

Rewriting Extended Regular Expressions

Valentin M. Antimirov∗ Peter D. Mosses†

November 1993

Abstract

We concider an extened algebra of regular events (languages) with
intersection besides the usual operations. This algebra has the struc-
ture of a distributive lattice with monotonic operations; the latter
property is crucial for some applications. We give a new complete
Horn equational axiomatiztion of the algebra and develop some term-
rewriting techniques for constructing logical inferences of valid equa-
tions.

A shorter version of this paper is to appear in the proceedings
of Developments in Language Theory, Univ. of Turku, July 1993,
published by World Scientific. The present version has been submitted
for publication elsewhere.

1 Introduction

In this paper we consider an extended algebra of regular events (languages)
on a given alphabet with intersection besides the usual operations (union,
concatenation, Kleene star, empty, and the regular unit). This algebra has
the structure of a distributive lattice (join is union, meet is intersection)
with only monotonic operations. The latter property is crucial for some
applications, for instance in the algebraic specification of abstract data types

∗V.M.Glushkov Institute of Cybernetics, 252650, GSP, Kiev-207, Ukraine (SNG)
†Computer Science Department, Aarhus University, Ny Munkegade Bldg. 540, DK-

8000 Aarhus C, Denmark

1

in the framework of so-called unified algebras [19], where sorts of values are
themselves treated algebraically as values. Such specifications are used in
action semantic descriptions of programming languages [20]; our extended
algebra of regular events has been found to be particularly appropriate in
connection with the description of various operations on semantic entities,
as well as with that of abstract syntax.

In Sect. 3 we give a new Horn-equational axiomatization of the extended
algebra of regnlar events on a possibly infinite alphabet A, and prove its com-
pleteness for the ground equational theory of the algebra. The axiomatization
is finite when A is finite. The axioms concerning the usual algebra of regular
events are based on Salomaa’s system [24], but the inference rule depending
on the negation of the empty word property is replaced by an equational
implication involving the meet operation. A new collection of equations then
characterizes the meet operation. Our axiomatization exploits order-sorted
equational logic [10] by introducing A as a subsort of the sort of all regular
events.

In Sect. 4 we develop some term-rewriting techniques which lead to
a simple and practical algebraic calculus for proving/disproving equations
between extended regular expressions - avoiding construction of finite au-
tomata. The calculus is based on several rewrite systems; we have used the
algebraic programming language OBJ [11] to implement and to experiment
with these. We provide some examples of inferences obtained with the help
of this calculus.

Finally, in Sect. 5 we review a large amount of related work, and consider
possible improvements and extensions of our results. We also discuss a pos-
sible complexity advantage of our approach for deciding equations between
particular forms of regular expressions, compared to any approach based on
explicit construction of finite automata.

First we need some notational preliminaries.

2 Preliminaries

We are going to present the algebras of ordinary and extended regular ex-
pressions within the framework of order-sorted equational logic [10].

2

The signature REG of (ordinary) regular expressions includes: a sort
Reg for regular expressions; a sort Alph for an alphabet which is a subsort
of Reg ; and constants and operation symbols:

∅ : → Reg - the empty event (zero);
λ : → Reg - the regular unit;
· : Reg ×Reg → Reg - concatenation;
+ : Reg ×Reg → Reg - union (join);
∗ : Reg → Reg - iteration (Kleene star).

To obtain the syntax of regular expressions over some alphabet A, the
signature REG is extended with an enumerated set of constants αi of sort
Alph in one-to-one correspondence with A (so we do not make distinction
between the constants and the letters from A). We do not assume in general
that the alphabet is finite; we shall say explicitly when this assumption is
made.

Given a set of variables V ar (including those for both sorts Reg and
Alph), let T (X) denote the set of all REG-terms (of sort Reg) with variables
from X ⊂ V ar, and T denote the set T (∅) of ground REG-terms (without
variables).

The signatureREG& is the enrichment ofREG by the operation symbol:

∩ : Reg ×Reg → Reg - intersection (meet).

The set of all REG&-terms with variables from X ⊂ V ar is denoted as
T &(X), similarly T & is the set of ground REG&-terms.

Let Reg[A] be the set of regular events (sets of words, languages) over
A with the standard interpretation of the sorts, constants and operation
symbols of the signature REG. To make it an order-sorted REG-algebra,
we identify each element αi ∈ A with the corresponding one-element event
{αi} ∈ Reg[A].

The algebra Reg[A] is known to be closed under intersections, so it can
be enriched to the REG&-algebra Reg&[A] with the operation symbol ∩
interpreted as intersection. (Note that this holds true even for an infinite
alphabet A - in contrast to the case when one is going to enrich Reg[A] with
the complement operation.)

3

The restriction of (the interpretation of) ∩ to the (carrier of the) sort
Alph is to satisfy the following condition:

α ∩ β = ∅ ⇐⇒ α 6= β (1)

for all constants α, β from A. Similarly, the intersection of non-equal words
from A∗ is ∅. Thus the algebra Reg&[A] has the structure of an atomic
distributive lattice with the join +, the meet ∩, the bottom ∅, and atoms
from A∗.

This provides a standard interpretation of ground REG&-terms for any
given alphabet A; let

int : T & → Reg&[A]

denote the corresponding interpretation function (in fact, the uniquely de-
fined homomorphism from the absolutely free term algebra T &). The in-
terpretation of (non-ground) REG&-terms T &(X) is defined by the unique
homomorphic extension θ# : T &(X) → Reg&[A] of a given variable assign-
ment θ : X → Reg&[A].

Equations and other first-order formulas are interpreted in Reg&[A] as
usual, e.g.:

Reg&[A] |= t1 = t2 ⇐⇒ θ#(t1) = θ#(t2) (2)

for all assignments θ : X → Reg&[A], etc.

An equation is called ground if it consists of ground terms. The set of
(ground) equations valid in an algebra, or in a class of those, B is denoted
by Eg(B) (correspondingly, by GEq(B)); this set is also called the (ground)
equational theory of B.

Given a set of universal Horn-equations (i.e., equations and equational
implications) E, we write E ` t1 = t2 to assert that the equation t1 = t2 can
be inferred from the set E using order-sorted equational calculus [10]. Given
a set of equations Γ, the notation E ` Γ means, as usual, that E ` e for each
e ∈ Γ.

The set of order-sorted Horn-equations E is said to be complete for (the
ground equational theory of) the algebra B if E ` GEq(B) holds. (Regarding
E valid in B, this completeness holds exactly when B is the initial algebra of
the quasivariety defined by E.)

4

In the second half of this paper some standard notions from term-
rewriting theory will be used. We shall keep our notations and terminology
compatible with those of Dershowitz and Jouannaud [7].

In what follows we sometimes omit the alphabet and denote the algebras
introduced above just Reg and Reg&.

5

Table1: The axiom system AX

For all a, b, c : Reg, for alI x, y : Alph,
a+ (b+ c) = (a+ b) + c (A1)

(a · b) · c = a · (b · c) (A2)
a+ b = b+ a (A3)

a · (b+ c) = a · b+ a · c (A4)
(a+ b) · c = a · c+ b · c (A5)

a+ a = a (A6)
a · λ = a (A7)
a · ∅ = ∅ (A8)
a+ ∅ = a (A9)

λ+ a · a∗ = a∗ (A10)
(λ+ a)∗ = a∗ (A11)

(λ ∩ b = ∅) ∧ (a = b · a+ c) =⇒ a = b∗ · c (A12)

λ ∩ (a · b) = (λ ∩ a) ∩ b (A13)
λ ∩ a∗ = λ (A14)
λ ∩ x = ∅ (A15)

∅ ∩ a = ∅ (A16)
a ∩ a = a (A17)
a ∩ b = b ∩ a (A18)

a ∩ (b ∩ c) = (a ∩ b) ∩ c (A19)
a ∩ (b+ c) = (a ∩ b) + (a ∩ c) (A20)
a+ (a ∩ b) = a (A21)

(x · a) ∩ (y · b) = (x ∩ y) · (a ∩ b) (A22)
(a · x) ∩ (b · y) = (a ∩ b) · (x ∩ y) (A23)

αi ∩ αj = ∅ for all αi 6= αj (A24)

6

3 Axiomatization of the Algebra of Extended

Regular Expressions Reg&

The problem we consider in this section can be formulsted precisely as follows:
given the alphabet A, to find a finite set AX of Horn-equations over the
signature REG& valid in the algebra Reg&[A] and complete for its ground
equational theory GEq(Reg&[A]). Moreover, we would like to avoid axioms
involving the use of all letters from A (such as those given by Salomaa [25])
so as to be able to capture the case of an infinite (countable) alphabet A as
well. In other words, we are looking for a “generic algebraic specification” of
Reg&[A] for all possible A.

We approach the problem in two steps. First we consider a finite set of
Horn-equations which is intended to axiomatize Reg[A]. Then we extend
this by new axioms for the meet in order to get a complete axiomatization
of the ground equational theory of Reg&[A].

3.1 Axioms for Reg

Several different axiomatizations of the algebra of regular events have been
suggested [24, 6, 14, 12, 3, 17, 15]. Some of these are finitary, some involve
infinite sets of identities presented by finite numbers of schemes. (A deep
analysis of this latter kind of systems of identities has been presented by
Conway [6] and Krob[17].)

Since our main concern is axiomatization of the meet, it does not make
much difference for us which particular system of axioms, complete for Reg[A],
to choose: the only requirement is that it should be presented by a finite set
of Horn-equations. We are going to obtain such a system by an easy modi-
fication of the system F1 suggested by Salomaa [24]. The corresponding set
of equational axioms is given by (A1)− (A11) in Table 1.

Salomaa used ∅∗ instead of λ, but in fact the equation ∅∗ = λ will be
derivable from the full set of our axioms. For technical reasons we take the
equations (A7), (A8), and (A10) to be dual to the corresponding ones in F1.
This duality is determined by the automorphism rev on Reg that maps each
word to the reverse one, i.e.,

rev(λ) = λ (3)

7

rev(x) = x (4)

rev(a · b) = rev(b) · rev(a) (5)

rev(a+ b) = rev(a) + rev(b) (6)

rev(a∗) = rev(a)∗ (7)

for all x ∈ A, a, b ∈ Reg. Therefore, each inference in F1 can be translated
to a “dual” one in our system.

The system F1 included two inference rules: the substitution rule and
the “solution of equations” rule. We do not need the first one as it is a part
of the order-sorted equational logic. As for the second one, it was based on
the empty word property (e.w.p.). This property of a regular expression r
can be expressed equationally as follows:

r possesses e.w.p. ⇐⇒ r + λ = r. (8)

The problem, however, is that the inference rule involves the negation of
e.w.p.:

b does not possess e.w.p., a = a · b + c

a = c · b∗ (9)

The use of such a non-logical premise in this rule - “does not possess e.w.p.”
has given rise to certain objections [6, 15]. Really, the negation of e.w.p.
cannot be expressed by a universal equation within REG, so this rule can’t
be considered as a Horn-equation either.

However, this problem disappears in the enrichment of REG by the
meet, for it becomes possible to express the negation of the e.w.p. equation-
ally (this was already noticed by Salomaa and Tixier [26]):

adoes not possess e.w.p. ⇐⇒ a ∩ λ = ∅ (10)

This allows us to introduce the equational implication (A12) in Table 1,
which plays the same role in our system as the rule (9) plays in F1. (For the
reasons discussed above, the equations in the premise and the conclusion of
the implication are slight modifications of those in the inference rule.)

Note that the set of axioms (A1) − (A12) is not complete even for the
ground equational theory of Reg[A]: the last axiom involves the meet, hence
one obviously needs further axioms. However, our goal is to axiomatize
GEq(Reg&[A]) (which includes GEq(Reg[A])), so we need some axioms for
the meet anyway. Let’s turn to this problem now.

8

3.2 Axioms for Meet and Completeness.

To axiomatize Reg&, we take the axioms (A1)−(A12) and add the remaining
equations given in Table 1, (A13)− (A24), reflecting properties of the meet.
Note that (A24) is a scheme describing a family of equations. Note aIso that
the axioms (A22)−(A23) reflect the “restricted” distributivity of meet w.r.t.
concatenation and this cannot be extended to the full distributive law

(∀a, b, c, d : Reg) (a · c) ∩ (b · d) = (a ∩ b) · (c ∩ d) (11)

which is is not valid in Reg&[A]. (This was one of the main motivations for
us to exploit the order-sorted language, which allows to express the restricted
distributivity in a natural and still strictly formal way.)

Now let AX denote the extended set of axioms (A1) − (A24). The
main result of this part of the paper is that AX is complete (and, of course,
sound) for the ground equational theory of Reg&[A]. Moreover, this is a
finite axiomatization whenever the alphabet A is finite.

A direct proof of this statement would be rather long and tedious, so we
prefer to make use of the completeness of the system F1. Yet we should be
careful at this point, since we have reformulated the rule for solving equations
into the implication (A12), which uses the meet in the antecedent. Still the
following fact holds:

Proposition 1. The set of axioms (A1)−(A20) is complete for GEq(Reg[A]).
Proof. One can observe that for any ground REG-term t the expression
λ∩t can be reduced to either ∅ or λ by succinct applications of (A13)−(A15)
together with the following three logical consequences of (A13)− (A20):

λ ∩ ∅, λ ∩ λ, λ ∩ (a+ b) = (λ ∩ a) + (λ ∩ b) (12)

(proof by induction on the structure of t ∈ T). This allows to eliminate the
premise λ ∩ a = ∅ from the antecedent of (A12) for any ground REG-term
a satisfying e.w.p., and then one can apply literally all the constructions of
Salomaa [24] used in the completeness proof of F1. 2

The following theorem states a “sufficient completeness” result: the set
of new axioms we have introduced suffices to eliminate meets from ground
REG&-terms. (This is, of course, a proof-theoretic statement about the spe-
cific set of axioms, rather than a reformulation of the corresponding model-
theoretic property that Reg is closed under the meet; the latter can be easily

9

proved by well-known finite automata techniques.)

Theorem 2. For any ground REG&-term t there exists a ground REG-
term t’ such that AX ` t = t’ .
Proof. In the Appendix. (We put the proof in the Appendix because it
uses some notions which will be introduced in the next section.) 2

Corollary 3. For all ground terms t1, t2 ∈ T & we have

AX ` t1 = t2 ⇐⇒ Reg&[A] |= t1 = t2. (13)

In other words, AX is a sound and complete axiomatization of GEq(Reg&[A]).
Proof. The non-trivial direction of the equivalence (completeness) can be
proved as follows.

Let Reg& |= t1 = t2 for some t1, t2 ∈ T &. By Thm. 2 there exist some
terms t′1, t

′
2 ∈ T such that AX ` t1 = t′1 and AX ` t2 = t′2. By Prop. 1 the

equation t′1 = t′2 can be deduced from AX. Combining these two facts, we
obtain AX ` t1 = t2. 2

Thus we reach our goal to finitely axiomatize Reg&[A] in the case of a
finite alphabet A.

Let’s consider now what happens when A is infinite (countable). In
this case our axiomatization becomes infinite, since the scheme (A24) then
describes an infinite set of ground identities.

One obvious way to amend this is to replace the scheme (A24) by the
equivalence in (1), or, at least, by the implication

(∀ x, y : Alph) x 6= y =⇒ x ∩ y = ∅ (14)

which is closely related to the very last inference rule (Rule 3) of Salomaa
and Tixier [26].

However, this implication is not a Horn-equation: actually, it is equiva-
lent to a universally quantified disjunction (∀x, y : Alph)x = y ∨ x ∩ y = ∅.
Thus one would need a richer logic than the order-sorted equational one to
deal with such an axiom, e.g., the full first-order logic with equality or some
universal fragment including disjunction. It seems not quite appropriate to
involve such a general logical system in order to axiomatize just an equational
theory.

10

But we can approach the problem from another side. It seems to be more
reasonable to consider the infinite alphabet A not just as a set of constants,
but as a set of terms over some finite signature

∑
A, or even more generally - a

finitely-generated
∑
A-algebra axiomatized by a set of (Horn-) equations EA.

Now the algebras Reg[A] and Reg&[A] are supposed to be enrichments of
the “alphabet algebra” A, and one could hope to axiomatize the property (1)
by a finite set of (Horn-) equations (over the signature

∑
A ∪REG&) which

then could replace (14) and give a truly Horn-equational finite axiomatization
of Reg&[A].

A detailed implementation of this programme goes beyond the scope of
this paper; let us just point out that the unified algebra of tuples of natural
numbers [20] gives a good illustration of this construction.

Now we turn to the question of proving equations in Reg& using our
axiomatization. This is the subject of the next section.

4 Inferring Equations in Reg& by Rewriting

The word problem in Reg is decidable and it is well known how to (dis)prove
a REG-equation t1 = t2: to construct minimal deterministic finite automata
(DFA) for both regular expressions t1, t2 and to check whether they are iso-
morphic. The same holds true for ground REG&-equations: there are known
procedures for constructing an “intersection” of a given pair of DFA.

However, we are going to address a somewhat different problem: how to
prove equations in the algebra Reg& by logical methods.

Once we have a complete set of axioms, we can, in principle, infer from
it any valid ground equation in Reg& . The only problem is how to find such
an inference. Actually, the completeness proof of Salomaa [24] is constructive
and offers an algorithm for producing inferences of valid equations in Reg.
The same is true for our Prop. 1 and Thm. 2, so combining these we do have
an algorithm for constructing logical inferences from AX. But this would
give rather long and complicated inferences. and it would be too tedious to
use it in practice, even for solving small exercises.

In this section we suggest a much more practical method for proving and
disproving ground equations in Reg&. We shall present it in the form of yet

11

another inference system still closely related to the above axiomatization. To
describe it, we first need to introduce some term-rewriting techniques dealing
with ground REG&-terms.

4.1 Linear Forms for Extended Regular Expressions

We define a set of linear terms Lin ⊂ T & by the following grammar:

Item ::= Alph ·Reg (15)

Sum ::= ltem | Item+ Sum (16)

Lin ::= ∅ | Sum (17)

(Within) the order-sorted or unified algebras framework this can be naturally
formulated as enriching the signature REG& by a chain of new subsorts of
Reg : Item < Sum < Lin < Reg.)

This implies that any term l ∈ Lin is either ∅ or has the form of a sum
of items x1 · r1 + . . .+ xn · rn for some constants xi ∈ A and terms ri ∈ T &,
i = 1, . . . , n. We say that an item x · r has the head x and the tail r. We also
say that a REG&-term t is in linear form if t ∈ Lin.

Deflnition 4. Given a linear term t ∈ Lin, let Hd(t) denote the set of
all heads of items of t, and Tl(t) denote the set of all tails of items of t.

Definition 5. The linear term t is said to be deterministic (or in deter-
ministic linear form) iff either it is ∅ or all the heads of its items are distinct
and T l(t) ⊂ T & \ {∅}.

We shall use the notation
∑
x∈Hd(l) x · rx to denote a deterministic linear

term l as a (possibly empty) sum of its items x · rx. This sum denotes the
term ∅ if the set of heads Hd(l) is empty.

The following facts can be proved by straightforward induction on the
structure of ground terms.

Proposition 6. For any t ∈ T & there is some l ∈ Lin such that AX `
t = λ ∩ t+ l. For any l ∈ Lin there is some deterministic l′ ∈ Lin such that
AX ` l = l′. 2

12

It follows that any ground REG&-term t can be represented in the fol-
lowing form:

t = o(t) +
∑

x∈hd(l)

x · rx (18)

where o(t) denotes the “constant part” of t, which is equal to either ∅ or
λ. (This recalls a classical result [24, 26, 25] that every (extended) regular
expression can be equationally characterized ; note however that we do not
use the sum over the whole alphabet A, which may be infinite!) Yet the
representation is not unique (even modulo all the equations in AX): there are
different but equal in REG& linear terms. This requires us to be more specific
in the definition of the representation in (18) and to provide a constructive
procedure for calculating linear forms.

One possible way to do this is to introduce special operations on the
term algebra T & such as deriuatives [4, 6] (also called left quotients [5] and
left residuals [21]), but this would involve new equations to define these
operations and would make the inference system more complicated.

We prefer to resolve the problem by providing a parlicular strategy for
applying equations from AX to reduce a term to the required form; on the
way we shall also obtain the derivatives, without introducing special equa-
tions for them.

The strategy is presented through the rewrite system LF given in Table
2, modulo associativity of the concatenation ‘·’ and associativity and commu-
tativity of the join + and the meet ∩. (In fact, this is an algebraic program
- we have implemented it in OBJ3 [11].) The system includes an auxiliary
unary function

f : Reg → Lin

whose rôle is to calculate the non-constant part of the representation in
(18). Note how this function is used in the rewrite rules (L23) and (L28)
to control applications of the axiom (A10) in Table 1, in order to provide
limited “unfolding” of starred expressions.

The system LF is terminating and provides the (unique) normal form
LF (t) of any term over the signature REC&∪{f}. The following proposition
(which is just a constructive variant of Prop. 6) ensures that the system LF

13

does its job properly.

Proposition 7. Given t ∈ T &, the following facts hold:

1. LF (λ ∩ t) ∈ {∅, λ}.

2. LF (f(t)) is in deterministic linear form.

3. AX ` t = LF (λ ∩ t) + LF (f(t)). 2

14

Table 2: The rewrite system LF

For x, y, z : Alph and a, b, c : Reg,
∅∗ → λ (L1)
λ∗ → λ (L2)

∅+ a → a (L3)
a+ a → a (L4)
∅ · a → ∅ (L5)
a · ∅ → ∅ (L6)
λ · a → a (L7)

∅ ∩ a → ∅ (L8)
a ∩ a → a (L9)
λ ∩ x → ∅ (L10)

λ ∩ (a · b) → (λ ∩ a) ∩ b (L11)
λ ∩ a∗ → λ (L12)

x ∩ y → if x = y then x else ∅ (L13)

(x · a) ∩ (y · b) → (x ∩ y) · (a ∩ b) (L14)
(x · a) ∩ y → (x ∩ y) · (a ∩ λ) (L15)
(a+ b) ∩ c → (a ∩ c) + (b ∩ c) (L16)

x · b+ x → x · (b+ λ) (L17)
x · b+ x · c → x · (b+ c) (L18)

f(∅) → ∅ (L19)
f(λ) → ∅ (L20)
f(x) → x · λ (L21)

f(x · a) → x · a (L22)
f(a∗ · b) → f(a) · a∗ · b+ f(b) (L23)

f((a+ b) · c) → f(a · c) + f(b · c) (L24)
f((a ∩ b) · c) → (f(a) ∩ f(b)) · f(c) + (λ ∩ a ∩ b) · f(c) (L25)

f(a+ b) → f(a) + f(b) (L26)
f(a ∩ b) → f(a) ∩ f(b) (L27)
f(a∗) → f(a) · a∗ (L28)

15

This provides a particular representation as in (18) for each ground
REG-term t and we can now define unambiguously the functions

o : T & → {∅, λ}, ` : T & → Lin, ∂ : A× T & → T &

as follows:

o(t) = LF (λ ∩ t); (19)

`(t) = LF (f(t)); (20)

∂x(t) =

{
r if x · r occurs in `(t)
∅ otherwise

(21)

The latter function calculates derivatives (left residuals) of its second argu-
ment, because

init(∂x(t)) = {w ∈ A∗ | x · w ∈ init(t)} (22)

holds for all x ∈ A, t ∈ T &.

The following inductive definition extends the function ∂ on its first
argument to the whole set A∗:

∂λ(t) = t, (23)

∂x·w(t) = ∂w(∂x(t)) (24)

for any x ∈ A, w ∈ A∗. Here we get the word derivatives of t.

The fundamental fact about the word derivatives is that only a finite
number of those of a given term t ∈ T & are dissimilar, i.e., distinct w.r.t.
a restricted subset of equations E ⊂ AX [14, 24]. (Recall that it suffices
to include into E only the basic monoid and lattice axioms, even without
distributivity and absorption - i.e., (A1) − (A3), (A6) − (A9) and (A13) −
(A19). But the set can (and should!) be extended for practical purposes, cf.
discussion of this point in the next subsection.) Given such a set E, let DE(t)
denote this finite set of dissimilar w.r.t. E word derivatives of the ground
REG&-term t.

The use of linear forms leads us to a respectably simple method for
eliminating meets from extended regular expressions presented in the proof
of Thm. 2 (cf. the Appendix), as well as to a new inference system for
proving equations in Reg&.

16

4.2 Inferring Equations in Reg&

Here we present a new inference system which includes two components: a set
of rewrite rules SIM for “simplifying” regular expressions and a set of trans-
formation rules TR implementing a complete strategy for proving/refuting
ground REG&-equations. (The system TR also involves the rewrite system
LF for computing linear forms.)

The rewrite system SIM may be chosen more or less arbitrarily; the
only requirements are that 1) it should be terminating and 2) the congruence
≡SIM on T &, generated by SIM , must be sufficiently strong to make the set
of derivatives DSIM(t) finite for any ground REG&-term t.

For instance, the rewrite system consisting of the (oriented from left
to right) equations (A6) − (A9) and (A13) − (A17) modulo (non-oriented)
equations (A1) − (A3) and (A18) − (A19) would satisfy both requirements.
However, in order to make the inferences shorter, it is useful to include in
SIM also such (oriented) equations as (A10)− (A12), (A21), as well as

(a∗)∗ → a∗, (25)

(a∗ + b)∗ → (a+ b)∗, (26)

(a∗ ∩ b∗)∗ → a∗ ∩ b∗, (27)

and possibly some further rewrite rules. (The more rules are used here, the
more equations a = b valid in Reg& can be proved by just reducing a and b
to the same normal form by SIM , but the more expensive the calculations
become - due to the use of associative-commutative pattern matching etc.)

The idea of the second - actually, the main - component TR of our
inference system comes from the following observation. Suppose we are going
to check whether the ground equation a = b is valid in Reg&. We have
Reg& |= a = b if and only if o(a) = o(b) and each item of `(a) is equal
(in Reg&) to some item of `(b) and vice versa. Then, an item x · ∂x(a) is
equal to an item x · ∂x(b) if and only if the equation ∂x(a) = ∂x(b) is valid in
Reg&. Proceeding in this way, we can “unfold” the initial equation into an
equivalent conjunction of equations of corresponding derivatives of a and b.
The crucial point here is that when proving the latter, the initial equation
a = b can be used as a kind of “inductive hypothesis”: if a = b reappears as
a member of the conjunction, it can be removed from the set of equations to
be proved. This can be formulated more precisely as the following inference

17

rule:

λ ∩ c = ∅, a = c · a+ a′, b = c · b+ b′, a′ = b′

a = b
(28)

for all a, a′, b, b′, c : Reg.

Proposition 8. (28) i.s a derived inference rule for the theory AX, i.e.,
AX ` a = b whenever the premises are derivable from AX.

Proof. By obvious application of (A12) to the second and third premises.
2

This derived inference rule, combined with the use of linear forms, leads to a
pretty simple strategy for inferring ground equations in Reg&. To describe
it, we need a couple of auxiliary constructions.

Let Eq = T & × T & be the set of ground equations represented as pairs
of terms, we denote a pair e ∈ Eq as t1 ' t2. Let Set[Eq] be a data
structure representing conjunctions (sets) of equations e ∈ Eq (so that true
corresponds to the empty set and ∪ corresponds to conjunction).

Table 3: The transformation system TR

〈(∅ = λ) ∧ S,H〉 ⇒ 〈false, H〉; (DIS)

〈(a = b) ∧ S, H〉 ⇒ 〈S, H〉 if a ≡SIM b; (SIM)

〈(a = b) ∧ S, H〉 ⇒ 〈S, H〉 if a = b) in H; (IND)

〈(a = b) ∧ S, H〉 ⇒ 〈split(a = b) ∧ S, H ∧ (a = b)〉
if¬((a = b) in H) (SPL)

We also need a special membership predicate

in : Eq × Set[Eq]→ Bool

defined as follows: t1 ' t2inH iff there is a pair t′1 ' t′2 ∈ H such that

(t1 ≡SIM t′1 ∧ t2 ≡SIM t′2) ∨ (t1 ≡SIM t2 ∧ t2 ≡SIM t′1). (29)

18

The following equations define a function conj : Lin× Lin→ Set[Eq]

conj(∅, ∅) = true; (30)

conj(∅, x · a+ l) = {∅ ' a} ∪ conj(∅, l) (31)

conj(x · a+ l1, l2) = {a ' ∂x(l2)} ∪ conj(l1, l2) (32)

Finally, we define an operation for splitting an equation a ' b (where a, b ∈
T &) into a conjunction of equations:

split(a ' b) = if o(a) ≡ o(b) then conj(`(a), `(b)) else false; (33)

Proposition 9. Given t1, t2 ∈ T & with o(t1) = o(t2), then AX ` t1 = t2 iff
AX ` e for each equation e ∈ split(t1 ' t2). 2

Now we are in a position to formulate our transformation system TR.
It consists of the (conditional) rewrite rules given in Table 3 - “disprove”,
“simplify”, “induction”, “splitting” - which transform pairs 〈S,H〉 of sets
(conjunctions) of equations S,H ∈ Set[Eq]. The set S includes equations to
be proved, while the set H accumulates “inductive hypotheses”. To simplify
notations, from here on we denote S and H just as conjunctions of equations,
rather than sets of pairs.

Note that the second rule in Table 3 involves the rewrite system SIM
discussed above. The fourth rule involves calculations of linear forms through
the function split.

Let ⇒ denote the rewrite relation defined by TR, then ⇒∗ denotes its
reflexive transitive closure. A derivation in TR is a chain of applications of
the rules to a given pair.

Theorem 10. The following facts hold:

1. The rewrite system TR is terminating.

2. Given a, b ∈ T &, let 〈S, H〉 be the result (a normal form) of the
following derivation in TR:

〈a = b, true〉 ⇒∗ 〈S,H〉.

Then Reg& |= a = b iff S is the empty set (i.e., true).

19

Proof. 1) Consider the following (partial) ordering Â on pairs 〈S,H〉:

〈S1, H1〉 Â 〈S1, H2〉 iff |H1| < |H2| ∨ (|H1| = |H2| ∧ |S1| > |S2|) (34)

where |X| stands for the cardinality of a set X. For any given S0, H0 ∈
Set[Eq] this ordering is noetherian (well-founded) on the set of pairs

{ 〈S, H〉 | 〈S0, H0〉 ⇒ 〈S, H〉 }

due to the fact that H is a subset of the finite set

⋃
a=b∈S0

DSIM(a)×DSIM(b)

of pairs of all possible delivatives of terms in initial equations.

Each rule in TR either increases |H| or, otherwise, reduces |S|, therefore
the system is terminating.

2) The rules (DIS), (SIM) obviously keep validity in Reg& (and de-
ducibility in AX) of all equations in S. The same is true for the rule (SPL),
due to Prop. 9, and the rule (IND), due to Prop. 8. 2

Thus the use of TR to prove a REG&-equation a = b is supposed to
be as follows: take the pair 〈a = b, true〉 and apply the rules in some order
until the first component of the pair becomes equal either to true or to
false. Apparently it is reasonable to use first (DIS), if possible, then (SIM)
and (IND), and (SPL) in the last turn. Still the procedure remains non-
deterministic: the rules can be applied to different equations in the set S.

We next consider some examples to illustrate the use of TR.

4.3 Examples

The first example below is a rather simple introductory one. Examples 2 and
3 demonstrate the treatment of meet. Examples 4 and 5 show how equations
involving the same extended regular expression are respectively confirmed
and refuted. Finally, Examples 6 and 7 consider a couple of “classical”
equations known from the literature.

20

We shall use regular expressions on the alplabet A = {a, b, c, . . .}. To
simplify notation, we omit the concatenation sign from the expressions and
in some cases introduce auxiliary meta-variables X, Y, . . . denoting (parts of)
the regular expressions under consideration. Given a positive natural k and
a regular expression r, let rk stand for the k-times concatenation of r.

Derivations 〈S1, H1〉 ⇒ . . . ⇒ 〈Sn, Hn〉 are presented below in tabular
form: row i of the table shows Si, Hi and the rule (Ri) to be applied. When
Si has more than one conjunct, the index j of the conjunct (Si)j to which
the rule is applied is indicated thus: (Ri)j. The result of a full derivation is
either true or false, and Hn is irrelevant so we omit it from the table.

Example 1. To prove b(ab)∗ = (ba)∗b, one can obtain the following in-
ference in TR:

i Si Hi (Ri)
1. b(ab)∗ = (ba)∗b true (SPL)
2. (ab)∗ = a(ba)∗b+ λ S1 (SPL)
3. b(ab)∗ = (ba)∗b H2 ∧ S2 (IND)
4. true

Note that the equation at step 2 is a classical axiom, used by Conway [6] and
Krob [17].

Example 2. To prove (aaa)∗ ∩ (aa)∗ = (aaaaaa)∗, one can obtain the
following inference in TR:

i Si Hi (Ri)
1. (a3)∗ ∩ (a2)∗ = (a6)∗ true (SPL)
2. a(a(a3)∗ ∩ (a2)∗) = a5(a6)∗ S1 (SPL)
3. a(a3)∗ ∩ (a2)∗ = a4(a6)∗ H2 ∧ S2 (SPL)
4. (a3)∗ ∩ a(a2)∗ = a3(a6)∗ H3 ∧ S3 (SPL)
5. a2(a3)∗ ∩ (a2)∗ = a2(a6)∗ H4 ∧ S4 (SPL)
6. a((a3)∗ ∩ (a2)∗) = a(a6)∗ H5 ∧ S5 (SPL)
7. (a3)∗ ∩ (a2)∗ = (a6)∗ H6 ∧ S6 (IND)
8. true

Example 3. To prove X = (a+ bb)∗ ∩ (aa+ b)∗ = (aa+ bb)∗ = Y , one
can obtain the following inference in TR:

21

i Si Hi (Ri)
1. X = Y true (SPL)
2. X1 = Y1 ∧X2 = Y2 S1 (SPL)1

3. X = Y ∧X2 = Y2 H2 ∧ (S2)1 (IND)1

4. X2 = Y2 H3 (SPL)
5. X = Y H4 ∧ S4 (IND)
6. true

where

X1 = (a+ bb)∗ ∩ (a(aa+ b)∗) (35)

Y1 = a(aa+ bb)∗ (36)

X2 = (b(a+ bb)∗) ∩ (aa+ b)∗ (37)

Y2 = b(aa+ bb)∗ (38)

Example 4. Let X = (a∗b)∗, Y = (ab∗)∗. To prove X ∩ Y = a(a+ b)∗b+ λ
one can obtain the following inference in TR:

i Si Hi (Ri)
1. X ∩ Y = a(a+ b)∗b+ λ true (SPL)
2. a∗bX ∩ b∗Y = (a+ b)∗b S1 (SPL)
3. a∗bX ∩ b∗Y = (a+ b)∗b ∧X ∩ b∗Y = (a+ b)∗b+ λ H2 ∧ S2 (IND)1

4. X ∩ b∗Y = (a+ b)∗b+ λ H3 ∧ (S3)1 (SPL)
5. a∗bX ∩ b∗Y = (a+ b)∗b ∧X ∩ b∗Y = (a+ b)∗b+ λ H4 ∧ S4 (IND)1

6. X ∩ b∗Y = (a+ b)∗b+ λ H5 (IND)1

7. true

Example 5. Let X = (a∗b)∗, Y = (ab∗)∗. To disprove X ∩ Y = (ab)∗,
one can obtain the following inference in TR:

i Si Hi (Ri)
1. X ∩ Y = (ab)∗ true (SPL)
2. a∗bX ∩ b∗Y = b(ab)∗ S1 (SPL)
3. a∗bX ∩ b∗Y = ∅ ∧X ∩ b∗Y = (ab)∗ H2 ∧ S2 (SPL)1

4. a∗bX ∩ b∗Y = ∅ ∧X ∩ b∗Y = ∅ ∧X ∩ b∗Y = (ab)∗ H3 ∧ (S3)1 (SPL)2

5. false

22

Example 6. The following family of cyclic identities

Ck : a∗ = (ak)∗(λ+ a+ a2 + . . . ak−1) (39)

for all k > 0, forms a set of equations in Reg which is not derivable from any
finite et of equational axioms [23, 6]. Consider the inference of C3 produced
by TR:

i Si Hi (Ri)
1. a∗ = (a3)∗(λ+ a+ a2) true (SPL)
2. a∗ = a(a(a3)∗(λ+ a+ a2) + λ) + λ S1 (SPL)
3. a∗ = a(a3)∗(λ+ a+ a2) + λ H2 ∧ S2 (SPL)
4. a∗ = (a3)∗(λ+ a+ a2 H3 ∧ S3 (IND)
5. true

Obviously, any of the Ck can be derived in TR in k+1 steps in the same
manner.

Example 7. Conway [6] suggested a family of identities R′n to provide a
complete infinite equational basis for Reg. He pointed out that for each
n = 1, . . . , 4, R′n is deducible from other classical equational axioms, but for
n = 4 he doubted that “a completely written out proof could be fitted into
10 pages” (Conway [6], page 119). R′4 is the following equation:

(a+ b+ c)∗ = (a(b+ c)∗a+ b(a+ c)∗b+ c(a+ b)∗c)∗.

(λ+ a(b+ c)∗ + b(a+ c)∗ + c(a+ b)∗ (40)

Let’s consider its proof produced by TR. We use the following abbrevi-
ations here: X is the left-hand side of (40), Y is its right-hand side and

Y1 = (b+ c)∗aY + (b+ c)∗ (41)

Y2 = (a+ c)∗bY + (a+ c)∗ (42)

Y3 = (a+ b)∗cY + (a+ b)∗ (43)

The inference in TR is:

23

i Si Hi (Ri)
1. X = Y true (SPL)
2. X = Y1 ∧X = Y2 ∧X = Y3 S1 (SPL)1

3. X = Y ∧X = Y1 ∧X = Y2 ∧X = Y3 H2 ∧ (S2)1 (IND)1

4. X = Y1 ∧X = Y3 ∧X = Y3 H3 (IND)1

5. X = Y2 ∧X = Y3 H4 (SPL)1

6. X = Y2 ∧X = Y ∧X = Y3 H5 ∧ (S5)1 (IND)1

7. X = Y ∧X = Y3 H6 (IND)1

8. X = Y3 H7 (SPL)
9. X = Y3 ∧X = Y H8 ∧ S8 (IND)1

10. X = Y H9 (IND)
11. true

This inference is the longest one amongst our examples, still it is re-
spectably short and presents a completely written out formal proof of R′4.
Of course, the main point is that the proof is not purely equational.

It is also worth noting that each of the identities R′n (for all n > O) can
be derived in TR in the same manner.

5 Conclusion

Let us first summarize what we have achieved in this paper:

• We have given a new system of Horn-equational axioms AX for the
extended algebra of regular events Reg&[A], and proved that it is com-
plete for the ground equational theory of this algebra; the axiomatiza-
tion is finite when A is finite.

• We have described a transformation system TR for (dis)proving ground
equations in Reg&[A], and proved its correctness and completeness,
i.e., that it is terminating and that the result corresponds to whether
a ground equation is satisfied or not. Our method is based on term-
rewriting techniques and avoids explicit construction and minimaliza-
tion of deterministic finite automata (DFA) or non-deterministic ones
(NFA).

The primary application envisaged for this work is in the implementation
of term rewriting in frameworks that allow algebras of sorts - in particular,

24

for unified algebras [19]. Extended regular expressions denoting sorts are
much exploited in action semantics [20], whose foundations are also specified
using unified algebras.

Our work may also be seen as a contribution to the theory of regular
expressions. Let us briefly review previous related work. At the end, we shall
consider possible improvements and extensions of our approach.

5.1 Related Work

There has been much research on the axiomatization of Reg[A], whose
(ground) equational theory is not finitely based for alphabets with more
than one letter, as proved by Redko [23] and Conway [6] (cf. also Salomaa
[25]). Infinite equational axiomatizations were first provided by Conway [6]
and shown to be complete by Krob [17]. To obtain a finite axiomatization,
several approaches have been explored:

• Using special (non-logical) inference rules: Salomaa [24] gave two com-
plete axiomatic calculi. One refers to the negation of the empty word
property, the other one uses the number of letters occurring in regular
expressions. See also Salomaa [25], Salomaa and Tixier [26].

• Using equational implications: Conway [6] gave a finite Horn-equational
axiomatization of Reg; he conjectured, but did not prove, complete-
ness. Gorshkov and Archangelsky [12] gave a different one using 10
equations and two equational implications, proving its completeness.
Boffa [3] linked the completeness of Conway’s and Salomaa’s systems
and suggested an “intermediate” inference rule (which can be taken as
an equational implication). Krob [17] proved completeness of several
axiomatic systems for Reg (including those by Conway and Boffa).
Kozen [15] gave yet another finite axiomatization of Reg by 13 equa-
tions and two equational implications.

• Extending Reg with further operations: Salomaa and Tixier [26] gave
two complete axiomatizations of the extension of Reg with intersection
and complement, one depending on a particular alphabet and referring
to the negation of e.w.p. (see also Salomaa [25]), the other one (devel-
oped by Tixier in his thesis) getting rid of e.w.p. through intersection.

25

Pratt [22] considered action algebras equipped with residuations (left
and right) and gave a finite equational axiomatization (in the enriched
signature) of the equational theory of the variety of action algebras
(which conservatively extends the ground equational theory of Reg[A]
on the countable alphabet A) Kozen [16] extended the above with in-
tersection to obtain action lattices, but his axioms do not axiomatize
GEq(Reg&[A]).

• Using order-sorted algebras: In the present paper we exploit the rather
natural idea that the alphabet should be a subsort of the sort of regular
events over that alphabet. This can also be done in the framework of
unified algebras [19] which treats sorts as values and uses a binary
predicate symbol for sort inclusion. In both cases, we exploit Horn-
equations freely in order to get a complete axiomatization.

Concerning calculation and proof techniques in Reg and its extensions -
avoiding explicit construction and minimalization of deterministic finite au-
tomata - we find the following work:

• Using derivatives: Brzozowski [4] and Conway [6] showed how to use
derivatives to carry on some calculations in Reg, also when extended
with meet and complement. See also Ginzburg [9] for “mechanical
methods” for proving equivalence in Reg.

• Calculating normal forms: Johansen [13] provided “algebraic normal
forms” for Reg (actually, not unique in general). Other papers have
developed normal forms for some proper subclasses of Reg (cf. further
references given by Johansen [13]).

• Solving systems of equations: Brzozowski and Leiss [5] showed how
to do this for linear equations in Reg extended with intersection and
complement. Leiss [18] has subsequently demonstrated some advan-
tages that arise in the absence of complement.

The method for inferring equations given in the present paper involves sev-
eral rewrite systems - LF for calculating linear forms, SIM for simplifying
regular expressions, and TR for reducing sets of equations. All these are
modulo associativity/commutativity and thus based on the corresponding
matching algorithm, which is known to be NP-complete [1]. Therefore, the

26

most adequate complexity measure seems to be the length of inferences pro-
viding by the system TR. An analysis of the proof of Thm. 10 shows that
in the worst case the length of the inference of the equation a = b can be
exponential in the size of the expressions involved (more precisely, it can be
equal to the product of the numbers of dissimilar derivatives corresponding
to a and b).

This is not surprising since the problem of non-equivalence of two ground
REG-expressions is known to be PSPACE-complete [8]. On many particular
examples, however, the system TR produces respectably short inferences.
The use of the rewriting system SIM for simplifying regular expressions may
be crucial here. Consider for example the equation

(a∗ + b)∗a(a+ b)k = (a+ b∗)∗a(b+ a)k (44)

for some positive natural k. Note that the minimal DFA for either of the
sides of (44) has 2k+1 states and corresponding exponential time is needed to
construct one. However, both sides can be reduced to normal forms, equiv-
alent modulo associativity/commutativity of the join, by one application of
the rule (26). So the inference of (44) in TR may consist of just one step
- the application of rule (SIM). Perhaps the term rewriting approach that
we have suggested leads to a better average-case complexity algorithm than
known ones constructing automata to solve the word problems in Reg and
Reg&?

This possibility is supported by a result of Birget [2], proving that the
size of a minimal DFA may increase exponentially for both sums A1 + A2 +
. . .+Ak and intersections A1 ∩A2 ∩ . . .∩Ak of minimal DFA Ai of the same
size n (i.e., the resulting DFA may have nk states). The same holds true
even for the size of NFA for intersections. Now imagine that one is going to
(dis)prove a regular equation

a1 ∩ a2 ∩ . . . ∩ ak = r (45)

using automata methods. Then one is supposed first to unfold each side into
a DFA or an NFA, and this may take exponential time and space. In contrast
to this, our TR “unfolds” both sides together in a “lazy” manner using on
the way simplification. This can help to obtain a rather short inference (not
in the worst case, of course).

27

5.2 Open problems and possible extensions

Finally, let us mention a couple of aspects of this work that have been left
open here:

• It should be investigated whether the term rewriting approach we have
suggested does in fact lead to a better average-case complexity algo-
rithm than those based on the minimal DFA construction.

• Our axiomatization of Reg&[A] is complete for inferring ground equa-
tions (using letters from A as constants). It would be useful to ex-
tend it to one that is complete also for the whole equational theory
Eq(Reg&[A]). For instance, the universal equation

(∀a, b : Reg)(a∗ ∩ b∗)∗ = a∗ ∩ b∗ (46)

is valid in Reg&[A] and should be derivable from such an extension.

Acknowledgments: This work was partially supported by a Research
Fellowship (J.nr. 11 − 9479) and by the DART project (5.21.08.03), both
funded by the Danish Science Research Council. Nils Andersen, Torben Mo-
gensen, sincerely thankful to DAIMI (Computer Science Department, Aarhus
University), where he started the work reported in this paper, and to DIKU
(Computer Science Department, Copenhagen University), which gave him
the opportunity to complete the work and to present it at the conference on
Developments in Language Theory, Univ. of Turku, 12-15 July 1993.

Appendix

The following proof of Thm. 2 exploits linear forms and derivatives of REG&-
terms – cf. Sect. 4 for definitions.
Proof. Given an extended regular expression t ∈ T , we show how to find
t′ ∈ T such that AX ` t = t′.

First, consider the linear form `(t). It may happen that it doesn’t contain
the meet – then t = o(t) + `(t) and we are done. Otherwise, consider the
following finite non-empty set of equations LS(t):

{r = o(r) + `(r) | r ∈ DE(t) \ T } (47)

28

It follows from Prop. 7 that AX ` LS(t). Note that the meet appears
in these equations only inside the expressions r (which can also occur in
right-hand sides as tails of some items).

Now replace all the occurrences of each expression r in LS(t) (in both
left- and right-hand sides) by corresponding fresh variables xr and consider
the result as a system of linear equations for these xr. This system doesn’t
contain meet, so it follows from Prop. 1 that it can be solved in Reg by
the classical method (cf., e.g., Salomaa [24, 25] using axioms (A1) − (A20).
The solution t′ for the component xt is just the required REG-term, since
the equation t = t′ is derived from LS(t) using (A1)− (A20). 2

29

References

[1] D. Benanav, D. Kapur, and P. Narendran, Complexity of matching prob-
lems, J. Symbolic Computation 3 (1987) 203-216.

[2] J.-C. Birget, Intersection and union of regular languages and state com-
plexity, Inf. Process. Lett. 43 (1992) 185-190.

[3] M. Boffa, Une remarque sur les systèmes complets d’identités ra-
tionnelles, Theor. Inf. Applic. 24 (1990) 419-423.

[4] J. A. Brzozowski, Derivatives of regular expressions, J. ACM 11 (1964)
481-494.

[5] J. A. Brzozowski and E. L. Leiss, On equations for regular languages,
finite automata, and sequential networks, Theoret. Comput. Sci. 10
(1980) 19-35.

[6] J. H. Conway, Regular Algebra and Finite Machines (Chapman and Hall,
1971).

[7] N. Dershowitz and J.-P. Jouannaud, Rewrite systems, in: J. van
Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. B (Else-
vier, Amsterdam, 1990) Ch. 6.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability - A Guide
to the Theory of NP-Completeness (W. H. Freeman & Co., 1979).

[9] A. Ginzburg, A procedure for checking equality of regular expressions,
J. ACM 14 (1967) 355-362.

[10] J. A. Goguen and J. Meseguer, Order-sorted algebra I: Equational de-
duction for multiple inheritance, overloading, exceptions and partial op-
erations, Theoret. Comput. Sci. 105 (1992) 217-273.

[11] J. A. Goguen and T. Winkler, Introducing OBJ3, Tech. Report SRI-
CSL-88-9, Computer Science Lab., SRI International, 1988.

[12] P. V. Gorshkov and K. V. Archangelsky, Conditional equations in an
algebra of regular languages, Reports of Ukrainian Academy of Sci.,
series A 10 (1987) 67-69.

30

[13] P. Johansen, An Algebraic Normal Form for Regular Events (Poly-
teknisk Forlag, Lyngby, Denmark, 1972).

[14] D. Kozen, On induction vs. ∗-continuity, in: D. Kozen, ed., Proc. Work-
shop on Logic of Programs, Lecture Notes in Computer Science, Vol.
131 (Springer, Berlin, 1981) 167-176.

[15] D. Kozen, A completeness theorem for Kleene algebras and the algebra
of regular events, in: Proc. LICS’91 (IREE, 1991) 214-225.

[16] D. Kozen, On action algebras, Tech. Report DAIMI PB-381, Computer
Science Dept., Aarhus University, 1992.

[17] D. Krob, Complete systems of B-rational identities, Theoret. Comput.
Sci. 89 (1991) 207-343.

[18] E. L. Leiss, Generalized language equations with multiple solutions, The-
oret. Comput. Sci. 44 (1986) 155-174.

[19] P. D. Mosses, Unified algebras and institutions. in: Proc. LICS’89
(IEEE. 1989) 304-312.

[20] P. D. Mosses, Action Semantics, Cambridge Tracts in Theoretical Com-
puter Science, Vol. 26 (Cambridge University Press, 1992).

[21] D. Perrin, Finite automata, in: J. van Leeuwen, ed., Handbook of The-
oretical Computer Science, Vol. B (Elsevier, Amsterdam, 1990) Ch. 1.

[22] V. Pratt, Action logic and pure induction, in: Proc. JELIA’90, Lecture
Notes in Computer Science, Vol 478 (Springer, Berlin, l990) 97-120.

[23] V. N. Redko, On defining relations for the algebra of regular events,
Ukrainian Mat. Z. 16 (1964) 120-126.

[24] A. Salomaa, Two complete axiom systems for the algebra of regular
events, J. ACM 13 (1966) 158-169.

[25] A. Salomaa, Theory of Automata (Pergamon, 1969).

[26] A. Salomaa and V. Tixier, Two complete axiom systems for the algebra
of regular events, IEEE Trans. Comp. C-17 (1968) 700-701.

31

