
1

D e s i g n i s s u e s fo r a De x t e r - b a s e d
h y p e r m e d i a sy s t e m

Kaj Gr¿nb¾k
Computer Science Department, Aarhus University,
Ny Munkegade 116, DK 8000 Aarhus C, Denmark.

Randall H. Trigg
Xerox PARC

3333 Coyote Hill Rd., Palo Alto, CA 94304, USA

A b s t r a c t

This paper discusses experiences and lessons learned from the design of an open
hypermedia system, one that integrates applications and data not ÒownedÓ by
the hypermedia. The Dexter Hypertext Reference Model [8] was used as the
basis for the design. Though our experiences were generally positive, we found
the model constraining in certain ways and underdeveloped in others. For
instance, Dexter argues against dangling links, but we found several situations
where permitting and supporting dangling links was advisable. In Dexter, the
data objects making up a component's contents are encapsulated in the
component; in practice, references to objects stored apart from the hypermedia
structure should be allowed. We elaborate Dexter's notion of composite
component to include composites that ÒcontainÓ other components and
composites with structured contents, among others. The paper also includes a
critique of Dexter's notion of link directionality, proposes a distinction between
marked and unmarked anchors, and discusses anchoring within a composite.

1 . I n t r o d u c t i o n

The hypermedia work discussed here is part of the DeVise project at the
Computer Science Department, Aarhus University, Denmark [4]. The DeVise
project is developing general tools to support experimental system development
and cooperative design in a variety of application areas including large
engineering projects. These use settings are characterized by group work
distributed over time, space and hardware platforms. The requirements this
intensely collaborative, open-ended work makes on hypermedia include: a shared
database, access from multiple platforms, portability, extensibility and
tailorability. For a detailed discussion of our engineering project use setting and
its CSCW and hypermedia requirements, see [5].

To our knowledge, no hypermedia system met these requirements on the
platforms we needed to support. Having to build our own, we nonetheless wanted
to benefit from the experience and expertise of past and present hypermedia

 In Proceedings of the European Conference on Hypertext Ô92 (ECHT Ô92), Milano, Italy,
December 1.-4. 1992

2

designers. It was for this reason that we decided to use the Dexter Hypertext
Reference Model [8] (called ÒDexterÓ in the rest of this paper) as our platform.
Dexter is an attempt to capture the best design ideas from a group of ÒclassicÓ
hypertext systems, in a single overarching data and process model. Although
these systems have differing design goals and address a variety of application
areas, Dexter managed to combine and generalize many of their best features.

We took the Dexter reference model as the starting point and turned it into an
object-oriented design and prototype implementation (called DeVise Hyper-
media, or just "DHM"), running on the Apple Macintosh. As programming
environment, we chose the Mj¿lner Beta System supporting the object oriented
programming language BETA [12]. The Mj¿lner Beta System includes an object-
oriented database [10], in which our hypermedia structures are stored.

Among the media supported by DHM are text, graphics, and video, using a
styled text editor, a simple drawing editor, and a Quicktime movie player,
respectively. DHM also supports link and node browser composites and a
composite to capture screen configurations of open components (modelled on the
NoteCards TableTop [18]). In addition to traversing links (including multi-
headed ones), users can edit link endpoints using a graphical interface.
Components can also be retrieved and presented via title search. Dexter's model
of anchoring is extended to include a distinction between marked and unmarked
anchors. Finally, in contrast to Dexter, DHM explicitly supports dangling links.

In short, our attempt to directly ÒimplementÓ Dexter was largely successful.
We were surprised at the robustness of the resulting design - it met several of
our goals not explicitly identified in the Dexter paper. At the same time, we
uncovered holes in the model, areas where further development is needed. For
some of these, we now feel prepared to offer proposals for other hypermedia
designers. Those involving the overall architecture, details of the data and
process model, and tailorability are described in [3]

This paper reviews the Dexter model before discussing our experiences in
applying it. Our focus here is on links, anchors, composites and cross-layer inter-
faces. For each of these, we comment on the utility and applicability of Dexter,
identify the implementation choices made in our prototype, and make recommen-
dations for designers of future systems and standards. We close with research
issues and open questions.

2 . T h e D e x t e r M o d e l

The Dexter Hypertext Reference Model [8] separates a hypertext system into
three layers having well defined interfaces as shown in Figure 1.
The Storage layer captures the persistent, storable objects making up the
hypertext. The basic object provided in the Storage layer is the component. As
shown in Figure 2, components are divided into contents, corresponding to the
componentÕs data, and component information. The component information
includes a general purpose set of attributes, a presentation specification and a set
of anchors. The atomic component is an abstraction replacing the widely used but
weakly defined concept of ÔnodesÕ in a hypertext network. Composite components
provide a hierarchical structuring mechanism. The contents of a link component

3

is a list of specifiers, each including a presentation specification as well as
component and anchor identifiers. A hypertext is simply a set of components.

User
interface

Client Server: support for
distributed multi-user
access

File structure/
database organization/
persistent object storage

Different types
of materials /
media

Individual
applications

Runtime
layer

Storage
layer

Within-component
layer

Presentation
specifications

Anchors

Figure 1: The Dexter model layers and interfaces.1

The Within-component layer corresponds to individual applications. The
applications are responsible, for example, for supporting content selections for
link anchoring.

The interface between the storage and within-component layers is based on
the notion of anchors. Anchors consist of an identifier that can be referred to by
links and a value that picks out the anchored part of the material.

Component LinkComponent

Contents

Component
Info

Attributes

Presentation
Specification Anchors

Component
Info

Specifiers

Attributes

Presentation
Specification Anchors

Figure 2: Component structure in the Storage Layer.

The Runtime layer is responsible for handling links, anchors, and components at
runtime. Objects in the runtime layer include sessions, managing interaction
with particular hypertexts, and instantiations, managing interaction with
particular components. The runtime layer provides tool independent user

1Some of the text appearing in the figure is our own.

4

interface facilities through operations like NewComponent, AddLinkEndpoints,
and FollowLink.

The interface between the Storage layer and the Runtime layer includes
presentation specifications which determine how components are presented at
runtime. Presentation specifications might include information on screen
location and size of a presentation window, as well as a ÒmodeÓ for presenting a
component. Halasz and Schwartz [8] use the example of an animation component
that can be opened in either run mode or edit mode.

3 . L i n k s

Links have traditionally formed the heart of hypertext systems. Indeed, the
traversable network structures formed by links distinguish hypertext from other
means of organizing information. Hypertext systems have implemented links in
a number of ways, many of which are unified by DexterÕs notion of link
component. In addition to the typical source/destination links, Dexter can model
multi-headed links. Furthermore, because links are components, they can be the
endpoints of other links. Through the use of specifiers, the Dexter model
supports computed as well as static links. Simple ÒtypingÓ can be supported by
adding attributes to the link component. But DHM also supports full-fledged
typing of links due to its object oriented component design.

Figure 3: Creating a link with one endpoint.

Though in principle a Dexter link could have fewer than two endpoints, this is
expressly forbidden by the modelÕs semantics. In DHM, we have relaxed this
constraint; that is, "dangling" links having zero or one endpoint are perfectly
legal. This means that we can avoid the modal "start link / end link" link
creation style of many hypertext interfaces. In DHM's user interface, links can
be created in two ways: (1) a ÒNew LinkÓ operation creating a link having one
endpoint based on the current selection in the active editor (Figure 3); in this
case no instantiation or link editor is opened. And, (2) via a new node operation
creating a link with an open instantiation and link editor; in this case the link
has no endpoints (see the ÔLink 6Õ link instantiation in Figure 4). Endpoints can

5

be added to the link at any time and as shown in Figure 4, links can have other
links as an endpoints.

Figure 4: Two open link instantiations.

In our implementation of links, we confronted two problems with DexterÕs model:
1) its aversion to dangling links and 2) its notion of link directionality.

D a n g l i n g l i n k s

In spite of DexterÕs explicit aversion to dangling links, we chose to support them
for several reasons. First, they allow lazy updating and garbage collection
following node and anchor deletion. This is useful when the link to be deleted (or
modified) lives on another machine or is currently locked by another user. A
second, related situation involves data objects outside the control of the
hypermedia, for example, files with component data needing to be moved or
deleted. Third, the dangling endpoint can be Òre-linkedÓ or re-connected to
another node or anchor without having to rebuild the entire link (especially
useful for multi-headed links). Finally, dangling links can be created
intentionally as placeholders when the desired endpoint node or anchor does not
yet exist.2 The presence of such dangling links could be monitored by the system
either on command or automatically. Users could then be prompted to reconnect
"missing" link endpoints.

We imagine four different dangling link situations arising in an integrated
Dexter-based hypermedia system: 1) the endpointÕs component has been deleted,
2) its anchor has been deleted, 3) relevant data objects referred to by the
componentÕs contents are unavailable, and 4) the anchor value is invalid. In the
first two cases, the deletion operation modifies the objects so that later calls to
followLink raise exceptions. Component deletion is implemented by clearing the

2An anonymous reviewer mentioned an example from asynchronous collaborative writing: When
sharing parts of a hypertext, the links should dangle while being shared, but be re-attached
when returned.

6

anchors list and component contents, and setting a ÒdeletedÓ flag. Anchor
deletion is carried out similarly.

Cases 3 and 4 usually result from actions outside the control of the
hypermedia. For example, data objects making up a component's contents can
become unavailable if the contents is a file identifier, and the file has been
moved or deleted independent of the hypermedia (case 3). In this case the
followLink operation should catch the file system exception and pass it along as
a dangling exception to the user.

In case 4, the data specified by the anchor value becomes invalid when
relevant parts of the component's contents are modified with editors outside the
hypermedia. This situation is impossible to detect in general during a
CreateLinkMarker or a FollowLink operation, since the lookup/computation of
anchor value may not raise an exception. An example is when the anchor value
is still legal but out of date, as a result of "unauthorized" editing of the
surrounding text. Currently in DHM, we have implemented detection and re-link
options for case 1.

L i n k d i r e c t i o n a l i t y

The Dexter model includes only minimal motivation for its notion of link
directionality. We are told that each link specifier indicates a directionality using
one of the constants FROM, TO, BIDIRECT, or NONE, depending on whether
the endpoint is to be interpreted as a source, destination, both source and desti-
nation or neither, respectively. Furthermore, every link must have at least one
TO specifier.3 Such directionality constants are used to model the link semantics
of existing hypermedia systems. For example, Intermedia links are modelled
with BIDIRECT directionality on all specifiers. This is because the endpoints of
an Intermedia link are directionally interchangeable [6].4 In NoteCards, on the
other hand, links have a definite source and destination [9].

However, this scheme seems insufficient to model the ways people interpret
link direction in practice. Consider the following three notions of directionality:

Semantic direction: This concerns the semantic relationship between the
components captured by the link. For example, a ÒSupportÓ link connecting com-
ponents A and B has a direction in which it normally ÒreadsÓ; the argument in
Component A ÒsupportsÓ the claim in Component B [17, Ch. 4].

Creation direction: This direction corresponds to the order in which the link
endpoints were created: the source of the link is the first endpoint created while
the destination is the last.

Traversal direction: This direction specifies how the link can be traversed.
HyperCard links, for example, can only be traversed from source to destination.5

3An anonymous reviewer informs us that the wording of the constraint should have been, "at
least one TO or BIDIRECT specifier."
4Intermedia anchor attributes can, however, be notated with directionality information.
5This is because HyperCard links are implemented as ÒGoÓ statements in a script in the linkÕs
source component. This also means that link's cannot normally be seen from their destination
cards.

7

NoteCards links can be traversed in both directions, although the interface style
is different. When moving from source to destination, one clicks on the source
anchorÕs icon. To move from destination to source, a menu of Òback-linksÓ is
opened in the destination component and the appropriate link icon is chosen.
These senses of link direction are in principle orthogonal. For example, the
directions in which one can physically traverse a link in a particular system need
not depend on the linkÕs semantic direction. Nonetheless, many systems enforce
dependencies. In NoteCards, for example, the creation direction corresponds to
the traversal direction.

The question for the Dexter model is, which sense of directionality is being
modelled by a particular choice of directionality constant in a link specifier? Like
Dexter, we have not explicitly addressed this question in DHM; by default, all
specifiers start with a BIDIRECT constant which users can later modify. And by
default, the direction attribute is interpreted as a traversal direction, i.e.
following a link means bringing up the TO and BIDIRECT endpoints. However,
we plan to allow tailoring of the followLink operation, e.g. by specializing it to
support different behavior.

4 . A n c h o r s

One of DexterÕs major contributions is its explicit identification of anchors as the
ÒglueÓ connecting network structures to the contents of particular components.
Anchors are a controlled means of referring into the Òwithin-componentÓ layer.
Without them, links connect only whole components.

Dexter's anchors are defined relative to a component and have an id that is
unique within that component. Link specifiers must identify both the component
id and the anchor id. Explicit mention of the ids can be avoided, however, by use
of the resolver function. Thus the component appearing at a linkÕs endpoint can
be computed dynamically at run-time.

The biggest problem with DexterÕs model of anchors is that they are not
properly related to composites. That is, although the contents of a composite (a
list of baseComponents) is ÒvisibleÓ (i.e. explicitly represented) in Dexter, no
mention is made of how anchors should refer to baseComponents within a parent
composite. In DHM we allow composites to include full-fledged components (see
Section 5), adding further problems. For example, can an anchor in the parent
composite be tied to an anchor in one of its components? That is, can a link
ÒindirectÓ through a compositeÕs anchor, to an enclosed componentÕs anchor?

There are other anchor-related issues not discussed in the Dexter model.
Consider, for example, links to whole components. Should they have an empty
Anchor reference in the specifier or should there be a Òwhole-componentÓ anchor
type? In that case, should all whole-component links share a single whole-
component anchor, or should there be one anchor for each link endpoint? Indeed
the general issue of sharing versus multiplying anchors is left open in Dexter.
When creating a new link, should one always try to reuse any existing applicable
anchor? Suppose there is more than one?

8

DHM extends DexterÕs model of anchors in several ways. First, we use
dynamic references (ÒpointersÓ) instead of anchor ids.6 This means that link
specifiers point directly at component anchors avoiding the need for an accessor
function. Similar benefits accrue from our block-structured type definitions. In
the same way that a component need not keep a Òback-pointerÓ to its enclosing
hypertext, an anchor need not keep a Òback-pointerÓ to its enclosing component.

DHM distinguishes three high-level anchor types which are independent of
the type of the enclosing component. Whole-component anchors support the
degenerate case of link endpoints not anchored within a componentÕs contents.7

A marked anchor is one for which an object is directly embedded in the
componentÕs contents. This object is called a link marker in Dexter. It may or
may not be visible Ð indeed, some link markers (e.g. an Emacs ÒmarkÓ) may
never be made visible as such. Link markers can be implemented in a variety of
ways depending on the medium and the application. Visible icons inserted in text
or graphic windows can serve as link markers (e.g. NoteCards link icons). But a
link marker can also correspond to what Meyrowitz [14] calls a Òpermanent tie."
Such an object can ÒtrackÓ editing changes to the componentÕs contents including
changes to the selection itself. The instantiation may or may not choose to make
the link marker visible (see e.g. IntermediaÕs arrow icon registering the presence
of a permanent selection). DHM supports link markers in text components by
maintaining outlined regions around the anchored text selections. A command-
click within the link marker region invokes a follow on the corresponding
marked anchorÕs links.

Unmarked anchors have no link markers; normally their location within a
component must be computed. Text components in DHM support a specialization
of unmarked anchor called keyword anchor, resembling the endpoints of
HyperTies text links [16]. Creating an anchor requires saving a copy of the text
string corresponding to the current selection. Following a link requires checking
whether the current selectionÕs text matches a saved keyword anchor and if so,
following that anchorÕs links.

That which sets apart a marked anchor from an unmarked one is the ability to
retrieve the anchor directly from a selection in the componentÕs editor. If a link
marker is currently selected (or clicked on) in an open instantiation, then the
instantiation should be able to directly access the corresponding marked anchor.
This is in contrast to unmarked anchors, where a search is required. In general,
each unmarked anchor must be asked whether it is currently ÒselectedÓ (or
perhaps more descriptively, ÒapplicableÓ). The operation of following a link from
a marked anchor should take constant time, whereas following a link from an
unmarked anchor requires in the worst case time proportional to the total
number of unmarked anchors in the component.8

6Utilizing an OODB makes our pointers persistent. We nonetheless maintain component and
anchor ids in order to be able to generate transportable interchange formats for the hypermedia
structure.
7In DHM, all links with whole-component endpoints in a component share a single whole-
component anchor.
8This can be improved using hash tables and the like.

9

5 . C o m p o s i t e s

The notion of structure (usually hierarchical) has been a part of most hypertext
systems since the time of NLS/Augment in the 60Õs [2]. To name just one
example, in KMS (as well as its ancestor ZOG), a hierarchical structuring
capability is built in to every node [1]. That is, all nodes (called ÒframesÓ in
ZOG/KMS) can act as containers for other nodes. Usually, however, hierarchical
structuring (and on rare occasions, non-hierarchical structuring), is supported
through separate mechanisms.

In his landmark ÒSeven IssuesÓ paper, Halasz proposed that the composite be
elevated to peer status with atomic nodes and links [7]. Composites would
provide a means of capturing non-link based organizations of information,
making structuring beyond pure networks an explicit part of hypertext
functionality.9 Halasz also argued for the related notions of computed and virtual
composites. The contents of a computed composite might be, say, the result of a
structural query over the hypertext returning sets of nodes and links as Òhits.Ó A
virtual composite is created on demand at runtime, but not saved in the
database. Later, in Aquanet [13], the composite idea was used to capture slot-
based structures consisting of nodes and relations, multi-headed variants of
links.

Halasz [7] also criticized purely link-based structures arguing that they lack a
single node capturing the overall structure. The Dexter modelÕs composite
addresses this critique. As an aggregation of base components, it acts both as a
full-fledged node in the network, and as container for the structure. In
particular, such a composite can contain link components (in addition to atomic
nodes and other composites) and thus capture complex non-hierarchical network
structures (like Aquanet relations). Furthermore, because of DexterÕs clean
separation of storage and runtime environments, virtual composites are a simple
variant.

Though DexterÕs notion of composite is a significant step forward, it is only one
point in a spectrum of possible designs, each having certain advantages and
meeting certain needs. Our prototype opens DexterÕs notion of composite to
tailoring for particular applications. Users adding a new composite type to our
prototype make choices along several dimensions:

V i r t u a l / n o n - v i r t u a l c o m p o n e n t s
Any component type (not just composites) can be made virtual by the setting of a
flag. Such components resemble normal components, but are usually not saved
in the database. If however, another component (say, a link) points at the
virtual, then it is indeed saved. Virtual components resemble objects in a
dynamic programming environment; if they are not pointed at, then garbage
collection reclaims them.

C o m p u t e d / s t a t i c c o m p o n e n t s
Any component type (again, not just composites) can be the result of a
computation rather than manually created by the user. A typical example is a
component created on the basis of executing a query. An attribute contains the

9A similar appeal was made by van Dam in his attack on links as Ògo toÓ statements [19].

10

information used to perform the computation. The componentÕs contents can
later be recomputed, either on demand or automatically. Some computed
components (like browsers) reflect the contents or structure of parts of the
network. In such cases, recomputation can be based on periodic checks of the
relevant sub-net, or be forced by changes to the relevant components or
structures.

Figure 5: A link browser composite in DHM; lists all links to and from the
ÔIntroductionÕ node.

C o m p o n e n t c o n t e n t s
Typically, the contents of a component in a hypermedia system is not simply a
flat set of enclosed data objects as suggested by the Dexter model. The contents
are often structured and can include external data objects or references to other
components

Figure 5 shows an example of a composite type supporting link browsing in
DHM. The Link browsers are implemented as virtual, computed composites with
contents consisting of lists of references to LinkComponents. Though not antici-
pated by the Dexter model, this kind of component was fairly easy to implement
using the framework described above.

6 . I n t e g r a t i o n a n d c o m p o n e n t c o n t e n t s

The phenomenon of system developers Òowning the worldÓ is becoming
increasingly rare. Today, most practical computer environments consist of a
number of third-party applications, perhaps customized for particular work
settings by local programmers or user Òtailors.Ó Unfortunately, the application's
inner workings and structures are rarely open to the developer trying to
integrate them into a larger environment. The problem is exacerbated if the
environment includes a variety of platforms.

In the last few years, researchers and developers have tried to use hypermedia
to address this integration problem [6,11,14,15]. They argue that rather than
build a hypermedia system that includes all the applications needed in the work
setting, one should employ hypermedia as a linking architecture, ÒconnectingÓ
the world rather than ÒowningÓ it.

11

The Dexter reference model makes certain important contributions to this
effort. At the architectural level, Dexter distinguishes between objects belonging
to the hypermedia (both runtime and storage), and the Òwithin-component layerÓ
belonging to an application. In addition to describing the hypermedia data
model, Dexter offers two important concepts that help cross the boundary:
anchors and presentation specifications (or ÒpspecsÓ). Anchors support linking to
and from points within the contents of an application document. Pspecs provide a
means of storing with a Dexter component information on how to start and
configure the appropriate application.

In this way, Dexter opens the possibility of integrating third-party
applications into a linked hypermedia environment. But it leaves unaddressed at
least two important integration-related questions. First, Dexter does not
distinguish between components whose contents are managed (in particular,
stored) by the hypermedia and those whose contents are managed by third-party
applications.

The second problem involves application documents having internal structure.
Such documents can be integrated as a single unit into the hypermedia using a
component Òwrapper,Ó but often the documentÕs internal structure needs to be
ÒexposedÓ for link anchoring. Dexter suggests using composite components, but
says almost nothing about how to anchor within the subcomponents of a
composite. Nor does it discuss whether or how a composite componentÕs structure
should model the internal structure of an application document.

In what follows, we discuss various possibilities for storing and structuring
component contents.

A t o m i c c o m p o n e n t s

Figure 6 shows two possible relations between an atomic component and an
anchored data object.

(a) (b)
Figure 6: Data is either part of an atomic component's contents or referenced by
it. (Dotted arrows denote references out of the hypermedia structure, e.g. file
identifiers.)

Figure 6a shows the traditional situation where an application and its data
objects are built into the hypermedia system. DrawComponents in DHM, for
example, encapsulate lists of graphical objects stored in the OODB together with
the components.

In Figure 6b, on the other hand, data objects wrapped by a component are
stored separately and only referenced by the contents of the component. In DHM
such a component/data object relationship characterizes FileComponents and
MovieComponents. FileComponents are used to wrap arbitrary files in the file

12

system, using file ids stored in the component contents. In this way, DHM
supports linking (using WholeComponent anchors) to, say, Microsoft Word or
Excel documents. The followLink operation launches the appropriate
applications on the files as if they had been double-clicked in the Finder.

MovieComponents "wrap" Quicktime movies,10 large multimedia data objects
(from 5 to several hundred MB) too complex to be easily stored in the
hypermedia's OODB. Hence, they are better handled using MovieFiles referred
to by the component contents.11 In this case, the component contents is also a file
identification object.

Typically, an atomic data object belongs to exactly one atomic component. But
there are cases where two or more components need to share data. Here the
components could have different types and/or different sets of anchors. Such
multiple "views" can be supported by the containment style shown in Figure 6b.

C o m p o s i t e c o m p o n e n t s

With regard to more complex structures of components and data objects, we
found DexterÕs notion of composite too narrow. According to Dexter, a composite
may only contain encapsulated data objects (see for example, the bottom left
composite in Figure 7). As noted by Halasz & Schwartz [8] this kind of composite
can model structures like graphical canvases. For other applications, however,
composites need to refer to external data objects or other components. In the
following we discuss examples of such composite types.

Figure 7: A composite referring to components of arbitrary type. (Solid arrows
denote internal pointers to hypermedia components.)

10QuickTimeª by Apple Computer Inc. implements a format for storing/compressing digitalized
video.
11In the current version of DHM, we support only one movie per MovieFile (and thus, one per
component).

13

C o m p o s i t e s " c o n t a i n i n g " c o m p o n e n t s
We first consider composites that refer to other components as shown in Figure
7. One example is the TableTopComposite used to save configurations of
components presented together on the screen [18].

The contents of a TableTopComposite in DHM is a list of ÒpointersÓ to
components of arbitrary type (including other links and composites); the
composite does not directly contain or wrap the data objects.

Figure 8: A virtual composite restricted to refer to LinkComponents. (The
shading indicates that the composite is virtual).

Another example is a search composite. Here the contents is a list of components
(again of arbitrary type) resulting from a title search or a query over component
attributes. In DHM, such search composites are implemented as virtuals (see
Section 5).

Figure 8 shows a slightly different kind of composite also used to group
components. In this case, the composite is both virtual and has contents
restricted to certain component types.

The VirtualLinkComposite shown in Figure 8 is used in DHM to implement a
variety of link browsers. VirtualLinkComposites are ÒcomputedÓ composites;
their creation requires collecting a set of links for an entire hypertext, a specific
component, or a specific anchor, depending on the kind of link browser.

When appropriate, restricting the component types pointed at by a composite
allows customization of the composite's interface. For example, the
VirtualLinkComposite interface supports inspecting individual link specifiers. A
non-typed composite would require runtime checking of the types of contained
objects.

E n c a p s u l a t e d d a t a o b j e c t s
Up to this point we have focused on composites referring to other components;
we now turn to composites referring directly to data objects. In Figure 9, the data
objects depicted as triangles are encapsulated in a "container" object (drawn as a
rectangle). In this case, the internal structure of the rectangular object is visible

14

to the hypermedia system. Hence the composite and its nested components can
refer both to the enclosing object and to its internal structure.12

12A nested component is one whose definition lies within the block structure of the parent
component and thus can only exist in the context of the parent component.

15

Figure 9: Typed composite with nested components points at encapsulated data
objects.

An example of such a composite is used to represent modules in the Mj¿lner Beta
programming environment [12]. Mj¿lner supports fine grained modularization of

16

programs using atomic modules called ÔfragmentsÕ contained in parent 'fragment
groups'. Each fragment group is stored on a file. To represent such structures in
DHM, we use a FragmentGroupComposite whose contents includes a reference
to a fragment group file and a list of references to atomic FragmentComponents,
declared inside the block structure of the FragmentGroupComposite. The nested
structure of the Ôreal worldÕ data objects (fragments and fragment groups) is
mapped directly onto the nested structure of the representing components.
Hence, we can link both to the composite and to the nested atomic components
representing individual fragments.13

We provide anchors at the FragmentGroupComposite level, to comments made
at the group level, and at the FragmentComponent level, to comments and
source code belonging to individual fragments.

S t r u c t u r e d c o m p o s i t e s
An Aquanet relation [13], is an example of a hypermedia composite with
structured contents. A fundamental feature of an Aquanet relation is that it
resembles a multi-headed link with named endpoints.

We suggest implementing such relations as composites with contents
consisting of a keyed table of component references (see Figure 10). Such a
composite can refer to basic objects (atomic components) as well as to other
relations (structured composite components). In addition, instantiations of such
composites can support link-like "endpoint" presentation. Here, "endpoints" refer
to the components pointed at by the composite's encapsulated structure.

Key1

Key2

Key3

..

Figure 10: A composite with structured contents.

S u m m a r y

The above examples show the need to support a broad view of component
contents when developing open Dexter-based hypermedia systems. Integrating
components of the Storage layer with data objects of the within-component layer

13Note that our block structured environment obviates the need for a backwards reference from
atoms representing fragments to composites representing the fragment group.

17

is one important aspect (as illustrated by the difference between a
DrawComponent and a MovieComponent). Another is the internal integration of
components and composites as illustrated by the cases of TableTopComposite
and VirtualLinkComposite. Table 1 summarizes the discussion in this section
using three feature dimensions.

Structure of
contents

Location/type of
contents

Location of
definition

¥ Atomic

¥ Unstructured
collection

¥ Structured
collection

- sorted list
- keyed table
- tree
- ...

¥ Data objects

- within
component

- outside
component

¥ Components

- restricted
types
- unrestricted

¥ Nested in this
component

¥ Resides
outside this
component

Table 1: Features of component contents.

7 . C o n c l u d i n g r e m a r k s

This paper discussed experiences from Dexter-based hypermedia development in
the DeVise project at Aarhus University. The work has lead to clarifications and
extensions to the Dexter model. Those treated in this paper are concerned with
integration issues and the design of central object classes like links, anchors, and
composites.

The open, extensible architecture we are developing will provide a basis for
developing multi-user hypermedia applications in a variety of domains. In a
forthcoming paper [3], we focus on architecture and tailorability issues for the
development of an open, extensible hypermedia system based on Dexter. We
discuss integrating the Runtime layer with external applications and introduce a
fourth Presentation layer to the Dexter architecture.

In addition, our work on Dexter based hypermedia will be part of the Esprit
III project, EuroCode, aimed at developing a CSCW application development
Òshell." One of the issues will be to extend the Dexter based hypermedia
architecture to support concurrency control, e.g. via an event mechanism as
described in [20].

A c k n o w l e d g e m e n t s

This work has been supported by the Danish Research Programme for
Informatics, grant number 5.26.18.19. Our thanks also go to the members of the
DeVise project at Aarhus University and four anonymous reviewers.

18

R e f e r e n c e s

1. Akscyn, R., McCracken D., & Yoder, E. 1988. KMS: A distributed
hypermedia system for managing knowledge in organizations. CACM, 31, 7,
(July), 820-835.

2. Engelbart, D. C. 1984. Authorship provisions in AUGMENT. Proceedings of
the 1984 COMPCON Conference, COMPCON '84 Digest, (San Francisco,
Calif., February), pp. 465-472.

3. Gr¿nb¾k, K & Trigg, R.H. An open, extensible hypermedia system based on
the Dexter Hypertext Reference Model. Computer Science Department,
Aarhus University, Denmark, in preparation.

4. Gr¿nb¾k, K. & Knudsen, J. L. Tools and Techniques for Experimental
System Development. In Syst�, K., Kellom�ki, P., & M�kinen, R.(eds.)
Proceedings of the Nordic Workshop on Programming Environment
Research, Tampere, Finland, January 8-10, 1992.

5. Gr¿nb¾k, K., Kyng, M., & Mogensen, P. CSCW challenges in large-scale
technical projects Ð a case study. To appear in Proceedings of Conference on
Computer Supported Cooperative Work Ô92, Toronto, Ontario, November,
1992.

6. Haan, B.J., Kahn, P., Riley, V.A., Coombs, J.H., & Meyrowitz, N.K. IRIS
Hypermedia Services. Communications of the ACM 35(1), January 1992,
pp.36-51.

7. Halasz, F. 1988. Reflections on NoteCards: Seven issues for the next
generation of hypermedia systems. Commun. ACM, 31, 7, (July), 836-852.

8. Halasz, F., & Schwartz, M. 1990. The Dexter hypertext reference.
Proceedings of the Hypertext Standardization Workshop , (Gaithersburg,
Md., January), pp. 95-133.

9. Halasz, F., Moran, T., & Trigg, R. 1987. NoteCards in a nutshell.
Proceedings of the CHI Ô87 Conference, (Toronto, Canada, April), pp. 45-52.

10. Hem, J.A., Madsen, O.L., M¿ller, K.J., N¿rgaard, C., & Sloth, L. Object
Oriented Database Interface. Deliverable D5.2, ESPRIT project 5305
EuroCoOp IT Support for Distributed Cooperative Work, December 1991.

11. Kacmar, C.J. & Leggett, J.J. PROXHY: A Process-Oriented Extensible
Hypertext Architecture. ACM Transactions on Information Systems 9(4),
October 1991, pp. 399-419.

12. Kristensen, B.B., Madsen, O.L., M¿ller-Pedersen, B., & Nygaard, K: Object-
Oriented Programming in the Beta Programming Language. Addison-
Wesley, forthcoming (1992).

13. Marshall, C.C., Halasz, F.G., Rogers, R.A., & Janssen, W.C. Aquanet: a
hypertext tool to hold your knowledge in place. Proceedings of Hypertext Ô91,
ACM New York, December 1991, pp. 261-275.

14. Meyrowitz, N. The Missing Link: Why WeÕre All Doing Hypertext Wrong. In
Barrett (ed.) The Society of Text . MIT Press, Cambridge Massachusetts,
1989, pp. 107-114.

19

15. Pearl, Amy. 1989. SunÕs link service: A protocol for open linking.
Proceedings of the Hypertext Ô89 Conference, (Pittsburgh, Pa., November),
pp. 137-146.

16. Shneiderman, B. 1987. User interface design for the HyperTIES electronic
encyclopedia. Proceedings of the Hypertext '87 Conference, (Chapel Hill,
November), pp. 189-194.

17. Trigg, R. 1983. A network-based approach to text handling for the online
scientific community. Ph.D. dissertation. University of Maryland
(University MicroFilms #8429934), College Park, Md.

18. Trigg, Randall. 1988. Guided tours and tabletops: Tools for communicating
in a hypertext environment. ACM Trans. Off. Inf. Syst., 6,4, (October), 398-
414.

19. van Dam, A. 1988. Hypertext '87: Keynote Address. CACM, 31, 7, (July),
887-895.

20. Wiil, U. K. Using events as Support for Data Sharing In Collaborative
Work. In Gorlin, K. & Sattler, C. (eds.) Proceedings of the International
workshop on CSCW, Berlin April, 1991. Institut f�r Informatik und
Rechentechnik, Berlin.

