
Determinizing Asynchronous Automata

Nils Klarlund�

Madhavan Mukund
y

Milind Sohoniy

Oktober 1993

Abstract

A concurrent version of a �nite-state automaton is a set of pro-

cesses that cooperate in processing letters of the input. Each letter

read prompts some of the processes to synchronize and decide on a

joint move according to a non-deterministic transition relation. Such

automata are known as asynchronous automata.

The question whether these automata can be determinized while

retaining the synchronization structure has already been answered in

the positive, but indirectly, by means of sophisticated algebraic tech-

niques.

In this paper we present an elementary proof, which generalizes the

classic subset construction for �nite-state automata. The proof uses

in an essential way an earlier �nite-state construction by Mukund and

Sohoni for maintaining each process's latest knowledge about other

processes.

Our construction is only double-exponential and thus is the �rst

to essentially match the lower bound.

�Computer Science Department, Aarhus University, Ny Munkegade, DK 8000 Aarhus

C, Denmark E-mail:klarlund@daimi.aau.dk
ySchool of Mathematics, SPIC Science Foundation, 92 G N Chetty Road, T

Nagar, Madras 600 017, India Email:fmadhavan,sohonig@ssf.ernet.in This report

aIso appears as Report TCS-93-5, School of Mathematics, SPIC Science

Foundation, Madras, India (1993).

1

In conjunction with earlier results of Ochmanski and Pighizzini,

our construction provides a new (and in a sense \classical") proof of

Zielonka's theorem that every recognizable trace language is accepted

by a deterministic asynchronous automaton whose structure precisely

captures the independence relation of the given trace alphabet.

2

Introduction

Asynchronous automata were introduced by Zielonka as a natural general-

ization of �nite-state automata for concurrent systems [?]. An asynchronous

automaton consists of a set of components, or processes, which periodically

synchronize to process their input. Each letter a in the alphabet is associ-

ated with a subset �(a) of processes. The processes in �(a) synchronize on

reading a and jointly decide on a move. The processes outside �(a) remain

unchanged during this move|in fact, they are oblivious to the occurrence of

a.

A distributed alphabet of this type gives rise to an independence relation

I between letters: (a; b) 2 I i� �(a)\�(b) = ;. Thus a and b are independent

when processed by disjoint sets of components.

An alphabet with an independence relation is also called a concurrent

alphabet. This notion was introduced by Mazurkiewicz as a technique for

studying concurrent systems from the viewpoint of formal language theory

[?]. Given a concurrent alphabet (
P
; �); I induces a natural equivalence

relation � on
P�: two words w and w0 are related by � i� w0 can be obtained

from w by a sequence of permutations of adjacent independent letters. The

equivalence class [w] containing w is called a trace.

A language L �
P� is said to be a trace languaye if L is closed under �|

i.e., for each w 2
P�, w is in L i� every word in [w] is L. A trace language

is recognizable if it is accepted by a conventional �nite state automaton.

However, since conventional automata are sequential, it is quite awk-

ward to precisely characterize the class of automata which recognize trace

languages. Asynchronous automata, on the other hand, are natural ma-

chines for recognizing these languages. If we distribute
P

in such a way that

the induced independence relation is precisely I, we are guaranteed that the

language accepted by the automaton is closed under �.

Despite this simple connection, it is hard to prove that the class of

languages accepted by asynchronous automata coincides with the class of

recognizable trace languages. This result was �rst established by Zielonka

[?]. Given a conventional �nite automaton recognizing a trace language over

(
P
; I), he showed how to construct directly a deterministic asynchronous au-

tomaton over a distributed alphabet (
P
; �) recognizing the same language,

such that the independence relation induced by � is precisely I. The proof

3

involves combinatorics over partially commutative monoids and is quite dif-

�cult to grasp. A comprehensive survey of the theory of recognizable trace

languages can be found in [?].

Contributions of this paper

In this paper, we generalize the classic subset construction of Rabin and

Scott in order to obtain a direct procedure for determinizing an asynchronous

automaton U . To our knowledge, this construction is the �rst that involves

only a double-exponential blow-up in the size of the state spaces. We also

show that this bound is essentially optimal.

The only other known way to determinize a non-deterministic asyn-

chronous automaton U is to view it as a normal non-deterministic automa-

ton at the level of \global states" and then apply Zielonka's construction to

obtain a deterministic asynchronous automaton.

Our construction is the last piece needed for a \classical" proof of Zielonka's

theorem that recognizable trace languages coincide with the languages ac-

cepted by (deterministic) asynchronous automata. Even before Zielonka's

result, Ochmanski had de�ned a class of rational expressions that precisely

generate recognizable trace languages [?]. Ochmanski's characterization is

e�ective | in particular, given a �nite automaton recognizing a trace lan-

guage we can construct a rational expression for the language. Recently,

Pighizzini has shown how to construct, inductively, a non-deterministic au-

tomaton U(E) for any (Ochmanski)-rational expression E such that U(E)
accepts exactly the rational subset of

P� associated with E [?]. Further, the

size of U(E) is polynomial in the length of E. Given our construction, we can

now convert U(E) into a deterministic asynchronous automaton B(E) which
also accepts the same set. This proof of Zielonka's theorem is analogous to

the \textbook" proof that sets de�ned by regular expressions coincide with

sets recognized by deterministic �nite state automata [?].

The paper is organized as follows. We begin by describing asynchronous

automata and �xing some notation that we use in the paper. Then, we

describe the distinction between local and global views of a word over a

distributed alphabet. In Section 3 we de�ne local runs and show how to

characterize global runs of asynchronous automata as special products of

local runs. The rest of the paper is devoted to showing how to maintain

4

�nite sets of local runs which retain all the necessary information about global

runs. The crucial notion is that of a frontier, de�ned in Section 4. Section 5

introduces primary and secondary events, which between them subsume the

frontiers. The \gossip automaton" of [?], which locally updates primary and

secondary information is described in the next section. All these notions are

�nally put together in Section 7 which presents the overall determinization

construction. In Section 8 we analyze the complexity of our construction and

provide a simple lower bound.

1 Preliminaries

Distributed alphabet Let P be a �nite set of processes. A distributed

alphabet is a pair (
P
; �) where

P
is a �nite set of actions and � :

P
! 2P

assigns a set of processes to each a 2
P
.

State spaces With each process p, we associate a �nite set of states

denoted Vp. Each state in Vp is called a local state. For P � P, we use VP
to denote the product

Q
p2P Vp. An element ~v of VP is called a P-state. A

P-state is also called a global state. Given ~v 2 VP , and P 0 � P , we use ~vP 0 ,

to denote the projection of ~v onto VP 0. Also, ~vP 0
, abbreviates ~vPnP 0. For a

singleton p 2 P , we write ~vp rather than ~vfpg. For a 2
P
,, we write Va to

mean V�(a) and Va to mean V
�(a). Similarly, if ~v 2 VP , we write ~va, to denote

~v�(a) and ~va to denote ~v
�(a).

Asynchronous automaton An asynchronous automaton U over (
P
; �)

is of the form

(fVpgp2P ; f!aga2
P;VO;VF)

where !a� Va � Va is the local transition relation for a, and VO;VF � VP
are sets of initial and �nal global states. Intuitively, each !a, speci�es

how the process �(a) that meet on a may decide on a joint move. Other

processes do not change their state. Thus we de�ne the global transition

relation)� VP �
P
�VP by ~v

a
) ~v0 if ~va !a ~v

0
a and ~v�a ! ~v0�a.

U is called deterministic if the transition relation of U is a function from

VP �
P

to VP and if the set of initial states VO is a singleton.

5

Runs Let u 2
P� be of length of m. It is convenient to think of u

as a function u : [1 : : :m] !
P
, where for natural numbers i < j; [i : : : j]

abbreviates the set fi; i+ 1; : : : ; jg.

A (global) run of U on u is a function � : [0 : : :m] ! VP such that

�(0) 2 V0 and for i 2 [1 : : :m]; �(i� 1)
u(i)
) �(i).

The word u is accepted by U if there is a run � of U on u such that

�(m) 2 VF . L(U), the language accepted by U , is the set of words u ac-

cepted by U .

The problem Given a non-deterministic asynchronous automaton U over

(
P
; �), we shall construct a deterministic asynchronous automaton B over

(
P
; �), such that L(U) = L(B).

2 Local and global views

Events Given u : [1::m]!
P
, we associate a set of events Xu. Each event

x is of the form (i; u(i)), where i 2 [1::m]. In addition, we de�ne an initial

event denoted 0. The initial event marks the beginning when all processes

synchronize and agree on an initial global state. Usually, we will write X
for Xu. We write p 2 x to denote that p 2 �(u(i)) when x = (i; u(i)); for

x = 0, we de�ne p 2 x to hold for all p 2 P. If p 2 x, then we say that x is

a p-event.

If x = (i; a) is an event, then we may use x instead of a in abbreviations

such as Vx, which stands for Va, i.e., V�(a)

EXAMPLE: Consider the word u = abcd over the alphabet

(
P
; �) for P = fp; q; r; sg, where

P
= fa; b; c; dg and �(a) =

fp; qg; �(b) = fq; r; sg; �(c) = fr; sg, and �(d) = fp; qg. The set

Xu of events is then

fx0; x1; x2; x3; x4g = f0; (1; a); (2; b); (3; c); (4; d)g

Ordering relations on X A word u imposes a total order on events:

de�ne x < y if x 6= y and either x = 0 or x = (i; u(i)); y = (j; u(j)), and

6

Figure 1: An example

i < j. We write x � y if x = y or x < y. Moreover, each process p orders

the events in which it participates: de�ne /p to be the strict ordering

x /p y if x < y; p 2 x \ y and for all x < z < y; p =2 z.

The set of all p-events in X is totally ordered by /�p, the re
exive, transitive

closure of /p.

De�ne x < y if for some p; x /p y and x v y if x = y or x < y. The

causality relation v� is the transitive closure of v. If x v� y then we say that

x is below y. Note that 0 is below any event. The set of events below x is

denoted x #. These represent the only synchronizations in X that may have

a�ected the state of the processes in x when x occurs. The neighbourhood of

x; nbd(x), consists of x together with all its \<-predecessors" |i.e., nbd(x) =

fxg [fy j y < xg.

EXAMPLE: Continuing our example, in Figure 1 an arrow

has been drawn between each pair of events related by <; the

vertical dashed lines further partition these arrows into /p; /q; /r
and /s. For example, x0 /p x1 holds, but x0 /r x1 does not hold.

x4 #, the x4-cone, is the set fx0; x1; x2; x4g and x3 #, the x3-

cone, is fx0; x1; x2; x3g. Thus x3 # [x4 #= X . nbd(x4), the

neighbourhood of x4, is fx1; x2; x4g.

7

Ideals A set of events I � X is called an ideal if I is closed

with respect to v� |i.e., x 2 I and y v� x implies y 2 I as well.

Clearly the entire set X is an ideal, as is x # for any x 2 X .

P -views Let I be an ideal. The v�-maximum p-event in I

is denoted maxp(I). The p-view of I is the set I jp= maxp(I) #.
So, I jp is the set of all events in I which p can \see". For P � P,
the P -view of I, denoted I jP , is Up2P I jp. Notice that I jP is

always an ideal. In particular, we have I jP= I. Also notice that

if y 2 I jP for some P � P, then nbd(y) � I jP as well.

EXAMPLE: In the example of Figure 1, maxq(X) = x4. So

X jq= x4 #= fx4; x2; x1; x0g. On the other hand, maxs(X) = x3

and X js= x3 #= fx3; x2; x1; x0g.

3 Local runs and histories

Local runs Let I be an ideal. A local run on I is a function r that assigns

to each y 2 I a y-state|i.e., a state in Vy|such that r(0) 2 V0 and for all

y 6= 0, r is consistent with !y in the neighbourhood nbd(y). In other words,

for y 6= 0 we have ~v !y r(y), where ~v the y-state such that for all q 2 y,

~vq = r(z)q, where z /q y. Let R(I) denote the set of all local runs on I.

So, a local run on X is an assignment of a y-state to each y 2 X such

that all neighbourhoods in X are consistently labelled.

Proposition 1 Given u : [1 : : :m] !
P
, there is a 1 � 1

correspondence between local runs on Xu and global runs on u.

Proof

For i 2 [1 : : :m] let wi denote the pre�x of u up to i. Also, for i 2 [1 : : :m]

let xi denote the event (i; u(i)) in Xu.

Given a local run r on Xu, we de�ne a global run � : [0 : : :m] ! VP on

u by �(0) = r(0) and for i 2 [1 : : :m]; �(i)p = r(maxp(Xwi))p for all p 2 P.

Given a global run � : [0 : : :m] ! VP on u, we de�ne a local run r on

Xu by r(0) = �(0) and for i 2 [1 : : :m]; r(xi) = �(i)�(u(i)). 2

8

Histories Let I be an ideal. A history on I is a partial function h such that

dom(h) � I and h(y) 2 Vy, for each y 2 dom(h). A history h is reachable if

there is some local run r on I such that h(y) = r(y) for all y 2 dom(h). Let

H(I) denote the set of all histories on I. Clearly, R(I) � H(I).

Choices Let I be an ideal. Given a collection fHpgp2P of sets of his-

tories on the p-views Ijp, a P-choice fhpgp2P of fHpgp2P assigns to each

p 2 P , a history hp from Hp. The choice is consistent if for each p; q 2 P , for

every y 2 dom(hp) \ dom(hq); hp(y) = hp(y):

Let fHpgp2P be a collection of sets histories for P � P. We de�ne the

product
p2PHp as follows.

N
p2P Hp = fh 2 H(IjP) j There exists a consistent P-choice fhpgp2P of

fHpgp2P such that dom(h) = [pdom(hp) and

8p 2 P: 8y 2 dom(hp): h(y) = hp(y)g

So each element in
p2PHp is a history on IjP pieced together from a

choice of mutually consistent histories on Ijp from the sets Hp, for p 2 P .

In particular, for P � P we may form the product
p2PR(Ijp), which
generates the set R(IjP) of local runs on IjP :

Lemma 2 Let I be an ideal and P � P: R(IjP) =
p2PR(Ijp)

Proof

Let r 2 R(IjP). Then for each p 2 P , clearly r restricted to IjP is a local

run rp on IjP . So, using the consistent P -choice frpgp2P of fR(IjP)gp2P we

get r 2
p2PR(IjP).

On the other hand, let r 2
p2PR(Ijp) where the consistent P -choice is
frpgp2P . Clearly dom(r) = IjP . We just have to check that nbd(y) is labelled

consistently by r for each y 2 IjP . But, any y 2 IjP must also belong to IjP
for some p 2 P . We know that y 2 I jP implies nbd(y) � I jP . Since rp is

a local run on IjP , rp must have assigned consistent values to nbd(y). But

r agrees with rp on all events in I jP , so r must assign the same values to

nbd(y) and we are done. 2

9

An in�nite-state deterministic automaton

The preceding lemma tells us that we can reconstruct R(I jP) = R(I) by

taking the product
p2PR(Ijp)|i.e., we can recover all the local runs on X
by taking the product of local runs on Xjp. We already know that local runs

on X correspond precisely to the global runs on u.

This immediately gives us an in�nite-state deterministic asynchronous

automaton U 0 = (fV 0
pgp2P ; f!

0
aga2

P;V 00;V
0
F) which accepts L(U). For p 2

P; V 0
p = fR(Xujp) j u 2

P�g. In other words, each local state of p consists of

the set of local runs on Xujp for each word u.

Initially, each process starts o� in the state fh0 7! ~vi j ~v 2 V0g. The

global initial state V 00 is the cross product of these initial states.

The transition relations !0
a are de�ned in the natural way. Suppose

w = ua. Let xa, be the new event associated with a|i.e.,fxag = XwnXu.

Clearly, for p =2 �(a);Xwjp= Xujp and, as desired, the local state of p does not
change|R(Xwjp) = R(Xujp). For p 2 �(a), it is easy to check that Xwjp=
Xuj�(a) [fxag. So, any run rp 2 R(Xwjp) consists of a local run on Xuj�(a)
together with an assignment of a �(a)-state to xa which is consistent with!a,

in the neighbourhood nbd(xa). But, by Lemma 2, R(Xuj�(a)) is precisely the

product
p2�(a)R(Xujp). So, when the processes in �(a) synchronize, they can
pool their information and compute for each p 2 �(a) the new state R(Xwjp).
In fact, for all p 2 �(a), the new local state R(Xwjp) will be identical.

To decide whether to accept u, we have to check if U could have been

in an accepting global state after u. By Lemma 2 and Proposition 1, we can

associate with each local run r 2
p2PR(Xujp) a global run � on u. The

global state ~v of U after r is obtained by setting ~vp = r(maxp(Xu))p for each

p 2 P. Since
p2PR(Xujp) generates exactly the set of local runs on Xu

we can compute all reachable global states after u in this manner. So, a

global state in our new automaton is accepting if one of the global states it

generates is an accepting state for U .

In the following, we formulate a �nite-state version of the automaton

above. We do not store the entire set R(Xujp) in each p. Instead, at any

ideal I, each p will keep track of the set of reachable histories on a special

bounded subset of Ijp. This bounded subset will be such that the product of

reachable histories across this subset will also be reachable. In this manner,

we ensure that the processes retain enough global information about runs to

10

compute exactly the reachable global states after I.

4 Finite histories and frontiers

Frontiers Let I be an ideal and p; q; s 2 P. We say that event y is an

s-sentry for p with respect to q if y /s z for some z 2 Ijq n(Ijp \ Ijq). Thus
it is an event known to p and q, but whose s-successor is known only to q.

Notice that for some s 2 P, there may be no s-sentry for p with respect to q.

De�ne frontierpq(I) to be the set of all s-sentries which exist for p

with respect to q. Notice that this de�nition is asymmetric|frontier pq(I) 6=
frontier qp(I).

EXAMPLE: In the example of Figure 1, Xjp [Xjs= fx0; x1; x2g.
frontier ps(X) = fx2g, whereas frontier sp(X) = fx1; x2g. Notice

that x2 belongs to both frontiers|it is an r-sentry and an s-sentry

in frontier ps(X) and a q-sentry in frontier sp(X).

As our example shows, an event y 2 frontier pq(I) could simultaneously

be an s-sentry for several di�erent s. The following observation guarantees

that frontierpq(I) is always a bounded set.

Lemma 3 Let I be an ideal and p; q 2 P, For each s 2 P there

is at most one s-sentry y 2 frontiepq(I)

Proof

Suppose not. Then we have y; y0 2 frontier pq(I) and z; z0 such that y /s z and

y0 /s z
0. We know that all events involving s are totally ordered by /s. So

either y /�s y
0 or y0 /�s y. Without loss of generality assume that y /�s y

0. Then

we must have y /s z /
�
s y

0 /s z
0. Since y0 2 Ijp \ Ijq and z v� y0; z 2 Ijp \ Ijq

as well. But this contradicts the assumption that z 2 Ijq n(Ijp \ Ijq). 2

For P � P and p 2 P , the P -frontier of p at I is the set

[
q2Pnfpg

frontierpq(I) [frontierqp(I):

11

Lemma 4 Let I be an ideal and fhpgp2P be a consistent P-choice

of fH(Ijp)gp2P such that for each p 2 P :

� hp is reachable; and

� the P-frontier of p is included in dom(hp).

Then
p2Php is a reachable history in H(IjP).

Proof

Let us order the processes in P as p1; p2; : : : ; pk. For i 2 [1::k], let Pi =S
j2[1::i] pj. By assumption, for each pi, hpi is a reachable history. So, we have

a local run rpi on I jPi which agrees with hpi, on dom(hpi). To show that

h =
p2P hp is reachable, we must construct a local run r on I jPi which
agrees with h on dom(h) =

S
p2P dom(hp).

De�ne r as follows:

� For all y 2 Ijp1; r(y) = rp1(y).

� For i 2 [2::k], for all y 2 Ijpi nIjpi�1
; r(y) = rpi(y).

So, we \sweep across" IjP starting from Ijp1 and ending at Ijpk, assigning
states according to rp1; rp2; : : : ; rpk in k \stages" as we go along. Clearly

dom(r) = IjP and r agrees with h on dom(h). We have to show that r is a

local run; i.e., we have to show that r is consistent with !y across nbd(y)

for each y 2 IjP .

Let y 2 IjP . We know that r(y) was assigned at some stage i 2 [1::k].

Clearly, y 2 Ijpi and so nbd(y) � Ijpi as well. If nbd(y) � Ijpi nIjPi�1
, then all

the events in nbd(y) are assigned r values at stage i according to rpi. Since

rpi is a local run on I, these values must be consistent with !y.

The crucial case is when some z 2 nbd(y) lies in I jPi�1
and so has

already been assigned a value according to rpj for some j 2 [1 : : : i � 1].

But then z 2 I jPi�1
\ I jpi which is the same as

S
j2[1:::i�1](I jpj \ I jpi).

In other words, for some pj; j 2 [1::i � 1], z belongs to frontier pjpi(I). So

z 2 dom(hpj(z) \ dom(hpi), by assumption. Therefore, the value r(z) must

agree with hpj(z) = hpi(z) and hence must agree with rpi(z) as well. In other

words, even though z 2 nbd(y) has already been assiened a value before stage

i, the value agrees with rpi. So, e�ectively, nbd(y) is assigned values as given

12

by rpi, and these must be consistent with !y since rpi is a local run on I. 2

This is a �nite version of Lemma 2 above. Suppose that at the end of a

word u, each process p maintains all reachable histories on a �nite (bounded)

set of events spanning the P-frontier of p in Xu together with the maximum

p-event maxp(Xu). By the previous lemma, the product of these histories

will generate all the reachable global states of U after u. Since the P-frontier
of p in any ideal is a �nite set, the set of all reachable histories that p has

to keep track of is also �nite. So, using a bounded amount of information in

each process, we can reconstruct all possible global states of U after u.

The problem now is with maintaining frontier information locally|i.e.,

how can a process p compute and locally update its frontier? This is done

using slightly larger, but still bounded, sets of events called primary and

secondary information, which between them subsume the frontier. It turns

out that these sets can be updated locally with each synchronization between

processes. These then will be the domains of the histories maintained by each

process.

5 Primary and secondary information

Primary information Let I be an ideal and p; q 2 P. Then latestp!q(I)

denotes the maximum q-event in Ijp. So, latestp!q(I) is the latest q-event in

I that p knows about.

The primary information of p after I, primaryp(I), is the set flatestp!q(I)gq2P .
As usual, for P 2 P; primaryP (l) =

S
p2P primaryp(I).

REMARK: Since q 2 0 2 IjP for all q 2 P , the set fy 2 IjP j q 2 yg is

always nonempty. Since all q-events are linearly ordered by /q, the maximum

q-event in Ijp is well-de�ned. Notice that latestp!p(I) = maxp(I).

Secondary information The secondary information of p after I,

secondaryp(I), is the set
S
q2P primaryq(latestp!q(I) #). In other words,

this is the latest information that p has in I about the primary informa-

tion of q, for each q 2 P. Once again, for P � P; secondaryP (I) =S
p2P secondaryp(I).

13

Each event in secondaryp(I) is of the form latestq!s(latestp!q(I)#) for
some q; s 2 P. This is the latest s-event which q knows about upto the event

latestp!q(I). We abbreviate latestp!s(latestp!q(I)#) by latestp!q!s(I). No-

tice that each primary event latestp!q(I) is also a secondary event latestp!p!q(I).

In other words, primaryp(l) � secondaryp(l).

EXAMPLE: In Figure 1, latests!p(X) = x1 whereas latestp!s(X) = x2.

Also, latests!p!r(X) = x0 while latestp!s!r(X) = x2.

Lemma 5 Let I be an ideal p; q 2 P and y 2 frontierpq(I)

an s-sentry. Then y = latestp!s(I). Also, for some s0 2 P; y =

latestq!s0!s(I). So, y 2 primaryp(I) \ secondaryq(l).

Proof

Since y is an s-sentry, for some z 2 Ijq nIjp; y/sz. Suppose that latestp!s(I) =

y0 6= y. Since all s-events are linearly ordered by /s, we must have y /�s y
0.

However, y /s z as well, so we have y /s z /
�
s y

0. This means that z 2 Ijp, which
is a contradiction.

Next, we must show that y = latestq!s0!s(I) for some s0 2 P. We know

that there is a path y < z1 < : : : < maxp(I), since y 2 Ijp. This path starts

inside Ijp \Ijq.

If this path never leaves I jp \I jq then maxp(I) 2 I jq. Since maxp(I)

is the maximum p-event in I, it must be the maximum p-event in I jq. So,

y = latestq!p!s(I) and we are done.

If this path does leave Ijp \Ijq, we can �nd an event y0 2 frontierqp(I)

along the path such that y0 is an s0-sentry for some s0 2 P |in other words,

for some z0; y v� y0 /s0 z
0 v� maxp(I). We know by our earlier argument

that y0 = latestq!s0(I). It must be the case that y = latests0!s(y
0#). For, if

latests0!s(y
0 #) = y00 6= y, then y /�s0 y

00 v� y0 v� maxp(I). This implies that

y /�s y
00 and y00 2 Ijp, which contradicts the fact that y = latestp!s(I). So,

y = latests0!s(y
0#) = latestq!s0!s(I) and we are done. 2

So, for every p 2 P and u 2
P�, each process p maintains all reachable

histories over the �nite set secondaryp(Xu). (Recall that primaryp(Xu) �
secondaryp(Xu) By the preceding lemma, this set includes all events in the

P-frontier of Xu as well as the maximal event maxp(Xu) = latestp!p!p(Xu).

14

We now need to show that these sets may be updated locally|i.e., if

w = ua, then secondaryp(w) may be computed from secondaryp(u) for each

process p 2 �(a) using only the information available with the processes in

�(a). This involves running the \gossip automaton" [?] in the background.

In order to make this presentation self-contained, we describe the procedure

of [?] for comparing and updating primary and secondary information.

Comparing primary information

Lemma 6 Let I be an ideal and p; q; s 2 P. Let yp =

latestp!s(I) and yq = latestq!s(I): Then yp v� yq i� yp 2
secondaryq(I).

Proof

(() Suppose yp 2 secondaryq(I). Then, yp 2 I jq and so yp v
� yq by the

de�nition of latestq!s(I).

()) If yp = yq; yp 2 primaryq(I) � secondaryq(I) and there is nothing to

prove. If yp 6= yq, then, yp/
�
s yq and so yp 2 Ijp \ Ijq. Let y

0 be the s-successor

of y. We know that y0 2 Ijq nIjp, so yp is an s-sentry in frontierpq(I). But

then, by our previous lemma, yp 2 primaryp(I) \ secondaryq(I) and we are

done. 2

Suppose p and q synchronize at an action a after u. At this point they

\share" their primary and secondary information. If q can �nd the event

latestp!s(Xu) in its set of secondary events secondaryq(Xu), q knows that its

latest s-event latestq!s(Xu) is at least as recent as latestp!s(Xu). So, after

the synchronization, latestq!s(Xua) is the same as latestq!s(Xu), whereas p

inherits this information from q|i.e., latestp!s(Xu) = latestq!s(Xu). In this

way, for each s 2 P; p and q can locally update their primary information

about s in Xua. Clearly latestp!q(Xua) = latestq!p(Xua) = xa where xa is

the new event|i.e., XuanXu) = xa.

This procedure generalizes to any arbitrary set P � P which synchronize

after u. The processes in P share their primary and secondary information

and compare this information pairwise. Using Lemma 6, for each q 2 PnP
they decide who has the \latest information" about q. Each process then

comes away with the best primary information from P . Notice, that all

15

processes in P will always have the same primary information after they

synchronize.

Once we have compared primary information, updating secondary infor-

mation is automatic. Clearly, if latestq!s(I) is better than latestp!s(I), then

every secondary event latestq!s!s0(I) must also be better than latestp!s!s0(I).

So, secondary information can be locally updated too. In other words, to con-

sistently update primary and secondary information, it su�ces to to correctly

compare primary information, which is achieved by Lemma 6.

From the preceding argument, it is clear that each new event belongs

to the primary (and hence secondary) information of the processes which

synchronize at that event. Further, if an event disappears from the sec-

ondary information of all the processes, it will never reappear as secondary

information at some later stage. This is captured formally in the following

proposition.

Proposition 7 Let u; w 2
P�, such that w = ua for some on

a 2
P
. Let xa denote the new event in w|i.e., XwnXu = fxag.

Then:

� xa 2 secondaryP(Xw)

� secondaryP(Xw � fxag [secondaryP(Xu).

6 Locally updating primary/secondary infor-

mation

To make Lemma 6 e�ective, we must make the assertions \locally checkable"|

e.g., if yp = latestp!s(I), processes p and q must be able to decide if

yp 2 secondaryq(I). This is achieved by labelling each sction in u in such

a way that primary and secondary information can be maintained as sets of

labelled actions.

We may na��vely assume that events in Xu are locally assigned distinct

labels|in e�ect, at each action a, the processes in �(a) assign a time-stamp to

the new occurrence of a. In this manner, the processes in P can easily assign

consistent local time-stamps for each action which will let them compute the

relations between events which we are interested in.

16

The problem with this approach is that we will need an unbounded set

of time-stamps, since u could get arbitrarily large. Instead we would like a

scheme which uses only a �nite set of labels to distinguish events. This would

mean that several di�erent occurrences of the same action will eventually end

up with the same label. We have to ensure that this does not lead to any

confusion when we try to update primary and secondary information.

However, from Lemma 6, we know that to compare primary information,

we only need to look at the events in the primary and secondary sets of each

process. So, it is su�cient if the labels assigned to these sets are consistent

across the system|i.e., if the same label appears in primary or secondary

information of di�erent processes, the corresponding event is actually the

same.

Suppose we have such a labelling on u and we want to extend this to a

labelling on w = ua|i.e., we need to assign a label to the new a-event. By

Proposition 7, it su�ces to use a label which is distinct from the labels of all

the a-events currently in the secondary information of Xu.

Unfortunately, the processes in �(a) cannot directly see all the a-events

which belong to the secondary information of the entire system. An a-event

y may be part of the secondary information of processes outside �(a)|i.e.,

y 2 secondary�a(Xu)nsecondarya(Xu). To enable the processes in �(a) to

know about all a events in secondaryP(Xu), we need to maintain tertiary

information.

Tertiary information The tertiary information of p after I, tertiaryp(I),

is the set
S
q2P secondaryq(latestp!q(I) #). In other words, this is the latest

information that p has in I about the secondary information of q, for all

q 2 P. As before, for P � P; tertiaryP (I) = [p2P tertiaryp(I).

Each event in tertiaryp(I) is of the form latestq!s!s0(latestp!q(I) #) for
some q; s; s0 2 P. We abbreviate latestq!s!s0(latestp!q(I) #) by latestp!q!s!s0(I).

Just as primaryp(I) � secondaryp(I), clearly secondaryp(I) � tertiaryp(I)

since each secondary event latestp!q!s(I) is also a tertiary event latestp!p!q!s(I).

Lemma 8 Let I be an ideal and p 2 P. If y 2 secondaryp(I)

then for every q 2 y; y 2 tertiaryq(l).

Proof

Let y 2 secondaryp(I) and q 2 y. We know that y 2 Ijp \Ijq and there is a

17

path y < z1 < : : : < maxp(I) leading from y to maxp(I).

Suppose this path never leaves I jp \I jq. Then maxp(I) 2 I jq and so

maxp(I) = latestq!p(I). This means that y 2 seconduryp(latestq!p(I) #) �
tertiaryq(I) and we are done.

Otherwise, the path from y tomaxp(I) does leave Ijp \Ijq at some stage.

Concretely, let y = latestp!p0!p00(I) for some p0; p00 2 P. So the path from y

to maxp(I) passes through y0 = latestp!p0(I).

If y0 =2 Ijp \Ijq then for some z; z0 2 X and some s 2 P we have z 2 Ijp
\Ijq, z

0 2 Ijp nIjq and y v� z /s z
0 v� y0. This means that z 2 frontierqp(I)

is an s-sentry and by our earlier argument we know that z = latestq!s(I).

So y = latestq!s!p00(I) = latestq!q!s!p00(I) 2 tertiaryq(I).

On the other hand, if y0 2 I jp \I jq we can �nd an s-sentry z 2
frontierqp(I) on the path from y0 to maxp(I), for some s 2 P. We once

again get z = latestq!s(I) and so y = latestq!s!p0!p00(I) 2 tertiaryq(I). 2

The \gossip" automaton Using our analysis of primary, secondary

and tertiary information of processes, we can now design a deterministic

asynchronous automaton to keep track of the \latest gossip"|i.e., consis-

tently to update primary, secondary and tertiary information whenever a set

of processes synchronize.

Each process maintains sets of primary, secondary and tertiary informa-

tion. Each event in these sets is represented by a pair hP; li, where P is the

subset of processes that synchronized at the event and l 2 L, a �nite set of

labels.

By Lemma 8, each p-event that appears in some primary or secondary

set in the system also appears in the tertiary information of p. When a new

event x occurs after u, the processes participating in x assign a label to this

event which does not appear in tertiaryx(Xu). Proposition 7 guarantees that

the new event is assigned a label which is distinct from those assigned to

secondaryP(Xu). Since each process keeps track of N3 tertiary events, there

need be only O(N3) labels in L.

The processes participating in x now compare their primary information

about each process s =2 x by checking labels of events across their primary

and secondary sets. Each process then updates its primary, secondary and

tertiary sets according to the new information it receives. (Notice that ter-

18

tiary information, like secondary information, can be locally updated once

the processes have decided who has the best primary information.)

To implement this algorithm as a deterministic asynchronous automa-

ton, we just observe that each local state of p will consist of its primary,

secondary and tertiary information for p, stored as an collection of indexed

labels. The initial state is the global state where for all processes p, these sets

all contain only the initial event 0. The local transition relations !a modify

the local states for processes in �(a) as described above. This automaton

does not have any �nal states|it simply runs in the \background".

7 The determinization algorithm

We are now ready to present our deterministic asynchronous automaton B =

(fV B
p gp2P ; f!

B
aga2

P;VB0 ;V
B
F) corresponding to our original non-deterministic

asynchronous automaton U such that L(U) = L(B).

Let us assume we have a su�ciently large but �nite set of labels L.
Formally, a state in V B

p consists of the following information:

� A labelling �p : (P �P �P)! (P �L), which is partially injective, in

that for each q; q0; r; r0 2 P; �p(q; q; r) = �p(q
0; q0; r0) implies q = q0 and

r = r0.

� A set of histories RHp where eachh 2 RHp is a function from P � P
to P -states, P � P.

Intuitively, after reading a word u, the automaton represents the tertiary

event latestp!q!r!s(Xu) as �p(q; r; s).

In this representation, several copies exist of each primary and sec-

ondary event. For instance, the primary event latestp!q(Xu) corresponds

to �p(q; q; q); �p(p; q; q) and �p(p; p; q). We choose canonical representatives

for each primary and secondary event. So, we shall regard �p(q; q; q) as the

label of the primary event latestp!q(Xu) and �p(q; q; r) as the label of the

secondary event latestq!r(Xu) as �p(q; q; r). The partially injectivity of �p
ensures that all labels assigned to primary and secondary events are distinct.

19

The set RHp is supposed to contain all reachable histories over the

secondary events secondaryp(Xu). Since these events are injectively labelled

by �p, we can also view RHp as a function from P � L to P -states.

Initially, each p 2 P stores the following:

� 8hq; r; si 2 P3: �p(q; r; s) = hP; 0i, where 0 2 L is some arbitrary but

�xed label.

� For esch ~v 2 V0, the set of initial states of U , we have a history h 2 RHp

such that h(q; r) = ~v for all hq; ri 2 P2.

The initial state VB0 of B is the product of the initial states of all p 2 P.
The transition rule !B

a is described in the following. Suppose B reads a

when the global state of B is fh�p;RHpigp2P . Then we have the following

procedure for updating the local states of processes in �(a).

� For each p 2 �(a), we construct a new labelling function �0p : P3 !
P � L.

Fix a new label l 2 L such that h�(a); li is not in the range of �p for

any p 2 �(a). For each p 2 �(a), assign �0p(q; r; s) = h�(a); li for all
q; r; s 2 P such that fq; r; sg � �(a).

The other values of �0p for each p 2 �(a) are computed as they would

be by the gossip automaton. In other words, for all p 2 �(a), for all

q; r; s 2 P such that fq; r; sg 6� �(a), the new value �0p(q; r; s) is copied

from the old value �p0(q; r; s) assigned by the process p0 2 �(a) which

had the best primary information �p0(q; q; q).

� Compute new histories RH0
p for each p 2 �(a) as follows. Consider

ha 2
p2�(a)fRHpg. Let ~v be the global a-state corresponding to ha|

i.e., ~vp = hp(p; p) for each p 2 �(a). Let Vha = f~v0 j ~v !a ~v0g. So,

Vh is the set of all possible a-states v' which can be used to extend ha
to cover the new event xa so that nbd(xa) is consistently labelled with

respect to !a.

Now each element ~v0 2 Vha together with ha generates a history h0p in

RH0
p as follows:

20

8hq; ri 2 P2: h0p(q; r) =

(
~v0 if �0p(q; q; r) = h�(a); li
ha(�

0
p(q; q; r)) otherwise

So, the new a-event is assigned the a-tuple ~v0 while the other secondary

events of p (after reading a) inherit their h0p values from ha.

Repeat this procedure for each ha 2
p2�(a)fRHpg to generate the

entire set RH0
p for each p 2 �(a).

Having described the transition functions!B
a we now need to de�ne the

�nal states of B. Let ~� be a global state of B, where ~�p = h�p;RHp) for each

p 2 P. Each h 2
p2PRHp gives rise to a global state ~v of U as follows: for

each p 2 P; ~vp = h(�p(p; p; p)). Let subset(~�) denote the set of global states

of U generated from ~� in this manner. Then we can de�ne

VBF = f~� j subset(~� \ VF 6= ;g

Theorem 9 L(U) = L(B)

Proof

For u 2
P�, let ~� be the global state of B after reading u such that ~�p =

h�0p;RH
0
pi for each p 2 P. We claim the following:

Claim For each p 2 P; �0p labels precisely the events in tertiaryp(Xu)

and RH0
p is precisely the set of all reachable histories on the set of events

secondaryp(Xu).

Assuming the claim, we know from Proposition 1 and Lemmas 2, 4 and

5 that the global states in subset(~�) are precisely the global states that U
could be in after u. So, B accepts u i� subset(~�) \ VF 6= ; i� there is a run

of U on u leading to a �nal state i� U accepts u and we are done.

Proof of Claim

To prove the claim, we proceed by induction on juj.

The base case is when u = ", the empty word. The claim is trivially

true at this state since all the tertiary events in Xu are the initial event 0

and each process maintains a set of histories which assign all possible initial

states of U to the initial event.

21

Suppose u = wa and, inductively, after reading w, the local state

h�p;RHpi for each p 2 P satis�es the Claim. We have to argue that the

procedure for updating the local states of p 2 �(a) maintains the property

asserted in the Claim.

Look at the de�nition of !B
a . Proposition 7 and Lemma 8 guarantee

that the label h�(a); li we assign to the new event does not clash with any

labels already assigned to events in secondaryP(Xw). Lemma 6 then ensures

that the computation of �p0 from �p is correct|i.e., �p0 labels precisely the

events in tertiaryp(Xu).

Now, assume RHp contains all reachable histories over secondaryp(Xw)

for each p 2 �(a). We have to show thatRH0
p contains all reachable histories

over secondaryp(Xu). For all p 2 �(a), Xu jp= Xw j�(a) [fxag, where xa is

the new a-event. So, any local run on Xujp consists of a local run on Xwj�(a)
extended to cover xa such that nbd(xa) is consistently labelled.

We argue that the product
p2�(a)RHp is precisely the projection of

R(Xwj�(a)) onto secondary�(a)(Xw). By Lemma 4, every history h 2
p2�(a)RHp

is a reachable history on Xwj�(a) and so is the projection of some local run

on Xwj�(a) onto secondary�(a)(Xjw).

Conversely, consider any local run r on Xwj�(a). Decompose r into local

runs rp over Xw jp for each p 2 �(a) by looking at r restricted to Xw jp.
Since RHp has all reachable histories on secondaryp(Xw), the projection

hp of rp on secondaryp(Xw) belongs to RHp. So, the projection of r onto

secondary�(a)(Xw) belongs to
p2�(a)RHp.

So, we can reconstruct all possible a-moves of U after w by looking

at
p2�(a)RHp. The procedure for updating RHp to RH0
p in the de�ni-

tion of !B
p then guarantees that RH0

p contains all reachable p-histories over

secondaryp(X) for each p 2 �(a). 2

8 The complexity of determinization

Analysis of the construction

Theorem 10 Let U = (fVpgp2P ; f!aga2
P;V0;VF be a non-

deterministic asynchronous automaton with N processes such that

22

maxp2P jVpj= M . Then, in the corresponding deterministic au-

tomaton B that we construct, each process has at most 2M
O(N3)

stats.

Proof

Each local state of B is of the form h�p;RHpi. We have already argued that

we can maintain labels with a set L of size O(N3). So, each entry hP; li in �p
requires O(N) bits to write down P and O(logN) bits to write down l|i.e.,

O(N) bits in all. Since there are N3 entries in �p, all of �p may be written

down using O(N4) bits.

We now need to maintain histories over secondary events. Each history

h consists of N2 P -states. Since a P -state can be written down using N log

M bits, h can be written down using N3 logM bits. The number of di�erent

histories possible over N2 is (MO(N))N
2

= MO(N3)|each event could be

assigned an arbitrary P -state and the number of distinct P -states is bounded

by
P

i2[1:::N]M
i which isMO(N). So, RHp can be written down usingM

O(N3) �
N3logM bits.

So, overall, each local state of B can be written down usingMO(N3) bits.

Therefore, the number of local states of each process in B is bounded by

2M
O(N3)

. 2

In certain cases, we can slightly improve the estimate given above. Let

T be the size of the transition relation of U|i.e., T =
P

a2
P j!aj where

j!aj, the size of!a, is just the number of pairs in the relation!a. Then, we

know that the P -states assigned by each history h must elements of !a for

some a 2
P
. So, the number of P -states we can assign is bounded by T . In

general, T andMN are not directly related, so a more accurate bound for the

number of histories possible over N2 nodes is max(T;MO(N))N
2

. Therefore,

the number of local states of a process in B is bounded by 2max(TN
2
;MO(N3

)).

Unlike conventional �nite state automata, where determinization results

in an exponential blowup in the number of states, our algorithm exhibits a

superexponential blowup (at the level of local states). A simple argument

shows that this cannot be avoided, in general.

A superexponential lower bound for determinization

23

Theorem 11 There is a sequence of languages LKN over

distributed alphabets (
P

KN ; �KN); K;N � 2, such that LKN is

recognized by a non-deterministic asynchronous automaton whose

local state spaces and transition relations are polynomial in size

as functions of K and N, whereas LKN cannot be recognized by a

deterministic asynchronous automaton unless it has at least one

process with 2K
N=N states.

Proof

For
P

= fa; bg, let L1
m be the set of words whose mth letter from the right is

a b. Recall that L1
m can be recognized by an NFA with O(m) states whereas

a DFA requires 2m states to recognize this language. We generalize L1
m to

Lk
m for k � 1|L1

m is the set of words whose kmth last letter is a b. Let

Lm = [k�1L
k
m. It is not di�cult to see that Lm is also regular and the

exponential separation between NFAs and DFAs recognizing L1
m continues

to hold for Lm as well.

Consider LKN|i.e., Lm, where m = KN |for some K;N � 2. We

look at a variant of LKN which we call L0KN We show that L0KN can be

recognized by a small non-deterministic asynchronous automaton|the states

of each component will be quadratic in K and the transition relation will be

polynomial inK and N . On the other hand, it will turn out that the smallest

deterministic asynchronous automaton recognizing this language has at least

one process with O(2K
N=N) states.

The idea is to implement a N -digit counter to the base K using N

processes named [1::N]. When the counter value is m, process i holds the

value of the ith digit in the base K representation of m.

To count e�ciently using asynchronous automata, we need to introduce

carry letters fcigi2[1::N] into our alphabet. So, c1 corresponds to a carry at the

least signi�cant digit, whereas cN corresponds to an \over
ow" carry at the

most signi�cant digit of our counter. Given a word w 2
P�, we intersperse

the carry bits as follows: every Kth letter from
P

is immediately followed by

a c1, and every K
thci; is immediately followed by a ci+1 for each i 2 [1::N�1].

We call the new string C(w), the carry-extension of w.

Let
P0 = fa; bg [fcigi2[1::N]. Let �0 be a distribution of

P0 such that

�0(a) = �0(b) = f1g; �0(cN) = fNg and �0(ci) = fi; i + 1g for i 2 [1::N � 1].

This introduces a natural independence relation over
P0 as we have already

24

seen. As described in the Introduction, this independence relation can be

lifted to �nite words in the obvious way|w � w0 i� w0 can be obtained from

w by a �nite sequence of permutations of adjacent independent letters. It

is easy to check that � is an equivalence relation. The equivalence classes

induced by � are usually called traces [?]. Let [w] denote the trace generated

by a word w 2
P0�.

The language we will work with is the set of traces generated by carry-

extended words from LKN . Formally, we shall look at L0KN = fw 2
P0� j

9w0 2 L00KN : w 2 [w0]g where L00KN = fC(w) j w 2 LKNg.

A deterministic asynchronous automaton recognizing L0KN must have at

least one process with a state space of size 2K
N=N . To see this, consider a

normal DFA recognizing L0KN . Let u and u0 be two distinct words over
P

of

length KN . Without loss of generality, we can assume that there is a position

i such that u(i) = b and u0(i) = a. Then, there is a word v over
P

of length

at most KN such that uv 2 LKN and u0v =2 LKN .

Let w be the string such that C(u)w = C(uv). Clearly C(u)w =

C(uv) 2 L0KN . Notice that w 6= C(v) in general. However, it is the case

that w#a;b |the string obtained by erasing all letters other than a and b

from w |is just v. Now consider C(u0)w |there are two cases to look at.

If C(u0)w is not trace equivalent to any valid carry-extended word, then

clearly C(u0)w does not belong to L0KN . On the other hand, if C(u0)w is

trace equivalent to some carry-extended word w0; w0#fa;bg must be equal to

C(u0)#fa;bg concatenated with w#fa;bg, since a and b are not independent in

(
P0; �0). But C(u0)#fa;bg w#fa;bg= u0v. Since u0v =2 LKN , C(u0v) =2 L00KN and

so C(u0)w =2 L0KN either.

So the canonical right invariant equivalence relation RL0
KN

generated by

L0KN has at least 2K
N

equivalence classes. By the Myhill-Nerode Theorem,

the minimal DFA recognizing L0KN has at least 2K
N

states. Thus any deter-

ministic asynchronous automaton recognizing L0KN must have at least one

component with
N
p
2K

N
= 2K

N=N states.

We now describe a small non-deterministic asynchronous automaton U
accepting L0KN . U keeps counting letters in its input, using the carry letters

to increment higher order digits of the counter. At some point, on reading

a b, U non-deterministically decides to copy its current counter value into a

register. Meanwhile, U continues to count letters from where it left o�|it

25

does not restart its counter when it sets the register. At the end of its input,

it checks to see if the current counter value is the same as the one saved in

the register. If so, the number of letters read after the b is a multiple of KN

and the input is accepted.

For each process i, the set of local states Vi is given by [0::K]�[0::K�1]�
fN; Y g. The �rst component of the state is a digit in the running counter|

the value K indicates a pending carry. The second component represents a

\frozen" register value. The third component indicates whether or not the

register value has been loaded. Initially, each process is in the state h0; 0; Ni.
The �nal states are those where each process is in a state of the form hj; j; Y i
where j 2 [0::K � 1]|di�erent processes could have di�erent values of j.

The transition relations are as follows:

� !a: (A�ects only process 1)

hi; 0; Ni !a hi+ 1; 0; Ni, provided i < K.

hi; j; Y i !a hi+ 1; j; Y i, provided i < K.

� !b: (A�ects only process 1)

hi; 0; Ni !b hi + 1; 0; Ni, provided i < K.

hi; j; Y i !b hi+ 1; j; Y i, provided i < K.

hi; 0; Ni !b hi + 1; i; Y i, provided i < K.

� !ci; i < N : (A�ects processes i + 1 and i. Each transition is of the

form (v; w)!ci (u
0; w0) where v and u0 are states of process i + 1 and

w and w0 are states of process i.)

(hi; 0; Ni; hK; 0; Ni)!ci (hi+ 1; 0; Ni; h0; 0; Ni), provided i < K.

(hi; j; Y i; hK; j 0; Y i)!ci (hi + 1; j; Y i; h0; j 0; Y i), provided i < K.

(hi; 0; Ni; hK; j 0; Y i)!ci (hi+ 1; i; Y i; h0; j 0; Y i), provided i < K.

� !b: (A�ects only process N)

hK; 0; Ni !cN h0; 0; Ni
hK; j; Y i !cN h0; j; Y i

So, after K a's and b's have been read process 1 gets stuck|a c1 must

occur to propagate a carry before the next a or b can be read. After K c1's

have occurred, a c2 must be read before the next c1. However, since c2 is

26

independent of a and b, this c2 need not be read immediately after the Kthc1.

In general, U permits higher digit carries to propagate asynchronously while

the �rst component continues to read a's and b's from the input. However,

it is easy to check that U ensures that after every Kci's, a ci+1 is resd before

the next ci.

At some point, on reading a b, process 1 non-deterministically copies its

counter value into the register and sets the third component of its state to

Y . In the next round of carries, all the other processes get a signal to load

their registers. Eventually all digits of the counter value when b occurred are

stored in the register. Meanwhile, the counter continues to run freely on the

remaining input. At the end of a word u, U accepts u if each process has

loaded its register and has the same value stored in the current counter as in

the register.

Given this, it is straightforward, though tedious, to verify that U does

indeed accept L0KN .

Each process has O(K2) states. The total number of entries in the

transition relations of U is O(NK3). So, U can be described in space poly-

nomial in K and N . By our earlier analysis, if we determinize U using our

construction, we obtain an automaton whose local state space is 2(KN)O(N2)

.

(Notice that we can implement a much simpler N -digit counter by al-

lowing all N processes to synchronize on a and b. Then, we can eliminate

the carry bits embedded in the input word|carries can be propagated \in-

ternally" when the processes synchronize. However, this na��ve counter has

0(KN) entries in its transition table and so is much larger, in real terms,

than the counter we have described.) 2

References

[Die] V. Diekert:

Combinatorics on Traces,

LNCS 454 (1990).

[HU] J. Hopcroft, J.D. Ullman:

Introduction to automata, languages and computation,

Addison-Wesley (1979).

27

[Maz] A. Mazurkiewicz:

Basic notions of trace theory, in:

J.W. de Bakker, W.- P. de Roever, C. Rozenberg (eds.), Linear time,

branching time and partial order in logics and models for concurrency,

LNCS 354, (1989) 285-363.

[MS] M. Mukund, M. Sohoni:

Keeping track of the latest gossip: Bounded timestamps su�ce,

to appear in Proc. FSTQ&TCS '93, Springer LNCS 761.

Also available as Report TCS-93-3, School of Mathematics, SPIC Science

Foundation, Madras (1993).

[Och] E. Ochmanski:

Regular behaviour of concurrent systems,

EATCS Bulletin, 27 (1985) 56-67.

[Pig] G. Pighizzini:

Synthesis of nondeterministic asynchronous automata, in V. Diekert, W.

Ebinger eds., Proc. ASMICS Workshop on In�nite Traces, Report 4/92,

Fakult�at Informatik, Universit�at Stuttgart, Germany (1992).

[Zie] W. Zielonka:

Notes on �nite asynchronous automata,

R.A.I.R.O.|Inf. Theor. et Appl., 21 (1987) 99-135.

28

