92], [M�ller 93a], [Battiti 92],
[Johansson et al. 91]. Most of the results reported about the performance of these algo-
rithms have been based on simulations made on small scale problems (parity, encoder,
etc.). These results do not necessarily scale up to large scale problems. Figure B.1 il-
lustrates simulations on a small scale and a medium scale problem using two conjugate
gradient related algorithms (SCG [M�ller 93a], BFGS [Battiti 89]) and backpropagation
with o�-line and on-line update respectively (O�BP, OnBP) [Rumelhart et al. 86]. We
observe that SCG and BFGS are the most e�cient algorithms for the small scale problem
(4bit encoder).1 The picture changes for the medium scale problem (1000 word Nettalk
[Sejnowski and Rosenberg 87]).2 SCG is still much better than O�-BP, but On-BP is sud-

1Even if the computational costs per iteration is taken into account the picture in �gure B.1 will not
change signi�cantly.

2In this simulation only SCG, On-BP and O�-BP were tested.

75

Figure B.1: A) 4-bit encoder problem. B) 1000 word Nettalk problem.

denly the most e�cient of them all. This phenomena is due to the characteristics of the
nettalk problem and other medium to large scale realistic problems. It is characterized by
a large and very redundant training set. As will be described in the next section, redun-
dancy in training sets is re
ected as redundant computations in algorithms like BFGS,
SCG and O�-BP, that update weights based on information from the whole training set.
Such algorithms are referred to as o�-line algorithms, while algorithms like OnBP that
update weights independent of the training set size are referred to as on-line algorithms.

Conjugate gradient algorithms and other second order algorithms are all o�-line algo-
rithms in the sense that there is no obvious way they are able to perform on-line updating
of weights. The reason is that these algorithms choose a near optimal step-size before each
weight update. Taking a near optimal step in the direction of error reduction of one pat-
tern could crudely violate the error reduction on the whole training set. So second order
algorithms are not as they stand able to use the redundancy present in the training set.
It is, however, possible to combine the second order properties and the bene�ts of redun-
dancy by introducing appropriate modi�cations to these algorithms. Such modi�cations
are described in this paper.

B.3 Redundancy

Practical neural network problems are usually characterized by large and very regular
training sets. These training sets often contain redundant information. Consider an
extreme example where the training set is composed of two copies of the same subset
[Le Cun 89]. Accumulating the partial gradients over the whole training set will cause
redundant computations to be performed. This idea can be generalised to training sets
where no precise repetition of the same pattern exist but where some redundancy is
present.

The relationship between redundancy of training sets and redundant computations can
be characterized as follows. The redundancy of the training set is re
ected in the neural
network as redundant error gradients, which again is re
ected in the o�-line learning al-

SETS 77

gorithm as redundant computations because the gradients are successively accumulated
before a weight update. The redundancy of the training set is a constant, but the re-
dundancy of the gradients varies with learning, which again means that the redundant
computations vary with learning. Measuring the constant redundancy of the training
set would give a �rst estimate of the average amount of redundant computations to be
expected during learning. There are obviously several di�erent ways to construct such
a measure of redundancy of training sets, one is to use Shannon's information theory
[Shannon and Warren 64]. Consider a classi�cation problem having M di�erent classi�-
cation classes and N discrete input vectors of length L each attribute having V possible
values.3 The Conditional Population Entropy (CPE) is de�ned as

CPE = �
MX
m=1

p(cm)
LX
l=1

VX
v=1

p(xlvjcm) log p(xlvjcm) ; (B.1)

where p(cm) is the probability that an input vector belongs to the mth class and p(xlvjcm)
is the probability that the lth attribute of an input vector x has value v given that x
belongs to the mth class. CPE is the information value given information about the
categories [Mingers 89]. The smaller CPE the bigger is the redundancy. We could then
de�ne redundancy (RE) as

RE =
log V � CPE

L

log V
; (B.2)

where log V is the necessary number of bits needed to code one attribute if all values
are equally likely and CPE

L
is the average number of bits needed to code one attribute.

Examples of redundancy of training sets are

n-bit parity: RE = 0

1000 word Nettalk: RE = 0.88

We observe that the redundancy measure gives zero redundancy on the n-bit parity prob-
lem. This is what we would expect for an appropriate redundancy measure which is based
on the training set alone, since changing only one bit in a parity input vector gives a new
classi�cation. A redundancy of zero indicates that no redundant computations are made
if the whole set of 2n patterns is used in training. It is, however, well known that the par-
ity problem can up to a very good generalisation be learned by just using 2n�1 patterns.
This is an example that illustrates that the number of redundant computations made by
o�-line algorithms are not totally determined by the redundancy in the training set but
also by the internal network dynamics. The nettalk data, which is a highly regular train-
ing set, gives a redundancy of 88%. Taking this as an estimate of the average redundant
computations we get a hint of why we observe the ine�ciency of the o�-line algorithms
on this problem.

The above redundancy measure could also be applied to the error gradient vectors.
Instead of discrete attribute values we then have continuous values, which makes the
situation more complicated. A way to handle the case would be to use intervals instead
of discrete attribute values. Measuring the redundancy of the gradient vectors would give
a much better estimate of the redundant computations. Doing that in each iteration of
the learning process would, however, be very time consuming.

3The continuous case could be handled using intervals instead of discrete attribute values.

Figure B.2: Performance of SCG and On-BP on randomly generated training sets with
various degrees of redundancy.

In order to illustrate that there is a correlation between the value of the above re-
dundancy measure and the e�ciency of the di�erent learning algorithms, training sets of
various degrees of redundancy were generated. The test problems were of order 12-bit in-
put and 3-bit output. The network used for the simulations was a 12-8-3 network. Figure
B.2 illustrates the results with SCG and OnBP.

Not surprisingly, we observe that the smaller the redundancy the harder the problem.
The redundancy has a positive e�ect on OnBP in the beginning of the minimization and
this e�ect is more signi�cant the higher the redundancy. In both simulations there is a
turning point where from that point on SCG is more e�cient. At the beginning of the
minimization the error is usually far from the desired minimum which means: A) The
direction of search does not have to be as accurate as when closer to the minimum which
favors the on-line update. B) The second order properties of SCG do not have a signi�cant
e�ect when far away from the minimum.

B.4 Stochastic SCG method

In the design of an algorithm that combines the good properties of o�-line and on-line
algorithms we will use a natural restriction of the possible approaches. The computations
involved in preparing a weight update have to be independent of the training set size.
This automatically restricts us to stochastic, heuristic approaches because only a small
part of the whole training set is available for us at one speci�c time. O�-line and on-line
algorithms can be viewed as two extremes of a more general approach of learning; an
approach which we will call block update. A block update with blocksize B is a weight
update based on a block of B patterns drawn from the training set. On-line update
corresponds to a block update with blocksize 1 and o�-line update to a block update
with blocksize N, where N is the number of patterns in the training set. Observe that
block update on varying blocks of data of maybe di�erent size is equivalent to altering the
minimization function in each iteration. Based on experiments in physics, Jerome Karle

SETS 79

has shown that such methods can extend the range of convergence for the least square
minimization techniques in nonlinear systems [Karle 91]. Ha�ner et al. has applied a block
update scheme combined with back-propagation on a large speech recognition problem
with good results [Ha�ner et al. 88].

We want to �nd an appropriate blocksize B so that a block update would decrease the
total error of the training set with great con�dence. The blocksize B has to be big enough
to ensure a safe weight update using a near optimal step size but small enough to avoid
redundant computations. We would expect such a blocksize to be problem speci�c, i.e.,
the blocksize depends on the nature of the training set as well as the internal dynamics
of the network. Because of that the blocksize is expected to vary with learning. Assume
for a while that a procedure to determine such a blocksize is known. We then need to be
able to combine the block update approach with a second order o�-line algorithm. We
here focus on the conjugate gradient methods, but other methods could be selected.

B.4.1 Conjugate Gradient with block update

Recall that the standard conjugate gradient method can be described as follows

1. Choose initial weight vector w1.
Set p1 = r1 = � E

0

(w1), k = 1.

2. Do line search:

�k = min�E(wk + �pk).

3. Update weight vector:

wk+1 = wk + �kpk,

rk+1 = �E 0

(wk+1).

4. If k mod N = 0 then restart algorithm: pk+1 = rk+1

else create new conjugate direction:

�k =
jrk+1j2�rTk+1

rk
jrkj2 ,

pk+1 = rk+1 + �kpk.

5. If the steepest descent direction rk 6= 0 then set k = k + 1 and go to 2
else terminate and return wk+1 as the desired minimum.

Several di�erent versions of this algorithm exist. They di�er in how the step size �k
is determined. �k is usually estimated by an inexact line search, which can be very time
consuming. M�ller has introduced another approach in estimating �k which is based on
a scaling mechanism [M�ller 93a]. This algorithm, denoted Scaled Conjugate Gradient
(SCG), will be used in what follows. We will shortly summarize this algorithm and refer
to [M�ller 93a] for a more detailed description. In SCG the step size �k is determined
using the following formula

�k =
pTk rk

pTk sk + �kjpkj2
(B.3)

sk =
E
0

(wk + �kpk)� E
0

(wk)

�k
; 0 < �k � 1 :

sk is a one-sided di�erence approximation to E
00

(wk)pk. An algorithm for the exact calcu-
lation of E

00

(wk)pk has recently been proposed independently by Pearlmutter and M�ller
[Pearlmutter 93], [M�ller 93c]. This algorithm involves the same order of calculations as
the approximation. �k is a scaling parameter whose function is similar to the scaling
parameter found in the Levenberg Marquardt algorithm [Fletcher 75]. �k is in each iter-
ation raised or lowered according to the success of the error reduction in the particular
iteration.

The standard conjugate gradient algorithm (and SCG) as shown above is in its simplest
form an o�-line algoithm since the calculation of �k involves the current gradient as well
as the last gradient. Using block update with di�erent blocksizes for each iteration would
cause the de�ntion of �k to be meaningless. However, if the residual vectors rk are
normalized then �k is an approximation of the true �k and the algorithm works very
well [Kuhn and Herzberg 90], [Ha�ner et al. 88]. This normalization is done by using a
normalized error function on each block: EB = 1

B
E(w), where B is the number of patterns

in the block (blocksize) and E(w) is the total error of the current block of data. Observe
that each EB is an approximation to the total mean error of the whole training set, which
means that the direction vectors produced in the algorithm will be approximations to the
real direction vectors. Considering that the real direction vectors can not be expected
to be exactly conjugate themselves, because the error function is usually non-quadratic,
this seems to be reasonable. The robustness of the algorithm will depend on how good
the estimated residual vectors rk = � 1

B
E
0

(wk), based on the smaller block of data, are
compared to the real residual vectors.

A �rst naive approach in designing an algorithm would be to apply the SCG algorithm
with block update iteratively on di�erent blocks. Since the update is not based on the
whole training set, an update is not certain to make a decrease of the total error. The
near optimal choice of step size �k in each iteration requires a validation procedure of each
block update in order to prevent too large oscillations. Taking a near optimal step in the
direction of error reduction of a block of patterns could crudely violate the error reduction
on the whole training set. For that reason we want to estimate the probability P that a
block update will cause a reduction in total error. As we shall see in the next section this
can be done by drawing a random sample from the training set. Such a random sample
will from now on be denoted sample block. Similarly will the block of data on which
the block update is based be called update block. The details of the update-validation
scheme is described in the next section. The sample block is used to estimate an update
probability Pi. The weights are then updated with this probability. The patterns in the
update block are selected from the last sample block so that the errors of the selected
patterns are uniformly distributed. Figure B.3 illustrates the idea of this scheme.

B.4.2 Update validation

De�ne �i as the total mean error in a given iteration i in the minimization process.
Validation of a block update is equivalent to estimating the update probability

Pi = P (�i < �i�1) : (B.4)

Pi can be estimated by drawing a simple random sample without replacement. Assume
that the estimated mean error �̂i, i.e., the mean error of the sample, is normal distributed

Figure B.3: Update validation scheme.

around �i with standard error �i. The normal distribution is adequate in most practical
situations. Assume also that the sample size ni of the sample is chosen such that

P (
j�̂i � �ij

�i
� r) = � ; (B.5)

where r is called the relative error and � is a small probability (see appendix B.C). �i
can be estimated by

�i � sip
ni

r
1 � ni

N
; (B.6)

where si is the standard error of the sample and N is the total number of patterns
[Cochran 77]. Given that �̂i is normal distributed we have

P (�̂i < x) =
1

�i
p
2�

Z x

�1
e
� (�̂i��i)

2

2�2
i d�̂i =

1p
2�

Z x��i
�i

�1
e�

1
2
t2dt : (B.7)

We are interested in �nding P̂i = P (�i < �̂i�1) which is an approximation of the real
update probability Pi given by (B.4).

P̂i = P (�i < �̂i�1) = 1� P (�i > �̂i�1) = 1 � P (�̂i < �i �4�̂i) (B.8)

= 1 � 1p
2�

Z �4�̂i
�i

�1
e�

1
2
t2dt =

1p
2�

Z 4�̂i
�i

�1
e�

1
2
t2dt ;

where 4�̂i = �̂i�1� �̂i. P̂i is an estimate of Pi, but how close is P̂i to Pi? Recall that the
sample size ni was chosen so that (B.5) was true. (B.5) implies that

�i�1(1 � r) � �̂i�1 � �i�1(1 + r)) �̂i�1(1� r

1 + r
) � �i � �̂i�1(1 +

r

1� r
) (B.9)

with probability (1� �) � 1. (B.9) gives

1p
2�

Z L

�1
e�

1
2
t2dt � Pi � 1p

2�

Z U

�1
e�

1
2
t2dt) (B.10)

P̂i � 1p
2�

Z 4�̂i
�i

L
e�

1
2
t2dt � Pi � P̂i +

1p
2�

Z U

4�̂i
�i

e�
1
2
t2dt

where L =
�̂i�1(1� r

1+r
)��̂i

�i
and U =

�̂i�1(1+
r

1�r
)��̂i

�i
. So the exact update probability Pi is

bounded by (B.10) with probability (1��). Based on the above analysis of the uncertainty
of P̂i and the fact that formula (B.10) is an unbiased estimate of Pi, we decided to use a
slightly upward biased estimate for P̂i. We de�ne P̂i as

P̂i =
1p
2�

Z M

�1
e�

1
2
t2dt ; (B.11)

where M =
�̂i�1(1+

r
m(1�r)

)��̂i
�i

. The constant m is referred to as bias term. In order to

reduce the uncertainty of P̂i we also replace �̂i�1 with �̂i1, which is de�ned as the mean
error of the same sample block as �̂i but before an update. In order to have consistency in
the notation �̂i is then renamed to �̂i2. So �̂i1 and �̂i2 are the mean errors of the current
sample block before and after an update. This convention does not have any in
uence on
the above analysis. The value of P̂i can be estimated with high accuracy using a rational
approximation [Abramowitz 64].

B.4.3 Estimate of blocksize

We now turn to the problem of determining an appropriate update blocksize. In each
iteration we would like to measure the goodness of a particular blocksize. According to
the update-validation scheme in �gure B.3 a sample block selected from the training set
in iteration k is partly used as an update block in iteration k + 1. So a block of data is
used twice in the algorithm, �rst as a sample block and then as an update block. Using
this observation we can de�ne a gain function Gk(B) that measures the error change of a
particular block during its total life as a sample block and an update block. To measure
the goodness of a particular blocksize we de�ne

Gk(B) =
nk�1(�̂(k�1)1 � �̂(k�1)2) +B(ek1 � ek2)

(nk�1 +B)Bek1
; (B.12)

where ek1 and ek2 are the mean errors of the update block before and after the current
iteration. Note that if an update is rejected then ek2 is equal to ek1.

That Gk is an appropriate estimate of the goodness of a blocksize we see from the
following observations. Update block k is an uniformly distributed subset of sample block
k � 1 (see �gure B.3). This means that ek1 � �̂(k�1)2. In the case where the sample size
nk�1 is equal to the blocksize B the update block k is equal to sample block k � 1 and
ek1 = �̂(k�1)2. Assume that B = nk, then

nk�1(�̂(k�1)1 � �̂(k�1)2) +B(ek1 � ek2)

(nk�1 +B)Bek1
=

�̂(k�1)1 � ek2

(nk�1 +B)�̂(k�1)2
: (B.13)

This term is positive if �̂(k�1)1 > ek2, i.e., if the mean error of sample block k � 1,
calculated when the algorithm is �nished working on the block, is smaller than the mean
error, calculated when the algorithm �rst sampled the block. When the sample size is
greater than the blocksize we get a weighted version of (B.13).

The blocksize which in each iteration returns the maximum gain should be the new
current blocksize. Since neither Gk nor some of the derivatives of Gk can be calculated we
will use a heuristic approach to �nd the maximum. We assume that the optimal blocksize

Figure B.4: Iterative estimate of blocksize.

will be constant or just slowly changing during long periods of the minimization. This
allows us to average the gain over a small number of iterations and use this as a more
precise measure of the average goodness of a particular blocksize. Let Ĝj be

Ĝj =
1

C

CX
k=i

nk�1(�̂(k�1)1 � �̂(k�1)2) +B(ek1 � ek2)

(nk�1 +B)Bek1
; (B.14)

where C is a small constant.

Assume that an initial blocksize is known. The blocksize is updated after each C iter-
ations in the minimization process. The main heuristic update approach to maximize Ĝj

is based on a standard binary search method. The blocksize is doubled until a maximum
of the gain has been bounded.4 Call the endpoints and the corresponding gain values of
this boundinginterval Ba, Ga and Bb, Gb respectively. In each iteration the blocksize is
set to Ba+Bb

2
and the boundinginterval is updated appropriately according to whether the

gain-value is greater than or less than the last calculated gain-value, which is either Ga

or Gb. Figure B.4 illustrates the situation in the �rst few steps of the algorithm.

The maximum found might, however, not be a maximum during the whole minimiza-
tion because the weights change in each iteration. The method is for that reason reset
when the boundinginterval has collapsed, i.e. when Ba = Bb, and the estimated gain is
negative. When the method is restarted a search for a new boundinginterval starting from
the current blocksize is initiated. The method is presented in appendix B.B.

The author has also explored simpler heuristic schemes for update of blocksize, e.g.,
a linear update scheme without use of gain measures. This scheme was of the form
Bk+c = Bk+b, where b and c are pre-determined constants. So the blocksize was increased
by b every c iterations. If b and c are carefully tuned then this simpler scheme can work
as well as the binary search scheme. The problem is, however, the tuning of b and c which
is very problem dependent. To make things even worse the optimal values for b and c

may very well vary during the minimization. The binary search scheme has no crucial
problem dependent parameters like b and c and works in general better.

4In fact only until the estimated gain is positive.

B.5 Complexity

The algorithm described in section B.4 which is based on the standard scaled conjugate
gradient algorithm (SCG) will from now on be denoted stochastic scaled conjugate gradient
(SSCG). See appendix B.A for a detailed description of SSCG. In this section we will
estimate the calculation complexity per epoch of SSCG. In each iteration the standard
SCG algorithm is applied to a block of patterns of size B. In [M�ller 93a] it was shown
that the calculation complexity per iteration of SCG is O(6N jW j), where N is the total
number of patterns and jW j is the number of weights in the network. So without taking
the validation scheme into account the calculation complexity per iteration of SSCG is
O(6 jW j), where is the average update blocksize. The validation scheme costs
O(2 <n> jW j), where <n> is the average sample size. If we separate the iterations where
an update was rejected then the total calculation complexity per epoch of SSCG is

1

<P>

N

O(6 jW j+2 <n> jW j) = 1

<P>
O(6N jW j+2 <n> N jW j) ; (B.15)

where <P> is the average update probability. Empirical results indicates that the fraction
<n> is in the range 1-2 and <P> is in the range 0.5-1. The on-line backpropagation
algorithm has a calculation complexity of O(3N jW j) which means that SSCG involves
approximately 3-6 times as much calculation work per epoch as On-BP.

B.6 Experiments

The SSCG algorithm was tested on the randomly generated data mentioned in section 2
and on two medium to large scale problems. The benchmarking algorithms were On-BP
and SCG.

B.6.1 Random generated training sets.

SSCG, SCG and OnBP were tested on the randomly generated training sets also used in
section B.3. Figure B.5 illustrates the results. The curves for SSCG does more or less
follow the On-BP curve until the turning point where On-BP begins to
atten out. SSCG
continues to fall as SCG. SSCG does indeed use the redundancy in the beginning of the
minimization and its second order properties in the last part as desired.

B.6.2 The nettalk problem

The nettalk problem was �rst described in [Sejnowski and Rosenberg 87]. The training
set consists of 1000 di�erent words and their corresponding pronunciations given by their
phoneme representations. This gives a total number of 5438 patterns. The architecture
of the network employs 203 input, 30 hidden and 26 output units giving a total number
of 6926 weights. SSCG and On-BP were trained for 100 epochs using 10 di�erent initial
weight vectors. The values of the user de�ned parameters of SSCG were: relative error
(r) = 0:1, bias term (m) = 2 and gain constant (C) = 7. The values of the user de�ned
parameters of On-BP were: learning rate = 0:1 and momentum = 0:9. The average error
curves are shown in �gure B.6. We observe that SSCG converges faster than On-BP
during the 100 epochs. In every one of the 10 runs SSCG was faster than On-BP.

Figure B.6: The average mean error and corresponding standard deviation for 10 runs
with SSCG and On-BP on the nettalk problem.

Figure B.7: Blocksize.

When we weight this result with the time each algorithm approximately is using per
epoch the picture changes slightly. On-BP converges faster than SSCG on the �rst few
epochs but gets slowly overtaken by SSCG.

The standard deviation in each epoch is also illustrated in �gure B.6. We observe
very little and almost constant deviation of On-BP and a bigger but clearly decreasing
deviation of SSCG. The decreasing trend of the standard deviation of SSCG indicate that
the updates gets less and less stochastic which corresponds well with the observations
to be made in �gure B.7. Figure B.7 illustrates the development of the blocksize for a
typical run of SSCG. First we observe that the blocksize is stable for long periods of
the minimization and seems to converge quickly towards stable points. Secondly the
blocksize is clearly increasing making the updates less and less stochastic as the error is
getting closer to a minimum. If we continued the process we would expect the blocksize
to be equal to the total number of patterns and the algorithm would �nally be totally
deterministic.

B.6.3 Currency exchange rate prediction

A data set of 4476 daily exchange rates for German mark (DM) with respect to US Dollar
was used to train a feed-forward network to predict exhange rates. The net had 20 inputs
for past daily returns, 10 hidden units and 1 output unit. The results are illustrated
in �gure 8. Since the training set is generated with a "sliding window" technique we
would expect that redundancy would have a major impact on the training. Surprisingly
On-BP does not converge faster than O�-BP (we tried several di�erent values of learning
rate), while SSCG is clearly superior. It is not obvious why On-BP is not able to use the
redundancy.

Figure B.8: Currency exchange rate training.

B.7 Conclusion

The e�ciency of supervised learning algorithms on small scale problems does not neces-
sarily scale up to large scale problems. The redundancy of large training sets is re
ected
as redundant gradient vectors in the network. Accumulating these gradient vectors im-
plies redundant computations. In order to avoid these redundant computations a learning
algorithm has to be able to update weights independent of the size of the training set.
A stochastic learning algorithm with this property has been proposed. The algorithm
is denoted stochastic scaled conjugate gradient (SSCG) and is based on the scaled con-
jugate gradient algorithm (SCG) given in [M�ller 93a]. The algorithm can, however,
also be applied using standard conjugate gradient methods. Experimentally it is shown
that SSCG converges faster than the on-line backpropagation algorithm (On-BP) on two
medium scale problems. Further experiments need to be performed to be able to con-
clude anything de�nite about the convergence properties of SSCG compared to On-BP.
We conjecture that stochastic second order algorithms like SSCG is superior to On-BP
on large scale problems.

This paper has only described one particular update validation scheme. Other update
validation schemes are possible, e.g., update on the same block of data until an update
is rejected. In classi�cation problems where the number of di�erent classi�cations M is
small it might be useful to let the update blocksize be proportional to M, so that each
class in average would be represented equally in the update block [Ha�ner et al. 88]. A
variety of di�erent schemes need to be investigated in the �eld of stochastic optimization
in feed-forward networks.

Appendix B.A. Stochastic SCG algorithm

Let Eu and Ev be the functions that calculate the mean errors of the current update block
and the current sample block respectively.

1. Select small initial blocksize B1;
Select randomly without replacement an update block of size B1;
�01 = 0; �02 = 0; Ĝ1 = 0;
Select a small integer C > 0;
Choose weight vector w1 and scalars 0 < � � 10�4, 0 < �1 � 10�6, �1 = 0;
r1 = �E 0

u(w1); p1 = r1;
k = 1; j = 1; success = true;

2. If success then calculate second order information

�k =
�

jp
k
j ,

sk =
E
0

u(wk+�kpk
)�E0u(wk)

�k
,

�k = pTk sk.

3. Scale �k: �k = �k + (�k � �k)jpkj2.
4. If �k � 0 then make the Hessian matrix positive de�nite:

�k = 2(�k � �k
jp

k
j2),

�k = ��k + �kjpkj2 ; �k = �k.

5. Calculate step size:

�k = pTk rk,

�k =
�k
�k

.

6. ek1 = Eu(wk); ek2 = Eu(wk + �kpk);

7. Calculate the comparison parameter: �k =
2�k(ek1�ek2)

�2
k

.

8. If �k � 0 then

Ĝj = Ĝj +
nk�1(�̂(k�1)1��̂(k�1)2)+B(ek1�ek2)

(nk�1+B)Bek1
;

if (k mod C = 0) then

Ĝj =
1
C
Ĝj;

Estimate new blocksize Bk+1;

Ĝj+1 = 0; j = j + 1;

Estimate new sample size nk � Bk+1;

Draw a random sample without replacement of size nk;

�k1 = Ev(wk); �k2 = Ev(wk + �kpk);

Select new update block of size Bk+1 uniform distributed from current sample;

Estimate update probability P̂k;

Draw random number 0 � r � 1;

if (r � P̂k) then wk+1 = wk + �kpk;
else wk+1 = wk;

SETS 89

rk+1 = �E0
u(wk+1);

�k = 0, success = true.

If k mod N = 0 then restart algorrithm: pk+1 = rk+1
else create new conjugate direction:

�k =
jrk+1j2�rTk+1

rk
jrkj2 ,

pk+1 = rk+1 + �kpk.

If �k � 0:75 then reduce the scale parameter: �k =
1
4
�k.

else �k = �k; success = false;

9. If �k < 0:25 then increase the scale parameter: �k = �k +
�k(1��k)

jp
k
j2 .

10. If the steepest descent direction rk 6= 0 then set k = k + 1 and go to 2
else terminate and return wk+1 as the desired minimum.

Appendix B.B. Blocksize estimation

1. choose initial blocksize B0;
Ba = 0; Ga = 0; Bb = 0;
direction = up; j = 0;

2. calculate Ĝj;

3. if (direction=up) then

if (Ĝj > Ga) and (Ĝj < 0) then

Ba = Bj ; Ga = Ĝj ;

Bj+1 = 2Bj ;

else

direction = down;

checkleft = false;

Bb = Bj; Gb = Ĝj ;

4. if (direction=down) then

if checkleft then condition = (Ĝj � Ga);

else condition = (Ĝj � Gb);

if condition then

checkleft = false;

Bb = Bj; Gb = Ĝj ;

else

checkleft = true;

Ba = Bj ; Ga = Ĝj ;

Bj+1 =
Ba+Bb

2
;

5. if (jBbBaj � 1) and (Ĝj < 0) then

direction = up;

Ba = Bj; Ga = Ĝj ;

Bj+1 = 2Bj;

6. j = j + 1; terminate or goto 2.

Appendix B.C. Estimate of sample size

We want to estimate a sample size ni such that P (j�̂i��ij
�i

� r) = �, where � is a small
probability and r is the relative error. Since �̂i is assumed to be normal distributed we
have

�i =

r
1� ni

N

Sip
ni
; (B.16)

where Si is the standard error for the whole training set in iteration i. Let t be de�ned as

P (j�̂i � �ij � t�i) = � ; (B.17)

then

r�i = t�i = t

r
1� ni

N

Sip
ni
: (B.18)

Solving for ni gives

ni =

�
tSi
r�i

�2
1 + 1

N

�
tSi
r�i

�2 : (B.19)

Since Si and �i are not known, ni can not be calculated using the above formula. An
approximation is

ni =

�
tsi
r�i

�2
1 + 1

N

�
tsi
r�i

�2 ; (B.20)

where si is the standard error of the current sample block. Since si is biased upwards, ni
will also be biased upwards. Because of that, we do not allow the estimated sample size
to exceed a certain fraction of the total number of patterns N , say 5 %. As illustrated in
�gure B.3, the patterns in the update block are selected uniformly from the last sample
block which implies that the sample size has to be greater than or equal to the size of
the update block. The initial sample size n0 is found by drawing a random sample of a
prede�ned size, say 1-2 % of the total number of patterns, and then estimating n0 using
B.20.

Appendix C

Exact Calculation of the Product of

the Hessian Matrix and a Vector in

O(N) Time

The paper [M�ller 93c] was written in the spring of 1993 and has been submitted to
Neural Computation and published as a technical report at DAIMI, Aarhus University.
The following is a non modi�ed version of this paper.

C.1 Abstract

Several methods for training feed-forward neural networks require second order informa-
tion from the Hessian matrix of the error function. Although it is possible to calculate the
Hessian matrix exactly it is often not desirable because of the computation and memory
requirements involved. Some learning techniques does, however, only need the Hessian
matrix times a vector. This paper presents a method to calculate the Hessian matrix
times a vector in O(PN) time, where P is the number of patterns in the training set and
N is the number of variables in the network. This is in the same order as the calculation
of the gradient to the error function. The usefulness of this algorithm is demonstrated by
improvement of existing learning techniques.

C.2 Introduction

The second derivative information of the error function associated with feed-forward neu-
ral networks forms an N �N matrix, which is usually referred to as the Hessian ma-
trix. Second derivative information is needed in several learning algorithms, e.g., in some
conjugate gradient algorithms [M�ller 93a], and in recent network pruning techniques
[MacKay 91b], [Hassibi and Stork 93]. Several researchers have recently derived formulae
for exact calculation of the elements in the Hessian matrix [Buntine and Weigend 91a],
[Bishop 92]. In the general case exact calculation of the Hessian matrix needs O(PN2)
time and O(N2) in memory requirements. For that reason it is often not worth while ex-
plicitly to calculate the Hessian matrix and approximations are often made as described
in [Buntine and Weigend 91a]. The second order information is not always needed in the
form of the Hessian matrix. This makes it possible to reduce the time- and memory

91

requirements needed to obtain this information. The scaled conjugate gradient algorithm
[M�ller 93a] and a training algorithm recently proposed by Le Cun involving estimation
of eigenvalues to the Hessian matrix [Le Cun et al. 93] are good examples of this. The
second order information needed here is always in the form of the Hessian matrix times
a vector. In both methods the product of the Hessian and the vector is usually approx-
imated by a one sided di�erence equation. This is in many cases a good approximation
but can, however, be numerical unstable even when high precision arithmetic is used.

It is possible to calculate the Hessian matrix times a vector exactly without explicitly
having to calculate and store the Hessian matrix itself. Through straightforward analytic
evaluations we give explicit formulae for the Hessian matrix times a vector. We prove
these formulae and give an algorithm that calculates the product. This algorithm has
O(N) time- and memory requirements which is of the same order as the calculation of
the gradient to the error function. The algorithm is a generalized version of an algo-
rithm outlined by Yoshida, which was derived by applying an automatic di�erentiation
technique [Yoshida 91]. The automatic di�erentiation technique is an indirect method
of obtaining derivative information and provides no analytic expressions of the deriva-
tives [Dixon and Price 89]. Yoshida's algorithm is only valid for feed-forward networks
with connections between adjacent layers. Our algorithm works for feed-forward networks
with arbitrary connectivity.

The usefulness of the algorithm is demonstrated by discussing possible improvements
of existing learning techniques. We here focus on improvements of the scaled conjugate
gradient algorithm and on estimation of eigenvalues of the Hessian matrix.

C.3 Notation

The networks we consider are multilayered feed-forward neural networks with arbitrary
connectivity. The network @ consist of nodes nlm arranged in layers l = 0; : : : ; L. The
number of nodes in a layer l is denoted Nl. In order to be able to handle the arbitrary
connectivity we de�ne for each node nlm a set of source nodes and a set of target nodes.

Slm = fnrs 2 @jnrs connects to nlm; r < l; 1 � s � Nrg (C.1)

T l
m = fnrs 2 @jnlm connects to nrs; r > l; 1 � s � Nrg

The training set accociated with network @ is

f(u0ps; s = 1; : : : ; N0; tpj; j = 1; : : : ; NL); p = 1; : : : ; Pg (C.2)

The output from a node nlm when a pattern p is propagated through the network is

ulpm = f(vlpm) , where v
l
pm =

X
nrs2Slm

wlr
msu

r
ps + wl

m; (C.3)

and wlr
ms is the weight from node nrs to node n

l
m. w

l
m is the usual bias of node nlm. f(v

l
pm)

is an appropriate activation function, e.g., the sigmoid. The net-input vlpm is chosen to
be the usual weighted linear summation of inputs. The calculations to be made could,
however, easily be extended to other de�nitions of vlpm. Let an error function E(w) be

E(w) =
PX
p=1

Ep(u
L
p1; : : : ; u

L
pNL

; tp1; : : : ; tpNL
) ; (C.4)

MATRIX AND A VECTOR IN O(N) TIME 93

where w is a vector containing all weights and biases in the network, and Ep is some
appropriate error measure associated with pattern p from the training set.

Based on the chain rule we de�ne some basic recursive formulae to calculate �rst
derivative information. These formulae are used frequently in the next section. Formulae
based on backward propagation are

@vhpi

@vlpm
=

X
nrs2T lm

@vhpi

@vrps

@vrps

@vlpm
= f 0(vlpm)

X
nrs2T lm

wrl
sm

@vhpi

@vrps
(C.5)

@Ep

@vlpm
=

X
nrs2T lm

@Ep

@vrps

@vrps

@vlpm
= f 0(vlpm)

X
nrs2T lm

wrl
sm

@Ep

@vrs
(C.6)

C.4 Calculation of the Hessian times a vector

This section presents an exact algorithm to calculate the vector Hp(w)d, where Hp(w) is
the Hessian matrix of the error measure Ep, and d is a vector. The coordinates in d are
arranged in the same manner as the coordinates in the weight vector w.

Hp(w)d =
d

dw
(dT

dEp

dw
) =

d

dw
(dT

NLX
j=1

@Ep

@vLpj

dvLpj

dw
) (C.7)

=
NLX
j=1

@2Ep

(@vLpj)2
(dT

dvLpj

dw
)
dvLpj

dw
+
@Ep

@vLpj
(
d2vLpj

dw2
d)

=
NLX
j=1

(f 0(vLpj)2
@2Ep

(@uLpj)
2
+ f 00(vLpj)

@Ep

@uLpj
)(dT

dvLpj

dw
)
dvLpj

dw
+
@Ep

@vLpj
(
d2vLpj

dw2
d);

The �rst and second terms of equation (C.7) will from now on be referred to as the
A- and B-vector respectively. So we have

A =
NLX
j=1

(f 0(vLpj)2
@2Ep

(@uLpj)
2
+ f 00(vLpj)

@Ep

@uLpj
)(dT

dvLpj

dw
)
dvLpj

dw
and (C.8)

B =
NLX
j=1

@Ep

@vLpj
(
d2vLpj

dw2
d):

We �rst concentrate on calculating the A-vector.

Lemma 9 Let 'lpm be de�ned as 'lpm = d
T dvlpm

dw . 'lpm can be calculated by forward prop-
agation using the recursive formula

'lpm =
P

nrs2Slm (dlrmsu
r
ps + wlr

msf
0(vrps)'

r
ps)+ dlm ; l > 0 ; '0

pi = 0 ; 1 � i � N0.

Proof. For input nodes we have '0
pi = 0 as desired. Assume the lemma is true for all

nodes in layers k < l.

'lpm = dT
dvlpm

dw
= dT(

X
nrs2Slm

d

dw
(wlr

msu
r
ps) +

dwl
m

dw
)

=
X

nrs2Slm
(wlr

msf
0(vrps)d

T
dvrps

dw
+ dlrmsu

r
ps)+ dlm =

X
nrs2Slm

(dlrmsu
r
ps + wlr

msf
0(vrps)'

r
ps)+ dlm

2

Lemma 10 Assume that the 'lpm factors have been calculated for all nodes in the network.

The A-vector can be calculated by backward propagation using the recursive formula

Alh
mi = �lpmu

h
pi; Al

m = �lpm ,

where �lpm is

�lpm = f 0(vlpm)
P

nrs2T lm w
rl
sm�

r
ps ; l < L ;

�Lpj = (f 0(vLpj)2
@2Ep

(@uL
pj
)2
+ f 00(vLpj)

@Ep

@uL
pj

)'Lpj ; 1 � j � NL:

Proof.

Alh
mi =

NLX
j=1

�Lpj
@vLpm

@wlh
mi

= (
NLX
j=1

�Lpj
@vLpj

@vlpm
)uhpi) �lpm =

NLX
j=1

�Lpj
@vLpj

@vlpm

For the output layer we have ALh
ji = �Lpju

h
pi as desired. Assume that the lemma is true for

all nodes in layers k > l.

�lpm =
NLX
j=1

�Lpj
@vLpj

@vlpm
=

NLX
j=1

�Lpjf
0(vlpm)

X
nrs2T lm

wrl
sm

@vLpj

@vrps

= f 0(vlpm)
X

nrs2T lm
wrl
sm(

NLX
j=1

�Lpj
@vLpj

@vrps
) = f 0(vlpm)

X
nrs2T lm

wrl
sm�

r
ps

2

The calculation of the B-vector is a bit more involved but is basicly constructed in the
same manner.

Lemma 11 Assume that the 'lpm factors have been calculated for all nodes in the network.

The B-vector can be calculated by backward propagation using the recursive formula

Blh
mi = �lpmf

0(vhpi)'
h
pi + �lpmu

h
pi ; Bl

m = �lpm

where �lpm and �lpm are

�lpm = f 0(vlpm)
P

nrs2T lm w
rl
sm�

r
ps ; l < L ; �Lpj =

@Ep

@vLpj
; 1 � j � NL:

�lpm =
P

nrs2T lm (f 0(vlpm)wrl
sm�

r
ps + (drlsmf

0(vlpm) + wrl
smf

00(vlpm)'
l
pm)�

r
ps) ; l < L ;

�Lpj = 0 ; 1 � j � NL

Proof. Observe that the B-vector can be written in the form

B =
NLX
j=1

@Ep

@vLpj
(
d2vLpj

dw2
d) =

NkX
j=1

@Ep

@vLpj

d'Lpj

dw
:

MATRIX AND A VECTOR IN O(N) TIME 95

Using the chain rule we can derive analytic experessions for �lpm and �lpm.

Blh
mi =

NLX
j=1

@Ep

@vLpj

@'Lpj

@wlh
mi

=
NLX
j=1

@Ep

@vLpj
(
@'Lpj

@'lpm

@'lpm

@wlh
mi

+
@'Lpj

@vlpm

@vlpm

@wlh
mi

)

=
NLX
j=1

@Ep

@vLpj
(
@'Lpj

@'lpm
f 0(vhpi)'

h
pi +

@'Lpj

@vlpm
uhpi)

So if the lemma is true �lpm and �lpm are given by

�lpm =
NLX
j=1

@Ep

@vLpj

@'Lpj

@'lpm
; �lpm =

NLX
j=1

@Ep

@vLpj

@'Lpj

@vlpm

The rest of the proof is done in two steps. We look at the parts concerned with the �lpm
and �lpm factors separately. For all output nodes we have �Lpj =

@Ep

@vL
pj

as desired. For non

output nodes we have

�lpm =
NLX
j=1

@Ep

@vLpj

X
nrs2T lm

@'Lpj

@'rps

@'rps

@'lpm
=

NLX
j=1

@Ep

@vLpj
f 0(vlpm)

X
nrs2T lm

wrl
sm

@'Lpj

@'rps

= f 0(vlpm)
X

nrs2T lm
wrl
sm

NLX
j=1

@Ep

@vLpj

@'Lpj

@'rps
= f 0(vlpm)

X
nrs2T lm

wrl
sm�

r
ps

Similiarly is �Lpj = 0 for all output nodes as desired. For non output nodes we have

�lpm =
NLX
j=1

@Ep

@vLpj

X
nrs2T lm

(
@'Lpj

@vrps

@vrps

@vlpm
+
@'Lpj

@'rps

@'rps

@vlpm
)

=
NLX
j=1

@Ep

@vLpj

X
nrs2T lm

(f 0(vlpm)wrl
sm

@'Lpj

@vrps
+ (drlsmf

0(vlpm) + wrl
smf

00(vlpm)'
l
pm)

@'Lpj

@'rps
)

=
X

nrs2T lm
(f 0(vlpm)wrl

sm

NLX
j=1

@Ep

@vLpj

@'Lpj

@vrps
+ (drlsmf

0(vlpm) + wrl
smf

00(vlpm)'
l
pm)

NLX
j=1

@Ep

@vLpj

@'Lpj

@'rps
)

=
X

nrs2T lm
(f 0(vlpm)wrl

sm�
r
ps + (drlsmf

0(vlpm) + wrl
smf

00(vlpm)'
l
pm)�

r
ps)

The proof of the formula for Bl
m follows easily from the above derivations and is left to

the reader. 2

We are now ready to give an explicit formula for calculation of the Hessian matrix times
a vector. Let Hd be the vector Hp(w)d.

Corollary 1 Assume that the 'lpm factors have been calculated for all nodes in the net-
work. The vector Hd can be calculated by backward propagation using the following re-

cursive formula

Hd
lh
mi = �lpmf

0(vhpi)'
h
pi + (�lpm + �lpm)u

h
pi ; Hd

l
m = �lpm + �lpm ,

where �lpm, �
l
pm and �lpm are given as shown in lemma 10 and lemma 11.

Proof. By combination of lemma 10 and lemma 11. 2

If we view �rst derivatives like @Ep

@ulpm
and @Ep

@vlpm
as already available information, then the

formula for Hd can reformulated into a formula based only on one recursive parameter.
First we observe that �lpm and �lpm can be written in the form

�lpm =
@Ep

@vlpm
(C.9)

�lpm = f 0(vlpm)
X

nrs2T lm
(wrl

sm�
r
ps + drlsm

@Ep

@vrps
) + f 00(vlpm)'

l
pm

@Ep

@ulpm

Corollary 2 Assume that the 'lpm factors have been calculated for all nodes in the net-

work. The vector Hd can be calculated by backward propagation using the following re-

cursive formula

Hdlhmi =
@Ep

@vlpm
f 0(vhpi)'

h
pi +
lpmu

h
pi ; Hdlm =
lpm ,

where
lpm is

lpm = f 0(vlpm)
P

nrs2T lm (wrl
sm

r
ps + drlsm

@Ep

@vrps
) + f 00(vlpm)'

l
pm

@Ep

@ulpm

Lpj = (f 0(vLpj)2 @2Ep

(@uL
pj
)2
+ f 00(vLpj)

@Ep

@uL
pj

)'Lpj

Proof. By corollary 1 and equation C.9. 2

The formula in corollary 2 is a generalized version of the one that Yoshida derived for
feed-forward networks with only connections between adjacent layers. An algorithm that
calculates

PP
p=1Hp(w)d based on corollary 1 is given below. The algorithm also calculates

the gradient vector G =
PP

p=1
dEp

dw .

1. Initialize.

Hd = 0; G = 0

Repeat the following steps for p = 1; : : : ; P .

2. Forward propagation.

For nodes i = 1 to N0 do: '0
pi = 0.

For layers l = 1 to L and nodes m = 1 to Nl do:

vlpm =
P

nrs2Slm w
lr
msu

r
ps + wl

m ; ulpm = f(vlpm),

'lpm =
P

nrs2Slm (dlrmsu
r
ps + wlr

msf
0(vrps)'

r
ps)+ dlm.

3. Output layer.

MATRIX AND A VECTOR IN O(N) TIME 97

For nodes j = 1 to NL do

�Lpj =
@Ep

@vL
pj

; �Lpj = 0 ; �Lpj = (f 0(vLpj)2 @2Ep

(@uL
pj
)2
+ f 00(vLpj)

@Ep

@uL
pj

)'Lpj:

For all nodes nrs 2 SLj do

Hd
Lr
js =Hd

Lr
js + �Lpjf

0(vrps)'
r
ps + �Lpju

r
ps ; Hd

L
j = Hd

L
j + �Lpj ;

GLr
js = GLr

js + �Lpju
r
ps ; GL

j = GL
j + �Lpj.

4. Backward propagation.

For layers l = L� 1 downto 1 and nodes m = 1 to Nl do:

�lpm = f 0(vlpm)
P

nrs2T lm w
rl
sm�

r
ps ; �lpm = f 0(vlpm)

P
nrs2T lm w

rl
sm�

r
ps,

�lpm =
P

nrs2T lm (f 0(vlpm)wrl
sm�

r
ps + (drlsmf

0(vlpm) + wrl
smf

00(vlpm)'
l
pm)�

r
ps).

For all nodes nrs 2 Slm do

Hdlrms = Hdlrms+ �
l
pmf

0(vrps)'
r
ps+(�lpm+�lpm)u

r
ps ; Hdlm = Hdlm+�lpm+

�lpm ;

Glr
ms = Glr

ms + �lpmu
r
ps ; Gl

m =Gl
m + �lpm.

Clearly this algorithm has O(PN) time- and memory requirements. More precisely
the time complexity is about 2.5 times the time complexity of a gradient calculation alone.

C.5 Improvement of existing learning techniques

In this section we justify the importance of the exact calculation of the Hessian times a
vector, by showing some possible improvements on two di�erent learning algorithms.

C.5.1 The scaled conjugate gradient algorithm

The scaled conjugate gradient algorithm is a variation of a standard conjugate gradient
algorithm. The conjugate gradient algorithms produce non-interfering directions of search
if the error function is assumed to be quadratic. Minimization in one direction dt followed
by minimization in another direction dt+1 imply that the quadratic approximation to the
error has been minimized over the whole subspace spanned by dt and dt+1. The search
directions are given by

dt+1 = �E 0

(wt+1) + �tdt ; (C.10)

where wt is a vector containing all weight values at time step t and �t is

�t =
jE 0

(wt+1)j2 � E
0

(wt+1)TE
0

(wt)

jE 0(wt)j2 (C.11)

In the standard conjugate gradient algorithms the step size �t is found by a line search
which can be very time consuming because this involves several calculations of the error
and or the �rst derivative. In the scaled conjugate gradient algorithm the step size is

estimated by a scaling mechanism thus avoiding the time consuming line search. The
step size is given by

�t =
�dTt E

0

(wt)

dTt st + �tjdtj2
; (C.12)

where st is
st = E

00

(wt)dt: (C.13)

�t is the step size that minimizes the second order approximation to the error function.
�t is a scaling parameter whose function is similar to the scaling parameter found in
Levenberg-Marquardt methods [Fletcher 75]. �t is in each iteration raised or lowered
according to how good the second order approximation is to the real error. The weight
update formula is given by

4wt = �tdt (C.14)

st has up til now been approximated by a one sided di�erence equation of the form

st =
E
0

(wt + �tdt)� E
0

(wt)

�t
; 0 < �t � 1 (C.15)

st can now be calculated exactly by applying the algorithm from the last section. We tested
the SCG algorithm on several test problems using both exact and approximated calcula-
tions of dTt st. The experiments indicated a minor speedup in favor of the exact calcuation.
Equation (C.15) is in many cases a good approximation but can, however, be numerical
unstable even when high precision arithmetic is used. If the relative error of E

0

(wt) is
" then the relative error of equation (C.15) can be as high as 2"

�t
[Ralston et al. 78]. So

the relative error gets higher when �t is lowered. We refer to [M�ller 93a] for a detailed
description of SCG. For a stochastic version of SCG especially designed for training on
large, redundant training sets, see also [M�ller 93b].

C.5.2 Eigenvalue estimation

A recent gradient descent learning algorithm proposed by Le Cun, Simard and Pearlmut-
ter involves the estimation of the eigenvalues of the Hessian matrix. We will give a brief
description of the ideas in this algorithm mainly in order to explain the use of the eigen-
values and the technique to estimate them. We refer to [Le Cun et al. 93] for a detailed
description of this algorithm.

Assume that the Hessian H(wt) is invertible. We then have by the spectral theorem
from linear algebra that H(wt) has N eigenvectors that forms an orthogonal basis in <N

[Horn and Johnson 85]. This implies that the inverse of the Hessian matrix H(wt)�1 can
be written in the form

H(wt)
�1 =

NX
i=1

eie
T
i

jeij2�i ; (C.16)

where �i is the i'th eigenvalue of H(wt) and ei is the corresponding eigenvector. Equation
(C.16) implies that the search directions dt of the Newton algorithm [Fletcher 75] can be
written as

dt = �H(wt)
�1G(wt) = �

NX
i=1

eie
T
i

jeij2�iG(wt) = �
NX
i=1

eTi G(wt)

jeij2�i ei ; (C.17)

MATRIX AND A VECTOR IN O(N) TIME 99

where G(wt) is the gradient vector. So the Newton search direction can be interpreted as
a sum of projections of the gradient vector onto the eigenvectors weighted with the inverse
of the eigenvalues. To calculate all eigenvalues and corresponding eigenvectors costs in
O(N3) time which is infeasible for large N. Le Cun et al. argues that only a few of the
largest eigenvalues and the corresponding eigenvectors is needed to achieve a considerable
speed up in learning. The idea is to reduce the weight change in directions with large
curvature, while keeping it large in all other directions. They choose the search direction
to be

dt = �(G(wt)� �k+1

�1

kX
i=1

eTi G(wt)

jeij2 ei) ; (C.18)

where i now runs from the largest eigenvalue �1 down to the k'th largest eigenvalue
�k. The eigenvalues of the Hessian matrix are the curvatures in the direction of the
corresponding eigenvectors. So Equation (C.18) reduces the component of the gradient
along the directions with large curvature. See also [Le Cun et al. 91] for a discussion of
this. The learning rate can now be increased with a factor of �1

�k+1
, since the components

in directions with large curvature has been reduced with the inverse of this factor.
The largest eigenvalue and the corresponding eigenvector can be estimated by an

iterative process known as the Power method [Ralston et al. 78]. The Power method
can be used successively to estimate the k largest eigenvalues if the components in the
directions of already estimated eigenvectors are substracted in the process. Below we
show an algorithm for estimation of the i'th eigenvalue and eigenvector. The Power
method is here combined with the Rayleigh quotient technique [Ralston et al. 78]. This
can accelerate the process considerably.
Choose an initial random vector e0i . Repeat the following steps for m = 1; : : : ;M , where
M is a small constant:

emi = H(wt)e
m�1
i ; emi = emi �

Pi�1
j=1

eTj e
m
i

jejj2 ej

�mi =
(em�1

i
)Tem

i

jem�1
i

j2 ; emi = 1
�m
i

emi :

�Mi and eMi are respectively the estimated eigenvalue and eigenvector. Theoretically it
would be enough to substract the component in the direction of already estimated eigen-
vectors once, but in practice roundo� errors will generally introduce these components
again.

Le Cun et al. approximates the termH(wt)emi with a one sided di�erencing as shown
in equation (C.15). Now this term can be calculated exactly by use of the algorithm
described in the last sections.

C.6 Conclusion

This paper has presented an algorithm for the exact calculation of the product of the
Hessian matrix of error functions and a vector. The product is calculated without ever
explicitly calculating the Hessian matrix itself. The algorithm has O(PN) time and
O(N) memory requirements, where P is the number of patterns and N is the number of
variables.

The relevance of this algorithm has been demonstrated by showing possible improve-
ments in two di�erent learning techniques, the scaled conjugate gradient learning algo-
rithm and an algorithm recently proposed by Le Cun, Simard and Pearlmutter.

Acknowledgements

It has recently come to the authors knowledge that the same algorithm has been derived
independently and at approximately the same time by Barak Pearlmutter, Department of
Computer Science and Engineering Oregon Graduate Institute [Pearlmutter 93]. Thank
you to Barak for his nice and immediate recognition of the independence of our work.

I would also like to thank Wray Buntine, Scott Fahlman, Brian Mayoh and Ole �sterby
for helpful advice. This research was supported by a grant from the Royal Danish Research
Council. Facilities for this research were provided by the National Science Foundation
(U.S.) under grant IRI-9214873. All opinions, �ndings, conclusions and recommendations
in this paper are those of the author and do not necessarily re
ect the views of the Royal
Danish Research Council or the National Science Foundation.

Appendix D

Adaptive Preconditioning of the

Hessian Matrix

The paper [M�ller 93d] was written in the spring of 1993 and has been submitted to
Neural Computation and published as a technical report at DAIMI, Aarhus University.
The following is a non modi�ed version of this paper.

D.1 Abstract

The convergence rate of gradient learning methods depends on the condition number of
the Hessian matrix. The smaller the condition number the faster convergence can be ex-
pected. A well-known technique to improve convergence in conjugate gradient algorithms
is to precondition the Hessian before learning. This usually involves an incomplete LU
factorization of the Hessian. This technique is very time consuming and can only be
applied to positive de�nite Hessian matrices.

This paper propose an adaptive scheme to precondition the Hessian, which involves
minimization of an additional error function during learning. The scheme preconditions
the Hessian in the direction of low condition number without too much additional calcu-
lation work per iteration. The adaptive peconditioning is combined with gradient descent
and the scaled conjugate gradient method. Experiments indicate a signi�cant increase of
convergence for gradient descent and a minor speedup for scaled conjugate gradient.

D.2 Introduction

The Hessian matrix of feed-forward neural network error functions plays an important
role in learning since it contains all the second-order information about the error. Al-
though exact formulae for the calculation of the Hessian exist [Buntine and Weigend 91a],
[Bishop 92], they have not been widely used because of the large time and memory re-
quirements involved in the calculation. Several researchers have now shown that Hessian
information can be derived and used in a way that avoids the large computation and mem-
ory requirements. See for example [Le Cun et al. 93], [M�ller 93c] and [Pearlmutter 93].
M�ller and Pearlmutter have independently shown that the product of the Hessian and a
vector can be calculated in the same order of time as a gradient calculation.

101

There is a strong correlation between the condition number � of the Hessian matrix and
the convergence rate of learning algorithms like gradient descent or conjugate gradient. �
is given by the ratio of the largest and smallest eigenvalue of the Hessian [Gill et al. 81].
If � is high the Hessian is ill-conditioned and the convergence rate is expected to be slow.
The conditioning of the Hessian of least mean square error functions when applied to linear
feed-forward networks has been well studied in the literature [Widrow and Stearns 85],
[Orfanidis 90], [Le Cun et al. 91]. Strong correlation among the components of the input
vectors yields several large eigenvalues to the Hessian matrix which gives high � and
slow convergence. If the input vectors are decorrelated by a preprocessing scheme, then
the eigenvalues are equalized which gives a faster convergence. Orfanidis generalizes this
idea to multi-layer feed-forward networks by inserting preprocessors at each layer in the
network.

Another approach is to reduce the e�ect of some of the ill-conditioned components
in the Hessian matrix. Le Cun et al. describes an approach where components along
eigenvectors with large corresponding eigenvalues are �ltered out of the gradient update
direction [Le Cun et al. 93]. This allows a larger learning rate to be applied, since direc-
tions with large curvature are reduced.

Both approaches are examples of a more general approach of preconditioning the
Hessian. In conjugate gradient algorithms the ideas of preconditioning is well known
[Fletcher 75], [Gill et al. 81]. The preconditioning scheme usually involves a transforma-
tion of the Newtonian linear system by means of a preconditioning matrix, so that the
transformed Hessian is well-conditioned. The traditional calculation of the precondition-
ing matrix is, however, very time consuming for large scale problems and is for that reason
not suitable for neural network problems. We describe another approach to estimate the
preconditioning matrix, which involves successive adaptation of the matrix. The transfor-
mation considered in this paper is a simple scaling of variables, i.e., the preconditioning
matrix is diagonal. Other transformations could easily be applied.

D.3 Notation

The networks we consider are multilayered feed-forward neural networks with arbitrary
connectivity. The network @ consist of nodes nlm arranged in layers l = 0; : : : ; L. The
number of nodes in a layer l is denoted Nl. In order to be able to handle the arbitrary
connectivity we de�ne for each node nlm a set of source nodes and a set of target nodes.

Slm = fnrs 2 @j nrs connects to nlm; r < l; 1 � s � Nrg (D.1)

T l
m = fnrs 2 @j nlm connects to nrs; r > l; 1 � s � Nrg

The training set accociated with network @ is

f(u0ps; s = 1; : : : ; N0; tpj; j = 1; : : : ; NL); p = 1; : : : ; Pg (D.2)

The output from a node nlm when a pattern p is propagated through the network is

ulpm = f(vlpm) , where v
l
pm =

X
nrs2Slm

wlr
msu

r
ps + wl

m; (D.3)

and wlr
ms is the weight from node nrs to node n

l
m. w

l
m is the usual bias of node nlm. f(v

l
pm) is

an appropriate activation function, e.g., hyperbolic tangens. The net-input vlpm is chosen

to be the usual weighted linear summation of inputs. The calculations to be made could,
however, easily be extended to other de�nitions of vlpm. Let an error function E(w) be

E(w) =
PX
p=1

Ep(u
L
p1; : : : ; u

L
pNL

; tp1; : : : ; tpNL
) ; (D.4)

where w is a vector containing all weights and biases in the network, and Ep is some
appropriate error measure associated with pattern p from the training set. Coordinates
of vectors and matrices will depending on the context also be referred to by the simpler
notation [w]i and [A]ij.

D.4 Condition number and convergence rates

In this section we give a brief description of the correspondence between condition number
and convergence rate for gradient descent and conjugate gradient algorithms. We assume
that the error function E(w) is locally quadratic so that

E(w + h) � E(w) + h
TE

0

(w) +
1

2
h
TE

00

(w)h : (D.5)

The eigenvalues of the Hessian matrix E
00

(w) are the curvatures in the direction of the
corresponding eigenvectors. The error changes most rapidly in the direction of the eigen-
vector corresponding to the largest eigenvalue �max and most slowly in the direction of
the eigenvector corresponding to the smallest eigenvalue �min. The condition number of
the Hessian matrix E

00

(w) is de�ned as

� =

������max

�min

����� : (D.6)

We assume for the time being that the Hessian is positive de�nite so that all the eigenval-
ues are positive. The spread of the eigenvalues de�nes the shape of the contours of equal
error. When � equals one, the contours are circular and the gradient descent direction
points directly to the minimum. When � is greater than one, the contours are ellipti-
cal and the gradient descent direction does not necessarily point towards the minimum
[Jacobs 88]. In general the higher the condition number is, the worse convergence can
be expected of the gradient descent and the conjugate gradient algorithm. There is a
direct link between the value of the condition number and the convergence rate of the
algorithms. See [Concus et al. 76], [Axelsson 77] and [Aoki 71] for explanation of this. In
the k0th iteration of the gradient descent algorithm the relative error is bounded by

E(wk)

E(w0)
�
�
�� 1

�+ 1

�2k
: (D.7)

For the conjugate gradient algorithm we have

E(wk)

E(w0)
� 4

 p
�� 1p
� + 1

!2k

: (D.8)

The necessary number of iterations for gradient descent and conjugate gradient to reach
a relative error of say " is for large � and small " proportional to � and

p
� respectively

[Axelsson 77]. For both algorithms is it clearly desirable to have the condition number as
small as possible. For the conjugate gradient algorithm it is also true that the number of
iterations needed to minimize (D.5) is proportional to the number of distinct eigenvalues
of the Hessian [Gill et al. 81]. Seen from this perspective it is also desirable to have the
condition number small.

Assume now, that the Hessian matrix is inde�nite. The condition number de�ned in
(D.6) does not give the same information about the conditioning of the Hessian, since
there might be intermediate eigenvalues closer to zero. Instead of the smallest eigenvalue,
we should now consider the eigenvalue closest to zero. If this eigenvalue is denoted �0,
then a generalized de�nition of condition number could be

� =

������max

�0

����� : (D.9)

If the Hessian is invertible, then �0 is equal to the largest eigenvalue of the inverse. Notice,
that this de�nition equals (D.6), when the Hessian is positive de�nite. The generalized
condition number states something about the convergence to any stationary point. When
the Hessian is inde�nite, this will be saddle points.

D.5 Preconditioning

Minimization of (D.5) is equivalent to solving the linear system

E
00

(w)h = �E 0

(w) (D.10)

The rate of convergence of gradient descent and conjugate gradient can signi�cantly be
improved if this system can be replaced by an equivalent system in which the Hessian
has low condition number. The idea of preconditioning is to construct a transformation
to have this e�ect on E

00

(w). The mostly used preconditioning scheme is symmetric
transformation. The preconditioned system is then given by

ATE
00

(w)Ay = �ATE
0

(w) ; h = Ay ; (D.11)

where A is an N�N non-singular matrix. A should be chosen such that ATE
00

(w)A has
low condition number and is positive de�nite. Symmetric preconditioning corresponds to
minimizing the error in the direction of A times the original search direction. One could
use AT = L, the Choleski factor of E

00

(w) [Fletcher 75]. This cost, however, O(N3) time
to compute. A simpler choice is to choose A as a diagonal matrix, which is equivalent to
a scaling of the variables. One particular choice could be to set the diagonal elements of
A to the square root of the inverse of the diagonal elements in E

00

(w), then ATE
00

(w)A
would at least in some sense be close to unity since all diagonals would be equal to one.

A drawback with the symmetric transformation is that, if the Hessian is inde�nite
then so is the transformed matrix. This can be veri�ed by

yTATE
00

(w)Ay = (Ay)TE
00

(w)(Ay) ; y 2 <N : (D.12)

SinceA is invertible the mapping given by (D.12) is equivalent with the mapping xTE
00

(w)x,
x 2 <N . So if E

00

(w) is inde�nite then ATE
00

(w)A is also. Unfortunately, the Hessian

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40

’error’

-1

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

’mineig’
’maxeig’
’aveig’

Figure D.1: A) The least mean square error curve on the XOR problem during learning
with gradient descent. B) The largest, smallest and average eigenvalue of the Hessian
during learning.

matrix of feed-forward network error functions is often inde�nite. Figure D.1 shows an
example. We observe that the Hessian is positive de�nite only very close to the min-
imum. Note also that the condition number is high during most of the minimization.
This behaviour has also been observed by Kuhn and Watrous on various speech recogni-
tion problems [Kuhn and Watrous 93]. Even if the Hessian is inde�nite, the symmetric
transformation still makes sense, since the transformation can make it \less inde�nite" by
converting at least some of the negative eigenvalues to positive or by bringing the positive
ones closer together.

The positive de�niteness can be obtained by normalizing the linear system in (D.10)
before the actual preconditioning. The normalization is

E
00

(w)TE
00

(w)h = �E 00

(w)TE
0

(w) (D.13)

The preconditioned system is then given by

ATE
00

(w)TE
00

(w)Ay = �ATE
00

(w)TE
0

(w) ; h = Ay : (D.14)

The price for the positive de�nitenes is a signi�cant increase of the condition number of
the new matrix E

00

(w)TE
00

(w) compared to E
00

(w). In fact it equals the square of the
condition number of E

00

(w) [Yang 92].
Another preconditioning scheme that also works on inde�nite matrices is nonsymmet-

ric transformation [Axelsson 80]. The linear system given by (D.10) is now transformed
to

AE
00

(w)h = �AE 0

(w) : (D.15)

Again we may choose A in order to get a better conditioning of AE
00

(w) than that of
E
00

(w). A should also be chosen such that AE
00

(w) is positive de�nite. The price for
the positive de�nitenes is in this scheme the loss of symmetry. The matrix AE

00

(w) is
not necessarily symmetric as was E

00

(w). This is a problem for conjugate gradient like

algorithms, because the symmetry implies that the residual vectors satisfy a three-term
recursion, which is a powerful characteristic of conjugate gradient algorithms. General-
ized conjugate gradient algorithms, which also work on unsymmetric systems have been
proposed in the literature [Yang 92], [Axelsson 80]. The convergence properties of these
algorithms have, however, not been fully determined.

In both the normalized symmetric preconditioning scheme and the nonsymmetric
transformation, A is usually chosen as the inverse to some incomplete LU factorization
of E

00

(w) [Yang 92]. An incomplete LU factorization costs O(N3) operations. Since the
Hessian matrix changes over time this factorization would have to be done several times
during the minimization of the error. Considering the costs of this operation this is in-
feasible. As described in section 6, A can be estimated by an adaptive process during
learning, which is much lower in cost.

The conclusion of this short survey of preconditioning schemes is, that no matter what
scheme is chosen there is a price to be paid. For the symmetric transformation there was
the lack of positive de�nitenes, for the normalized symmetric transformation a signi�cant
increase in initial condition number and for the nonsymmetric transformation the loss
of symmetry. An additional disadvantage for the normalized symmetric scheme is also
that the computational costs is higher than for the other two, since it involves double
multiplication by the Hessian.

D.6 Gradient descent and conjugate gradient

This section describes how the preconditioning schemes are combined with gradient de-
scent and conjugate gradient. The preconditioning scheme used in conjugate gradient is
restricted to symmetric transformation. We de�ne the following terms which vary in the
di�erent preconditioning schemes.

� Symmetric transformation: rk = �ATE
0

(wk) ; Gk = ATE
00

(wk)A

� Normalized symmetric transformation:

rk = �ATE
00

(wk)
TE

0

(wk) ; Gk = ATE
00

(wk)
TE

00

(wk)A

� Nonsymmetric transformation: rk = �E 0

(wk) ; Gk = ATE
00

(wk)

Based on these de�nitions the gradient descent update with momentum is given by

4wk = �ATrk + �4wk�1 ; � > 0 ; 0 < � < 1: (D.16)

Once the preconditioning in gradient descent is e�ective the learning rate � can be in-
creased, which speeds up the learning process. For that reason an adaptive learning rate
scheme is needed to see the e�ect of the preconditioning. The learning rate in gradient
descent is limited by the inverse of the largest eigenvalue �max. As described in the next
section, �max is estimated in the preconditioning process, which makes it possible to use
the learning rate � = �0

�max
, �0 > 0. Whenever gradient descent is mentioned in the

following it is combined with this adaptive learning rate scheme.1

1Some caution should be taken when applying this scheme. In some rear instances the estimate of
�max may be negative which makes the learning rate negative. In this situation it is recommended to
undo the step that resulted in a negative eigenvalue and update with a small positive learning rate.

The standard conjugate gradient algorithm combined with the symmetric precondi-
tioning is as follows. The other two schemes are not the same but somewhat similar.

1. Select initial weight vector w1 ;
p1 = r1 ; k = 1 ;

2. �k = min�E(wk + �Apk) ;

3. wk+1 = wk + �kApk ;
rk+1 = �ATE

0

(wk+1)

4. if (k mod N = 0) then
pk+1 = rk+1 ;

else

�k =
jrk+1j2�rTk+1

rk
jrkj2 ;

pk+1 = rk+1 + �kpk ;

5. k = k + 1 ; terminate or go to 2.

The learning rate in step 2 is usually determined by a one dimensional line search, which
can be very time consuming. In the scaled conjugate gradient algorithm (SCG) the
learning rate is estimated by a scaling mechanism thus avoiding this line search. The
learning rate is now given by

�k =
pTk rk

pTkGkpk + �kp
T
kA

TApk
: (D.17)

�k is a scaling parameter whose function is similar to the scaling parameter found in
Levenberg-Marquardt methods [Fletcher 75]. �k is in each iteration raised or lowered
according to how good the second order approximation is to the real error. The parameter
�k that measures the ratio between the real error change and the predicted quadratic error
change is given by

�k =

�
pTkGkpk + �kp

T
kA

TApk

�
(E(wk)� E(wk+1))

(pTk rk)
2 : (D.18)

An increase or decrease of the scaling parameter �k is controlled by the value of �k.
The preconditioning in SCG is done on the matrix (E

00

(wk) + �kI), which is more often
positive de�nite than the Hessian itself. The SCG algorithm combined with symmetric
preconditioning has been used in the experiments described in section 7. Readers that
are not familiar with the details of SCG are referred to [M�ller 93a] and [M�ller 93b].

D.7 Adaptive preconditioning

This section describes an approach to adapt the preconditioning matrixA during learning.
Let A be a diagonal matrix on the form A = diag(�(a1); �(a2); : : : ; �(aN)), where

�(x) is a sigmoid function.2 The preconditioning now corresponds to a scaling of variables.
Throughout the paper A will be in diagonal form, though other forms could be considered.

2This particular form of the diagonals assure that A is invertible, positive de�nite and limited.

The adaptation of A should go in the direction of low condition number of Gk, as
de�ned in equation (D.9). Considering that the Hessian is not necessarily positive de�nite,
the best choice would be to adapt A to minimize the function

M(A) =

������max

�0

����� ; (D.19)

where �max is the largest eigenvalue of Gk and �0 is the eigenvalue closest to zero. �0
is, unfortunately, not easy to estimate in reasonable time, so another choice of M(A) is
required. One possibility is to ignore the inde�nite Hessian matrices and choose M(A) as
the original de�nition of the condition number. Then M(A) is

M(A) =

������max

�min

����� ; (D.20)

where �max and �min are the largest and smallest eigenvalue of Gk respectively. �max and
�min can be estimated e�ciently by the Power method as described below. The estimation
of �min can, however, be a bit unstable. When the Hessian is inde�nite, a minimization of
(D.20) will force �min to be even more negative, while �max will be pulled towards zero. It
is hard to predict the e�ect of such a preconditioning. Experiment indicate, that a better
choice of M(A) is

M(A) =

����� �max

<�>

����� ; (D.21)

where < �>= 1
N
Tr(Gk) is the average eigenvalue and Tr(Gk) is the trace of Gk. This

function is also cheaper to compute since the eigenvalue estimation is more costly than
the calculation of the trace.3 It does, however, not solve the problem with the inde�nite
Hessian matrices. The gradient of M(A) is

M
0

(A) = sign(
�max

<�>
)

1

<�>2

d�max

dA
<�> �d <�>

dA
�max

!
: (D.22)

We will now show how to estimate (D.22) and use this estimation to perform gradient
descent on A.

Depending on the preconditioning scheme used, the trace of Gk is

Tr(Gk) =
NX
i=1

�(ai)
2[E

00

(wk)]ii ; (symmetric) (D.23)

Tr(Gk) =
NX
i=1

�(ai)
2

NX
j=1

[E
00

(wk)]
2
ij ; (normalized symmetric) (D.24)

Tr(Gk) =
NX
i=1

�(ai)[E
00

(wk)]ii ; (nonsymmetric) (D.25)

The normalized symmetric preconditioning scheme involves o�-diagonal terms of the Hes-
sian which makes it costly to calculate. The diagonal elements of the Hessian E

00

(wk),
can be calculated by the following backward propagation formula [Le Cun 89].

3At least for the symmetric and the nonsymmetric transformation.

Corollary 3 The diagonal elements of E
00

(wk) can be calculated by one backward propa-

gation of the form:

@2E

(@wlh
mi

)2
= @2E

(@vlpm)2
(uhpi)

2 ; @2E

(@wlm)2
= @2E

(@vlpm)2
;

where @2E

(@vlpm)2
is

� @2E

(@vlpm)2
=
P

nrs2T lm (f
0(vlpm)

2(wrl
sm)

2 @2E

(@vrps)
2 + f 00(vlpm)w

rl
sm

@E

@vrps
) ; l < L ;

@2E

(@vL
pj
)2
= f 0(vLpj)

2 @2Ep

(@uL
pj
)2
+ f 00(vLpj)

@Ep

@uL
pj

; 1 � j � NL:

The hard part of the adaptation is the estimation of the largest eigenvalue to Gk and its
derivative. Let eTmax be the eigenvector corresponding to �max. �max can then be written
as

�max =
eTmaxGkemax

jemaxj2 (D.26)

The derivative to equation (D.26) with respect to A turns out to be

d�max

dA
=

(emax)T
dGk
dA
emax

jemaxj2 ; (D.27)

So d�max

dai
depends only on the change in Gk. For each preconditioning scheme the coordi-

nates of (D.27) are

d�max

dai
=

2�0(ai)[eTmax]i[E
00

(wk)Aemax]i
jemaxj2 (symmetric) (D.28)

d�max

dai
=

2�0(ai)[eTmax]i[E
00

(wk)
TE

00

(wk)Aemax]i
jemaxj2 (norm. symmetric) (D.29)

d�max

dai
=

�0(ai)[eTmax]i[E
00

(wk)emax]i
jemaxj2 (nonsymmetric): (D.30)

�max and emax can be estimated by the Power method [Ralston et al. 78]. The method
estimates the largest absolut eigenvalue and corresponding eigenvector. Unless the Hessian
is extremely inde�nite with a negative eigenvalue larger in absolute value than the largest
positive one, this will be an estimate of �max and emax. The method is as follows.

� Choose an initial random vector e0max.

� Repeat the following steps for m = 1; : : : ;M , M > 0 :

� emmax = Gke
m�1
max ;

� �mmax =
(em�1max)

Temmax

jem�1max j2 ;

� emmax =
1

�mmax
emmax :

�Mmax and eMmax are respectively the estimated eigenvalue and eigenvector. Similarly, the
smallest eigenvalue and corresponding eigenvector can be estimated by applying the Power
method on the matrix (�maxI � Gk). For the nonsymmetric preconditioning case, the
eigenvalues might not be real. In this case we only operate on the real part of the
eigenvalues. There has been some empirical evidence that positive real parts gives better
convergence for conjugate gradient algorithms [Yang 92].

The term Gke
m�1
max in the Power method can be calculated as follows. As shown in

[M�ller 93c] and [Pearlmutter 93], the Hessian times a vector can be calculated exactly
in O(PN) time without ever having to calculate the Hessian matrix itself. We shortly
summarize this result.

Corollary 4 The product E
00

(wk)d, where d is a vector, can be calculated by one forward

and one backward propagation. The forward propagation is:

'lpm =
P

nrs2Slm (dlrmsu
r
ps + wlr

msf
0(vrps)'

r
ps)+ dlm ; l > 0 ; '0

pi = 0 ; 1 � i � N0.

The backward propagation is:

[E
00

(wk)d]lhmi = �lpmf
0(vhpi)'

h
pi + (�lpm + �lpm)u

h
pi ; [E

00

(wk)d]lm = �lpm + �lpm ,

where �lpm �lpm and �lpm are given by

� �lpm = f 0(vlpm)
P

nrs2T lm w
rl
sm�

r
ps ; l < L ;

�Lpj = (f 0(vLpj)2 @2Ep

(@uL
pj
)2
+ f 00(vLpj)

@Ep

@uL
pj

)'Lpj ; 1 � j � NL:

� �lpm = f 0(vlpm)
P

nrs2T lm w
rl
sm�

r
ps ; l < L ;

�Lpj =
@Ep

@vL
pj

; 1 � j � NL:

� �lpm =
P

nrs2T lm (f 0(vlpm)wrl
sm�

r
ps + (drlsmf

0(vlpm) + wrl
smf

00(vlpm)'
l
pm)�

r
ps) ; l < L ;

�Lpj = 0 ; 1 � j � NL

It is easy to see that the calculation of Gke
m�1
max can be based on the results from corollary

4. An example is for the symmetric transformation where Gk = ATE
00

(wk)A. Following
the order of the parentheses, Gke

m�1
max is calculated as Gk = AT (E

00

(wk)(Aem�1max)).
One iteration of the Power method costs O(PN) time, which is in the same order as

the calculation of the gradient to the error. Even if M is small this is an substantial
amount of work in order just to adapt A once based on equation (D.22). The following
observations helps to reduce this calculation work. The Hessian matrix usual changes
slowly over time near local minima so the minimization of M(A) does not need to be
done for every update of the weights. Furthermore, it is enough to have a rough estimate
of the largest eigenvalue to do adaptation of A. We rede�ne the Power method to be

� Choose an initial random vector e0max.

� Repeat the following steps for t = 1; : : : ; T , T > 0 :

� Repeat the following steps for m = 1; : : : ;M , M > 0 :

� emmax = Gke
m�1
max ;

� �mmax =
(em�1max)

Temmax

jem�1max j2 ;

� emmax =
1

�mmax
emmax ;

� d�Mmax

dA
=

(eMmax)
T dGk

dA
eMmax

jeMmaxj2 ;

� ai = ai � �it sign(
�Mmax

<�>
) 1
<�>2

�
d�Mmax

dai
<�> �d<�>

dai
�Mmax

�
; 1 � ai � N .

The individual learning rate �it for each ai is updated by

�it =

(
1:1 �it�1 if 4ai(t)4ai(t� 1) > 0
0:1 �it�1 otherwise

(D.31)

As an additional constraint, the ai's are limited to be in the range [�6; 6] in order to
keep the derivatives �0(ai) away from zero. In practice the process is run simultanously
with the updates of weights, so that A is updated say for every K weight updates. The
extra time and memory requirements added to the learning algorithm per weight update
is then MT

K
O(PN), which is in the same order as performing MT

K
gradient calculations

more. The parameters T and M can often be set to small values. A con�guration, that
yields MT

K
= 1 is not unusual.

D.8 Experiments

In this section the adaptive preconditioning schemes are tested on gradient descent and
scaled conjugate gradient. We have decided not to go further with the normalized sym-
metric preconditioning scheme because of the disadvantages of this scheme. Disadvantages
that included larger computation time and higher initial condition number of the Hessian
than that of the other two schemes. The test problems used are the XOR problem, the par-
ity 5 problem [Rumelhart et al. 86] and the two spirals problem [Lang and Witbrock 89].
In the end of the section we outline ideas how to combine preconditioning with on-line
learning techniques.

The following terms were the same for all experiments. A failure is de�ned to be a
run that exceeds a certain prede�ned high number of iterations. A run is terminated and
considered successful when all outputs are within a margin of 0.8 from the targets.

D.8.1 Gradient descent

The symmetric and nonsymmetric preconditioning schemes combined with gradient de-
scent with adaptive learning rate were tested 30 times on the XOR problem. The stan-
dard gradient descent, gradient descent with adaptive learning rate and a new interesting
method proposed by le Cun et al. were also tested. The method by le Cun et al. subtracts
components along eigenvectors with large corresponding eigenvalues from the gradient di-
rection [Le Cun et al. 91], [Le Cun et al. 93]. If only the component corresponding to the
largest eigenvalue is substracted then the weight change is given by

4wk = ��

E
0

(wk)� (1� <�>

�max

)
eTmaxE

0

(wk)

jemaxj2 emax

!
+ �4wk�1 ; (D.32)

� > 0 ; 0 < � < 1 :

GD AGD SAGD SAGD NAGD NAGD RGD
param. � = 0:25 �0 = 1 K = 1 K = 7 K = 1 K = 7 K = 1

T = 1 T = 14 T = 1 T = 14 T = 1
M = 1 M = 1 M = 1 M = 1 M = 1
�0 = 1 �0 = 1 �0 = 1 �0 = 1 � = 1
�0 = 1 �0 = 1 �0 = 1 �0 = 1

mean 71.67 73.22 27.34 22.90 37.13 33.97 29.04
std.dev. 28.38 23.03 9.36 7.05 14.06 13.53 10.21
failures 3 3 4 2 1 2 2

Table D.1: Average results on the XOR problem. GD = standard gradient descent, AGD
= adaptive gradient descent, SAGD= symmetric preconditioning + adaptive gradient
descent, NAGD = nonsymmetric preconditioning + adaptive gradient descent, RGD =
reduced gradient descent (Le Cun et al.'s method).

The average results are illustrated in table D.1. We observe that the adaptive learning
rate scheme does not improve the convergence compared to a carefully tuned learning
rate. Combined with the preconditioning schemes, however, there is a signi�cant increase
in convergence. The symmetric preconditioning scheme converge faster than the non-
symmetric. We also observe that the better the meta-error function M(A) is minimized
the faster the convergence. However, the minimization of M(A) takes time so there is a
trade-o� between the gain of convergence and the increase in computation time per weight
update. The result of the method by le Cun et al. is comparable with the symmetric
preconditioning.

Figure D.2 shows an example of a run with SAGD. This is the same run as the one
illustrated in �gure D.1 with GD. The largest eigenvalue in �gure D.2 drops rapidly in
the �rst few iterations, while the largest eigenvalue in �gure D.1 is constant until just
before termination. SAGD gets faster through the
at plateau in the beginning of the
minimization because of this rapid decrease of the largest eigenvalue.

Since there seems to be no advantage in using the normalized preconditioning scheme
compared to the symmetric scheme, we now concentrate on the symmetric preconditioning
scheme only. GD and SAGD were tested 20 times on the parity 5 problem with a 3-layer
network with 5 hidden units. The average results are illustrated in table D.2. SAGD
converges faster than AGD, but the number of failures seems to be very sensitive to the
initial con�guration of K, T and M . The �rst con�guration with frequent and relatively
many updates of A yields results, where SAGD fails in 8 out of 20 runs, while another
con�guration with not as frequent updates yields results with 6 failures. A characteristic
error curve for a failure run of SAGD is illustrated in �gure D.3. We observe, that the
error drops more rapidly for SAGD than for AGD, i.e., the weights gets faster through
the very
at region in the beginning, but then the weights converges to what turns out
to be a saddle point. So the preconditioning works well in the beginning, but because
the Hessian is inde�nite, the preconditioning can force the algorithms to converge to a
stationary point, which is not a minimum.4 This is of course unfortunate. One way
to avoid this behavior is to tune the initial parameters K, T and M or to turn the

4This can also happen when no preconditioning is applied, but the preconditioning seems to make this
more likely to happen.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25

’error’

-1

0

1

2

3

4

5

6

7

0 5 10 15 20 25

’mineig’
’maxeig’
’aveig’

Figure D.2: A) The least mean square error curve on the XOR problem during learn-
ing with SAGD. B) The largest, smallest and average eigenvalue of the Hessian during
learning.

AGD SAGD SAGD SAGD2
param. �0 = 1 K = 20 K = 40 K = 20

T = 20 T = 10 T = 20
M = 2 M = 4 M = 2
�0 = 1 �0 = 1 �0 = 1
�0 = 10 �0 = 10 �0 = 10

 = 1e�4

mean 3121 212 226 214
std.dev. 2640 123 133 89
failures 5 8 6 4

Table D.2: Average results on the parity 5 problem. GD = standard gradient descent,
SAGD= symmetric preconditioning + adaptive gradient descent, SAGD2 = symmetric
preconditioning in
at regions + adaptive gradient descent.

preconditioning o� as soon as the weights have left the
at regions and then initialize the
preconditioning matrix to the identity matrix. If we de�ne the parameter �k as

�k =

�����E(wk)� E(wk�1)
E(wk�1)

����� ; (D.33)

then the preconditioning is only applied when �k <
, where
 is a small constant. The
result of this strategy is also illustrated in table D.2 in the last coloum and in �gure D.3.
Again we see a very fast and reliable convergence towards a minimum.

D.8.2 Scaled conjugate gradient

The symmetric preconditioning scheme combined with SCG was tested on the XOR prob-
lem. Table D.3 shows the average results. Again we observe an increase in convergence

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 200 400 600 800 1000 1200 1400 1600 1800 2000

"AGD"
"SAGD"

"SAGD2"

Figure D.3: Error curves for AGD, SAGD and SAGD2 on the parity 5 problem. The run
of SAGD fails because of convergence to a saddle point.

SCG PSCG PSCG PSCG2
param. K=10 K=1 K=40

T=10 T=1 T=20
M=1 M=1 M=3
�0 = 10 �0 = 10 �0 = 10

 = 5e�4

mean 16.54 15.03 14.56 13.77
std.dev. 3.80 4.33 3.61 2.18
failures 4 4 2 3

Table D.3: Average results on the XOR problem. SCG = scaled conjugate gradient,
PSCG = symmetric preconditioning + scaled conjugate gradient, PSCG2 = symmetric
preconditioning in
at regions + scaled conjugate gradient.

when the Hessian is preconditioned.

SCG and PSCG was tested 20 times on the parity 5 problem using the same initial
weights and architecture as in the last section. The average results are illustrated in
table D.4. As observed in the last section, preconditioning during the whole minimization
yields more failures. Stopping the preconditioning after the weights has left the
at region
helps, also as noticed above. We do, however, not observe the same signi�cant increase
of convergence as with SAGD2.

SCG, PSCG and PSCG2 were run 10 times on the two-spirals problem, the task of
distinguishing between two interwined spirals [Lang and Witbrock 89]. The problem is
known to be hard for neural networks to solve and is a useful benchmark test. The network
architecture used in this experiment was a 3 hidden layer network with 5 hidden units
in each layer and shortcut connections from the input layer and upwards. The average
results are illustrated in table D.5. PSCG2 converges faster than the other two, but only
barely enough to justify the extra computational e�ort per iteration.

It is not clear why the same dramatic increase in convergence is not obtained, when

SCG PSCG PSCG2
param. K=40 K=20

T=10 T=20
M=4 M=2
�0 = 10 �0 = 10

 = 5e�4

mean 125 80 97
std.dev. 68 42 58
failures 4 6 4

Table D.4: Average results on the parity 5 problem. SCG = scaled conjugate gradient,
PSCG = symmetric preconditioning + scaled conjugate gradient, PSCG2 = symmetric
preconditioning in
at regions + scaled conjugate gradient.

SCG PSCG PSCG2
param. K=40 K=20

T=10 T=10
M=4 M=2
�0 = 10 �0 = 10

 = 5e�4

mean 1053 1197 855
std.dev. 546 586 257
failures 2 2 1

Table D.5: Average results on the two-spirals problem. SCG = scaled conjugate gradient,
PSCG = symmetric preconditioning + scaled conjugate gradient, PSCG2 = symmetric
preconditioning in
at regions + scaled conjugate gradient.

the preconditioning is combined with conjugate gradient, as when combined with gradi-
ent descent. It might be, that the change of A interferes too much with the conjugate
directions.

D.8.3 On-line preconditioning

Recently there has been some discussion about the e�ciency of o�-line and on-line learning
techniques. Whenever learning problems are characterized by large redundant training
sets the on-line technique seems to be the most e�cient. See for example [Battiti 92],
[Le Cun et al. 93] or [M�ller 93b]. In [M�ller 93b] a technique to combine conjugate gra-
dient learning methods with on-line learning is described. In this section we brie
y de-
scribe how to combine the preconditioning approach with on-line learning. The main idea
is to \relax" the preconditioning by replacing terms of the form E

00

(w)d with a running
average like

E
00

(w)d =
E
00

p (w)d + (1�
)E
00

(w)d ; 0 <
 < 1; (D.34)

where E
00

p (w) is the Hessian corresponding to pattern number p. Le Cun et al. have
tried such a relaxation combined with the above RGD method with success on some
handwritten digit recognition problems [Le Cun et al. 93].

D.9 Conclusion

This paper has proposed a new method to improve convergence of supervised learning
algorithms. The method is based on an adaptive scheme to precondition the Hessian.
While there is only a minor speed up for the scaled conjugate gradient algorithm, the
method speeds up learning considerably for gradient descent and can improve the con-
vergence through
at regions of weight space by several orders of magnitude. Adaptive
preconditioning can be used in o�-line mode as well as on-line mode and costs in the
order O(PN) per epoch to employ. If the preconditioning is only applied in
at regions
of weights space then this computational overhead is even less.

The method should in principal work for any data-�t problem, which means that it is
relevant in a broader context than the neural network �eld.

Acknowledgements

I would like to thank Ole �sterby, Ole Caprani and Brian Mayoh for helpful advice. This
research was supported by a grant from the Royal Danish Research Council. All opinions,
�ndings, conclusions and recommendations in this paper are those of the author and do
not necessarily re
ect the views of the Royal Danish Research Council.

Appendix E

Improving Network Solutions

The paper [M�ller and Fahlman 93] is a collaboration work with Scott Fahlman, CMU,
done in the period September 1992 to March 1993, while the author visited School of
Computer Science, Carnegie Mellon University. The following is a modi�ed version of
this paper.

E.1 Abstract

Through a comparison study of two learning algorithms we propose ways to improve net-
work solutions with respect to convergence and generalization. The Quickprop algorithm
and the Scaled Conjugate Gradient algorithm are compared empirically. SCG is signif-
icantly faster than QP and contains no problem-dependent parameters. However, SCG
ends more often in suboptimal solutions, with not as many correct classi�cations as QP.
This is due to characteristics of the least square error function which is ill-suited for many
neural network training problems. We impose appropriate constraints on network solu-
tions by modi�cation of error function. The new error functions yields network solutions
that can improve convergence and generalization.

E.2 Introduction

When evaluating feed-forward neural network solutions it is necessary to consider the
convergence rate to- and the generalization ability of the network solutions found. It is
often argued that a very fast convergence yields bad generalization. This is not neces-
sarily true. If proper constraints are imposed on the network solutions then fast con-
vergence and good generalization can be obtained. However, the addition of too hard
constraints can have a negative in
uence on the convergence rate since this severely limits
the acceptable paths down to the solutions. Arguments for constraining network solu-
tions can be found in Regularization theory [Hastie and Tibshirani 90], Bayesian inference
[Buntine and Weigend 91b] and Minimum Description Length methods [Rissanen 84].

In this paper we impose constraints by modi�cation of error function. Both conver-
gence rate and generalization depends heavily on the error function used in the learning
process. Error functions like least square and cross-entropy, are known to be Bayes optimal
in the sense that minimization with these functions produce solutions that approach the
greatest lower bound on generalization error as the training set approaches in�nity. But

117

when the training set is small this approximation can be poor [Buntine and Weigend 91b],
[Wan 90], [Gish 90], [Scha�er 92]. So especially when the amount of data available is
sparse it is necessary to impose constraints on the network solutions. This is in a Bayesian
perspective the same as choosing appropriate priors which is strongly related to penalty
terms or regularizers in statistical literature.

There are several ways to constrain network solutions by modi�cation of error function,
one way is to demand that all patterns are classi�ed correctly. Another would be to
demand a smooth distribution of errors, i.e., a low variance of absolute errors. Through
a comparison study of the Scaled Conjugate Gradient algorithm (SCG) [M�ller 93a] and
the Quickprop algorithm (QP) [Fahlman 89] we propose two new error functions that
empirically can be shown to improve generalization. The comparison is interesting in it
self since both algorithms in earlier studies have shown to be e�cient.

E.3 Comparison of two e�cient learning algorithms

It is widely recognized that the class of conjugate gradient algorithms are well suited for
learning algorithms because of their ability to gain second order information without too
much calculation work [Watrous 87], [Parker 85], [Battiti 92]. One, the Scaled Conjugate
Gradient algorithm, has especially low calculation costs, and has for that reason shown
to be e�cient for supervised learning. Another e�cient algorithm widely used is the
Quickprop algorithm, which also gains second order information at low costs. This section
presents a comparison study of these two algorithms.

E.3.1 The Quickprop algorithm

The Quickprop algorithm developed by Fahlman is based on the Newton algorithm
[Fletcher 75]. In order to avoid the time and space consuming calculations involved with
the Newton algorithm two approximations are made. The Hessian matrix is approximated
by ignoring all non-diagonal terms making the assumption that all the weights are inde-
pendent. Each term in the diagonal is approximated by a one sided di�erence formula
given by

d2E(w)

dw2
� E

0

(wt)�E 0

(wt�1)
wt �wt�1

(E.1)

where E(w) is the error and wt is a given weight at time step t. d2E(w)

dw2 can actually be
calculated precisely with a little more calculation work [Le Cun 89]. The weight update
for the Quickprop algorithm is given by

4wt = �(�tE 0

(wt) + �t) ; (E.2)

where �t is

�t =

(
�0 E

0

(wt)E
0

(wt�1) > 0
0 otherwise

and �t is

�t =

8<
:

wt�wt�1
E
0
(wt)�E0(wt�1)E

0

(wt)
����E0(wt)�E0(wt�1)E

0
(wt�1)

���� < �

1+�

�4wt�1 otherwise

The constant �0 is similar to the learning rate in gradient descent. If E
0

(wt)E
0

(wt�1) > 0,
i.e., the minimum of the quadratic has not been passed, a linear term is added to the
quadratic weight change. On the other hand, if E

0

(wt)E
0

(wt�1) � 0, i.e., the minimum
of the quadratic has been passed, only the quadratic weight change is used to go straight
down to the minimum. � is usually set equal to 2, which seems to work well in most
applications.

The algorithm is usually used combined with a primeo�set term added to the �rst
derivative of the sigmoid activation function. As noted later the use of primeo�set can
in
uence the quality of the solutions found.

Despite the two very crude approximations the Quickprop algorithm has shown very
good performance in practice. One drawback with the algorithm is, however, that the �
parameter is very problem dependent. We refer to [Fahlman 89] for a detailed description
of the algorithm.

E.3.2 The Scaled Conjugate Gradient Algorithm

The Scaled Conjugate Gradient algorithm is a variation of a standard conjugate gradient
algorithm. The major idea of conjugate gradient algorithms is that they up to second
order produce non-interfering directions of search. This means that minimization in one
direction dt followed by minimization in another direction dt+1 imply that the error has
been minimized over the whole subspace spanned by dt and dt+1. The search directions
are given by

dt+1 = �E 0

(wt+1) + �tdt (E.3)

where wt is a vector containing all weight values at time step t and �t is

�t =
jE 0

(wt+1)j2 � E
0

(wt+1)TE
0

(wt)

jE 0(wt)j2 (E.4)

In the standard conjugate gradient algorithms the step size �t is found by a line search
which can be very time consuming because this involves several calculations of the error
and or the �rst derivative. In the Scaled Conjugate Gradient algorithm the step size is
estimated by a scaling mechanism thus avoiding the time consuming line search. The step
size is given by

�t =
�dTt E 0

(wt)

dTt st + �tjdtj2
(E.5)

where st is

st =
E
0

(wt + �tdt)�E 0

(wt)

�t
; 0 < �t � 1

�t is the step size that minimizes the second order approximation to the error func-
tion. st is a one sided di�erence approximation of E

00

(wt)dt. �t is a scaling parameter
whose function is similar to the scaling parameter found in Levenberg-Marquardt methods
[Fletcher 75]. �t is in each iteration raised or lowered according to how good the second
order approximation is to the real error. The weight update formula is now given by

Seed SCG QP
Epoch Epoch

1 372 8659
2 599 5570
3 2000* 10105
4 722 15182
5 1036 17615
6 2000* 12405
7 1217 15385
8 853 4528

mean 1099 11181
std.dev. 1121 4470

Table E.1: Results on the two spirals problem.

4wt = �tdt (E.6)

The calculation work per iteration for SCG can be shown to be in the order of two
times the calculation work for QP. SCG contains no problem dependent parameters. We
refer to [M�ller 93a] for a detailed description of SCG. For a stochastic version of SCG
especially designed for training on large, redundant training sets, see also [M�ller 93b]

E.3.3 Comparison

In this section SCG and QP are tested on the two spirals problem [Lang and Witbrock 89]
and an arti�cial classi�cation problem generated only for this purpose. The hyperbolic
tangent was used as activation function through out all experiments. When comparing
convergence rates the calculation work per iteration for the two algorithms is always taken
into account.

Two spirals problem

A useful benchmark task for neural networks is the two spirals problem: the task of
distinguishing between two interwined spirals. Lang and Withbrock tested QP against
Back-Propagation [Rumelhart et al. 86] on this problem using a network of 3 hidden
layers with 5 units per layer and short cut connections from the input layer and upwards.

Using the same architecture and training set as Lang and Witbrock 8 di�erent tests
with SCG and QP were run. The parameters for QP were: � = .002, � = 1.75, primeo�set
= 0. Using an primeo�set term on this problem did not increase the e�ciency of QP.
The algorithms were terminated when all patterns were classi�ed correctly using an error
margin of 0.8.

The results are shown in table E.1. SCG yields an average speedup of 5.1 against
QP. The mean number of epochs used by QP is of the same order as the results for QP
reported by Lang and Witbrock. Notice that SCG in two of the cases fails to �nd a
solution with a 100% classi�cation. In these two cases the least square error is very small
but 1-2 patterns are classi�ed completely wrong.

Dim SCG QP
Error Correct Error Correct

mean std.dev. mean std.dev. mean std.dev. mean std.dev.
8 .028764 .008062 .984524 .004796 .010957 .007550 .997619 .003000
10 .029224 .0124810 .983750 .008718 .025807 .001000 .991875 .004243
12 .023387 .004624 .988303 .000007 .019548 .008756 .994643 .004140
14 .014461 .003822 .993208 .002057 .005670 .001886 .999292 .000867
16 .011717 .001818 .994690 .001180 .005214 .001210 .999410 .000723
18 .008912 .004110 .996120 .004823 .003772 .007745 1. 0.

Table E.2: Average results on arti�cial data.

Arti�cial data

To be able to see how SCG and QP compare on problems with varying input dimensions
some arti�cial data was generated. For dimension N a set of 4N centerpoints, each a N-bit
string, was randomly chosen. Around each centerpoint a set of 9 distortions was generated
using a Gaussian distribution to determine whether to
ip a bit or not. This gives a total
of 40N patterns. Each centerpoint and its distortions were then randomly assigned to one
out of two possible classes. SCG and QP were tested on dimension 8,10,12,14,16 and 18
running 5 di�erent runs on each dimension using a 3 layer network with N hidden units.
The algorithms were run for a constant number of epochs, QP twice as many as SCG in
order to take the calculation work per epoch into account. The parameters for QP were:
� = 1/noofpatterns, � = 1.75, primeo�set = 0.1.

The average performance is illustrated in table E.2. On average QP reaches a better
solution than SCG both when regarding error and correct classi�cation. Figure E.1 shows
the average error curve and average classi�cation curve during training for SCG and QP on
dimension 12. The curves are basicly the same for all other dimensions. We conclude that
SCG converge faster to a solution both with respect to error and correct classi�cation but
does not in average �nd as good a solution as QP. This is in fact because of QP's ability
to use the primeo�set term. When QP is run without this term the average solutions
found resembles these of SCG.

Adding a primeo�set to the derivative to the activation function means that the error
derivative does not correspond to the real error. Since SCG needs the exact error derivative
to estimate the error in a neighboring point it is not in any obvious way possible to use
primeo�set with SCG.

E.4 Imposing constraints on network solutions

Clearly the bad solutions found by SCG are due to characteristics of the least square
error function. The least square error function has many suboptimal solutions which
are represented as very
at regions in weight space. Minimization of the least square
error function does not implyminimization of misclassi�cations [Brady and Raghavan 88],
[Makram-Ebeid et al. 89], [Yu and Simmons 90], [Hampshire 92]. Thus minimizing the
least square error function often converge to suboptimal solutions with respect to the
number of correct classi�cations.

One way to try to avoid these suboptimal solutions is like in the Quickprop algorithm

SCG

QP

Time
500

E
rr

or

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.00
0

Error Curves

SCG

QP

Time
500

C
or

re
ct

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00
0

Classification Curves

Figure E.1: Average error and classi�cations curves for SCG and QP on dimension 12.

to twist the �rst derivative to the sigmoid activation function by adding a primeo�set
term. Another way is to strictly minimize the number of misclassi�cations. Hampshire
de�nes such an approach that works for binary classi�cation problems [Hampshire 92]. We
present a more general approach that involves a soft minimization of misclassi�cations.

Since good solutions are characterized not only by low average error but also by having
as many patterns with low error as possible, a good idea would be to include both terms
in the error function. Several researchers have tried that. Mackram-Ebeid, Surat and
Viola de�nes the following error function

E(w) =
1

2

X
p;j

(

(tpj � opj)2 if tpjopj > 0.
(tpj � opj)2 otherwise

(E.7)

where tpj and opj are respectively the desired target and the observed output at unit j
when pattern p is presented.
 is gradually increased from 0 to 1 so that the function
initially just focus on getting the sign of the outputs right and then later pays attention
to the magnitude of the error [Makram-Ebeid et al. 89]. This approach only works for
binary classi�cation problems. Yu and Simmons de�nes another but similar error function

E(w) =
1

2

X
p;j

(
(tpj � opj)2 if jtpj � opj j > "

0 otherwise
(E.8)

where " is a positive parameter which is decreased when the absolute value of all the
partial errors are less than ".

Common for these two approaches is that the error functions de�ned are not easy
to use with more sophisticated algorithms like SCG because they are not di�erentiable.
However, a way to �x this in Yu and Simmons error function would be to substract "2 in
the �rst line.

Another approach is to de�ne an error function that penalizes errors of large magni-
tude.

α = 2
α = 3

α = 10

α = 20

Output
2.3

E
rr

or 11.5

0.0

penalized regionz }| { �z }| {
j �

�z }| {
j

penalized regionz }| {
"

target

Figure E.2: The function of the � and � parameter.

E(w) =
1

2

X
p;j

e��(opj�tpj+�)(tpj+��opj) (E.9)

where � and � are positive parameters. The derivative to (E.9) with respect to a given
opj is

dE(w)

dopj
= ��(tpj � opj)e

��(opj�tpj+�)(tpj+��opj) (E.10)

It is easy to see that the global minimumfor (E.9) is when tpj = opj , 8p; j. The function
of � and � is illustrated through �gure E.2. � de�nes the width of the acceptable error
around the desired target and � controls the steepness of the exponentially growing error
in the penalized regions outside the interval. If � is small equation (E.10) resembles
the derivative of the least square function. But the higher � gets the more active is
the constraint imposed on the penalized regions. When no errors are in the penalized
regions � is decreased, so that the outputs are pulled towards the targets. Note that the
exponential error function indirectly balances the errors especially when � is large. A
high � value gives large partial error derivatives inside the penalized regions and small
partial error derivatives when outside the regions. So the higher the � value the more
the errors will tend to arrange themselves around the boundary of the penalized regions.
This gives a balanced distribution of the errors. Yu and Simmons shows that balancing
the errors on the training set can improve the generalization ability of a network solution
[Yu and Simmons 90].

Dim SCG QP Speedup
Epoch Correct Epoch Correct

mean std.dev. mean std.dev. mean std.dev. mean std.dev.
8 76 3 1 0 249 28 1 0 1.6
10 112 19 1 0 758 111 1 0 3.4
12 109 10 1 0 763 180 1 0 3.5
14 77 12 1 0 499 66 1 0 3.2
16 75 1 1 0 551 80 1 0 3.7
18 78 7 1 0 423 43 1 0 2.7

Table E.3: Average results on arti�cial data using the exponential error function.

A more direct way of balancing errors is to minimize the variance of the magnitude
of the errors. This can be done by adding the variance as a penalty term to an existing
error function like least square.

E(w) =
1

NP

NX
j

PX
p

(tpj�opj)2+� 1

NP

NX
j

PX
p

((tpj�opj)2� 1
PN

PN
i

PP
q (tqi � oqi)2)

2
(E.11)

where � is a positive penalty parameter, N the number of output units and P the number
of patterns. The derivative to (E.11) is

dE(w)

dopj
= � 1

NP
(tpj � opj)(2 + 4�

PN � 1

PN
((tpj � opj)

2 � 1
PN

PN
i

PP
q (tqi � oqi)2) (E.12)

Using the exponential error function shown in (E.9) and the minimum variance error
function shown in (E.11) SCG and QP were again tested on the arti�cial data problem
from section E.3.3. This time the algorithms were �rst terminated when all patterns
were classi�ed correctly or until a resonable limit was reached. Table E.3 and table E.4
summarizes the average results obtained. � was set to 1. The initial � was set to 0.9 and
then halfed every time no errors were inside the penalized regions. The penalty parameter
� was set to 1-2. In contrast to the runs with the least square error function both
algorithms �nds now in all runs optimal solutions with respect to correct classi�cation.
SCG has in average a speedup against QP of about 3.0. The exponential error function
seems to yield the fastest convergence, but this might be because of the actual values of
�, � and �.

E.5 Generalization

In this section we investigate the generalization ability of network solutions found by
minimization of the di�erent error functions. Again some arti�cial data was generated,
this time with continuous input constrained between 0 and 1. We chose dimension 10
with 20 centerpoints, 50 distortions per centerpoint and 4 possible output classes. The
average overlap between the centerpoints was 4%, meaning that 4% of the distortions were
nearer other centerpoints than the one they were generated from. The set of patterns was
then split in to a training set, validation set and a test set of equal size. When applying

Dim SCG QP Speedup
Epoch Correct Epoch Correct

mean std.dev. mean std.dev. mean std.dev. mean std.dev.
8 82 13 1 0 265 68 1 0 1.6
10 147 23 1 0 758 226 1 0 2.6
12 111 10 1 0 840 184 1 0 3.8
14 81 5 1 0 414 90 1 0 2.6
16 94 13 1 0 524 78 1 0 2.8
18 89 4 1 0 470 36 1 0 2.6

Table E.4: Average results on arti�cial data using the minimum variance error function.

the k-nearest neighbor technique on the data we got a max performance of 94.26% on
the validation set giving 93.69% on the test set (k=5). Because of the way the data
is generated we would not expect the neural network solution to do much better than
that. We ran the following experiments. QP was tested with and without primeo�set on
the least square error function. SCG was tested on the least square error function, the
exponential error function and the minimimum variance error function. 5 di�erent runs
were made for each test. When the classi�cation rate of the validation set was at it highest
the number of iterations run and the classi�cation rate of the test set were recorded.

The results are illustrated in �gure E.3. We observe the same trend for both the expo-
nential error function and the minimum variance error function. The higher the � and �
values the better the generalization. For � equal to 30 there is a decrease in generalization.
At this point the constraint towards low variance was too strong. Unfortunatly, this gain
in generalization is done at the expense of the convergence rate as the �gure also show.
This is, however, not surprising since high � and � values impose a tougher constraint on
the acceptable path down to the minimum. The minimum variance- and the exponen-
tial error function gives approximately the same maximum generalization performance as
the k-nearest neighbor. At this maximum generalization point the convergence rate of
the minimum variance error funtion is slightly higher than the convergence rate of the
exponential error function.

E.6 Conclusion

The conclusions to be made are twofold. First the paper has presented a comparison
between two algorithms that both are known to be e�cient. Empirically it has been
shown that SCG has an average speedup against QP of about 3.0. Furthermore, SCG
does not contain any problem-dependent parameters like QP's � parameter. However,
when the least square error function is used as objective function, SCG ends more often
in suboptimal solutions with not as many correct classi�cations as QP. This is due to QP's
ability to use a primeo�set term. By combining SCG and more suitable error functions
for network training this problem is eliminated.

Second this paper has shown that imposing appropriate constraints on network so-
lutions can improve convergence and generalization. We have proposed two new error
functions that impose such constraints. We do not claim that these functions are in any
way optimal, but we do believe that our results illustrates the neccesity of adding such

SCG (exponential)

SCG (minimum variance)

SCG (LSQ)

QP (LSQ + offset)

QP (LSQ)

α, η
5 10 15 20 25 30 35 40 45 50

C
or

re
ct

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.85
0

Classification Curves

SCG (exponential)

SCG (minimum variance)

SCG (LSQ)

QP (LSQ + offset)

QP (LSQ)

α, η
5 10 15 20 25 30 35 40 45 50

T
im

e 1000

0

Time Curves

Figure E.3: Results on the test set using the exponential error function and the minimum
variance error function with di�erent � and � values.

constraints. Minimizationwith the new error functions produce in average better solutions
with respect to generalization than the least square error function with the primeo�set
added. SCG combined with these error functions yields faster convergence and better
generalization than QP with primeo�set.

The quality of the solutions found with the new error functions depends heavily on
the values of the constraint parameters � and �. We have not addressed the problem
of choosing optimal values of � and �. Several heuristic methods could be applied, like
starting with a small value and then slowly increase. More sophisticated techniques, like
the ones used to estimate appropriate regularization parameters [Girard 89], might also
be usuable in this context.

It would be interesting to know how the distribution of the errors on the training
set in
uence the generalization ability. Our results indicate that the more balanced the
distribution is, i.e, the more equal the errors are in magnitude, the better generalization
one can expect. It remains to future work to actually prove the relationship between
expected generalization and error distribution.

Acknowledgements

Many thanks to Wray Buntine for his helpful comments. Thanks also to John Hampshire
for sharing some of his thesis results with us before publishing.

Bibliography

[Abramowitz 64] M. Abramowitz and I.A. Stegun, Handbook of Mathemat-

ical Functions, U.S. Department of Commerce, 1964.

[Akaike 59] H. Akaike (1959), On a Successive Transformation of Prob-

ability Distribution and Its Application to the Analysis of

the Optimum Gradient Method, Ann. Inst. Statist. Math.,
Vol. 11, pp. 1-17.

[Aoki 71] M. Aoki (1971), Introduction to Optimization Techniques,
The Macmillan Company, New York.

[Axelsson 77] O. Axelsson (1977), Solution of Linear Systems of Equa-
tions: Iterative Methods, In Sparse Matrix Techniques, Ed.
V.A. Barker, Copenhagen, Lecture Notes in Mathematics
572, Springer Verlag, pp. 1-48.

[Axelsson 80] O. Axelsson (1980), Conjugate Gradient Type Methods for
Unsymmetric and Inconsistent Systems of Linear Equa-
tions, Linear Algebra and its Applications, Vol. 29, Else-
vier North Holland, inc., pp. 1-16.

[Battiti 89] R. Battiti (1989), Accelerated Back-Propagation Learning:
Two Optimization Methods, Complex Systems, Vol. 3, pp.
331-342.

[Battiti and Masulli 90] R. Battiti and F. Masulli (1990), BFGS Optimization

for Faster and Automated Supervised Learning, INCC 90
Paris, International Neural Network Conference, Vol. 2,
pp. 757-760.

[Battiti 92] R. Battiti (1992), First and Second-Order Methods for
Learning: between Steepest descent and Newton's Method,
Neural Computation, Vol. 4 (2), pp. 141-167.

[Bishop 92] C. Bishop (1992), Exact Calculation of the Hessian Matrix

for the Multilayer Perceptron, Neural Computation, Vol.
2, pp. 494-501.

[Brady and Raghavan 88] M. Brady and R. Raghavan (1988), Gradient Descent Fails
to Seperate, Proceedings of the 1988 International Confer-
ence on Neural Networks, Vol. 1, pp. 649-656.

127

[Bryson and Ho 69] A.E. Bryson and Y.C. Ho (1969), Applied Optimal Control,
New York: Blaisdell.

[Buntine and Weigend 91a] W. Buntine and A. Weigend (1991), Calculating Second

Derivatives on Feed-Forward Networks, submitted to IEEE
Transactions on Neural Networks.

[Buntine and Weigend 91b] W.L. Buntine and A.S. Weigend (1991), Bayesian Back-

Propagation, Complex Systems, Vol. 5, pp. 603-643.

[Cater 87] J.P. Cater (1987), Successfully Using Peak Learning Rates

of 10 (and Greater) in Back-Propagation Networks with

the Heuristic Learning Algorithm, In IEEE First Interna-
tional Conference on Neural Networks, San Diego, Eds. M.
Caudill and C. Butler, Vol. 2, pp. 645-651.

[Cauchy 1847] A. Cauchy (1847), M�ethode G�en�eral pour la R�esolution des

Syst�ems d' �Equations Simulation�ees, Comp. rend. Acad.
Sci. Paris, pp. 536-538.

[Chan and Fallside 87] L.W. Chan and F. Fallside (1987), An Adaptive Train-
ing Algorithm for Back-Propagation Networks, Computer
Speech and Language, Vol. 2, pp. 205-218.

[Chan 90] L.W. Chan (1990), E�cacy of Di�erent Learning Al-
gorithms of Back-Propagation Networks, In Proceedings
IEEE TENCON-90.

[Chung 54] K. Chung (1954), On a Stochastic Approximation Method,
Ann. Math. Stat., Vol. 25, pp. 463-483.

[Cochran 77] W.G. Cochran (1977), Sampling Techniques, John Wiley
& Sons, Inc.

[Concus et al. 76] P. Concus, G.H. Golub and D.P. O'Leary (1976), A Gen-
eralized Conjugate Gradient Method for the Numerical So-
lution op Elliptic Partial Di�erential Equations, In Sparse
Matrix Computations, Ed. J.R Bunch and D.J. Rose, Aca-
demic Press, New York, pp. 309-332.

[Darken et al. 92] C. Darken, J. Chang and J. Moody (1992), Learning Rate
Schedules for Faster Stochastic Gradient Search, In Neural
networks for Signal Processing 2, IEEE Workshop, Eds.
S.Y Kung, F. Fallside, J. �A. S�rensen and C.A. Kamm,
IEEE Press., pp. 3-13.

[Darken 93] C. Darken (1993), Personal communication.

[Dixon and Price 89] L.C.W. Dixon and R.C. Price (1989), Truncated Newton

Method for Sparse Unconstrained Optimization Using Au-
tomatic Di�erentiation, Journal of Optimization Theory
and Applications, Vol. 60, No. 2, pp. 261-275.

[Fahlman 89] S.E. Fahlman (1989). Fast Learning Variations on Back-

propagation: An Empirical Study, In proceedings of the
1988 Connectionist Models Summer School, Eds. D.S.
Touretzky, G. Hinton and T. Sejnowski, pp. 38-51, San
Mateo: Morgan Kau�mann.

[Fedorov 72] V.V. Federov (1972), Theory of Optimal Experiments, Aca-
demic Press, New York.

[Fletcher 75] R. Fletcher (1975). Practical Methods of Optimization, Vol.
1, John Wiley & Sons.

[Franzini 87] M.A. Franzini (1987). Speech Recognition with Back-

Propagation, In Proceedings of the Ninth Annual Confer-
ence of the IEEE Engineering in Medicine and Biology
Society, Boston, pp. 1702-1703.

[Gallager 68] R.G. Gallager (1968), Information Theory and Reliable

Communication, John Wiley & Sons, Inc.

[Gill and Murray 74] P.E. Gill and W. Murray (1974), Safeguarded Steplength
Algorithms For Optimization Using Descent Methods, Na-
tional Physica Laboratory, Division of Numerical Analysis
and Computing, NPL Report NAC 37.

[Gill et al. 81] P.E. Gill, W. Murray and M.H. Wright (1981). Practical
Optimization, Academic Press Inc., London.

[Girard 89] D.A. Girard (1989), A Fast 'Monte-Carlo Cross-
Validation' Procedure for Large Lesat Squares Problems
with Noisy Data, Numer. Math., Vol. 56, pp. 1-23.

[Gish 90] H. Gish (1990), A Probabilistic Approach to the Under-
standing and Training of Neural Network Classi�ers, In
Proceedings of the 1990 IEEE International Conference on
Acoustics, Speech and Signal Processing, Vol. 3, pp. 1361-
1364.

[Goldstein 87] L. Goldstein (1987), Mean Square Optimality in the Con-
tinuous Time Robbins Monro Procedue, Technical Re-
port DRB-306, Department of Mathematics, University of
Southern California.

[Golub and Loan] G.H. Golub and C.F. van Loan (1983), Matrix Computa-
tions, The John Hopkins University Press,

[Ha�ner et al. 88] P. Ha�ner, A. Waibel, H. Sawai and K. Shikano (1988),
Fast Back-Propagation Learning Methods for Neural Net-
works in Speech, ATR Interpreting Telephony Research
Laboratories.

[Hampshire 92] J.B. Hampshire (1992), A Di�erential Theory of Learn-

ing for Statistical Pattern Recognition with Connection-

ist Models, Ph.D. Thesis, School of Computer Science,
Carnegie Mellon University.

[Hampshire and Waibel 90] J.B. Hampshire and A.H.Waibel (1990), A Novel Objective

Function for Improved Phoneme Recognition Using Time-

Delay Neural Networks, IEEE Transactions on Neural Net-
works, Vol. 1, No. 2, pp. 216-228.

[Hassibi and Stork 93] B. Hassibi and D.G. Stork (1993), Second Order Deriva-

tives for Network Pruning: Optimal Brain Surgeon, In
Neural Information Processing Systems, Ed. Cowan and
Giles, Morgan Kaufmann, Vol. 4.

[Hastie and Tibshirani 90] T.J. Hastie and R.J. Tibshirani (1990), Generalised Addi-

tive Models, London, Chapman and Hall.

[Hestenes and Stiefel 52] M.R. Hestenes and S. Stiefel (1952), methods of Conjugate
Gradient for Solving Linear Systems, J. Res. Nat. Bur.
Standards, Vol. 49, pp. 409-436.

[Hinton 89] G. Hinton (1989), Connectionist Learning Procedures, Ar-
ti�cial Intelligence, Vol. 40, pp. 185-234.

[Horn and Johnson 85] R.H. Horn and C.A. Johnson (1985), Matrix Analysis,
Cambridge University Press, Cambridge.

[Jacobs 88] R.A. Jacobs (1988), Increased Rates of Convergence
Through Learning Rate Adaptation, Neural Networks, Vol.
1, pp. 295-307.

[Johansson et al. 91] E.M. Johansson, F.U. Dowla and D.M. Goodman (1991),
Backpropagation Learning for Multi-Layer Feed-Forward
Neural Networks Using the Conjugate Gradient Method,
International Journal of Neural Systems, Vol. 2, No. 4, pp.
291-301.

[Judd 87] J.S. Judd (1987),Complexity of connectionist learning with

various node functions, COINS Technical Report 87-60,
University of Amherst, Amherst, MA.

[Kailath 80] T. Kailath (1980), Linear Systems, Prentice Hall.

[Karle 91] J. Karle, Direct calculation of atomic coordinates from

di�raction intensities: Space group P1, Proceedings of the
National Academy of Sciences, USA, Vol. 1, pp. 10099-
10103.

[Kinsella 92] J.A. Kinsella (1992), Comparison and Evaluation of Vari-

ants of the Conjugate Gradient Method for E�cient Learn-

ing in Feed-Forward Neural Networks with Backward Error

Propagation, Network, Vol. 3, pp. 27-35.

[Knuth 81] D.E. Knuth (1981), The Art of Computer Programming,
Vol. 2, Semi-Numerical Algorithms, Addison-Wesley Pub-
lishing Company.

[Kramer et al. 88] A.H. Kramer and A. Sangiovanni-Vicentelli (1988), E�-

cient Parallel Learning Algorithms for Neural Networks,
In Advances in Neural Information Processing Systsems,
Morgan Kaufmann, San Mateo, Vol. 1, pp. 75-89.

[Kreyszig 88] E. Kreyszig (1988), Advanced Engineering Mathematics,
6th edition, John Wiley and Sons, Inc.

[Kuhn and Herzberg 90] G.M. Kuhn and P. Herzberg (1990), Some Variations on

Training of Recurrent Networks, In Proceedings of CAIP
Neural Networks Workshop, Rutgers University, pp. 15-17.

[Kuhn and Watrous 93] G.M. Kuhn and R.L. Watrous (1993), Comparison of Feed-
forward and Recurrent Sensivities in Speech Recognition,
in Arti�cial Neural Networks with Applications in Speech
and Vision, Ed. R. Mammone, London, Chapman & Hall.

[Lang and Witbrock 89] K.J. Lang and M. Witbrock (1989), Learning to Tell Two
Spirals Apart, In proceedings of the 1988 Connectionist
Models Summer School, Eds. D.S. Touretzky, G. Hinton
and T. Sejnowski, pp. 52-59, San Mateo: Morgan Kau�-
mann.

[Le Cun 89] Y. Le Cun (1989). Generalization and Network Design
Strategies, In Connectionism in Perspective, Eds. R.
Pfeifer, Z. Schleter, F. Fogelmann and L. Steels, Zurich,
Elsevier.

[Le Cun et al. 92] Y. Le Cun, J.S. Denker and S.A. Solla (1990), Optimal
Brain Damage, In Neural Information Processing Systems,
Ed. D.S Touretzky, Morgan Kaufmann, Vol. 2., pp.598-
605.

[Le Cun et al. 91] Y. Le Cun, I. Kanter, S. Solla (1991), Eigenvalues of Co-
variance Matrices: Application to Neural Network Learn-

ing, Physical Review Letters, Vol. 66, pp. 2396-2399.

[Le Cun et al. 93] Y. Le Cun, P.Y. Simard and B. Pearlmutter (1993), Auto-
matic Learning Rate Maximization by On-line Estimation

of the Hessian's Eigenvectors, in Proceedings of Neural In-
formation Processing Systems, Vol. 5, Eds. Giles, Hanson
and Cowan, Morgan Kau�man.

[Luenberger 84] D.G. Luenberger (1984), Linear and Nonlinear Program-

ming, Addison-Wesley Publishing Company, Inc.

[MacKay 91a] D.J.C. MacKay (1991), Bayesian Interpolation, Neural
Computation, Vol. 4, N0. 3, pp. 415-447.

[MacKay 91b] D.J.C. MacKay (1991), A Practical Bayesian Framework

for Back-Prop Networks, Neural Computation, Vol. 4, N0.
3, pp. 448-472.

[MacKay 92] D.J.C. MacKay (1992), Information-Based Objective Func-

tions for Active Data Selection, Neural Computation, Vol.
4, pp. 590-604.

[Makram-Ebeid et al. 89] S. Mackram-Ebeid, J.A. Surat and J. Viola (1989), A

Rationalized Backpropagation Learning Algorithm, In pro-
ceedings of the International Joint Conference on Neu-
ral Networks, Washington 1989, Vol. 2, pp. 373-380, New
York: IEEE.

[Mingers 89] J. Mingers (1989), An Empirical Comparison of Selection
Measures for Decision-Tree Induction, Machine Learning,
Vol. 3, pp. 319-342.

[Moody 92] J.E. Moody (1992), The e�ective number of parameters:
an analysis of generalization and regularization in non-

linear learning systems, In Neural Information Processing
Systems, Ed. Cowan and Giles, Morgan Kaufmann, Vol. 4.

[M�ller 90a] M. M�ller (1990), CM Algoritmen, Masters Thesis, Daimi
IR-95, Computer Science Department, Aarhus University.

[M�ller 90b] M. M�ller (1990), Learning by Conjugate Gradients, In
Proceedings of the Sixth International Meeting of Young
Computer Scientist, LNCS 464, Springer Verlag, New
York, pp. 184-195.

[M�ller 93a] M. M�ller (1993), A Scaled Conjugate Gradient Algorithm

for Fast Supervised Learning, Neural Networks, June, Vol.
6, No. 4, pp. 525-533.

[M�ller 93b] M. M�ller (1993), Supervised Learning on Large Redun-
dant Training sets, International Journal of Neural Sys-
tems, Vol. 4, No. 1, pp. 15-25.

[M�ller and Fahlman 93] M. M�ller and S.E. Fahlman (1993), Supervised Learning:

Improving Network Solutions, in preparation.

[M�ller 93c] M. M�ller (1993), Exact Calculation of the Product of the

Hessian Matrix of Feed-Forward Network Error Functions

and a Vector in O(N) Time, Technical Report, Daimi PB-
432, Computer Science Department, Aarhus University.

[M�ller 93d] M. M�ller (1993), Adaptive Preconditioning of the Hessian
Matrix, submitted to Neural Computation.

[Orfanidis 90] S.J. Orfanidis (1990), Gram-Schmidt Neural Nets, Neural
Computation, Vol. 2, pp. 116-126.

[Parker 85] D.B. Parker (1985), Learning Logic, Technical Report TR-
47, Center for Computational Research in Economics and
Management Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA.

[Pearlmutter 93] B.A. Pearlmutter (1993), Fast Exact Multiplication by the

Hessian, preprint, to appear in Neural Computation.

[Plaut et al. 86] D. Plaut, S. Nowlan and G. Hinton (1986), Experiments

on Learning by Back-Propagation, Technical Report CMU-
CS-86-126, Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA.

[Plutowski et al.] M. Plutowski, G. Cottrell and H. White, Learning Mackey-
Glass from 25 examples, Plus or Minus 2, In Proceedings
of Neural Information Processing Systems, Vol. 4, Eds.
Giles, Hanson and Cowan, Morgan Kau�man.

[Powell 77] M. Powell (1977), Restart Procedures for the Conjugate

Gradient Method, Mathematical Programming, pp. 241-
254.

[Press et al. 88] W.H. Press, B.P. Flannery, S.A. Teucolsky and W.T. Ver-
rerling (1988), Numerical Recipes in C, Cambridge Univer-
sity Press.

[Ralston et al. 78] A. Ralston and P. Rabinowitz (1978), A First Course in
Numerical Analysis, McGraw-Hill Book Company, Inc.

[Rissanen 84] J. Rissanen (1984), Universal Coding, Information , Pre-

diction, and Estimation, IEEE Transactions on Informa-
tion Theory, Vol. 30, No. 4, pp. 629-636.

[Robbins and Monro 51] H. Robbins and S. Munro (1951), A Stochastic Approxi-

mation Method, Ann. Math. Stat., Vol. 22, pp. 400-407.

[Rumelhart et al. 86] D.E. Rumelhart, G.E. Hinton and R.J. Williams (1986),
Learning Internal Representations by Error Propagation,
In Parallel Distributed Processing, Nature 323, pp. 533-
536.

[Scha�er 92] C. Scha�er (1992), Sparse Data and the E�ect of Over�t-
ting Avoidance in Decision Tree Induction, In proceedings
of AAAI-92.

[Seber and Wild 89] G.A.F. Seber and C.J Wild (1989), Nonlinear Regression,
John Wiley and Sons, New York.

[Sejnowski and Rosenberg 87] T.J. Sejnowski and C.R. Rosenberg (1987), Parallel net-
works that learns to pronounce English text, Complex Sys-
tems, Vol. 1, pp. 145-168.

[Shannon and Warren 64] C.E. Shannon and W. Warren (1964), The Mathematical

Theory of Communication, The university of Illinois Press,
Urbana.

[Silva and Almeida 90] F. Silva and L. Almeida (1990), Acceleration Techniques

for the Back-Propagation Algorithm, Lecture Notes in
Computer Science, Springer Verlag, Vol. 412, pp. 110-119.

[Skilling 89] J. Skilling (1989), The Eigenvalues of Mega-Dimensional

Matrices, In Maximum Entropy and Bayesian Methods,
Editor J. Skilling, Kluwer Academic Publishers, pp. 455-
466.

[Sluis and Horst 86] A. van der Sluis and H.A. van der Horst (1986), The Rate
of Convergence of Conjugate Gradient, Numer.Math., Vol.
48, pp. 543-560.

[Solla et al. 88] S.A. Solla, E. Levin and M. Fleisher (1988), Accelerated
Learning in Layered Neural Networks, Complex Systems,
Vol. 2, pp. 625-639.

[Tesauro 87] G. Tesauro (1987), Scaling relationships in back-
propagation learning: Dependence on training set size.
Complex Systems, Vol. 2, pp. 367-372.

[Tollenaere 90] T. Tollenaere (1990), SuperSAB: Fast Adaptive Back-
Propagation with Good Scaling Properties, Neural Net-
works, Vol. 3, pp. 561-573.

[Vogl et al. 88] T.P. Vogl, J.K. Mangis, A.K. Rigler, W.T. Zink and D.L.
Alkon (1988), Accelerating the Convergence of the Back-
Propagation Method, Biological Cybernetics, Vol. 59, pp.
257-263.

[Wan 90] E.A. Wan (1990), Neural Network Classi�cation: A

Bayesian Interpretation, IEEE Transactions on Neural
Networks, Vol. 1 (4), pp. 303-305.

[Watrous 87] R.L. Watrous (1987), Learning Algorithms for Connection-
ist Networks: Applied Gradient Methods of Nonlinear Op-

timization, In IEEE First International Conference on Neu-
ral Networks, San Diego, Eds. M. Caudill and C. Butler,
Vol. 2, pp. 619-627.

[Weigend et al. 90] A.S. Weigend, B.A. Huberman and D.E. Rumelhart
(1990), Predicting the Future: A Connectionist Approach,
International Journal of Neural Systems, Vol. 1, pp.193-
209.

[Werbos 74] P. Werbos (1974), Beyond Regression: New Tools for Pre-

diction and Analysis in the Behavioral Sciences, Ph.D.
Thesis, Harvard University.

[Widrow and Stearns 85] B. Widrow and S.D. Stearns (1985), Adaptive Signal Pro-

cessing, Prentice Hall, Englewood Cli�s, NJ.

[Williams 91] P.M. Williams (1992), A Marquardt Algorithm for Choos-

ing the Step-size in Back-Propagation Learning with Con-

jugate Gradients, Technical Report CSRP-229, Cognitive
Science, University of Sussex.

[Yang 92] U.M. Yang (1992), Preconditioned Conjugate Gradient-

Like Methods for Nonsymmetric Linear Systems, CSRD
Report 1210, Center for Supercomputing Research and De-
velopment, University of Illinois at Urbana-Champaign.

[Yoshida 91] T. Yoshida (1991), A Learning Algorithm for Multilayered
Neural Networks: A Newton Method Using Automatic Dif-
ferentiation, In Proceedings of International Joint Confer-
ence on Neural Networks, Seattle, Poster.

[Yu and Simmons 90] Y. Yu and R.F. Simmons (1990). Descending Epsilon in
Back-Propagation: A Technique for Better Generalization,
In proceedings of the International Joint Conference on
Neural Networks, Washington 1990, Vol. 3, pp. 167-172,
New York: IEEE.

