

Design, Analysis and Reasoning about Tools:
Abstracts from the Third Workshop

Flemming Nielson
(editor)

October 1993

1 Introduction

The third DART workshop took place on Thursday August l9th and Fri-
day August 20th at the Department of Computer Science (DIKU) at the
University of Copenhagen; it was organized by Mads Rosendahl and others
at DIKU, and Torben Amtoft and Susanne Brønberg helped producing this
report. The first day comprised survey presentations whereas the second
contained more research oriented talks. The primary aim of the workshop
was to increase the awareness of DART participants for each other’s work, to
stimulate collaboration between the different groups, and to inform Danish
industry about the skills possessed by the groups.

The DART project started in March 1991 (prematurely terminating a
smaller project on Formal Implementation, Transformation and Analysis of
Programs) and is funded by the Danish Research Councils as part of the
Danish Research Programme on Informatics. To date it has received about
8 million Danish kroner in funding for activities going on at four Danish
institutions: The Department of Computer Science at Aarhus University
(Uffe Engberg, Peter Mosses, Flemming Nielson, Hanne Riis Nielson, Michael
Schwartzbach, Glynn Winskel, and others); The Department of Computer
Science at Copenhagen University (Klaus Grue, Fritz Henglein, Neil Jones,
Torben Mogensen, Mads Rosendahl, Mads Tofte, and others); The Depart-
ment of Computer Science at Aalborg University Centre (Hans Hüttel, Anna

1

Ingolfsdottir, Kim Larsen, Arne Skou, and others); The Department of Com-
puter Science at The Technical University of Denmark (Bo Hansen, Peter
Sestoft, and others). This spring the project underwent international review
as part of an overall review of the Danish Research Programme on Informat-
ics; copies of the evaluation report are available from the Danish Research
Councils.

Goals of the project

The application and development of formal methods is an integral part of
the research on theoretical computer science. A main goal of this project has
been to act as a catalyst to develop further contacts among the worlds of
techniques, methods and tools in different application domains.

An increasing awareness that techniques and tools from one application
domain are often relevant to other domains indicates that our project is of
relevance to advanced parts of Danish industry.

It may be a somewhat ideal goal to aim for all software and hardware
systems to be validated formally. However, the concept of “safety critical
systems” has been coined to clearly identify those systems where safety is
of paramount importance; examples include traffic control systems for air-
planes, trains and cars, process control at nuclear power stations, chemical
and biological plants etc. Performing such validation is difficult partly be-
cause of the sheer size of realistic applications and partly because of a lack
of tools: languages sufficiently powerful to express real-world requirements;
programming systems to transform specifications into solutions; and suffi-
ciently powerful and automated validation techniques to prove that a given
system satisfies a given specification.

This project participates in international activities enhancing the world
state-of-the-art in methods, tools and techniques to ensure the correct per-
formance of systems. A major objective is full or partial automation of tasks
aiding the overall goal of producing reliable systems that are faithful to the
semantics of various application areas, thereby facilitating the handling of
more than just toy applications. This necessitates a strong foundation in se-
mantics and may require the development or adaptation of new theories. Our
overall approach is appropriate since our methods are firmly based on seman-
tic foundations. Techniques we have emphasized include automated theorem

2

proving, program analysis, and fully automatic program optimization and
transformation techniques.

Activities of the project

Almost all of our activities presuppose the ability to make a semantic descrip-
tion of the system under scrutiny. The last decades of research have shown
the advent of Denotational Semantics and Structural Operational Seman-
tics. The ideal semantic description method must be universally applicable,
it must be understandable to programmers as well as specialists, it must
allow modularity in semantic definitions and needs to scale up well, and it
must support the study of program analyses and transformations. None of
the existing frameworks fully live up to all these goals.

One of the activities of the project is to continue the development of
Action Semantics, which is thought to be more understandable to program-
mers than either of Denotational Semantics or Operational Semantics. It also
allows modularity and scales up well. So far activities have mostly concen-
trated on descriptive power and on ensuring understandability among non-
specialists, but future activities will move on to developing the underlying
theory.

A major technique for program analysis is the framework of abstract
interpretation. The formulation and underlying principles have been strongly
influenced by Denotational Semantics (at least in the UK-Danish school). It
is applicable to all languages handled well by Denotational Semantics and a
rather general framework for the specification of program analyses has been
developed. This may then be used in the implementation of programming
languages where one may generate less naive code that takes advantage of
the knowledge of the “state” supplied by program analyses. Validating such
improved code generations is possible in many instances, but for advanced
language constructs obstacles still remain. Also it is necessary to increase
the class of programming languages to which the techniques are applicable
and methods based on Operational Semantics appear to be very fruitful for
this.

Adding concurrency presents additional problems to those outlined above.
It is possible in principle to validate that processes satisfy certain specifica-
tions but most solutions are subject to combinatorial explosion. To improve

3

upon this so-called local techniques have been developed and an automatic
verification tool has been constructed. Much research goes into extending
the expressiveness of specifications with more quantitative information like
real-time and priorities. This is of great practical interest and some progress
in this direction has been made, both theoretically and practically through
the construction of a verification tool for real-time processes. Among the
future goals are the inclusion of higher-order and context-free processes.

Concrete applications have a tendency to produce a vast number of
verification goals. Machine assistance seems called for in dealing with these
and in the project we have based most of our work in this direction on the
HOL-system. So far the results include the validation of while programs over
arbitrary types and the formalisation of domain theory (which is at the heart
of Denotational Semantics). But we have also studied other theorem proving
systems such as LP in connection with reasoning about parallel programs
using a Temporal Logic of Actions. We intend to continue such work in
order to increase the Danish expertise in this potentially vital field.

Partial evaluation is a now proven technique for automatic program
transformation. It works by specializing a general-purpose program on the
basis of partially known data. Its main advantage over other program trans-
formation techniques is that it is almost completely automatic. Initial and
successful applications were to develop compilers from interpreters, and au-
tomatically to produce compiler generators. Significant recent progress has
been made in obtaining better execution efficiency, and applications in other
domains are being investigated. A very promising direction is the automatic
transformation of specifications in formalised specification languages into so-
lutions in program form. This work has also lead to theoretical insights into
the role of constant factors in problem solving, and into relations between
partial evaluation and complexity theory. A system partially evaluating pro-
grams in the functional language Scheme has been developed and distributed
to several hundred sites. A similar system but for programs in the pragmat-
ically important imperative language C is under construction.

Semantic principles also show up in language design. The functional
language Standard ML has a modules concept, which is intended for making
it easier to write large programs. The key idea is that a certain kind of
modules, functors, can be parameterised on simpler modules, structures. We
have succeeded in extending the concept of functor, so that functors can

4

be parameterised on functors as well as structures, thereby adding to the
expressive power to the modules language. Recently these insights have been
incorporated within the ML implementation developed by Bell Labs (USA),
which is now available for world-wide use. Related to this is the use of
inference systems for analysing when the usual heap-based implementations
of functional languages may be replaced by the more efficient stack-based
implementations as known for imperative languages.

Our work also touches upon other programming paradigms including
object oriented languages. A number of techniques have been developed for
the analysis of sub-classes in such language. As an illustration of our belief
that research may progress more rapidly when the techniques and methods of
different areas meet, it turned out that essentially the same class of techniques
could be used to improve upon the partial evaluation of functional languages.

2 Abstracts of Talks given

Kim Guldstrand Larsen: Timed Modal Specifications -
Theory and Tools

In this tutorial we present the theory of Timed Modal Specifications (TMS)
together with its implementation, the tool EPSILON. TMS and EPSILON
are timed extensions of respectively Modal Specifications and the TAV sys-
tem.

The theory of TMS is an extension of real-timed process calculi with
the specific aim of allowing loose or partial specifications. Looseness of spec-
ifications allows implementation details to be left out, thus allowing several
and varying implementations. We achieve looseness of specifications by in-
troducing two modalities to transitions of specifications: a may and a must
modality. This allows us to define a notion of refinement, generalizing in a
natural way the classical notion of bisimulation. Intuitively, the more must-
transitions and the fewer may-transitions a specification has, the finer it is.
Also, we introduce notions of refinements abstracting from time and/or in-
ternal computation.

TMS specifications may be combined with respect to the constructs of
the real-time calculus by Wang Yi. The “time-sensitive” notions of refine-

5

ments are preserved by these constructs, thus enabling compositional verifica-
tion. (To be precise, when abstracting from internal composition refinement
is not preserved by choice for the usual reasons.)

EPSILON provides automatic tools for verifying all of the refinements
presented. We apply EPSILON to a compositional verification of a Train
Crossing example.

Neil Jones: When does Specialization Pay off on Prac-
tical Algorithms?

Program specialization can lead to significant running time improvements for
a number of well known and good algorithms for practical problems, but not
for all; and code explosion sometimes occurs. The talk will discuss benefits
gained and new problems encountered in applying partial evaluation to speed
up programs in areas outside programming languages.

Situations in which partial evaluation can be of benefit will be analyzed
in general terms, and applications to computer graphics and some other
problems will be described. A few types of program especially susceptible to
such optimizations will be characterized. Principles that lead to speedup are
emphasized, particularly for the ubiquitous “divide and conquer” paradigm,
so one can see when to consider using specialization for practical problems.

A class of “oblivious” algorithms not suffering from code explosion will
also be described. Surprisingly, the speedup obtained by specializing to small
problem size sometimes speeds up the entire computation by nearly the same
amount as n goes to infinity, and avoids problems of code explosion.

Hanne Riis Nielson: Semantics as an Analytical Tool

One of the problems studied in the DART project is: given a program in a
language with higher-order abstraction mechanisms, how do we implement
it efficiently on a realistic hardware configuration.

The main techniques we use are those of program analysis and program
transformations. The idea is first to develop program analyses that statically
extract information about the dynamic execution of the programs. Based
on that information we will next suggest program transformations that will

6

improve the efficiency of the resulting implementation. The work is firmly
based on semantics notions thereby allowing us to reason about the correct-
ness of the program analyses as well as the program transformations in a
rigourous way.

In this talk we illustrate the approach by showing how to analyse the
communication behaviour of a program in Concurrent ML with the aim of
implementing it on a simple transputer architecture.

Klaus Grue: Mathematics and Computation

The talk gives an overview of how the parallel graph reducer developed under
DART fits into a general mathematical environment. In that environment
it is possible to express mathematical definitions, computer programs and
mathematical proofs in a textbook format and to execute the programs and
verify the proofs using the graph reducer. The goal of this project is to estab-
lish a uniform environment that can support theoretical as well as practical
computer science developments within the same system.

Torben Amtoft: A new approach to constraint based
type inference

Strictness types (originally proposed by Wright) are types where the function
arrows are annotated: if f has type t1 →0 t2 we know that f is strict; but
if f has type t1 →1 t2 we do not know anything for sure. We shall present
an inference system for strictness types, formulated in terms of constraints
between variables ranging over 0 and 1.

The crux of our approach is to distinguish between positive and negative
variables; the former (latter) being those occurring on a function arrow in
covariant (contravariant) position. Now we (roughly speaking) define a nor-
malized set of constraints to be one where all constraints are of form b+ ≥ s,
where b+ is a positive variable and where s is an expression built up from u,
t and negative variables.

It turns out that it is possible to normalize the constraint system on the
fly by a leaf to root traversal of the proof tree, that is instead of collecting all
constraints and then solve them. We shall employ e.g. Tarski’s fixed point

7

theorem in this process.

It would be interesting to see if the technique can be (has been?) applied
elsewhere.

Kirsten Lackner Solberg: Strictness and Totality Anal-
ysis

For the simply typed lambda calculus with constants and fixed points and
lazy evaluation we define a strictness analysis. In the strictness analysis we
are looking at, we want to do both strictness analysis and totality analysis
at the same time. That is we want to distinguish between terms that are
surely bottom (does not evaluate; does not have a Weak Head Normal Form)
and terms that are surely not bottom (does evaluate; does have a WHNF).
First we have a normal type inference for the lambda calculus. Above these
underlying types we have the strictness types with strictness information.
We have coercions between the strictness types. We have proven the analysis
correct with respect to a natural operational semantics.

Fritz Henglein & David Sands: Binding Time Analysis:
Models and Logics

We present the first concrete connection between binding time logics (type
systems), and the semantic concept of a congruent program division.

The correctness of type-based binding time analysis has been argued by
appealing directly to the actions of an off line partial evaluator. By con-
trast, the correctness criterion introduced by Jones, called congruence, can
be argued to be independent of (more fundamental than) the partial evalu-
ation process, as it is based on semantic dependencies within the program,
and gives the potential for a more modular approach to the correctness of a
binding-time-based partial evaluator.

We present a binding time logic (type system) which captures struc-
tured binding time properties in a typed lambda calculus with constants
and recursively defined data types. The system is sound with respect to the
PER model of binding times (a generalisation of Launchbury’s projection-
based account of Jones’ congruence condition) and, we conjecture, can also

8

be shown to be complete (in the spirit of Jensen’s strictness logic) with re-
spect to Launchbury’s (finite) projection semantics, and Hunt and Sands’
PER-based abstract interpretation.

The end product of a binding time analysis is more than just a bind-
ing time property for the program. It is a global (sticky/collecting) analysis
which associates information with program points. In terms of the logic,
this amounts to asking not only what properties hold, but how. An example
of such a global analysis is Launchbury’s monovariant binding time analysis
which produces a congruent program division. It is shown that the pro-
gram division is congruent if a certain judgment can be proved in the logic.
However, certain simple (sound) extensions to the type system break this
congruence condition, suggesting that the particular form of Launchbury’s
congruence condition is somewhat overly restrictive.

Flemming Nielson: From CML to Process Algebras

Reppy’s language CML extends Standard ML of Milner et al. with primitives
for communication. It thus inherits a notion of strong polymorphic typing
and may be equipped with a structural operational semantics. We formulate
an effect system for statically expressing the communication behaviours of
CML programs as these are not otherwise reflected in the types.

We then show how types and behaviours evolve in the course of com-
putation: types may decrease and behaviours may loose alternatives as well
as decrease. It will turn out that the syntax of behaviours is rather similar
to that of a process algebra; our main results may therefore be viewed as
regarding the semantics of a process algebra as an abstraction of the seman-
tics of an underlying programming language. This establishes a new kind of
connection between “realistic” concurrent programming languages and “the-
oretical” process algebras.

Jarl Tuxen Lang: Model Construction for Implicit Spec-
ifications in Modal Logic

In top-down design of reactive systems, implicit specifications of the form
C(P1, . . . , Pn) |= F are often encountered, where C(P1, . . . , Pn) is a system

9

containing the (unknown) processes P1, . . . , Pn and F is a specification. We
present a method for constructing the processes P1, . . . , Pn (as labelled tran-
sition systems) when C is given as a context of process algebra (such as
CCS), and F is given as a formula of Hennessy-Milner Logic extended with
maximal recursion. The main contribution is the treatment of the simulta-
neous construction of several processes which together act as a model for the
specification. We have implemented two prototype tools (a semi-automatic
as well as an automatic one) which are based on the presented theory.

Joint work with Ole Høgh Jensen, Christian Jeppesen and Kim Guld-
strand Larsen.

Lars Birkedal & Morten Welinder: Partial Evaluation
of Standard ML

In this talk we describe offline partial evaluation of the core of Standard ML,
a large typed functional language. It is based on work for our Master’s The-
sis. Unlike previous partial evaluators for larger languages (like for instance
Similix for a subset of Scheme or C-Mix for a subset of C) we have chosen
not do to the partial evaluation directly, but to use an untraditional method
to transform a program into its generating extension. We show that this
approach is in many aspects superior to the traditional approach and that it
eliminates the need for self-applying the specializer.

We have developed a binding-time analysis based on non-standard type
inference and produce a very efficient implementation of it using constraints.
Notice that the analysis is implemented and is not only efficient in theory
but also in practice. While this has been done before, we have for the first
time succeeded in using the typedness of the source language to make the
analysis simple and therefore more trustworthy. We do not have time to go
into the analysis in this talk.

To our best knowledge our thesis also describes the first successful stra-
tegy for partially evaluating complicated patterns with variable bindings.
Earlier attempts have either been for a much simpler class of patterns or
have stranded on the need/wish for self-application of the specializer. We
show in this talk how the generating extension for programs with pattern
matching looks like.

10

A complete system for partial evaluation of Standard ML with pars-
ing, type checking, binding-time analysis, compiler generation, and pretty
printing has been implemented and we report on some experiments with this
system. For a standard example, compiling a program by specializing an
interpreter for a simple flow-chart language, we obtain a speedup which is a
factor of 10 bigger than what other partial evaluators have given according
to the literature.

Olivier Danvy: On the Transformation between Direct
and Continuation Semantics

Proving the congruence between a direct semantics and a continuation se-
mantics is often surprisingly complicated considering that direct-style lambda-
terms can be transformed into continuation style automatically. However,
transforming the representation of a direct-style semantics into continuation
style usually does not yield the expected representation of a continulation-
style semantics (i.e, one written by hand).

The goal of our work is to automate the transformation between textual
representations of direct semantics and of continuation semantics. Essen-
tially, we identify properties of a direct-style representation (e.g, totality),
and we generalize the transformation into continuation style accordingly. As
a result, we can produce the expected representation of a continuation se-
mantics, automatically.

It is important to understand the transformation between representa-
tions of direct and of continuation semantics because it is these represen-
tations that get processed in any kind of semantics-based program manipu-
lation (e.g, compiling, compiler generation, and partial evaluation). A tool
producing a variety of continuation-style representations is a valuable new
one in a programming-language workbench.

Joint work with John Hatcliff, Kansas State University.

An earlier version was presented at the 9th Conference on Mathematical
Foundations of Programming Semantics, New Orleans, spring 1993.

11

Sten Agerholm: Domain Theory in HOL

The HOL system is an interactive proof-assistant system for conducting
proofs in higher order logic. In this talk we present a formalization of domain
theory in HOL. The notions of complete partial order, continuous function
and inclusive predicate are introduced as semantic constants in HOL and
fixed point induction is a derived theorem, just as we can derive other tech-
niques for recursion. We provide proof tools which prove certain terms are
cpos, continuous functions and inclusive predicates, automatically. An inter-
face and various definition tools are implemented on top of these basic proof
tools. In this way we obtain an integrated system where cpo, continuity and
inclusiveness facts are proved behind the scenes.

3 Current Status of DART (Summer 1993)

3.1 SDT: Semantics as a Descriptive Tool (by P. D.
Mosses)

The research in this area of DART is centred on action semantics, a frame-
work that is intermediate between denotational and operational semantics.
Action semantics has significant pragmatic advantages over other frame-
works. For example, it scales up smoothly to the description of realistic
programming languages (such as Standard Pascal), and an extension to a
described language (e.g., from Standard ML to Concurrent ML) requires
only an extension of the semantic description — rather than its widespread
reformulation.

‘Industrial’ Applications:

The pragmatic advantages of action semantics were acknowledged in a recent
(independent) survey of formal semantics techniques. This led to the adop-
tion of action semantics for the formal description of ANDF (Architecture-
Neutral Distribution Format, a high-level ’universal’ intermediate code de-
veloped and used by the Open Software Foundation and under the ESPRIT
project OMI/GLUE). The action semantic description of ANDF being de-
veloped (at DDC-International) is represented in RSL (the RAISE Specifi-

12

cation Language) so as to allow the use of the sophisticated tools available
for RAISE.

Tools:

A tool for parsing, editing, checking, and executing action semantic de-
scriptions is under development, in collaboration with CWI, Amsterdam.
It is based on CWI’s ASF+SDF system. A prototype tool was presented
and demonstrated (by PDM and Arie van Deursen, CWI) at AMAST’93.
(The Mathematica-based tool developed earlier has been shelved, so as to
concentrate the modest resources available to SDT on the more promising
ASF+SDF-based tool.)

Language Descriptions:

The action semantic description of Standard Pascal has been completed (by
PDM and David Watt, Glasgow), and is available via FTP. An action se-
mantics for ML has been brought up-to-date by a Ph.D. student (Mart́ın
Musicante), and extended to the core constructs of Concurrent ML.

Semantics-Based Implementation:

Jens Palsberg has collaborated with Anders Bondorf on using the Similix
system to implement the action notation used in action semantic descriptions.
An M.Sc. student (Peter Ørbæk) has implemented an optimizer for action
notation. Another M.Sc. student (Christian Lynbech) is investigating direct
implementation of the formal operational semantics of action notation.

Theory:

An M.Sc. student (Tony Jakobsen) has devised and implemented an accurate
type inference algorithm for action notation. Mart́ın Musicante is investigat-
ing how to prove equivalences between action semantic descriptions and other
kinds of formal semantic descriptions. A new Ph.D student (Søren B. Lassen)
is to develop the laws and logic of action notation.

13

3.2 SAT: Semantics as an Analytical Tool (by H.R.
Nielson)

In the last year the main activities have been within the following areas:

Model Based Program Analysis

We have continued our previous studies of program analysis based on model
theoretic notions, in particular abstract interpretation.

The two-level approach to program analysis has previously been used to
verify the correctness of abstract interpretations as well as code generations.
In his M.Sc.-thesis Torben Lange showed how the techniques can be com-
bined to proving the correctness of an optimizing compiler. This work was
presented at the PEPM’93 conference.

The efficient implementation of abstract interpretation relies on the cost
of computing fixed points. A paper (by Flemming Nielson, Hanne Riis Niel-
son) accepted for WSA’93 presents a structural approach to predicting the
number of unfoldings needed to compute the fixed points of functionals aris-
ing when performing strictness analysis. Another report (by Hanne Riis Niel-
son, Flemming Nielson) suggests various iterative algorithms for computing
fixed points of special forms of functionals.

Logic Based Program Analysis

Recently we have shifted our attention towards using logical methods in
the specification of program analyses, in particular we have studied the use
of annotated type systems. Basically there are two approaches: One is to
annotate the base types and the other is to annotate the type constructors.
One of the goals of this work is to study the expressive power of these methods
and to relate them to existing model based approaches.

The use of logic systems was already pioneered in the two-level approach
to program analysis where a binding time analysis was specified using an an-
notated type system. This work has been refined by Kirsten Solberg (Odense)
and an alternative type reconstruction algorithm based on constraint solution
has been developed. This work was presented at WSA’92.

14

Strictness analysis has received a great deal of attention internationally.
We have studied the specification of a strictness and totality analysis using
an annotated type system with conjunction types and we have proved its
correctness with respect to an operational semantics. This work will be
reported in a forthcoming paper (by Kirsten Solberg, Flemming Nielson,
Hanne Riis Nielson).

One of the drawbacks of the above analysis is that it is very difficult to
infer good termination properties for recursive programs. To study this prob-
lem we have developed a termination analysis for a language with abstract
data types. This approach includes some form of well-founded induction. The
correctness of the analysis is proved with respect to an operational seman-
tics and shows how well-known notions from denotational semantics such as
monotonicity and continuity can be captured in an operational setting. The
work is reported in a paper by Flemming Nielson and Hanne Riis Nielson.

Finally, we have studied the correct application of strictness analysis in
a program transformation that introduces thunks. The analysis as well as
the transformation is specified by logical means and the correctness is proved
with respect to an operational semantics using a notion of logical relations.
This work has been carried out by Torben Amtoft (supported by DART)
and will be presented at WSA’93. Also a type reconstruction algorithm with
constraint solution “on the fly” has been developed for the strictness analysis.

Functional Languages with Concurrency Primitives

Recently there has been great interest in the development of functional lan-
guages with higher-order concurrency primitives, as e.g. CML and Facile.
Several members of the DART project have an interest in this area and a
workshop is planned on this topic.

So far only very few analyses have been developed for these languages.
We have shown how to develop an effect system that captures the commu-
nication behaviour of CML programs and furthermore that the language of
behaviours can be viewed as a process algebra. This is a novel view of process
algebras in that a subject reduction theorem for the effect system relates the
process algebra to a realistic programming language. This work (by Flem-
ming Nielson, Hanne Riis Nielson) will be presented at CONCUR’93.

The above work has been extended to a polymorphic version of CML

15

and a recent paper (by Hanne Riis Nielson, Flemming Nielson) shows how
the behaviour information can be used to analyse whether or not the CML
program has a finite communication topology, i.e. whether or not only a finite
number of processes and channels will be generated during the execution of
the program.

Future Work

Most likely, the future work will be centered around program analysis and
its application to program transformation. We plan to study model based as
well as logic based techniques and we shall be interested in a variety of pro-
gramming paradigms, in particular functional languages with concurrency
primitives. To be able to handle such languages we will study the prob-
lems encountered when replacing the traditional denotational basis with an
operational basis.

The group has recently been extended with Olivier Danvy (Assistant
Professor) and Karoline Malmkjæer (Research Assistent).

3.3 SOC: Semantics of Concurrency (by K.G. Larsen)

During the first half of 1993 considerable progress has been made with respect
to the analysis of (dense) real-time systems. A new specification formalism
for real-time systems extending Wang Yi’s Timed Calculus of Communi-
cating Systems into a Modal Transition System has been introduced. The
specification formalism is equipped with a number of equivalences and refin-
ernents for expressing various types of correctness properties. An automatic
tool EPSILON for establishing these equivalences and refinements has been
constructed. Also a number of (smaller) real-time systems (protocols, train-
crossing scenarios, etc.) has been analysed using the tool. This very recent
work has been performed in collaboration with Wang Yi (Uppsala Univer-
sity) and Karlis Cerans (Chalmers, Gothenhurg) and will be (or has been)
presented at a number of conferences (MFPS’93, FME’93, CAV’93).

Our work on compositional verification has continued. In particular an
automatic tool (and its underlying theory) for solving simultaneous “equa-
tions” with respect to suitable equivalence “equations” of the formC(X1, . . . , Xn)
∼ S has been constructed. Here X1, . . . , Xn are the unknown components to

16

be found, C is the context in which they are placed, S is the specification of
the overall system, and ∼ is a “suitable” correctness relation. This work will
be presented at CONCUR’93.

Henrik Reif Andersen’s thesis was examined this May. His PhD is an
impressive piece of work, covering compositionality and the most efficient
model-checking algorithms to date for the mu-calculus—this wide-ranging
thesis would surely make a welcome book! Winskel and Nielsen’s handbook
chapter has spawned several research developments: papers with Sassone ap-
pearing at MFCS93 and CONCUR93, and one with Joyal at LICS93; PhD
students Cheng and Torp Jensen and “speciale” (M.Sc.) student Clausen are
putting the ideas to work in operational semantics and model checking (es-
pecially of eventuality properties) allied with a study of priority. Winskel’s
book (MIT Press, January 1993), in particular its chapter on model check-
ing, makes our (and the Edinburgh-Sussex) approaches to model checking
accessible. Uffe Engberg is working on symbolic bisimulation and techniques
for its determination, applicable also to process calculi with value passing.

This August Aarhus held a highly successful two-week summerschool on
“Logical methods for concurrency”, funded by the Human Capital and Mo-
bility Programme (invited speakers: Dill, Harel, Moss, Stirling, Thiagarajan,
Wolper). Winskel lectured at the TEMPUS summerschool in Brno.

Finally, theoretical work on calculi mixing the functional and parallel
paradigm has been carried out. In particular, an extensive analysis of equiv-
alences and their axiomatization within the Fork calculus (a “projection” of
CML) has been offered, and has been presented at ICALP’93. Preliminary
work on dynamic typing of such mixed calculi has been studied, and will
be subject for future work. This has many points of contact with the work
on “Functional Languages with Concurrency Primitives” pursued under “Se-
mantics as an Analytical Tool”.

3.4 SBD: Semantics Based Deduction (by G. Winskel)

A PhD student (Urban Engberg) continues his implementation of a system
to support proofs in TLA, the termporal logic of Lamport with whom he
is in close correspondence. This work overlaps with the area “Semantics of
Concurrency”.

17

Sten Agerholm (funded by DART) has been successful in implementing a
significant part of domain theory in the proof assistant HOL. The advantage
of HOL over LCF is that the metalanguage of HOL allows much more general
reasoning, sometimes necessary in arguing about inclusive predicates or using
the new coinduction principles for recursive data types. This work has led
to a paper, to be presented at the International HOL meeting in Vancouver,
and to appear in the proceedings.

Agerholm and Winskel have jointly supervised Hougaard’s student project
on computability, recently completed and receiving grade 13. Agerholm will
give a 3 week course in HOL as part of Mosses’ graduate course in Logic
in the Fall. This may involve others from TFL, with whom Agerholm has
begun a tentative collaboration on extending HOL tools.

Theoretical work continues in several areas. In particular, Uffe Engberg
and Winskel’s completeness results for linear logic with respect to Petri nets
as a model are to appear in MFCS93. Linear logic reappears in the PhD work
of Brauner, Sørensen and Cattani. In particular, Sørensen’s work using ideas
from category theory to include time in domains was boosted by Winskel’s
meeting with P-L Curien—the latter has a semantics for linear logic in con-
crete domains. Linear logic, and especially linear classical logic, are leading
to a refined analysis of domains suitable for denotational semantics, and are
shedding light of the old and hard PCF full abstraction problem.

3.5 SBPM: Semantics Based Program Manipulation
(by N.D. Jones)

Overview

This part of DART is still very much on track with significant outside recogni-
tion, and many interesting tasks to be done and leads to be followed. Increas-
ing collaboration within DART is evidenced by joint work between Bondorf
and Palsberg, two Aarhus Ph.D. degrees in SBPM (Amtoft and Palsberg,
with censor from DIKU), and by employment at DAIMI of partial evalua-
tion researchers O. Danvy and K. Malmkjær (earlier at DIKU).

There has been much research and educational activity in this area since
September 1992 with numerous published articles, some in journals and some
in a variety of high-level conferences including IFIP W.G. 2.8 Functional

18

Programming, Formal Methods in Programming and Applications, FPGA,
PARLE, PEPM, PLILP, State in Programming Languages, STOC, and the
Workshop on Static Analysis. In addition a special issue of the Journal
of Functional Programming was guest edited by Neil Jones. A new book
collecting many results accomplished under DART was published: Partial
Evaluation and Automatic Program Generation by Jones, Gomard, Sestoft
(Prentice Hall International, 425 pp.).

Education. A D.Sc. thesis was defended at DIKU by Klaus Grue (with
Henk Barendregt as censor), and 5 students are working on Ph.D. degrees:
Lars Ole Andersen, Jesper Jørgensen, Christian Mossin, Kristoffer Rose, and
Morten Welinder. 3 M.Sc. theses were written, by Christian Mossin, Eigill
Rosager, and one jointly by Lars Birkedal and Morten Welinder.

Guests. We have unusually many guests in 1993-1994 — all of whom
came with funding from outside Denmark, and for 1 year or more:

Assoc. Prof. Robert Paige (New York University Courant Institute),
Thomas Reps and Susan Horwitz (University of Wisconsin), Assis. Prof.
Robert Glück (Technical University of Vienna), Researchers Ryo Nakashige
(Hitachi Japan) and Shmuel Sagiv (IBM Israel), graduate student Li Ping
Zong (Academia Sinica, Beijing).

Staff. Lars Birkedal was appointed as research assistant under DART
funds, and Jakob Rehof in the DART area by a guest’s funds. David Sands
(Imperial College, London) was employed as postdoctoral guest during all
of 1993. Much useful work has been done by DART-employed programmer
Peter Holst Andersen.

1993 international meetings held at DIKU. IFIP Working Group
2.8 on Functional Programming (40 participants), FPCA: Functional Pro-
gramming and Computer Architecture (180 participants), SIPL: State in
Programming Languages (80 participants), PEPM: Partial Evaluation and
Semantics-Based Program Manipulation (80 participants).

Research goals and their evolution

This past year has seen the first practical application of a new technique for
partial evaluation: construction of hand-written versions of “cogen”, rather
than producing “cogen” by self-applying “mix”. This has several advantages,

19

particularly for strongly typed languages and for pattern matching, and has
been used in all the three systems described below.

Further development of Similix. Version 5 of this mature and much-
copied partial evaluator for Scheme was recently released. It is now more
user-friendly and significantly more efficient, both in the code it generates
and in its transformation speed. Groups outside Denmark are publishing
papers using Similix.

Development of C-mix. An M. Sc. thesis describing this system by
L. O. Andersen was awarded a prize in 1992, and has been developed consid-
erably since then. It has been extended and applied to various problems, a
recent application being an “off-the-shelf” ray tracing program selected from
a textbook on Computer Graphics. C-mix, by specializing the tracer to a
fixed scene, resulted in a program that ran around twice as fast as the origi-
nal. In this use of C-mix, a relatively small amount of tuning was sufficient
to obtain the observed speedup.

The experiment is convincing since the “off-the-shelf” program had been
engineered to be especially fast. Current work concerns strengthening the
system, and making it more user-friendly, robust, and efficient.

Development of ML-mix. A thesis by L. Birkedal and M. Welinder
on a partial evaluator for ML was awarded the highest possible grade. ML
is a much larger, more complex, and widely used language than Similix’s
language SCHEME. This (rather sophisticated) ML partial evaluator builds
to a high degree on experiences gathered from two research enviromnents:
those of Similix and of ML.

ML-mix is quite new, but people in the US and England have already
shown interest in using it (Bell Labs, and Tom Melham for the HOL appli-
cation mentioned below). Much remains to be done but the core is robust
and well-founded, so ML-mix preserves exactly its input program’s semantics
during transformation (essential for tools to be used by others). It should
clearly be developed further.

Static program analyses. Several new program analyses were devel-
oped and implemented, including those used in Similix, C-mix, and ML-mix.

20

Future plans

We will continue to pursue our current research directions, and as well to
look into the following leads, which indicate an increasing outside interest in
partial evaluation.

The HOL system. (Higher Order Logic) is a theoretically based sys-
tem with widespread practical and industrial use; but a system whose run
time is often a limiting factor. It is currently used by DART members Aarhus
and Aalborg. A central HOL figure, Tom Melham (Cambridge and Glasgow),
recently lectured on the possibility of using ML-mix to speed the system up,
and will visit DIKU this Fall to investigate its feasibility. This could be a
significant application of partial evaluation, due to HOL’s widespread use.

ERSEM is an EC-supported project for computational ecological mo-
deling of the North Sea, with six European partners. Their new simulation
package, written in C, has significant computational bottlenecks. Hand a-
nalysis indicates that partial evaluation could make many of their programs
run at least twice as fast. ERSEM plans a pilot study with DIKU of partial
evaluation automatically to improve their programs. This is interesting, as
it tests the scalability of our methods to realistic problems not devised by
ourselves.

3.6 OST: Operational Semantics, Types and Language
Implementation (by M. Tofte)

The project proposal defined three areas of activities: the semantics of higher-
order functors in ML, type inference and storage allocation, and the ML Kit.
Progress in these areas has been as follows:

Higher-order Functors

We have explored the semantics of functor application in the presense of
higher-order functors. A new style of inference rules for defining the seman-
tics of modules is under development. The purpose is to simplify earlier
approaches to modules semantics and to be able to define the operations of
structure matching and propagation of sharing in a more operational way,
by encoding them in a typed λ-calculus with dependencies at the type level

21

formalized by an abstraction mechanism. This work is joint work with David
B. MacQueen, from A.T.&T. Bell Labs in New Jersey.

Type Inference and Storage Allocation

We have generalized type region inference system to handle polymorphic re-
cursion in regions. This means that different invocations of the same function
can operate on different regions. For many functions, the effect of region in-
ference is to re-discover regions that correspond to the usual stack frames in
a normal stack-based implementation of block-structured languages. (How-
ever, unlike normal stack implementations, region inference is also able to
handle higher-order functions and recursive data types.) We have developed
several region inference algorithms and implemented one of them. Further-
more, we have measured the space requirements of sample programs, when
they are compiled by the region inference algorithm and interpreted on an ab-
stract machine. The results show that in most cases, space requirements are
very modest indeed. They also show that region allocation and deallocation
is extremely frequent and must be made very efficiently in a real implementa-
tion. We are currently looking at ways of achieving this. Also, we are writing
a compiler from region-annotated programs to C and a runtime system in
C. This software will be integrated with the ML Kit. When completed, this
system will allow us to obtain figures for actual running times.

This work has been done by Mads Tofte and Lars Birkedal in collabo-
ration with Jean-Pierre Talpin, Ecole des Mines, Paris.

The ML Kit

Version 1 of the ML Kit has been completed and made available via anony-
mous ftp. About 45 sites copied it. The documentation of the ML Kit has
been made into a technical report at DIKU.

Students at DIKU have been using the ML Kit for various projects, for
instance Peter Skadhauge has implemented a type checker based on semi-
unification, by replacing some of the modules of the ML Kit by modules for
generating and solving systems of equations and inequalities.

22

3.7 Other Topics

3.7.1 Types, Constraints, and Analysis (by M. Schwartzbach)

This year has seen the rounding off of several projects, as well as the initiation
of new activities.

The joint work with Jens Palsberg on static analysis of object-oriented
languages has been matured through cooperation with Ole Agesen of Stan-
ford University. Our constraint-based algorithms have been extended and
refined to produce a full-scale implementation for the SELF language being
developed by SUN Microsystems. While SELF is generally recognized as a
most challenging language, our static analyses now form the basis for several
tools that are being integrated into the standard programming environment.

Jens Palsberg and Michael Schwartzbach have for some time now worked
on object-oriented type systems. This activity is being summed up in our
recent book, which will be published by Wiley in September 1993. Accom-
panying this advanced undergraduate text, a forthcoming journal article will
contain the semantical foundations for our approach.

The work with Nils Klarlund on graph types has been continued. Guided
by the principle that data types are invariants, we devise a logical and de-
cidable framework for expressing global properties of a store consisting of
records and pointers. Common properties, which seem to have called for
a full Hoare logic beyond the reach of type checking and decidability, can
now be expressed in a uniform descriptive language integrating types and
program assertions. Our contributions are: a formalism for describing stores
based on monadic second-order logic and our concept of pointer constraint;
an extension of the method of semantic interpretation to show decidability
of Hoare triples; and a sketch of a novel software methodology suggested by
the extensive automated analysis that follows from our techniques.

A recent project, joint with Jens Palsberg and Bjorn Freeman-Benson,
aims to perform static analysis of constraint imperative programs, in order
to conservatively approximate freeness of variables and satisfiability of con-
straints.

23

3.7.2 Map Theory and Parallel Graph Reduction (by K. Grue)

Concerning map theory, DART has funded part of a travel to Paris to visit
University VII. Here map theory was presented and discussed, and an outline
of a simplified consistency proof was established. A joint paper with Chantal
Berline on the simplified proof is under preparation.

Lars Lassen has defined a functional language and implemented a com-
piler which allows to execute programs on the parallel graph reducer. The
language is very close to a subset of Common Lisp. Martin Funk Larsen
has implemented a number of algorithms in that subset of Common Lisp
and is now ready to run them on the parallel graph reducer. This allows
benchmarking of the graph reducer on medium size software.

3.7.3 Activities at The Technical University (by B.S. Hansen)

Peter Sestoft is studying validity checking for a subset of Duration Calculus.
One of the results is an implementation. The problem turned out to have
very high complexity, so alternative approaches are being considered (joint
work with M.R. Hansen, J.U. Skakkebæk, Zhou Chaochen).

A current student project supervised by Peter Sestoft concerns non-self-
applicable partial evaluation of a subset of Standard ML.

Bo Stig Hansen is working jointly with Flemming M. Damm on type
systems including a set theoretic union operator. This has resulted in de-
cidability results for the subtype relation in a system with union, product,
function space and recursion. A paper on type checking by generation of
proof obligations has been accepted for the Workshop on Semantics of Spec-
ification Languages, October 1993; the proof obligations ensure absence of
run-time type errors.

4 External and Internal Cooperation

Members of the project participate in a number of international research
projects. Also members in Aarhus and Aalborg participate in the newly
created BRICS project, a centre for Basic Research in Computer Science,
funded by The Danish Research Foundation. Also when the need arises

24

smaller workshops are arranged on specific topics.

4.1 Participation in International Projects

CONCUR2

Concurrency theory is important for the specification and verification of con-
current and distributed systems. CONCUR2 is an Esprit Basic Research
Action with the specific aim at extending process algebra and logical calculi
to incorporate real-time aspects, probabilistic non-determinism, value pass-
ing and infinite state spaces. CONCUR2 aims for a unified view on process
algebra, and intends to design, specify and implement supporting software
tools, and common formats and interfaces for such tools.

Partners of CONCUR2 besides Aalborg University are: CWI, Edin-
burgh, Eindhoven, INRIA Sophia Antipolis, Oxford, Sussex and SICS.

CLICS

Winskel’s Esprit BRA “Categorical Logic in Computer Science” funds the
category theorist and proof theorist Sergei Soloviev (on leave from the Uni-
versity of St. Petersburg) and will, in addition, employ Claudio Hermida this
Fall.

Semantique

Semantique is an Esprit working group on Semantics-Based Program Ma-
nipulation. It has as partners Chalmers University (Gothenburg), Univer-
sity of Aarhus, University of Copenhagen, École Normale Supérieure (Paris),
Imperial College of Science, Technology and Medicine (London), and the
University of Glasgow. Imperial College is the coordinator.

Atlantique

Atlantique is a new Esprit working group whose purpose is to facilitate
European-American joint research in the same area. It consists of the Euro-
peans above, plus eight American research groups: Carnegie Mellon Univer-

25

sity, the City University of New York, Kansas State University, Northeastern
University, New York University: Courant Institute, Oregon Graduate Insti-
tute, Stanford University, and Yale University. DIKU is the coordinator of
Atlantique.

The Esprit grant to Atlantique includes travel by researchers and stu-
dents among the European partners for research cooperation for shorter pe-
riods of rescarch cooperation (a few days to a few weeks). Further, we un-
derstand that NSF, the American National Science Foundation, will fund
student visits from the US to the European partners.

COMPASS

Peter Mosses is a member of ESPRIT Basic Research Working Group 6112
COMPASS: A Comprehensive Algebraic Approach to System Specification
and Development. The partners of this working group are the 19 major
European sites for research on algebraic specification, located at universities
and research institutes in Aarhus, Barcelona, Berlin, Braunschweig, Dresden,
Edinburgh, Genoa, Lisbon, Munich, Nancy, Nijmegen, Oslo, Oxford, Paris,
and Saarbrücken.

ML2000

Mads Tofte is a member of the ML2000 group. This group is designing a
new programming language (ML2000), which is intended to be a successor to
Standard ML by the year 2000. The group consists of Andrew Appel (Prince-
ton University), Luca Cardelli (DEC SRC), Carl Gunter (University of Penn-
sylvania), Elsa Gunter (AT&T Bell Labs), Robert Harper (Carnegie Mellon
University), David MacQueen (AT&T Bell Labs), John Mitchell (Stanford
University), John Riecke (AT&T Bell Labs), John Reppy (AT&T Bell Labs),
Mads Tofte (DIKU) and Xavier Leroy (Stanford University).

ProCoS II

The work by Peter Sestoft on validity checking for a subset of Duration Cal-
culus has been done in close collaboration with the ESPRIT project ProCoS
II.

26

LOMAPS

LOMAPS is an acronym for Logical and Operational Methods in the Analysis
of Programs and Systems. It is an ESPRIT BRA project (starting fall 1993)
on the development of advanced methods for analysing and verifying proper-
ties of multiparadigmatic programming languages like functional languages
with concurrency primitives. The semantic framework will be operational
semantics and for the specification of analyses various logical approaches will
be explored.

The following sites participate in the project: Aarhus University (coor-
dinator), Swedish Institute of Computer Science, Ecole des Mines, European
Computer-Industry Research Centre, Cambridge University, University of
Pisa, Ecole Normale Superieure and Ecole Polytechnique.

4.2 Mini-workshop on Program Analysis (by H.R. Niel-
son)

On October 2nd a small workshop devoted to program analysis was held
at DAIMI. The purpose was to have a setting for presenting and discussing
current work with two guests at DAIMI: Olivier Danvy, Kansas State Uni-
versity, USA and Karoline Malmkjær, Kansas State University, USA. The
meeting was centered around four talks:

Karoline Malmkjær, Department of Information and Computer
Sciences, Kansas State University: Predicting properties of resid-
ual programs

We present an analysis detecting structural properties of the results of par-
tial evaluators for Scheme-like languages. The analysis is based on abstract
interpretation of the generating extension produced by the partial evaluator.
It has recently been extended to handle higher-order functions.

Jens Palsberg, DAIMI: Correctness of binding time analysis

A binding time analysis is correct if it always produces consistent binding
time information. Consistency means that if the binding time information is

27

used by a partial evaluator then the partial evaluator cannot commit errors
such as applying something unknown to an argument. A sufficient and decid-
able condition for consistency, called well-annotatedness, was first presented
by Gomard and Jones.

In this talk we present a weaker consistency condition. Our condition is
decidable, subsumes the one of Gomard and Jones, and was first studied by
Schwartzbach and the speaker.

We have proved that our condition indeed implies consistency. As a
corollary, we get the first proof of correctness of the core of the binding
time analyses of Bondorf, Consel and Mogensen. We have also proved that
a whole family of partial evaluators will on termination have eliminated all
“eliminable”-marked parts of an input which satisfies our condition. This
generalizes a result of Gomard. Our development is for the pure λ-calculus
with explicit binding time annotations.

Olivier Danvy, Department of Information and Computer Sciences,
Kansas State University: On continuation-passing style

Continuation-passing style (CPS) is a programming style stressing the con-
trol flow of a program and allowing to express functionally operations that
are non-functional a priori (jumps, exceptions, coroutines, etc.) Its essential
property: a CPS program yields the same result independently of its evalua-
tion strategy — call by name or call by value. Its domain of application vary
surprisingly: proof of algorithm termination, semantics-directed compiling,
compiler generation, parallelization, single-threading detection, double nega-
tion elimination in proof theory, and so on. This variety is reflected by a
number of specifications of the CPS transformation — in striking contrast
with the 3-lines & 2-passes (transformation + simplification) of the original
literature [Fischer, Reynolds, Plotkin].

The goal of this talk is to enlighten CPS by going back to the sources, i.e.
to the original 3-lines and 2-passes specification. By a simple transformation
of this specification, we obtain a static separation of the results in terms of
“essential” and “administrative” constructs (very much like Binding Time
Analysis). By interpreting the essential constructions as syntax constructors
and administrative constructions as executable code, we obtain a one-pass
transformation algorithm.

28

We also considered the inverse transformation: the Direct Style trans-
formation. This transformation and its proof suggest to reformulate the CPS
transformation in 3 successive passes that appear considerably simpler than
the 2 original passes.

Finally, we situate this development among related work. Part of this
work is joint work with Andrzej Filinski.

Torben Lange, DAIMI: The correctness of an optimized code gen-
eration

For a lazy functional programming language with combinators, we first spec-
ify a standard semantics and a strictness analysis upon the language. Using
the information from the analysis we can specify an optimized code genera-
tion avoiding delay closures otherwise generated around the argument to an
application. By defining a layer of admissible predicates we are finally able
to prove the correctness of the code generation with respect to the standard
semantics.

5 Publications from DART (from March 1991

to August 1993)

Below we list the publications from the project. The overall criterion has
been that publication took place in the period from March 1991 to August
1993, but we have marked with an asterisk those entries where almost all
scientific work was performed before March 1991.

References

[Aceto1] L. Aceto and U. H. Engberg,
“Failures semantics for a simple process langnage with refinement,”
in FST and TCS 11, vol. 560 of Lecture Notes in Computer Science, pp.
89-108, Springer-Verlag, 1991. [DAR.T-129].

29

[Aceto2] L. Aceto and A. Ingólfsdóttir,
“A theory of testing for ACP,”
in Proceedings of CONCUR’91, Lecture Notes in Computer Science,
1991. [DART-l].

[Agerholm1] S. Agerholm,
“Mechanizing program verification in HOL,”
in Proceedings of the International HOL users Meeting, Davis, Califor-
nia, 1991. [DART-2].

[Agerholm2] S. Agerholm,
“Mechanizing program verification in HOL,”
Tech. Rep. DAIMI IR-111, Computer Science Dept., Aarhus Univ., 1992.
[DART-197].

[Agerholm3] S. Agerholm,
“Domain theory in HOL,”
in Proceedings of the 1993 International Meeting on Higher Order Logic
Theorem Proving and Its Applications, Vancouver Canada, 11-13 Au-
gust 1993,
Lecture Notes in Computer Science, Springer-Verlag, 1993. [DART-198].

[Amtoft1] T. Amtoft,
“Properties of unfolding-based meta-level systems,”
in Proceedings of the Symposium on Partial Evaluation and Semantics-
Based Program Manipulation,
SIGPLAN NOTICES vol. 26, no. 9, pp. 243-254, 1991. [DART-3].

[Amtoft2] T. Amtoft,
“Unfold/fold transformations preserving termination properties,”
in 4th International Symposium on Programming Language Implemen-
tation and Logic Programming (PLILP 92), Leuven, Belgium (M.
Bruynooghe and M. Wirsing, eds.), vol. 631 of Lecture Notes in Com-
puter Science, pp. 187-201, Springer-Verlag, 1992. [DART-133].

[Amtoft3] T. Amtoft,
“Minimal thunkification,”
in 3rd International Workshop on Static Analysis (WSA ’93), September
1993, Padova, Italy, no. 724 in Lecture Notes in Computer Science, pp.
218-229, Springer-Verlag, 1993. [DART-168].

30

[Amtoft3] T. Amtoft,
Sharing of Computations.
PhD thesis, Computer Science Dept., Aarhus Univ., 1993. DAIMI-
technical report PB-453. [DART-169].

[Amtoft4] T. Amtoft,
“Strictness types: An inference algorithm and an application,”
Technical Monograph DAIMI PB-448, Computer Science Dept., Aarhus
Univ., 1993. [DART-167].

[Amtoft5] T. Amtoft and J. Larsson Träff,
“Partial memorization for obtaining linear time behavior of a 2DPDA,”
Theoretical Computer Science, vol. 98, pp. 347-356, 1992. [DART-4].

[Andersen1] H. R. Andersen,
“Local computation of alternating fixed-points,”
Tech. Rep. 260, Computer Laboratory, University of Cambridge, 1992.
[DART-5].

[Andersen2] H. R. Andersen,
“Local computation of simultaneous fixed-points,”
Technical Monograph DAIMI PB-420, Computer Science Dept., Aarhus
Univ., 1992. Submitted for publication. [DART-6].

[Andersen3] H. R. Andersen,
“Model checking and boolean graphs,”
in Proceedings of ESOP’92, vol. 582 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1992. [DART-7].

[AndersenWinskel1] H. R. Andersen and G. Winskel,
“Compositional checking of satisfaction,”
in Proceedings of CAV, Aalborg, vol. 575 of Lecture Notes in Computer
Science, Springer-Verlag, 1991. Extended abstract. Journal version as
DART-9. [DART-8].

[AndersenWinskel2] H. R. Andersen and G. Winskel,
“Compositional checking of satisfaction,”
Formal Methods in System Design, vol. 1, 1992. Extended abstract as
DART-8. [DART-9].

31

[LAndersen] L. Andersen,
“Binding-time analysis and the taming of C pointers,”
in Proc. of ACM Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, PEPM’93 (D. Schmidt, ed.), 1993. To appear.
[DART-146].

[LOAndersen1] L.O. Andersen,
“C program specialization,”
Tech. Rep. 12/14, DIKU, University of Copenhagen, Denmark, Uni-
versitetsparken 1, DK-2100 Copenhagen East, 1992. (revised version).
[DART-12].

[LOAndersen2] L.O. Andersen,
“Partial evaluation of C and automatic compiler generation (extended
abstract),”
in Proceedings of Compiler Constructions - 4th International Confer-
ence, CC ’92 (U. Kastens and P. Pfahler, eds.), vol. 641 of Lecture Notes
in Computer Science, pp. 251-257, Springer-Verlag, 1992. [DART-13].

[LOAndersen3] L.O. Andersen,
“Self-applicable C program specialization,”
in Proceeding of PEPM’92: Partial Evaluation and Semantics-Based
Program Manipulation, pp. 54-61, 1992. Available as Technical Report
from Yale University. [DART-10].

[LOAndersenGomard] L.O. Andersen and C. K. Gomard,
“Speedup analysis in partial evaluation: Preliminary results,”
in Proc. of Workshop on Partial Evaluation and Semantics-Based Pro-
gram Manipulation (PEPM’92), pp. 1-7, 1992. Available as Technical
Report from Yale University. [DART-11].

[PHAndersen] P. H. Andersen,
“Partial evaluation applied to ray tracing.”
Unpublished, 1993. [DART-l91].

[BirkedalRothwellTofteTurner] L. Birkedal, N. Rothwell, M. Tofte, and D.
N. Turner,
“The ML kit (version 1),”

32

Tech. Rep. DIKU-report 93/14, Department of Computer Science, Uni-
versity of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen,
1993. [DART-194].

[BirkedalWelinder] L. Birkedal and M. Welinder,
“Partial evaluation of Standard ML,”
Master’s thesis, DIKU, University of Copenhagen, Denmark, 1993.
[DART-189].

[Bondorf1] A. Bondorf,
“Compiling laziness by partial evaluation,”
in Functional Programming, Glasgow 1990. Workshops in Computing
(S. L. P. Jones, G. Hutton, and C. K. Holst, eds.), pp. 9-22, Springer-
Verlag, 1991. [DART-14].∗

[Bondorf2] A. Bondorf,
“Similix manual, system version 3.0,”
Tech. Rep. 91/9, DIKU, University of Copenhagen, Denmark, 1991.
[DART-15].

[Bondorf3] A. Bondorf,
“Similix manual, system version 4.0.”
Included in Similix distribution, 1991. [DART-16].

[Bondorf4] A. Bondorf,
“Improving binding times without explicit CPS-conversion,”
in 1992 ACM Conference on Lisp and Functional Programming. San
Francisco, California, pp. 1-10, 1992. [DART-17].

[Bondorf5] A. Bondorf,
Similix 5.0 Manual.
DIKU, University of Copenhagen, Denmark, 1993. Included in Similix
distribution, 82 pages. [DART-174].

[BondorfJorgensen1] A. Bondorf and J. Jørgensen,
“Efficient analyses for realistic off-line partial evaluation,”
Journal of Functional Programming, special issue on partial evaluation,
vol. 11, 1993. [DART-175].

[BondorfJorgensen2] A. Bondorf and J. Jørgensen,
“Efficient analyses for realistic off-line partial evaluation,”

33

Tech. Rep. 93/4, DIKU, University of Copenhagen, Denmark, 1993.
[DART-145l.

[BondorfPalsberg] A. Bondorf and J. Palsberg,
“Compiling actions by partial evaluation,”
in FPCA’93, Conference on Functional Programming and Computer Ar-
chitecture, Copenhagen, Denmark, pp. 308-317, ACM, 1993. [DART-
176].

[Borjesson] A. Børjesson,
“Distinguishing properties and model checking in TAV.”
In preparation, 1992. [DART-18].

[BorjessonLarsen] A. Børjesson and K. G. Larsen,
“Equation solving using TAV.”
In preparation, 1992. [DART-19].

[BorjessonLarsenSkou] A. Børjesson, K. G. Larsen, and A. Skou,
“Generality in design and compositional verification using TAV,”
In Proceedings of FORTE’92, 1992. To appear. [DART-20].

[CamilleriWinskel] J. A. Camilleri and G. Winskel,
“CCS with priority choice,”
In Proceedings of LICS’91, 1991. To appear in Information and Compu-
tation. [DART-21].

[Cerans] K. Cerans,
“Decidability of bisimulation equivalences for parallel timer processes,”
in Proceedings of CAV’92, Lecture Notes in Computer Science, 1992.
[DART-22].

[CeransGodskesenLarsen] K. Cerans, J. Godskesen, and K. Larsen,
“Timed modal specifications-theory and tools,”
tech. rep., Aalborg University, Dept. of Math. and Comp. Sc., 1993.
[DART-154].

[ChristensenHuttelStirling] S. Christensen, H. Huttel, and C. Stirling,
“Bisimulation equivalence is decidable for all context-free processes,”
in Proceedings of CONCUR’92, vol. 630 of lecture Notes in Computer
Science, Springer-Verlag, 1992. ECS-LFCS-92. [DART-23].

34

[Dybkjaer] H . Dybkjær,
Category Theory, Types, and Programming Languages.
PhD thesis, DIKU, University of Copenhagen, Denmark, 1991.
vi+146pp. Available as DIKU report 91/11. [DART-24].∗

[DybkjaerMelton] H. Dybkjær and A. Melton,
“Comparing Hagino’s categorical programming language and typed
lambda calculi,”
Theoretical Computer Science, vol. 111, pp. 145-189, 1993. [DART-25].∗

[EngbergGronningLamport] U. Engberg, P. Grønning, and L. Lamport,
“Mechanical verification of concurrent systems with TLA.”
To appear in the Proceedings of the Fourth International Workshop on
Computer-Aided Verification, 1992. [DART-26].

[EngbergWinskel] U. H. Engberg and G. Winskel,
“Completeness results for linear logic on Petri Nets.”
Submitted to MFCS’93, Gdańsk, Poland, August 30 - September 3,
1993.
Full version will appear as DAIMI PB, 1993. [DART-153].

[Gammelgaard1] A. Gammelgaard,
“Constructing simulations chunk by chunk,”
Internal Report DAIMI IR106, Computer Science Dept., Aarhus Univ.,
1991. [DART-27].∗

[Gammelgaard2] A. Gammelgaard,
“Reuse of invariants in proofs of implementation,”
Technical Monograph DAIMI PB-360, Computer Science Dept., Aarhus
Univ., 1991. [DART-28].∗

[GammelgaardLovengreenRumpSogaardAndersen] A. Gammelgaard, H. H.
Løvengreen, C. 0. Rump, and J. F. Søgaard-Andersen,
“Base system verification.”
Submitted for publication, 1992. IDART-29].∗

[GlindtvadNielson] K. Glindtvad and H. R. Nielson,
“Correctness preserving transformations on a multipass OCCAM com-
piler,”

35

Technical Monograph DAIMI PB-368, Computer Science Dept., Aarhus
Univ., 1991. [DART-30].

[GluckKlimov] R. Glück and A. V. Klimov,
“Occam’s razor in metacomputation: the notion of a perfect process
tree,”
in Static Analysis. Proceedings (P. Cousot, M. Falaschi, G. File, and
A. Rauzy, eds.), vol. 724 of Lecture Notes in Computer Science, pp.
112-123, Springer-Verlag, 1993. [DART-177].

[GodskesenLarsen1] J. C. Godskesen and K. G. Larsen,
“Real time calculi and expansion theorems (extended abstract),”
in Proceedings of the First North American Process Algebra Workshop,
Dept. of Comp.Sc, The Johns Hopkins University, 1992. [DART-157].

[GodskesenLarsen2] J. C. Godskesen and K. G. Larsen,
“Real time calculi and expansion theorems,”
in Proceedings of FST- TCS’92, vol. 652 of Lecture Notes in Computer
Science, Springer-Verlag, 1992. [DART-31].

[Gomard1] C. K. Gomard,
Program Analysis Matters.
PhD thesis, DIKU, University of Copenhagen, Denmark, 1991. DIKU
report 91/17. [DART-32].

[Gomard2] C. K. Gomard,
“A self-applicable partial evaluator for the lambda calculus: Correctness
and pragmatics,”
TOPLAS, vol. 14, no. 2, pp. 147-172, 1992. [DART-33].∗

[GomardJones] C. K. Gomard and N. D. Jones,
“A partial evaluator for the un-typed lambda calculus,”
Journal of Functional Programming, vol. 1, pp. 21-69, 1991. [DART-34].∗

[GomardSestoft1] C. K. Gomard and P. Sestoft,
“Evaluation order analysis for lazy data structures,”
in Functional Programming, Glasgow Workshop 1991 (Heldal, Holst,
and Wadler, eds.), pp. 112-127, Springer-Verlag, 1991. [DART-35].

[GomardSestoft2] C. K. Gomard and P. Sestoft,
“Globalization and live variables,”

36

in Proceedings of the Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, SIGPLAN NOTICES vol. 26, no. 9, pp.
166-177, ACM Press, 1991. [DART-36].

[GomardSestoft3] C. K. Gomard and P. Sestoft,
“Path analysis for lazy data structures,”
in Programming Language Implementation and Logic Programming,
4th International Symposium, PLILP ’92, Leuven, Belgium (M.
Bruynooghe and M. Wirsing, eds.), vol. 631 of Lecture Notes in Com-
puter Science, pp. 54-68, Springer-Verlag, 1992. [DART-37] .

[GrooteHuttel] J. F. Groote and H. Hüttel,
“Undecidable equivalences for basic process algebra,”
Tech. Rep. ECS-LFCS-91-169, Department of Computer Science, Uni-
versity of Edinburgh, 1991. [DART-38].

[Grue] K. Grue,
“Map theory,”
Theoretical Computer Science, vol. 102, pp. 1-133, 1991. [DART-39].

[GurrBrown1] D. Gurr and C. Brown,
“Relations and non-commutative linear logic,”
Technical Monograph DAIMI PB-372, Computer Science Dept., Aarhus
Univ., 1991. [DART-40].

[GurrBrown2] D. Gurr and C. Brown,
“A representation therorem for quantales.”
To appear in Jounal of Pure & Applied Algebra, 1992. [DART-41].

[HankinMetayerSands] C. Hankin, D. L. Metayer, and D. Sands,
“A parallel programming style and its algebra of programs,”
in Proceeding of Parallel Architectures and Languages Europe (PARLE),
vol. 694 of Lecture Notes in Computer Science, pp. 367-378, Springer-
Verlag, 1993. To appear. [DART-178].

[Hannan1] J. Hannan,
“Making abstract machines less abstract,”
in Proceedings of the 5th ACM Conference on Functional Programming
and Computer Architecture (J. Hughes, ed.), vol. 523 of Lecture Notes
in Computer Science, pp. 618-635, Springer-Verlag, 1991. [DART-42].

37

[Hannan2] J. Hannan,
“Staging transformations for abstract machines,”
in Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation
and Semantics Based Program Manipulation (P. Hudak and N. Jones,
eds.), pp. 130-141, ACM Press, 1991. [DART-43].

[Hannan3] J. Hannan,
“Implementing λ-calculus reduction strategies in extended logic pro-
gramming languages,”
in Proceedings of the Second Workshop International Workshop on Ex-
tensions of Logic Programming (L.-H. Eriksson, L. Hallnäs, and P.
Schroeder-Heister, eds.), no. 596 in Lecture Notes in Computer Science,
pp. 193-219, Springer-Verlag, 1992. [DART 44].

[HannanMiller] J. Hannan and D. Miller,
“From operational semantics to abstract machines,”
Mathematical Structures in Computer Science, vol. 2, 1992. To appear.
[DART-45].

[HannanPfenning] J. Hannan and F. Pfenning,
“Compiler verification in LF,”
in Proceedings of the Seventh Annual IEEE Symposium on Logic in Com-
puter Science (A. Scedrov, ed.), IEEE Computer Society Press, 1992.
[DART-46].

[HavelundLarsen] K. Havelund and K. G. Larsen,
“The fork calculus,”
tech. rep., Aalborg University, Dept. of Math. and Comp. Sc., 1993.
[DART-159].

[Henglein1] F. Henglein,
“Efficient type inference for higher-order binding-time analysis,”
in FPCA (J. Hughes, ed.), vol. 523 of Lecture Notes in Computer
Science, pp. 448-472, 5th ACM Conference, Cambridge, MA, USA,
Springer-Verlag, 1991. [DART-47].

[Henglein2] F. Henglein,
“Type inference with polymorphic recursion,”
ACM Transactions on Programming Languages and Systems
(TOPLAS), 1991. [DART-48].∗

38

[Henglein3] F. Henglein,
“Dynamic typing,”
in Proc. European Symp. on Programming (ESOP), Rennes, France (B.
Krieg-Brückner, ed.), vol. 582 of Lecture Notes in Computer Science,
pp. 233-253, Springer-Verlag, 1992. [DART-49].

[Henglein4] F. Henglein,
“Global tagging optimization by type inference,”
in Proc. 1992 ACM Conf. on LISP and Functional Programming (LFP),
San Francisco, California, ACM Press, 1992. [DART-50].

[Henglein5] F. Henglein,
“Dynamic typing: Syntax and proof theory,”
Science of Computer Programming, 1993. Special Issue on European
Symposium on Programming 1992 (to appear). [DART-179].

[HengleinJorgensen] F. Henglein and J. Jørgensen,
“Formally optimal boxing.”
accepted for POPL’94, 1993. [DART-192].

[HolmerLarsenYi] U. Holmer, K. G. Larsen, and W. Yi,
“Decidability of bisimulation equivalence between regular timed pro-
cesses,”
in Proceedings of CAV’91, vol. 575 of Lecture Notes in Computer Sci-
ence, 1992. [DART-51].

[HolstGomard] C. K. Holst and C. K. Gomard,
“Partial evaluation is fuller laziness,”
in Proceedings of Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, SIGPLAN NOTICES vol. 26, no. 9, pp.
223-233, ACM Press, 1991. [DART-52].

[HudakJones] P. Hudak and N. Jones,
eds., Proceedings of the Symposium on Partial Eualuation and
Semantics-Based Program Manipulation (PEPM), New Haven, Con-
necticut,
Sponsored by the ACM Special Interest Group SIGPLAN, in coopera-
tion with IFIP, ACM Press, 1991. [DART-53].

39

[Huttel1] H. Hüttel,
“Decidability, behavioural equivalences and infinite transition graphs,”
ECS-LFCS-91-191, Department of Computer Science, University of Ed-
inburgh, 1992. [DART-54].

[Huttel2] H. Hüttel,
“Silence is golden: Branching bisimilarity is decidable for context-free
processes,”
in Proceedings of CAV91, vol. 575 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1992. The full version is available as Tech. Rep.
ECS-LFCS-91-173, Department of Computer Science, University of Ed-
inburgh. [DART-55].

[HuttelChristensenStirling] H. Hüttel, S. Christensen, and C. Stirling,
“Bisimulation equivalence is decidable for all context-free processes,”
in CONCUP 92 (W. Cleaveland, ed.), vol. 630 of Lecture Notes in Com-
puter Science, pp. 138-147, Springer-Verlag, 1992. [DART-156].

[HuttelLarsen] H. Hüttel and K. G. Larsen,
“A dynamic type system for higher-order processes.”
Aalborg Technical report R93-2003, 1992. [DART-155]

[HuttelStirling] H. Hüttel and C. Stirling,
“Actions speak louder than words: Proving bisimilarity for context-free
processes,”
in Proceedings of 6th Annual Symposium on Logic in Computer Science
(LICS 91), pp. 376-386, IEEE Computer Society Press, 1991. [DART-
56].

[IngolfsdottirSteffen] A. Ingolfsdottir and B. Steffen,
“Characteristic formulae,”
Information and Computation, 1992. To appear. [DART-57].

[IngolfsdottirThomsen] A. Ingolfsdottir and B. Thomsen,
“Semantics models for CCS with values,”
In Proceedings of the Workshop on Concurrency, B̊astad, Sweden, 1991.
[DART-58].

[Jensen] C. T. Jensen,
“The concurrency workbench with priorities,”

40

in Proceedings of CAV’91, Aalborg, Denmark, vol. 575 of Lecture Notes
in Computer Science, Springer-Verlag, 1992. [DART-59].

[Jones1] N. D. Jones,
“Computer implementation and applications of Kleene’s s-m-n and re-
cursive theorems,”
in Lecture Notes in Mathematics, Logic From Computer Science (Y.
Moschovakis, ed.), pp. 243-263, Springer-Verlag, 1991. [DART-60].∗

[Jones2] N. D. Jones,
“Efficient algebraic operations on programs,”
in Preliminary Proceedings, University of Iowa (T. Rus, ed.), 1991. Ac-
cepted for publication by Theoretical Computer Science, 1992. [DART-
61].

[Jones3] N. D. Jones, ed.,
Selected Papers of ESOP’90. Science of Computer Programming. Vol-
ume 17, numbers 1-3, pages 1-271, Elsevier, 1991. [DART-62].∗

[Jones4] N. D. Jones,
“Static semantics, types and binding time analysis,”
in Images of Programming (D. Bjørner and V. Kotov, eds.), North-
Holland, 1991. Further appeared in Theoretical Computer Science 90
(1991), pages 95-118. [DART-63].

[Jones5] N. D. Jones,
“Constant time factors do matter,”
in STOC ’93. Symposium on Theory of Computing (S. Homer, ed.),
ACM, 1993. [DART-151] .

[Jones6] N. D. Jones,
“Partial evaluation and the generation of program generators.”
Accepted to appear in Communications of The ACM, 1993. [DART-136].

[Jones7] N. D. Jones, ed.,
Special issue on Partial Evaluation, 1993 (Journal of Functional Pro-
gramming, vol. ?, no. ?),
Cambridge University Press, 1993. 5 accepted papers being revised; to
be printed in 1993. [DART-152].

41

[JonesGomardSestoft] N. D. Jones, C. Gomard, and P. Sestoft,
Partial Evaluation and Automatic Program Generation.
International Series in Computer Science: Prentice Hall International,
1993. Series editor C.A.R. Hoare. ISBN number 0-13-20249-5 (pbk).
[DART-180].

[JonssonLarsen1] B. Jonsson and K. G. Larsen,
“On the complexity of equation solving in process algebra,”
in Proceedings of TAPSOFT’91, vol. 493 of Lecture Notes in Computer
Science, Springer-Verlag, 1991. [DART-64].

[JonssonLarsen2] B. Jonsson and K. G. Larsen,
“Specification and refinement of probabilistic processes,”
in Proceedings of LICS’91, 1991. [DART-65].

[Jorgensen1] J. Jørgensen,
“Compiler generation by partial evaluation,”
Master’s thesis, DIKU, University of Copenhagen, Denmark, 1991.
[DART-66].

[Jorgensen2] J. Jørgensen,
“Generating a compiler for a lazy language by partial evaluation,”
in Nineteenth Annual ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages. Albuquerque, New Mexico, pp. 258-268,
1992. [DART-67].

[KlarlundSchwartzbach] N. Klarlund and M. I. Schwartzbach,
“Graph types,”
in Proc. POPL ’93, Principles of Programming Langauges, (Charleston),
ACM, 1993. [DART-143].

[KozenPalsbergSchwartzbach1] D. Kozen, J. Palsberg, and M. I.
Schwartzbach,
“Efficient inference of partial types,”
in Proc. FOCS’92, 33rd IEEE Symposium on Foundations of Computer
Science, Pittsburgh, Pennsylvania, 1992. Also available as Tech. Rep.
DAIMI PB-394, Computer Science Department, Aarhus University.
[DART-68].

42

[KozenPalsbergSchwartzbach2] D. Kozen, J. Palsberg, and M. I.
Schwartzbach,
“Efficient recursive subtyping,”
Technical Monograph DAIMI PB-405, Computer Science Dept., Aarhus
Univ., 1992. [DART-69].

[Krishnan1] P. Krishnan
“Distributed CCS,”
in Proc. CONCUR-91, vol. 527 of Lecture Notes in Computer Science,
pp. 393-407, Springer-Verlag, 1991. [DART-70].∗

[Krishnan2] P. Krishnan,
“A model for real-time systems,”
in Proc. MFCS’91, vol. 520 of Lecture Notes in Computer Science,
Springer-Verlag, 1991. [DART-71].∗

[Krishnan3] P. Krishnan,
“Real-time action,”
in Proc. Euromicro Workshop on RealTime Systems, l991.[DART-72].∗

[Krishnan4] P. Krishnan, “A semantics for multiprocessor systems,”
in ESOP’92, Proc. European Symposium on Programming, Rennes,
vol. 582 of Lecture Notes in Computer Science, Springer-Verlag,
1992.[DART-73].

[KrishnanMosses] P. Krishnan and P. D. Mosses,
“Specifying asynchronous transfer of control,”
in RTFT’92, Proc. Symp. on Formal Techniques in Real-Time and Fault-
Tolerant Systems, Delft, vol.571 of Lecture Notes in Computer Science,
Springer-Verlag, 1992.[DART-74].

[Lange] T. P. Lange,
“The correctness of an optimized code generation,”
in PEPM’93, ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation, pp.167-178,ACM, 1993.
[DART-132].

[Larsen1] K. G. Larsen,
“Proof systems for satisfiability in Hennessy-Milner logic with recur-
sion,”
Theoretical Computer Science, vol.72,1990. [DART-75].

43

[Larsen2] K. G. Larsen,
“The expressive power of implicit specifications,”
in Proceedings of ICALP’91, vol. 510 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1991. [DART-76].

[Larsen3] K. G. Larsen,
“Efficient local correctness checking,”
In Proceedings of CAV’92. To appear in Lecture Notes in Computer
Science., 1992. [DART-77].

[LarsenSkou1] K. G. Larsen and A.Skou,
“Bisimulation through probabilistic testing,”
Information and Computation, vol. 94, no. 1, 1991. [DART-78].

[LarsenSkou2] K. G. Larsen and A. Skou,
“Compositional verification of probabilistic processes,”
in Proceedings of CONCUR ’92, vol. 630 of Lecture Notes in Computer
Science, Springer-Verlag, 1992.[DART-79].

[LarsenXinxin] K. G. Larsen and L. Xinxin,
“Compositionality through an operational semantics of contexts,”
Journal of Logic and Computation, vol. 1, no. 6, pp. 761-795,
1991.[DART-80].∗

[LarsenYi] K. G. Larsen and W. Yi,
“Time abstracted bisimulation: Implicit specifications and decidability,”
tech. rep., Aalborg University, Dept. of Math. and Comp.Sc., 1993.
[DART-158].

[LarsenSchmidtSchwartzbach] K. S. Larsen, E. M. Schmidt, and M. I.
Schwartzbach,
“A new formalism for relational algebra,”
Information Processing Letters, vol. 41, no. 3, 1992. [DART-81].

[Malmkjaer1] K. Malmkjær,
“Predicting properties of residual programs,”
in PEPM’92, ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (C. Consel, ed.), pp. 8-13, 1992.
Available as Technical Report YALEU/DCS/RR-909 from Yale Univer-
sity. [DART 137].

44

[Malmkjaer2] K. Malmkjær,
“Towards efficient partial evaluation,”
in ACM SIG-PLAN Symposium on Partial Evaluation and Semantics
Based Program Manipulation, 1993. To appear. [DART-150].

[MarquardSteensgaard] M. Marquard and B. Steensgaard,
“Partial evaluation of an object-oriented imperative language,”
Master’s thesis, University of Copenhagen, Department of Computer
Science, Universitetsparken 1, 2100 Copenhagen O., Denmark, 1992.
[DART-138].

[MarriotSondergaardJones] K. Marriot, H. Søndergaard, and N. Jones,
“Denotational abstract intrepretation of logic programs,”
ACM Transactions on Programming Languages and Systems, 1991. To
appear. [DART-82].

[MilnerTofte] R. Milner and M. Tofte,
“Co-induction in relational semantics,”
Theoretical Computer Science, vol. 87, pp. 209-220, 1991. [DART-144].∗

[Mogensen1] T. Æ. Mogensen,
“Efficient self-interpretation in lambda calculus,”
Functional Programming, vol. 2, pp. 345-364, 1992. [DART-149].

[Mogensen2] T. Æ. Mogensen,
“Efficient self-interpretation in lambda calculus.”
Version of DART-149 with full proofs, 1992. [DART-83].

[Mogensen3] T. Æ. Mogensen,
“Self-applicable partial evaluation for pure lambda calculus,”
in ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
based Program Manipulation (C. Consel, ed.), pp. 116-121, ACM, Yale
University, 1992. [DART-84].

[Mogensen4] T. Æ. Mogensen,
“Constructor specialization,”
in ACM Symposium on Partial Eualuation and Semantics-Based Pro-
gram Manipulation (D. Schmidt, ed.), ACM press, 1993. To appear.
[DART-148].

45

[MogensenBondorf] T. Æ. Mogensen and A. Bondorf,
“Logimix: a self-applicable partial evaluator for Prolog,”
in Proceedings of LOPSTR 92. Workshops in Computing (K.-K. Lau and
T. Clement, eds.), Springer-Verlag, 1993. ISBN: 3-540-19806-7. [DART-
85].

[Mosses1] P. D. Mosses,
“A practical introduction to denotational semantics,”
in Formal Description of Programming Concepts (E. J. Neuhold and
M. Paul, eds.), IFIP State-of-the-Art Report, pp. 1-49, Springer-Verlag,
1991. [DART-87].

[Mosses2] P. D. Mosses,
Action Semantics.
No. 26 in Cambridge Tracts in Theoretical Computer Science, Cam-
bridge University Press, 1992. [DART-88].

[Mosses3] P. D. Mosses,
“On the action semantics of concurrent programming languages,”
Technical Monograph DAIMI PB-424, Computer Science Dept., Aarhus
Univ., 1992. Accepted for publication in Proc. of the REX Workshop on
Semantics – Foundations and Applications, Beekbergen, The Nether-
lands, June 1992. [DART-141].

[Mosses4] P. D. Mosses,
“The operational semantics of action notation,”
Technical Monograph DAIMI PB-418, Computer Science Dept., Aarhus
Univ., 1992. Submitted for Proc. 8th Workshop on Mathematical Foun-
dations of Programming Semantics, which is to appear as a special issue
of TCS, 1993. [DART-140].

[Mosses5] P. D. Mosses,
“The use of sorts in algebraic specifications,”
in Recent Trends in Data Type Specification (M. Bidoit and C. Choppy,
eds.), vol. 655 of Lecture Notes in Computer Science, Springer-Verlag,
1992. [DART-139].

[Mosses6] P. D. Mosses,
“An introduction to action semantics,”
in Logic and Algebra of Specification, Proc. Marktoberdorf Summer

46

School 1991, vol. 94 of NATO ASI Series F, pp. 247-288, Springer-
Verlag, 1993. [DART-86]

[MossesWatt] P. D. Mosses and D. A. Watt,
“Pascal action semantics, version 0.6.”
Available by FTP from ftp.daimi.aau.dk in pub/action/pascal, 1993.
[DART-162].

[Mossin1] C. Mossin,
“Similix binding time debugger manual, system version 4.0.”
Included in Similix distribution, 1991. [DART-89].

[Mossin2] C. Mossin,
“Partial evaluation of general parsers (extended abstract),” in 1993
ACM Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (D. Schmidt, ed.), 1993. To appear. [DART-147].

[Mossin3] C. Mossin,
“Polymorphic binding time analysis,”
Master’s thesis, DIKU, University of Copenhagen, Denmark, 1993.
[DART-181].

[Musicante] M. A. Musicante,
“The Sun RPC language semantics,”
in Proc.18th Latin-American Conference for Informatics, 1992. [DART-
90].

[MusicanteMosses] M. A. Musicante and P. D. Mosses,
“Communicative action notation with shared storage,”
Technical Monograph DAIMI PB-452, Computer Science Dept., Aarhus
Univ., 1993. [DART-163].

[MycroftRosendahl] A. Mycroft and M. Rosendahl,
“Minimal function graphs are not instrumented,”
in WSA ’92 Bordeaw 1992, pp. 60-67, Bigre, Irisa, Rennes, France, 1992.
[DART-91].

[NielsonNielson1] F. Nielson and H. R. Nielson,
“Forced transformations of OCCAM programs,”
Information and Software Technology, vol. 34, no. 2, 1992. [DART-92].∗

47

[NielsonNielson2] F. Nielson and H. R. Nielson,
“Layered predicates,”
in REX’92 workshop “Semantics - foundations and applications”, vol.
666 of Lecture Notes in Computer Science, pp. 425-456, Springer-Verlag,
1992. [DART-131].

[NielsonNielson3] F. Nielson and H. R. Nielson,
“The tensor product in Wadler’s analysis of lists,”
in Proceedings of ESOP’92, vol. 582 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1992. [DART-93].

[NielsonNielson4] F. Nielson and H. R. Nielson,
Two-Level Bunctional Languages, vol. 34 of Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, 1992. [DART-
94].

[NielsonNielson5] F. Nielson and H. R. Nielson,
“Finiteness conditions for strictness analysis,”
in WSA Proceedings, vol. 724 of Lecture Notes in Computer Science, pp.
194-205, Springer-Verlag, 1993. [DART-166].

[NielsonNielson6] F. Nielson and H. R. Nielson,
“From CML to process algebras,”
Technical Monograph DAIMI PB-433, Computer Science Dept., Aarhus
Univ., 1993. [DART-165].

[NielsonNielson7] F. Nielson and H. R. Nielson,
“From CML to process algebras (extended abstract),”
in Concur’93, vol. 715 of Lecture Notes in Computer Science, pp. 495-
508, Springer-Verlag, 1993. [DART-164].

[FNielson1] F. Nielson, (ed.),
“Design, analysis and reasoning about tools: Abstracts from the first
workshop,”
Technical Monograph DAIMI PB-367, Computer Science Dept., Aarhus
Univ., 1991. [DART-95].

[NielsonNielson8] H. R. Nielson and F. Nielson,
“Using transformations in the implementation of higher-order func-
tions,”

48

Journal of Functional Programming, vol. 1, no. 4, pp. 459-494, 1991.
[DART-96].∗

[NielsonNielson9] H. R. Nielson and F. Nielson,
“Bounded fixed-point iteration,”
J. Logic Computat., vol. 2, no. 4, pp. 441-464, 1992. [DART-134].

[NielsonNielson10] H. R. Nielson and F. Nielson,
“Bounded fixed point iteration,”
in Proceedings of POPL’92, ACM Press, 1992. This is an “extended
abstract” of DART-134. [DART-97].

[NielsonNielson11] H. R. Nielson and F. Nielson,
“Finiteness conditions for fixed point iteration”
in Proceedings of Lisp and Functional Programming, 1992. The full ver-
sion appeared as DAIMI PB-384, Aarhns University. lDART-98].

[NielsonNielson12] H. R. Nielson and F. Nielson,
Semantics with Applications: A Formal Introduction. Wiley, 1992.
[DART-99].

[NielsonNielson13] H. R. Nielson and F. Nielson,
“Iterative algorithms for fixed point computation,”
Technical Monograph DAIMI PB-441, Computer Science Dept., Aarhus
Univ., 1993. [DART-160].

[NielsonNielsonPilegaardLange] H. R. Nielson, F. Nielson, A. Pilegaard, and
T. Lange,
“The PSI system,”
Internal Report DAIMI IR-114, Computer Science Dept., Aarhus Univ.,
1992. [DART-130].

[FNielson2] F. Nielson, (ed.),
“Design, analysis and reasoning about tools: Abstracts from the second
workshop,”
Technical Monograph DAIMI PB-417, Computer Science Dept., Aarhus
Univ., 1992. [DART-100].

[OxhojPalsbergSchwartzbach] N. Oxhøj, J. Palsberg, and M. I.
Schwartzbach,

49

“Making type inference practical,”
in Proc. ECOOP’92, Sixth European Conference on Object-Oriented
Programming, Utrecht, The Netherlands, vol. 615 of Lecture Notes in
Computer Science, pp. 329-349, Springer-Verlag, 1992. [DART-101].

[Palsberg1] J. Palsberg,
“An automatically generated and provably correct compiler for a subset
of Ada,”
in ICCL’92, Proc. Fourth IEEE Int. Conf. on Computer Languages,
Oakland, pp. 117-126, IEEE, 1992. [DART-102].

[Palsberg2] J. Palsberg,
Provably Correct Compiler Generation.
PhD thesis, Aarhus University, 1992. [DART-103].

[Palsberg3] J. Palsberg,
“A provably correct compiler generator,”
in ESOP’92, Proc. European Symposium on Programming, Rennes, vol.
582 of Lecture Notes in Computer Science, pp. 418-434, Springer-Verlag,
1992. [DART-104].

[PalsbergKozenSchwartzbach] J. Palsberg, D. Kozen, and M. I.
Schwartzbach,
“Efficient recursive subtyping,”
in Proc. POPL’93, Principles of Programming Langauges, (Charleston),
ACM, 1993. [DART-142].

[PalsbergSchwartzbach1] J. Palsberg, and M. I. Schwartzbach,
“Object-oriented type inference,”
in Proc. OOPSLA ’91, ACM SIGPLAN Sixth Annual Conference on
Object-Oriented Programming Systems, Languages and Applications,
Phoenix, Arizona, pp. 146-161, 1991. [DART-105].

[PalsbergSchwartzbach2] J. Palsberg, and M. I. Schwartzbach,
“Static typing for object-oriented programming,”
Technical Monograph DAIMI PB-355, Computer Science Dept., Aarhus
Univ., 1991. [DART-106].

[PalsbergSchwartzbach3] J. Palsberg, and M. I. Schwartzbach,
“Types, inheritance and assignments,”

50

1991. Workshop held at ECOOP’91 in Geneva, Switzerland, July 1991.
The collection of position papers is available from Computer Science
Department, Aarhus University as PB-357. [DART-107] .

[PalsbergSchwartzbach4] J. Palsberg, and M. I. Schwartzbach,
“What is type-safe code reuse?,”
in Proc. ECOOP’91, Fifth European Conference on Object-Oriented
Programming, Geneva, Switzerland, vol. 512 of Lecture Notes in Com-
puter Science, pp. 325-341, Springer-Verlag, 1991. [DART-108].

[PalsbergSchwartzbach5] J. Palsberg, and M. I. Schwartzbach,
“Safety analysis versus type inference,”
Technical Monograph DAIMI PB-389, Computer Science Dept., Aarhus
Univ., 1992. [DART-109].

[PalsbergSchwartzbach6] J. Palsberg, and M. I. Schwartzbach,
“Safety analysis versus type inference for partial types,”
Information Processing Letters, vol. 43, pp. 175-180, 1992. Also available
as Tech. Rep. DAIMI PB-404, Computer Science Department, Aarhus
University. [DART-110].

[PalsbergSchwartzbach7] J. Palsberg, and M. I. Schwartzbach,
“Three discussions on object-oriented typing,”
ACM SIGPLAN OOPS Messenger, vol. 3, no. 2, pp. 31-38, 1992.
[DART-111].

[RehofSorensen] J. Rehof and M. H. Sørensen,
“The λδ-calculus.”
Technical report from DIKU, 1993. [DART-182].

[Rose1] K. H. Rose,
“Explicit cyclic substitutions,”
in CTRS ’92–3rd International Workshop on Conditional Term Rewrit-
ing Systems (M. Rusinowitch and J.-L. Rémy, eds.), no. 656 in Lec-
ture Notes in Computer Science, (Pont-a-Mousson, France), pp. 36-50,
Springer-Verlag, 1992. Also available as DIKU semantics note D-143.
[DART-113] .

[Rose2] K. H. Rose,
“GOS - graph operational semantics,”

51

M.Sc.-thesis 92-1-9, DIKU, University of Copenhagen, Denmark, 1992.
Awarded a silver medal by the University of Copenhagen. [DART-114].

[Rose3] K. H. Rose,
“Graph-based operational semantics for lazy functional languages,”
in Term Graph Rewriting: Theory and Practice (M. R. Sleep, M. J.
Plasmeijer, and M. van Eekelen, eds.), (Nijmegen, Holland), pp. 203-
225, John Wiley & Sons, 1992. [DART-112].

[Rose4] K. H. Rose,
“Graph-based operational semantics of a lazy functional languages,”
in Term Graph Rewriting: Theory and Practice (M. R. Sleep, M. J.
Plasmeijer, and M. C. D. J. van Eekelen, eds.), ch. 22, pp. 234-247.
John Wiley & Sons. 1992. [DART-183].

[Rose5] K. H. Rose,
“How to typeset pretty diagram arrows with TEX—design decisions used
in XY-pic,”
in EuroTEX’92—Proceedings of the 7th European TEX Conference (J.
Zlatuska, ed.), (Prague, Czechoslovakia), pp. 183 190, Czechoslovak TEX
Users Group, 1992. [DART-173].

[Rose6] K. H. Rose,
“Explicit cyclic substitution.”
Selected for special issue of Journal of Symbolic Computation, 1993.
[DART-184].

[Rose7] K. H. Rose,
“Explicit recursion.”
Available as DIKU semantics note D-147, 1993. [DART-185].

[Rosendahl1] M. Rosendahl,
Abstract Interpretation and Attribute Grammars.
PhD thesis, Cambridge University, 1991. [DART-172].

[Rosendahl2] M. Rosendahl,
“Strictness analysis for attribute grammars,”
in PLILP’92, vol. 631 of Lecture Notes in Computer Science, pp. 145-
157, Springer-Verlag, 1992. [DART-115].

52

[Rosendahl3] M. Rosendahl,
“Higher-order chaotic iteration sequences,”
in PLILP’93, Tallinn, Estonia, no. 714 in Lecture Notes in Computer
Science, pp. 332-345, Springer-Verlag, 1993. [DART-193].

[Sands1] D. Sands,
“A compositional semantics of combining forms for Gamma programs,”
in International Conference on Formal Methods in Programming and
Their Applications., Lecture Notes in Computer Science, 1993. [DART-
187].

[Sands2] D. Sands,
“Laws of parallel synchronised termination,”
in Theory and Formal Methods 1993: Proceedings of the First Imperial
College, Department of Computing, Workshop on Theory and Formal
Methods (G. Burn, S. Gay, and M. Ryan, eds.), (Isle of Thorns, UK),
Springer-Verlag Workshops in Computer Science,29 - 31 March 1993.
[DART-188].

[Sands3] D. Sands,
“A näıve time analysis and its theory of cost equivalence.”
Submitted for publication at DIKU, Copenhagen, 1993. Can be obtained
by ftp from site ftp.diku.dk in semantics/papers/D-173.ps,dvi.
[DART-186].

[Schwartzbach] M. I. Schwartzbach,
“Type inference with inequalities,”
in Proc. TAPSOFT’91, vol. 493 of Lecture Notes in Computer Science,
Springer-Verlag, 1991. [DART-116].

[Sestoft] P. Sestoft,
Analysis and efficient implementation of functional programs.
PhD thesis, DIKU, University of Copenhagen, Denmark, 1991. DIKU
Research Report 92/6. [DART-117].

[Solberg] K. L. Solberg,
“Inference systems for binding time analysis,”
Tech. Rep. 25, Odense University, 1993. [DART-161].

53

[SolbergNielsonNielson] K. L. Solberg, H. R. Nielson, and F. Nielson,
“Inference systems for binding time analysis (extended abstract),”
in WSA ’92: Work-shop on Static Analysis, Bigre no. 81-82, pp. 247-254,
University of Bordeaux, 1992. [DART-135].

[SondergaardSestoft] H. Søndergaard and P. Sestoft,
“Non-determinism in functional languages,”
Computer Journal, vol. 35, pp. 514-523, 1992. [DART-118].

[SorensenClausen] B. B. Sørensen and C. Clausen,
“Adequacy results for a lazy functional language with recursive and
polymorphic types,”
Internal Report DAIMI IR-113, Computer Science Dept., Aarhus Univ.,
1992. Submitted to Theoretical Computer Science. [DART-119].

[Sorensen] M. H. Sørensen,
“A new means of ensuring termination of deforestation.”
Accepted for the Workshop of Global Compilation in connection with the
Internation Logic Programming Symposium, 1993, Vancouver, Canada.
Copies available from the author (at DIKU)., 1993. [DART-190].

[Tofte1] M. Tofte,
“Code generation using standard ML.”
Lecture notes from DIKU, 1991. [DART-170].

[Tofte2] M. Tofte,
“Tutorial on standard ML,”
Tech. Rep. 91/18, DIKU, University of Copenhagen, Denmark, 1991.
Presented at FPCA, Boston, 1991. [DART-171].

[Tofte3] M. Tofte,
“Principal signatures for higher-order program modules,”
in The 19th Annual ACM Symposium on Principles of Programming
Languages, Albuquerque, New Mexico, pp. 189-199, 1992. [DART-120].

[TofteTalpin1] M. Tofte and J.-P. Talpin,
“A theory of stack allocation in polymophically typed languages,”
Tech. Rep. DIKU-report 93/15, DIKU, University of Copenhagen, Den-
mark, 1993. [DART-195].

54

[TofteTalpin2] M. Tofte and J.-P. Talpin,
“Implementation of the typed call-by-value lambda-calculus using a
stack of regions,”
in Proceedings from the 21st annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 1994. (Accepted for
publication). [DART-196].

[Winskel1] G. Winskel,
“On local model checking the modal ν-calculus,”
1991. In the ICALP’89, special issue of Theoretical Computer Science,
vol.83, 1991. [DART-121].

[Winskel2] G. Winskel, ed.,
CLICS Workshop-Parts I and II. Proceedings of the Workshop on Cat-
egorical Logic in Computer Science, 1992.
Also available a.s Tech. Rep. DAIMI PB-397 I and II, Computer Science
Departement, Aarhus University. [DART-122].

[Winskel3] G. Winskel,
The formal semantics of programming languages.
MIT Press, 1993. [DART-123].

[WinskelCamilleri] G. Winskel and J. Camilleri,
“CCS with a priority choice,”
in Proceedings of LICS, 1991. [DART-124].

[WinskelLarsen] G. Winskel and K. Larsen,
“Using informations systems to solve recursive domain equations,”
Information and Computation, vol. 91, no. 2, 1991. [DART-125].∗

[WinskelNielsen] G. Winskel and M. Nielsen,
“Models for concurrency.”
To appear as a chapter in the Handbook of Logic and the Foundations
of Computer Science, Oxford University Press. [DART-126].

[Xinxin] L. Xinxin,
Specification and Decomposition in Concurrency.
PhD thesis, Department of Mathematics and Computer Science, Aal-
borg University, Denmark., 1992. [DART-127].

55

[YiLarsen] W. Yi and K. G. Larsen,
“Testing probabilistic and nondeterministic processes,”
Proceedings of PSTV’92, 1992. [DART-128].

56

