Designing Dexter-based
Cooperative Hypermedia Systems:

Kaj Gronbzek, Jens A. Hem, Ole L. Madsen, and Lennert Sloth

Computer Science Department,
Aarhus University,
Ny Munkegade 116, Bldg. 540
DK-8000 Arhus C, Denmark.
Email: {kgronbak,nold,olmadsen,les}@daimi.aau.dk

ABSTRACT

This paper discusses issues for the design of a Dexter-based cooperative hypermedia
architecture and a specific system, DeVise Hypermedia (DHM), developed from this
architecture. The Dexter Hypertext Reference Model [Hala90] was used as basis for
designing the architecture. The Dexter model provides a general and solid
foundation for designing a general hypermedia architecture. It introduces central
concepts and proposes a layering of the architecture. However, to handle
cooperative work aspects, such as sharing material and cooperative authoring, we
have to go beyond the Dexter model concepts. To deal with such aspects we have
extended our implementation of the Dexter concepts with support for long-term
transactions, locking and event notification as called for by Halasz [Hala88]. The
result is a platform independent architecture for developing cooperative hypermedia
systems. The architecture consists of a portable kernel that constitutes an object
oriented framework for developing Dexter compliant hypermedia systems. It is a
client/server architecture including an object oriented database (OODB) to store the
objects implementing the Dexter Storage Layer. We use a general OODB being co-
developed to support long term transactions, flexible locking, and event notification.
The transaction and locking mechanism support several modes of cooperation on
shared hypermedia materials, and the notification mechanism supports the users in
maintaining awareness of each others’ activity. The portable kernel was used to
implement the DHM system on two quite different platforms: UNIX/X-windows and
Apple Macintosh.

KEYWORDS

Dexter model, Open Hypermedia, CSCW, Shared materials, Object Oriented
Database.

1. INTRODUCTION

The hypermedia work discussed here is part of the DeVise project at the Computer
Science Department, Aarhus University, Denmark. The DeVise project is among
other things developing tools to support cooperative design in a variety of
application areas including large engineering projects. A large engineering project,
constructing one of the worlds largest tunnel and bridge “links”, is the primary user

T In Proceedings of the ACM conference on Hypertext, Seattle, USA, November 14-
18, 1993 (Hypertext '93).

organization in the Esprit projects EuroCoOp and EuroCODE, from which the
DeVise group gets parts of its funding. The use settings for our tools are
characterized by cooperative work distributed over time, space and hardware
platforms. Cooperative work in engineering projects raises several requirements for
hypermedia, such as: shared databases, support for awareness among users of
shared materials, access from multiple platforms, open architecture for integration
of applications, portability, extensibility and tailorability. In particular the
possibility for integrating applications, already developed for the engineering
domain, with hypermedia facilities was an important requirement to meet. For a
detailed discussion of our use setting, the engineering project, and its CSCW and
hypermedia requirements, see [Grgn93].

No existing hypermedia system to our knowledge met these requirements on the
platforms we needed to support. Having to build our own, we nonetheless wanted to
benefit from the experience and expertise of past and present hypermedia designers.
Thus, we decided to use the Dexter Hypertext Reference Model [Hala90] (called
“Dexter” in the rest of this paper) as a basis for our development. Dexter attempts to
capture the best design ideas from a group of “classic” hypermedia systems, in a
single overarching data and process model. Although these systems have differing
design goals and address a variety of application areas, Dexter managed to combine
and generalize many of their best features.

We took the Dexter model as the starting point and developed an object oriented
architecture from its concepts. A working hypermedia system prototype (called
DeVise Hypermedia, or just "DHM") was developed for both a Unix and a Macintosh
platform. The development environment is the Scandinavian Mjglner BETA System
(MBS), see [Knud93; Mads93]. An object oriented database (OODB) [Ande92;
Hem91] based on MBS is being developed in parallel with our hypermedia
development. It is a general purpose OODB, i.e. the facilities work for any type of
object independent of the application domain. The OODB design has, however, been
highly influenced by the requirements from the parallel hypermedia development.
Design issues related to the development of kernel hypermedia functionality are
discussed in detail in [Grgn92b]. In this paper, we focus on design issues related to
hypermedia support for cooperative work activities, e.g. cooperative authoring and
sharing of materials in large design projects such as bridge construction and
software development. These design issues also include a discussion of tailoring the
OODB to meet cooperative hypermedia requirements.

COOPERATIVE WORK AND HYPERMEDIA SUPPORT

Design and authoring in large design projects involves cooperative work among
individuals who contribute to the overall design task. Such work involves both
explicit communication and coordination, and implicit coordination through shared
materials [Sgrg87]. For instance, work on different parts of shared materials needs
to be coordinated and related. Cooperative design and authoring in such settings
may be supported in many different ways. In cooperative design situations, a
number of users are manipulating a large body of shared material using a variety of
editors. We assume the shared materials to be hypermedia networks with large sets
of components (nodes, links and composites). Such hypermedia networks may be
subdivided into parts identified by composites containing a subset of the
components in the hypermedia network. The kind of computer support to provide
depends on needs for coordination of the work on different parts. To describe the
kind of support we aim at providing, we have identified six different modes of
cooperation on shared materials:

1) Separate responsibilities. The design material is divided into disjoint parts. Each
part is manipulated by at most one user. Other users may inspect parts
manipulated by others. The cooperation here is quite loose and will mainly consists
of one user making use of designs developed by others.

2) Turn taking. As mode 1, but each part may alternate between different users. At
most one user at a time is allowed to modify a given part. This mode of cooperation
requires more support, to coordinate the work between users manipulating the
same parts.

3) Dynamic exchange. During a session, users may exchange parts dynamically. One
user A may want to modify a part currently being locked by another user B. User A
may then ask user B to transfer his lock to user A during the session.

4) Alternative versions. Different users may develop alternative versions of the same
part. Such parts may then have to be merged later.

5) Mutual sessions. Two or more designers may work on the same part at the same
time (synchronously) with some direct communication channel open. All operations
made by each designer are immediately updated on a shared copy of the part. A
cooperative commit will update the part in the OODB. A variant of this cooperation
mode is when each user makes changes that are not immediately committed, but
may be undone without other users seeing them.

6) Fully synchronous sessions. As mode 5, except that several users work on the
same part using a shared (global) window. In this mode all users share exactly the
same view of the shared material (WYSIWIS) and they may have telepointers.

Our EuroCODE project aim at supporting this variety of cooperation modes on
shared materials. Among these modes the hypermedia development mainly focuses
on supporting the implicit and asynchronous cooperation on shared materials.
Modes 1-3 are typical asynchronous cooperation modes that we aim at supporting
directly by our hypermedia system. These modes call for support to create
awareness among users about who is doing what in the shared body of materials.
Chunks of the materials may be related by means of links and cooperation may take
place through linked annotations to parts developed by others. These modes require
a flexible locking scheme by the underlying database storing the hypermedia
objects, in our case an OODB. The versioning approach represented by mode 4 is
also an asynchronous mode of cooperation that may be supported for some kinds of
materials to be shared [Magn93]. We are planning to provide such versioning
support at the general OODB level, and utilize this for developing versioning
support in hypermedia systems developed from our framework.

Modes 5 and 6 both represent variants of synchronous modes of cooperation on
shared materials, they correspond to the tightly-coupled cooperation mode
introduced by [Stre92]. The main difference between mode 5 and 6 is whether a
shared view is maintained or not. In synchronous sessions all users have the same
view of the hypermedia component being edited. In mutual sessions, several users
may edit the same component in the hypermedia without maintaining the same
view. These synchronous cooperation modes require extensions to the hypermedia
system to support shared commitment of changes to the OODB. Support for
multicasting updates and maintaining shared views will be provided by other
EuroCODE sub projects developing a shared window system and a computer
conferencing system providing voice or video communication channels. Hypermedia
support for modes 5 and 6 will be provided by integrating the hypermedia
architecture with the shared window system and the computer conferencing system
being developed in the EuroCODE project.

3

SHARED MATERIALS IN ENGINEERING PROJECTS

The materials being shared in the bridge construction project include CAD
drawings, pictures and videos of bridge elements, letters, procedure handbooks,
scanned documents, spreadsheets, case records, reports, etc. One area where the
use of hypermedia was considered useful was in maintaining the rich set of
relationships among case records, letters, reports and work procedure handbooks.
The hypermedia can support the engineers’ navigation in the material and
cooperation on cases, e.g. acceptance of changes to the construction process for
specific bridge elements. Changes to construction processes are quite frequent, and
it is important for the engineers to be notified about addenda being added to work
procedure handbooks and annotations being made to drawings, reports, etc. Another
area is writing of reports and collection of materials for reports, these tasks are
typically organized with a responsible editor and several persons contributing and
commenting.

These characteristics of the use setting indicated that hypermedia support for the
asynchronous modes of cooperation needed primary attention.

STRUCTURE OF THE PAPER

The structure of the paper is as follows. Section 2 briefly introduces the Dexter
model. Section 3 describes and discusses our Dexter based cooperative hypermedia
architecture using an object oriented database (OODB). The OODB was augmented
to support our hypermedia development and Section 4 delves into a detailed
discussion of the OODB locking and event notification mechanism that has been
developed to support our hypermedia. Section 5 discusses how we applied the
augmented OODB and the Dexter based architecture for developing the cooperative
hypermedia system DHM. Section 6 concludes the paper.

2. THE DEXTER MODEL

The Dexter Hypertext Reference Model [Hala90] separates a hypertext system into
three layers having well-defined interfaces as shown in Figure 1.

The Storage layer captures the persistent, storable objects making up the hypertext.
The basic object provided in the Storage layer is the component. Components are
divided into contents, corresponding to the component’s data, and component
information. The component information includes a general purpose set of
attributes, a presentation specification and a set of anchors. The atomic component is
an abstraction replacing the widely used but weakly defined concept of ‘node’ in a
hypertext. Composite components provide a hierarchical structuring mechanism.
The content of a link component is a list of specifiers, each including a presentation
specification as well as component and anchor identifiers. A hypertext is simply a
set of components.

The Within-component layer corresponds to the data objects, the contents of
components, and the individual editors to handle the data objects. The editors are
responsible, e.g. for supporting content selection for link anchoring.

The interface between the storage and within-component layers is based on the
notion of anchors. Anchors consist of an identifier that can be referred to by links
and a value that picks out the anchored part of the material.

The Runtime layer is responsible for handling links, anchors, and components at
runtime. Objects in the runtime layer include sessions, managing interaction with
particular hypertexts, and instantiations, managing interaction with particular
components. The runtime layer provides editor independent user interface facilities
through operations like NewComponent, AddLinkEndpoints, and FollowLink.

4

Runtime Storage Within-component

layer layer layer
User File structure/ Different types
interface database organization/ of materials /
persistent object store/ media
OODB
Client Server: support for Individual
distributed multi-user editors
access
Presentation An:L\ors
specifications

Figure 1: The Dexter model layers and interfaces.!

The interface between the Storage layer and the Runtime layer includes
presentation specifications that determine how components are presented at run-
time. Presentation specifications might include information on screen location and
size of a presentation window, as well as a “mode” for presenting a component.
Halasz & Schwartz [Hala90] use the example of an animation component that can
be opened in either run mode or edit mode.

The Dexter terminology provides a solid framework for discussing the design of
hypermedia systems, but the formal specification leaves certain design decisions
open. For instance, how do we support sharing of hypertexts and components among
several users? How do the Dexter layers relate to a multi-user distributed
hypermedia architecture? Where do we place the responsibility for locking, and
event notifications? The following sections discuss how we extended the Dexter
model’s notion of hypermedia systems to deal with these issues.

3. A DEXTER BASED ARCHITECTURE FOR COOPERATIVE
HYPERMEDIA

The DeVise hypermedia architecture is a process architecture providing several
types of servers and clients that correspond to the Dexter Model layers shown in
Figure 2. In the object oriented framework the processes wrap objects. Below we
outline some important features of the DeVise Hypermedia architecture, capturing
the full details is outside the scope of this paper.

COOPERATIVE HYPERMEDIA ARCHITECTURE

The cooperative DHM is structured in a client/server architecture as shown in
Figure 2.

Figure 2 also shows how we interpret the role of the processes in relation to the
Dexter model layers. The following three types of processes are present in the
architecture:

1Some of the text appearing in the figure represent our own interpretation of the
model.

User A User B
Editor BE1 Editor BE2 Lo
Within
Component
. Layer
Composite
Browser
Runtime
Runtime Process . Layer
RP A Runtime Process
RP B
Conceptual Schema: Conceptual Schema:
Storage Classes Storage Classes
Storage
Layer
(Conceptual)
Storage
Laﬁer.
OODB Server with (Physical)
flexible locking and
notification support
Storage
objects

Figure 2: Multi-user hypermedia client/server architecture. The small ellipses
represent protocols that the processes support.

1. Editor Process: These processes are end-user editors integrated with the
hypermedia, and they may include text editors, graphical editors, video
players/editors and hypermedia browsers. An editor takes care of a specific type of
data objects, e.g. text objects which constitute the contents of textComponents. The
data objects, corresponding to the Dexter within-component-layer objects, may be
stored by the editors in separate files outside the OODB. The editors thus represent
the runtime handling of the component content objects. This also holds for the
Hypermedia browsers, which are implemented by means of composites, see
[Grgn92b]. Thus a browser edits the within component objects of composites.
Editors communicate anchor values to Storage objects (through a Runtime Process),
and they interpret Presentation specifications provided by a Runtime Process.

2. Runtime Process: A Runtime Process (RP) provides the hypermedia service for a
set of editor processes currently in use by a user. The RP is responsible for handling
links, anchors and components at run-time. The RP is a server that communicates
with the editors and it is a client of the OODB server. The RP creates instances of
the objects defined by the generic and specific classes implementing the Dexter
Runtime Layer concepts, and it provides editor independent operations for creating

6

and manipulating components and links objects implementing the Dexter Storage
Layer concepts. The RPs are also responsible for distributing event notifications
received from the OODB server to the editors. These facilities are described in
further detail in Sections 4 and 5. The RPs serve a similar role as the Tool
Integrators proposed in the HyperForm architecture [Will92] and the Link Hub
proposed in the IRIS Hypermedia Services [Haan92].

3. OODB server. The OODB server process provides permanent physical storage for
the hypermedia objects. The objects being stored are instances of classes specialized
from the generic classes implementing the Dexter Storage Layer concepts. The
Storage class structure, which is declared at the client level, becomes the conceptual
schema for the hypermedia objects stored by the OODB server. In the MBS OODB,
the conceptual schema is defined in the client processes, i.e. at the logical storage
level. There may be several OODB servers running at the same time, and in a
future version the OODB distribution facilities will make it possible to link between
hypertexts stored by different OODB servers.

INTEGRATION OF TOOLS WITH THE HYPERMEDIA

Needs for an open hypermedia architecture were identified in our analysis project
[Grgn93]: the engineers wanted to be able to continue using their favorite editors
and have the hypermedia functionality integrated with these editors. Such demands
for open hypermedia have been recognized by several authors in the field, e.g.
[Davi92; Kacm91]. Sharing these concerns, we have designed an open hypermedia
architecture. To integrate a new application with DHM, a component type,
instantiation type, presentation specification, anchor specification and linkMarker
specification corresponding to the material maintained by the application must be
defined. This is done by specialization of the generic classes of the DHM kernel. In
addition, the new editor must be interfaced to the protocol of the RP. Tools are
classified according to the extent they may be integrated with DHM, e.g. to support
local anchoring: Fully open editors, semi-open third party editors and closed third
party editors. For a further discussion of integration in DHM, see [Grgn92b].

DISTRIBUTION OVER DIFFERENT PLATFORMS

The OODB server and the RPs may run on different computers in a distributed
environment. There is one active RP for each active user of the hypermedia. The RP
is a client of an OODB server, and it may run on a Macintosh while the OODB
server runs on, e.g. a Sun Sparc station, or vice versa. The RP and the editors may
in principle also run on different computers, but in practice they will usually run on
the user's workstation. Distribution of editors on different platforms could support
hypermedia integration of, e.g. ordinary office programs running on one workstation
and a powerful CAD system running on another workstation in the same office. The
distributed multi-user hypermedia architecture is depicted in Figure 2. To support
cooperative design and authoring by the hypermedia, users need support to
coordinate their work on the shared materials. Technically such coordination is
supported through event notifications distributed by the OODB server. The OODB
server is able to inform its clients about events occurring on the stored objects, and
the clients of the OODB server may subscribe to various types of events. The next
section describes how these facilities are supported by the OODB.

4. COOPERATION SUPPORT: OODB BASED EVENT NOTIFICATION
AND FLEXIBLE LOCKING

The DHM system was developed to support the asynchronous cooperation modes (1-
3) described in Section 1. This requires on the one hand support for creating

7

awareness among users about what happens to the material being shared; and on
the other hand support for exchanging responsibility for parts of the material, i.e.
exchanging locks on hypertexts, components, anchors and attributes.

EVENT NOTIFICATIONS FOR OODB CLIENTS

The idea of supporting awareness notifications was proposed by Halasz [Hala88]
and an example of a system providing such support is given by Wiil [Wiil91]. The
idea is that users via their editors or a browser are able to subscribe to a variety of
events occurring on the shared materials. Finding the approach promising, we have
developed an event notification mechanism for our OODB. The fact that it was
developed directly within the OODB implies that we can support event notifications
for arbitrary objects and classes independent of their declaration, i.e. event
notifications are not bound to objects inheriting from a special superclass. A
Runtime Process (RP) may ask the OODB server to be informed about changes to
objects, which are made by other RPs associated with other users. In a given
situation, several users may be accessing the same ‘hypertext’(in Dexter terms). If
one user makes changes to a component in the hypertext, these changes will be
made visible for the other users who have opened this component with read access
and subscribed to notifications about changes. Subscriptions may be made
automatically for some eventtypes in a specific hypermedia application or they may
be made manually by the users. This section describes the OODB notification
mechanism. A notification object provides a feedback from the OODB server about
an event generated by this or other clients. A client subscribes to notifications
identified by an event type, a target object or class, and a user group specification.
Currently it is possible to choose among users identified by user name, and all users
connected to the server. The group "all users" changes dynamically as users
start/commit transactions. The operation get Acti veCli ents returns the
usernames of the clients with started transactions. The operation can be used to get
information on which users may be specified in the user-restriction, when
subscribing to a notification. The event types currently supported are:
start Transacti onEvent,comm t Tr ansact i onEvent , abort Tr ansact i onEvent,
get Event, updat eEvent cr eat eEvent, andl ockChangeEvent.

Events generating notifications occur in the OODB server when a client performs a
checkpoint or a commit operation on a transaction. Exceptions to this are
start Transacti onEvent and abort Transacti onEvent which occur at
transaction start and transaction abort, respectively. Finally, | ockChangeEvent s
are distributed when calls to changelLock have been completed successfully.
Subscriptions belong to a given transaction, and Table 2 summarizes the
Transact i on class interface; the main operations are described below.

The Subscri beToNot i fi cati on operation subscribes to events of type Event Type
related to the object or class specified by t ar get Cbj ect O O ass and generated by
the users specified by user sSpec. To unsubscribe to a previously subscribed
notification the UnSubscri beToNot i fi cati on operation must be used.

Notifications are sent from the OODB server to its clients. In the case where a
Noti fi cation is pending, the virtual operation Not i fy on the client is called: The
client process has to decide how a notification should be interpreted. This is done by
a further binding of the Not i fy virtual;2 here the contents of Noti fi cati on-ref

2The BETA programming language supports virtual procedures similar to SIMULA
or C++ virtuals. A virtual procedure is common for the whole inheritance hierarchy
of the enclosing class, but its attributes and action may be specialized (further

8

can be interpreted and used to trigger appropriate actions. Finally, the operation
Di spl ayNoti fi cati on is available to display event notifications textually, for
instance in a console or a log file.

OBJECT ACCESS AND LOCKING

The OODB provides support for fine grained access and locking of objects. This
section gives an overview of the facilities, illustrating how they can be used to
support hypermedia development.

The operations described in this section belong to the interface of a transaction (see
Table 1) which can either be committed, aborted or checkpointed (When
checkpointing, the current status of the transaction is stored, notifications are
distributed, but no locks are freed). A transaction may be of arbitrary length as
called for by Halasz [Hala88]; in addition, Halasz's call for a more flexible locking
protocol is supported as described below.

Transaction: d ass

(# ...
Start: @-> @
Checkpoint: @ -> @
Commit: @ -> @
Abort: @ -> @
SubscribeToNotification: Subscription-ref -> Status
UnSubscribeToNotification: Subscription-ref -> Status
Notify virtual: Notification-ref-> @
DisplayNotification: Notification-ref -> @
Create: (nanme, bj-Ref) -> @
Get: (nane, O assDescriptor, LockSpec) -> Qbj- Ref
ReGet: (Obj-Ref, LockSpec) -> @
Update: bj-Ref -> @
ChangelLock: (Obj-Ref, LockSpec) -> Status

o
Table 1: An excerpt from the interface to the Transaction class.

The Cr eat e operation makes an object (given by a reference) into a persistent root,
i.e. a persistent object with a specified name to be used when retrieving it from the
OODB server with the Get operation. Cr eat e tells the database to store the object
and its transitive closure, the next time the transaction is committed or
checkpointed. Every object in the closure of the root object thereby becomes
persistent.

A persistent root object and its transitive closure of objects are retrieved from the
database by means of the Get operation. Locks for all objects retrieved from the
OODB server during the Get operation are specified by the LockSpec parameter.
Currently there are only two lock values (wri t e and r ead), but the OODB is open
for adding other lock values, e.g. those described in [Ahme91]3 Note that retrieving
the transitive closure of an object is a logical operation. The physical retrieval is
implemented by an incremental retrieval algorithm ensuring that only the objects

bound) at each level in the hierarchy. Many virtuals in the hypermedia system are
called by the system, giving programmers hooks to have their own code called
automatically in specialized classes.

3 We use ‘read’ lock here in the relaxed notion that multiple readers have read
access to objects retrieved with a read lock. Future version may also support an
‘exclusive read’ lock allowing only one reader at the time.

9

actually being accessed are read into memory. It is also possible to retrieve
arbitrary objects (with their transitive closure). This is useful when a client is
notified about a change to an object and needs to retrieve the new version of the
object. Using the ReGet operation, all objects in the transitive closure from Obj-Ref
are re-read from the database. The parameter LockSpec may specify a lock other
than the current one for Obj-ref. If the current lock is r ead and the LockSpec is
wr i t e it may not be possible to obtain write permission. In this case an exception is
raised allowing an application to start a dialog asking the user what to do.

If an object, fetched from the database using the Get operation, is changed, and
those changes are to be stored in the database, the Updat e operation is invoked.
Updat e operates on some persistent object (including its closure). Invoking the
update operation tells the database that every change made to these objects during
the transaction should be stored persistently, the next time the transaction is either
checkpointed or committed. The ability to specify with such fine granularity exactly
which objects must be stored is important, because this specification is used directly
in the distribution of notifications on update events. In case an update operation is
invoked on an object which is only 'read-locked' an exception is raised.

The lock for an object that has been retrieved from the database may be changed
dynamically by the ChangeLock operation. The ChangeLock operation changes
the locks for all objects in the transitive closure of Obj - Ref . Changing the lock to
one with higher permissions than the current lock implies an implicit ReGet 4 of the
objects to be locked. Changing the lock to one with lower permissions, implies an
implicit checkpoint, since the objects may have been changed. If a write lock is
abandoned, another client may obtain a write lock, change the objects, and commit
these changes to the OODB.

A GENERAL OODB VERSUS A DEDICATED HYPERBASE

The use of a general OODB distinguishes our hypermedia architecture from the
Alborg HyperBase [Wiil91] and the HyperForm [Will92]. The OODB we use is being
developed in parallel with our hypermedia architecture and it is designed to meet
our hypermedia requirements, but it is a general OODB in the sense that it
supports locking and notifications for all types of objects independent of whether
they are hypermedia objects or say CAD objects. This implies that we do not have to
predict which objects or classes of objects we would like to support locking and event
notifications for. Any application can at any stage be tailored to subscribe to
notifications on events on some object or class that is used as part of some other
types of objects. Said in other words: locking and event notification are completely
independent of the declaration of the objects stored in the OODB. Since notification
and locking is the responsibility of the OODB, Storage classes need not be extended
to support this.

In the Alborg HyperBase [Wiil91] notifications are tied to the specific data model
that the HyperBase supports, hence it may be a major change to start getting
notifications on other types of objects at a different level of detail than that captured
in the data model. In the HyperForm approach [Will92], the lock and notification
handling is supported in generic classes such as Concurrency Control (CC) and
Notification Control (NC). When implementing a specific data model, classes that
support notification and locking need to inherit from the NC and the CC classes,
respectively. When using the general OODB approach, locking and notification
handling are meta properties that need not be decided when designing the data

4The user may be asked for confirmation before the ReGet is performed.

10

model. This implies that a system can be developed to use a large existing database
and to subscribe to notifications on events not anticipated when the conceptual
schema for the stored objects was designed.

5. UTILIZING THE AUGMENTED OODB TO BUILD COOPERATIVE
HYPERMEDIA

In Section 1, a number of modes of cooperation on shared materials were described,
and it was pointed out that awareness of other users' activities on the shared
materials should be supported directly in the cooperative hypermedia system. This
section describes how we used the OODB facilities described in the previous section
to develop the DHM cooperative hypermedia system.

EXTENDING RUNTIME OBJECTS TO HANDLE LOCKING AND
NOTIFICATION

Event notifications are interpreted by the RPs which again propagate the
notifications to their clients (the editors). The Runtime classes, session and
instantiation, have (compared to the similar Dexter model concepts) been extended
with operations to handle and propagate event notifications received from the
OODB server. The notifications are typically displayed in the applications and/or
the hypermedia composite browser. The applications may also provide a user
interface to subscribe to event notifications that the user is interested in, or the
application may automatically subscribe to and handle certain kinds of event
notifications. This section describes how the Dexter Runtime classes were extended
to treat locking and event notification.

The Dexter concepts of Session, Instantiation and LinkMarker were transformed
into classes with operations corresponding to the Dexter model functions
manipulating these objects. Since the programming language used [Mads93]
supports block structured nesting of classes, our Runtime classes are encapsulated
in a sessionMgr class and the RP consists of an object instantiated from that class.
Table 2 summarizes the operations included in the Runtime classes to handle
locking and notification.

For the lock handling we have defined a changelLock operation on the session and
instantiation classes making it possible to change the lock for an entire hypertext or
a single component, respectively. However, the point is that further changeLock
operation can easily be added offering the possibility to change locks on objects of a
hypertext at an arbitrary level of granularity, e.g. | i nkMar ker s may be extended to
support change of locks on individual anchors.

The notification handling is designed similarly. The sessionMgr, session, and
instantiation classes are extended with a subscri be, an unSubscri be, and except
for the sessi onMyr, aReGet operation.

The ReGet operations are introduced to enable retrieval of a new version of a
Storage object, e.g. a hypertext or a component from the OODB server. ReGet on a
session object retrieves the newest version of all persistent objects encapsulated in
that session. The need to do a ReGet typically occurs when the RP receives an
update notification telling that the hypertext of the session has been changed. Reget
may also be called automatically by Runtime objects as a reaction to an event
notification.

In order to perform a subscribe operation, a subscri pti on object consisting of a
target, an event type, and a user restriction, need to be specified. The user
restriction specifies users from whom event notifications are wanted, the target is
either a specific object or a class reference specifying that all objects of that class are

11

of interest, and the event type specifies the relevant type of operations to be
informed about (i.e. update events).

SessionMgr: O ass
(#...
subscri be: Subscription-ref -> ¢
unSubscri be: Subscription-ref -> @
session: d ass
(#. ..
subscri be: Subscription-ref -> @
unSubscri be: Subscription-ref -> @
reget: @ -> status
changelLock: | ock-spec -> Status
instantiation: d ass
(#...
subscri be: Subscription-ref -> @
unSubscri be: Subscription-ref -> @
reget: @ -> status
changelLock: | ock-spec -> Status
linkMarker: d ass(#....#)
(* instantiation private *)
i nstanti ati onReacti on: sessionReaction(# ...#)
updateR instantiationReaction(#...#)
getR instantiationReaction(#...#)
| ockChangeR: instantiati onReaction(#...#)
createR instantiationReaction(#...#)
#)
compositelInstantiation: instantiation(#...#)
(* session private *)
sessi onReaction: Reaction(# ...#)
updat eR. sessi onReacti on(#...#)
get R sessi onReacti on(#...#)
| ockChangeR: sessi onReaction(#...#)
createR sessionReaction(#...#)
#)
(* sessionMygr private *)
Reaction: C ass(#...#)
StartR Reaction(# ...#)
ComitR Reaction(# ...#)
Abort R Reaction(#...#)
#)
Table 2: The new operations introduced for notification handling.

In addition, to requesting notifications from the OODB server, the subscribe
operation also register an object pair: the subscri pti on object and areacti on
object, in a table maintained at the sessionMgr level. A reaction is an object
instantiated from one of the classes shown in the "private parts" of Table 2. The
reaction object is executed when the RP receives a notification matching the
corresponding subscription object in the (subscription, reaction) - pair. The table
always contains such a pair for each pending subscription made by the RP. The
reaction stored depends on the event type of the subscription object and each
Runtime class contains a reaction class for each event type of relevance at that
level. For instance, the sessionMgr level has three reaction classes Abort R,
Commi t Rand St art Rthat are instantiated in case a subscription is made to either
abort, commit or start events. On the instantiation level the reactions Cr eat eR,
Updat eR, Get Rand LockChangeR exist in order to handle create, update, get, or
change-lock events on a particular instantiation.

As seen in Table 2, the reactions are organized in an inheritance hierarchy
reflecting the block structured nesting of Runtime classes. Each of the main

12

Runtime classes has an abstract reaction superclass collecting the similarities of
reactions for that class. The detail level of the reactions increases with the level of
nesting of the Runtime classes; hence having reactions for a nested class being a
specialization of the abstract super reaction of the enclosing class is an efficient
solution. In addition, this specialization hierarchy allows a reaction to be handled at
all intermediate levels, e.g. if a component receives a notification after its
instantiation has been closed, then the enclosing session will handle the
notification, and ultimately the sessionMgr will handle it.

EXAMPLES OF DHM NOTIFICATION AND LOCKING SUPPORT

The following user interface examples, are from the UNIX/X-windows prototype
version of DHM. The example data is a hypert ext developed together with the
engineers from the bridge construction project described in [Grgn93]. This
particular hypertext covers materials for two cases that were selected for
experimentation on organizing the engineering materials in hypermedia structures.

Runtime Processes (see Section 3, Figure 2) stores and retrieves hypertexts as
persistent roots via the OODB server. Hypertexts, components and anchors in DHM
possess attributes with information about, e.g. who was the creator and who was
the last modifier. There are also attributes indicating whether the Storage objects
are public, belong to a group, or belong to a specific user. These attributes allow a
session for a hypertext to selectively present only the objects that the current user
would like to use or has the rights to use. The basic event notification mechanism
described in the previous section makes it possible to keep track of higher-level
events on shared hypertexts such as:

o Creating, deleting and updating hypertexts

o Creating, deleting, updating components (atomic, link or composite) in a hypertext
o Creating, deleting, updating anchors and attributes in a component.
o Lock changes on hypertexts and components.

It is also possible to subscribe to notifications about start of transactions as well as
commit and abort of active transactions by other RPs. Notification on such events
makes it possible to support users' awareness of both changes to status and contents
of shared hypertexts.

Notifications being passed through the Runtime objects will appear in the user
interface in a fashion chosen by the user, e.g. graphical indication and sound, and it
can be inspected when and how other users access the same hypertext as the
current user. In Figure 3 a ‘RW’ mark on the icon for the 'GB' hypertext indicates
that this user possesses a read lock on the hypertext, but another user has obtained
a write lock on it. Similar marks indicate, e.g. when no one has a write lock on the
hypertext and when there are no other users accessing the hypertext. See [Grgn92a]
for more details. Users can inspect a notification log as well as attributes on
hypertexts and components to get informed about modifications to objects.

13

| File || components || Notifications | [E0 “GB: Hypertext components 1 (1)

| File | | Links | Sempononiis | Notifications | Lok
{0
== - =
GB Paper
ezqn—-zhf-07653 bpl882 erk243 erkZ s

FILEl

duct-10

FILE'

duct-2a esgn—sbf-07733

lch2464

]

Figure 3: A snapshot of the browser interfaces to hypertexts and components.
The browser window to the left displays an icon for each open hypertext and it
provides an interface to hypertext level notifications. The small mark on top of
the ‘GB’ hypertext icon indicates that this user has a read lock and another
user has a write lock. The Component browser to the right has an icon for each
component and it has an interface to component level notifications.

A user who has obtained a write lock on a (part of a) hypertext may during a
transaction modify the hypertext. To keep track of such changes, it is possible for
other users through their RP to subscribe to notifications about object retrieval,
creation, update and access changes caused by other users of the hypertext. As
mentioned objects are retrieved with either a read lock or a write lock, and such lock
information is also part of the event notification.

| File | | Links | | Bompunenbs

—

File | | Links | | Bomprrmnhs

thificatiuns|

thificatiumsl

Compoment subscribe. ..
Conposite svubscribe ...

v iomepanen
ave ALl

B ¥

efetch component

Coxpoment wnsubscribe. ..
Composite wmsubscribe. ..
Show Loy

Barwerve gynbol

1 Bemaes oompnent Oivler

Recompute
fuit sAndow

ezgn-sbf-077

erk27n

23

erkZ7o

bpl832 PT PLUS Plaztic Systd

Figure 4: The user interface for subscribing to notifications and refetching on
components, represented in a Browser window. Selecting the ‘Component
subscribe...’ item in the menu to the left brings up the dialog shown in Figure
5. In the window to the right the ‘erk270’ component is marked with a bell
indicating that an update notification was received. To examine the changes
the user performs a ‘Refetch component’ operation on the erk270’ component.

14

Svbscription for: erk270 |

Event type: Users: |a|11th |
Get with Write Lock {:_S]‘ID‘W Logged On Usgr;:]

Get with Read Lock
Lock change

Show In Console m Immediate uvpdate

m Show marks om objects m Play sound

Cancel @

Figure 5: The dialog to subscribe to notifications at Instantiation/Component
level. Event type, user restriction and the kind of reaction wanted is specified.

Subscriptions may be made for specific objects or entire classes of objects. Figures 4-
5 show how component level notification subscription and reception appear to the
user. The subscriptions are made through a component browser or a specific editor.
The user interaction shown illustrates the situation where the user has chosen to
receive a notification and then perform a Refetch. If the ‘Immediate Update’ option
in Figure 5 is checked, the Refetch takes place automatically.

SCENARIOS FOR COOPERATIVE HYPERMEDIA USAGE

The previous section showed an example of how the notification and locking
mechanisms appear in the prototype user interface. To give a more comprehensive
description of the kind of cooperation support DHM provides, this section contains a
set of abstract use scenarios. The scenarios illustrate typical use of the support
developed for cooperation modes 1-3 discussed in Section 1. The scenarios illustrate
interactions with the DHM system that were abstracted from work situations
analyzed in the engineering project described in [Grgn93]; they are formulated here
in Dexter and OODB terms.

Scenario 1: Immediate update:

Peter and Susan both start a session on hypertext H1. Peter obtains a write lock on
component C1. Susan opens C1 with read lock and subscribes to immediate updates
when C1 is changed by other users. The instantiation for C1 now automatically
updates the instantiation by regetting the most recent version of C1 stored in the
OODB whenever an update event notification appears. Peter makes changes and
commits them to the database, forcing immediate updates to happen on Susan's
screen.

Scenario 2: Logging events:

Several users (Peter, Susan, and John) have started a session on hypertext H1.
Susan has opened C1 with a read lock and subscribed to logging of changes to C1.
Peter opens C1 with a write lock - Susan is notified with a message in the console
saying: "Peter opened C1 with write lock Thursday 26.11.92 at 11:28:08". Peter
makes changes and saves C1 - Susan is notified with a message in the console
saying: "Peter modified C1 Thursday 26.11.92 at 12:00:11". Peter releases the write
lock - Susan is notified: "Peter released the write lock for C1 Thursday 26.11.92 at
12:01:00". Later John opens C1 with a write lock - Susan is notified: "John opened
C1 with write lock Thursday 26.11.92 at 13:10:08"

Scenario 3: Awareness notification for hypertexts:

15

Peter and Susan both start a session on hypertext H1, subscribing to notifications
about who uses H1. The result is a console showing a list of users having performed
a 'Get' operation on H1l. Now John also starts a session on HI1, making an
identification of John appear in Peters and Susan's consoles.

Scenario 4: Awareness notification for components and composite components:

Several users (Peter, Susan, and John) are working on the same “case” for which
Susan is responsible. They have started a session on the corresponding hypertext
H1. Susan makes a Composite CS1 containing components C1, C2, C3, and C4,
corresponding to the currently active documents in the “case”. Susan uses the
‘Composite subscribe...” menu command to subscribe to notifications on changes
occurring to components contained in CS1. The result is that Susan is notified
whenever another user performs update, lock change, etc. on C1, C2, C3, and C4.

Scenario 5: Notification about creation/deletion of specific types of objects:

Several users (Peter, Susan, and John) start sessions on hypertext H1. Susan
subscribes to logging of textComponent creation in H1. Peter creates a new
textComponent C1 for H1, edits the contents and saves it - Susan is notified with a
message in the console saying: “Peter created textComponent C1 Thursday 26.11.92
at 11:28:08”.

Scenario 6: Lock exchange:

Peter, Susan and John start a session on hypertext H1. Peter obtains a write lock on
component C1. Susan and John open C1 with read lock. John subscribes to logging
of changes to C1. At some point Susan uses the menu command "Change lock...",
which informs her that Peter has a write lock on C1. Then Susan calls Peter on the
phone and asks him whether he is willing to save his changes and release the write
lock on C1. Peter agrees to do that, saves his changes, and changes the write lock to
a read lock. Susan immediately obtains a write lock. During this exchange John has
received notification messages that: Peter has saved changes, Peter has released
write lock on C1, Susan has obtained write lock on C1. Peter subscribes to logging of
all changes to C1. Susan then makes some changes and commits them to the OODB
triggering notification messages to both Peter and John.

Scenario 7: Simultaneous linking:

Peter and Susan starts a session on hypertext H1, and opens the textComponent C1
with read lock and subscribes to immediate update on C1. Peter creates a public
link from a text region in C1 to a text region in component C2. Peter commits the
change making a short upgrade to a write lock on the anchor list of C1, immediately
updating Susan's view of C1 with the new linkMarker. Susan makes another public
link from C1 to component C3, commits the changes, Peter's view of C1 is
immediately updated in a similar fashion.

The scenarios described in this section illustrate examples of the kind of support for
cooperation on shared hypertexts that is provided currently with the augmented
OODB and the Runtime class extensions described earlier. Experiences from the
engineering project and other upcoming use settings are contributing to ongoing
development of support for a richer set of cooperation scenarios. Among the future
developments we also expect to support scenarios where users gracefully move from
asynchronous modes of cooperation to synchronous modes still inheriting the the
general Dexter based hypermedia features.

16

6. CONCLUSION

The paper discussed issues for the design of a general architecture for cooperative
hypermedia systems based on the Dexter Hypertext Reference model [Hala90]. The
architecture provides a generic framework for developing Dexter compliant
hypermedia systems. The architecture consists of an extended object oriented
implementation of the generic concepts proposed by the Dexter model. The client
and server processes of the architecture are designed to correspond to the layering
proposed by the Dexter Model. The architecture includes an object oriented
database (OODB) to store the objects implementing the Dexter Storage Layer
concepts. The OODB has, in course of the project, been augmented to support long
term transactions, flexible locking and notifications as called for by Halasz
[Hala88]. Developing such support within the OODB makes it general and
independent of changes and extensions to the Dexter based process and data
models. Our working prototype, DeVise Hypermedia (DHM), utilizes the power of
this architecture. DHM was developed and used to explore the possibilities of
providing hypermedia support for engineering projects. Inspired from these
experiments a set of abstracted use scenarios is described to illustrate examples of
the kind of cooperation support that can be provided by systems developed from the
Dexter-based hypermedia architecture.

The Dexter-based architecture constitutes the basis for further hypermedia
development in the EC funded Esprit III project, EuroCODE - CSCW open
development environment (1992-1995). This involves further development of the
Dexter-based architecture, development of a tailoring environment, and
implementation of specific hypermedia prototype systems for the primary user
organizations involved in the project.

ACKNOWLEDGEMENTS

We greatly thank Randy Trigg for his invaluable inspiration and for his comments
on earlier drafts of this paper. We also thank Sgren Brandt and Kim J. Mgller for
their work on the OODB, Jgrgen Ngrgard for his work on browsers, and the rest of
our group: Niels Damgaard, Jorgen L. Knudsen, Morten Kyng, Preben Mogensen,
and Elmer S. Sandvad for their contributions to the design of DHM. The work is
supported by the Danish Research Programme for Informatics, grant number
5.26.18.19, and the Esprit projects EuroCoOp and EuroCODE.

REFERENCES

[Ahme91] Ahmed, S., Wong, A., Sriram, D., & Logcher, R. (1991). A Comparison of
Object-Oriented Database Management Systems for Engineering
Applications (Research Report No. R91-12).

[Ande92] Andersen, P., Brandt, S., Hem, J. A., Madsen, O. L., Mgller, K. J., &
Sloth, L. (1992). Workpackage WP5 Task T5.4, Deliverable D5.4:
Distributed Object- Oriented Database Interface. (EuroCoOp deliverable
No. ECO-JT-92-3). Jutland Telephone and Aarhus University.

[Davi92] Davis, H., Hall, W., Heath, I., Hill, G., & Wilkins, R. (1992). Towards an
Integrated Information Environment with Open Hypermedia Systems.
In European Conference on Hypertext (ECHT ‘92), (pp. pp. 181-190).
Milano, Italy: ACM.

[Grgn93] Grgnbzk, K., Kyng, M., & Mogensen, P. (1993). CSCW Challenges:
Cooperative Design in Engineering Projects. Communications of the
ACM, 36(6), 67-717.

17

[Gron92al

[Grgn92b]

[Haan92]

[Hala90]

[Hala88]

[Hem91]

[Kacm91]

[Knud93]

[Mads93]

[Magn93]

[Serg87]

[Stre92]

[Wiil91]

[Will92]

Grgnbazk, K., Madsen, O. L., Mgller, K. J., Ngrgaard, J., & Sandvad, E.
(1992). EuroCoOp Workpackage WP5 Task T5.3 Distributed Hypermedia
Design Tool. (EuroCoOp Deliverable No. ECO-AU-92-14). Aarhus
University.

Grgnbak, K., & Trigg, R. H. (1992). Design issues for a Dexter-based
hypermedia system. In European Conference on Hypertext 1992 (ECHT
92), (pp- 191 - 200). Milano, Italy.: ACM, New York.

Haan, B. J., Kahn, P., Riley, V. A., Coombs, J. H., & Meyrowitz, N. K.
(1992). IRIS Hypermedia Services. Communications of the ACM, 35(1),
36-51.

Halasz, F., & Schwartz, M. (1990). The Dexter Hypertext Reference
Model. In Hypertext Standardization Workshop, (pp. 95-133).
Gaithersburg, Md.:

Halasz, F. G. (1988). Reflections on NoteCards: Seven issues for the next
generation of hypermedia systems. Communications of the ACM, 31(7),
836 -852.

Hem, J. A., Madsen, O. L., Mgller, K. J., Ngrgaard, C., & Sloth, L. (1991).
Workpackage WP5 Task T5.2, Deliverable D5.2: Object-Oriented
Database Interface. (EuroCoOp Deliverable No. ECO-JT-91-2). Jutland
Telephone and Aarhus University,.

Kacmar, C. J., & Leggett, J. J. (1991). PROXHY: A Process-Oriented
Extensible Hypertext Architecture. ACM Transactions on Information
Systems, 9(4), 399-419.

Knudsen, dJ. L., Lofgren, M., Madsen, O. L., & Magnusson, B. (1993
(forthcoming)). Object-Oriented Software Development Environments -
The Mjglner Approach. Englewood Cliffs, NdJ: Prentice Hall.

Madsen, O. L., Mgller-Pedersen, B., & Nygaard, K. (1993). Object-
Oriented Programming in the Beta Programming Language. Reading,
MA: Addison-Wesley.

Magnusson, B., Asklund, U., & Minor, S. (1993). Fine-Grained Version
Control for Cooperative Software Development (Research Report No. LU-
CS-TR:93-112). Lund University, Department of Computer Science.

Sgrgaard, P. (1987). A cooperative work perspective on use and
development of computer artifacts. In 10th Information Systems
Research Seminar in Scandinavia (IRIS). Vaskivesi, Finland, August 10-
12,1987:

Streitz, N., Haake, J., Hannemann, J., Lemke, A., Schuler, W., Schiitt,
H., & Thiiring, M. (1992). SEPIA a Cooperative Hypermedia Authoring
Environment. In European Conference on Hypertext (ECHT ‘92), (pp. 11-
22). Milano, Italy: ACM.

Wiil, U. K. (1991). Using events as Support for Data Sharing In
Collaborative Work. In K. &. S. Gorlin C. (Ed.), Proceedings of the
International workshop on CSCW. Berlin: Institut fiir Informatik und
Rechentechnik.

Wiil, U. K., & Leggett, J. J. (1992). Hyperform: Using Extensibility to
Develop Dynamic, Open and Distributed Hypertext Systems. In
European Conference on Hypertext (ECHT ‘92), (pp. 251-261). Milano,
Italy: ACM.

18

