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Abstract

Models for concurrency can be classified with respect to the three
relevant parameters: behaviour/system, interleaving/noninterleaving,
linear/branching time. When modelling a process, a choice concerning
such parameters corresponds to choosing the level of abstraction of
the resulting semantics. The classifications are formalized through
the medium of category theory.
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Introduction

From its beginning, many efforts in the development of the theory of concur-
rency have been devoted to the study of suitable models for concurrent and
distributed processes, and to the formal understanding of their semantics.

As a result, in addition to standard models like languages, automata and
transition systems [7, 13], models like Petri nets [12], process algebras [10, 4],
Hoare traces [5], Mazurkiewicz traces [9], synchronization trees [21] and event
structures [11, 22] have been introduced.

The idea common to the models above is that they are based on atomic
units of change—be they called transitions, actions, events or symbols from
an alphabet—which are indivisible and constitute the steps out of which
computations are built.

The difference between the models may be expressed in terms of the
parameters according to which models are often classified. For instance, a
distinction made explicitly in the theory of Petri nets, but sensible in a wider
context, is that between so-called “system” models allowing an explicit rep-
resentation of the (possibly repeating) states in a system, and “behaviour”
models abstracting away from such information, which focus instead on the
behaviour in terms of patterns of occurrences of actions over time. Prime
examples of the first type are transition systems and Petri nets, and of the
second type, trees, event structures and traces. Thus, we can distinguish
among models according to whether they are system models or behaviour
models, in this sense; whether they can faithfully take into account the dif-
ference between concurrency and nondeterminism; and, finally, whether they
can represent the branching structure of processes, i.e., the points in which
choices are taken, or not. Relevant parameters when looking at models for
concurrency are

Behaviour or System model;
Interleaving or Noninterleaving model;
Linear or Branching Time model.

The parameters cited correspond to choices in the level of abstraction at
which we examine processes and which are not necessarily fixed for the pro-
cess once and for all. It is the application one has in mind for the formal
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Beh./Int./Lin. Hoare languages HL
Beh./Int./Bran. synchronization trees ST
Beh./Nonint./Lin. deterministic labelled event structures dLES
Beh./Nonint./Bran. labelled event structures LES
Sys./Int./Lin. deterministic transition systems dTS
Sys./Int./Bran. transition systems TS
Sys./Nonint./Lin. deterministic transition systems with independence dTSI
Sys./Nonint./Bran. transition systems with independence TSI

Table 1: The models

semantics which guides the choice of abstraction level.

This work presents a classification of models for concurrency based on the
three parameters, which represent a further step towards the identification of
the whole matter by systematic connections between transition based models.
In particular, we study a representative for each of the eight classes of mod-
els obtained by varying the parameters behaviour/system, interleaving/non-
interleaving and linear/branching in all the possible ways. Intuitively, the
situation can be graphically represented, as in the picture below, by a three-
dimensional frame of reference whose coordinate axes represent the three
parameters.

Our choices of models are summarized in Table 1. It is worth noticing
that, with the exception of the new model of transition systems with inde-
pendence each model is well-known.

The formal relationships between models are studied in a categorical set-
ting, using the standard categorical tool of adjunction. The “translations”
between models we shall consider are coreflections or reflections. These are
particular kinds of adjunctions between two categories which imply that one
category is embedded, fully and faithfully, in another.
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Here we draw on our experience in recasting models for concurrency as
categories, detailed in [23]. Briefly the idea is that each model (transition
systems are one such model) will be equipped with a notion of morphism,
making it into a category in which the operations of process calculi are uni-
versal constructions. The morphisms will preserve behaviour, at the same
time respecting a choice of granularity of the atomic changes in the descrip-
tion of processes—the morphisms are forms of simulations. One role of the
morphisms is to relate the behaviour of a construction on processes to that
of its components. The reflections and coreflections provide a way to express
that one model is embedded in (is more abstract than) another, even when
the two models are expressed in very different mathematical terms. One ad-
joint will say how to embed the more abstract model in the other, the other
will abstract away from some aspect of the representation. The preservation
properties of adjoints can be used to show how a semantics in one model
translates to a semantics in another.

The picture below, in which arrows represent coreflections and the “back-
ward” arrows reflections, shows the “cube” of relationships.

A functor F : A → B is said to be left adjoint to a functor G : B → A,
and conversely G is right adjoint to F , in symbols F � G, or 〈F, G〉 : A ⇀ B,
if there exists a family of arrows η = {ηa : a → GF (a) in A | a ∈ A}, called
the unit of the adjunction, which enjoys the following universal property: for
any object b ∈ B and any arrow f : a → G(b) in B, there exists a unique
arrow k : F (a) → b such that G(k) ◦ ηa = f , i.e., such that the following
diagram commutes.
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Equivalenty, F is left adjoint to G if there exists a family of arrows in
B ε = {εb : FG(b) → b | b ∈ B}, the counit of the adjunction, such that for
any arrow f : F (a) → b, a ∈ A, there exists a unique arrow k : a → G(b)
such that εb ◦ F (k) = f , i.e.,

commutes.

An adjunction is called (generalized) reflection of A in B, or B is said
reflective in A, if the the elements of the counit are isomorphisms. Dually,
it is a (generalized) coreflection of B in A, or A is coreflective in B, if the
components of the unit are isomorphisms.

Generally speaking, the model chosen to represent a class is a canoni-
cal and universally accepted representative of that class. However, for the
class of behavioural, linear-time, noninterleaving models there does not, at
present, seem to be an obvious choice of a corresponding canonical model.
The choice of deterministic labelled event structures is based, by analogy,
on the observation that Hoare trace languages may be viewed as determinis-
tic synchronization trees, and that labelled event structures are a canonical
generalization of synchronization trees within noninterleaving models. The
following picture is an example of such an event structure, together with its
domain of configurations
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However, more importantly, there is a close relationship between our
choice and some of the more well-known models suggested in the litera-
ture. In order to show this, and for the sake of completeness, in Section
4, we investigate the relationship between this model and two of the most-
studied, noninterleaving generalizations of Hoare languages in the literature:
the pomsets of Pratt [14], and the traces of Mazurkiewicz [9].

Pomsets, an acronym for partial ordered multisets, are labelled partial
ordered sets. A noninterleaving representation of a system can be readily
obtained by means of pomsets simply by considering the (multiset of) labels
occurring in the run ordered by the causal dependency relation inherited from
the events. The system itself is then represented by a set of pomsets. For
instance, the labelled event structure given in the example discussed above
can be represented by the following set of pomsets.

A simple but conceptually relevant observation about pomsets is that
strings can be thought of as a particular kind of pomsets, namely those
pomsets which are finite and linearly ordered. In other words, a pomset
a1 < a2 < · · · < an represents the string a1a2 . . . an. On the other side of
such correspondence, we can think of (finite) pomsets as a generalization
of the notion of word (string) obtained by relaxing the constraint which
imposes that the symbols in a word be linearly ordered. This is why in the
literature pomsets have also appeared under the name partial words [3]. The
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analogy between pomsets and strings can be pursued to the point of defining
languages of partial words, called partial languages, as prefix-closed—for a
suitable extension of this concept to pomsets—sets of pomsets on a given
alphabet of labels.

Since our purpose is to study linear-time models, which are determinis-
tic, we shall consider only pomsets without autoconcurrency, i.e., pomsets
such that all the elements carrying the same label are linearly ordered. Fol-
lowing [19], we shall refer to this kind of pomsets as semiwords and to the
corresponding languages as semilanguages. We shall identify a category dSL
of deterministic semilanguages equivalent to the category of deterministic
labelled event structures. Although pomsets have been studied extensively
(see e.g. [14, 2, 3]), there are few previous results about formal relationships
of pomsets with other models for concurrency.

Mazurkiewicz trace languages [9] are defined on an alphabet L together
with a symmetric irreflexive binary relation I on L, called the independence
relation. The relation I induces an equivalence on the strings of L∗ which is
generated by the simple rule

αabβ 
 αbaβ if a I b,

where α, β ∈ L∗ and a, b ∈ L. A trace language is simply a subset M of
L∗ which is prefix-closed and 
-closed, i.e., α ∈ M and α 
 β implies β ∈
M . It represents a system by representing all its possible behaviours as the
sequences of (occurrences of) events it can perform. Since the independence
relation can be taken to indicate the events which are concurrent to each
other, the relation 
 does nothing but relate runs of the systems which differ
only in the order in which independent events occur.

However, Mazurkiewicz trace languages are too abstract to describe faith-
fully labelled event structures. Consider for instance the labelled event struc-
ture shown earlier. Clearly, any trace language with alphabet {a, b} able to
describe such a labelled event structure must be such that ab 
 ba. How-
ever, it cannot be such that aba 
 aab. Thus, we are forced to move from
the well-known model of trace languages. We shall introduce here a new no-
tion of generalized Mazurkiewicz trace language, in which the independence
relation is context-dependent. For instance, the event structure shown in the
above picture will be represented by a trace language in which a is indepen-
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dent from b at ε i.e., after the empty string, in symbols a Iε b, but a is not
independent from b at a, i.e., after the string a has appeared, in symbols
a Ia/ b. In particular, we shall present a category GTL of generalized trace
languages which is equivalent to the category dLES of deterministic labelled
event structures. We remark that a similar idea of generalizing Mazurkiewicz
trace languages has been considered also in [6].

Summing up, Section 4 presents the chain of equivalences

dSL ∼= dLES ∼= GTL

which, besides identifying models which can replace dLES in our classi-
fication, also introduce interesting determnistic behavioural models for con-
currency and formalizes their mutual relationships.

Some of the results in the following have also been presented in [15, 16].

1 Preliminaries

In this section, we study the interleaving models. We start by briefly recall-
ing some well-known relationships between languages, trees and transition
systems [23], and then, we study how they relate to deterministic transition
systems.

Definition 1.1 (Labelled Transition Systems)
A labelled transition system is a structure T = (S, sI , L, Tran) where S
is a set of states; sI ∈ S is the initial state, L is a set of labels, and
Tran ⊆ S × L× S is the transition relation.

The fact that (s, a, s′) ∈ TranT —also denoted by s
a−→ s′, when no

ambiguity is possible—indicates that the system can evolve from state s to
state s′ performing an action a. The structure of transition systems immedi-
ately suggests a notion of morphism: initial states must be mapped to initial
states, and for every action the first system can perform in a given state, it
must be possible for the second system to perform the corresponding action—
if any—from the corresponding state. This guarantees that morphisms are
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simulations.

Definition 1.2 (Labelled Transition System Morphisms)
Given the labelled transition systems T0 and T1, a morphism h : T → T ′ is
a pair (σ, λ), where σ : ST0 → ST1 is a function and λ : LT0 ⇀ LT1 a partial
function, such that1

i) σ(sI
T0

) = sI
T1

;

ii) (s, a, s′) ∈ TranT0 , implies if λ ↓ a then (σ(s), λ(a), σ(s′))∈ TranT1 ;
σ(s) = σ(s′) otherwise.

It is immediate to see that labelled transition systems and labelled tran-
sition system morphisms, when the obvious componentwise composition of
morphisms is considered, give a category, which will be referred to as TS.

Since we shall deal often with partial maps, we assume the standard con-
vention that whenever a statement involves values yielded by partial func-
tions, we implicitily assume that they are defined.

A particularly interesting class of transition systems is that of synchro-
nization trees, i.e., the tree-shaped transition systems.

Definition 1.3 (Synchronization Trees)
A synchronization tree is an acyclic, reachable transition system S such that

(s′, a, s), (s′′, b, s) ∈ TranS implies s′ = s′′ and a = b

We shall write ST to denote the full subcategory of TS consisting of syn-
chronization trees.

In a synchronization tree the information about the internal structure of
systems is lost, and only the information about their behaviour is mantained.
In other words, it is not anymore possible to discriminate between a system
which reachs again and again the same state, and a system which passes
through a sequence of states, as far as they are able to perform the same

1We use f ↓ x to mean that a partial function f is defined on argument x.
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action. However, observe that the nondeterminism present in a state can
still be expressed in full generality. In this sense, synchronization trees are
branching time and interleaving models of behaviour.

A natural way of studying the behaviour of a system consists of con-
sidering its computations as a synchronization tree, or, in other words, of
“unfolding” the transition system by decorating each state with the history
of the computation which reached it.

Definition 1.4 (Unfoldings of Transition Systems)
Let T be a transition system. A path π of T is ε, the empty path, or a
sequence

i) ti ∈ TranT , i = 1, . . . , n;

ii) t1 = (sI
T , a1, s1) and ti = (si−1, ai, si), i = 2, . . . , n.

We shall write Path(T) to indicate to be the set of paths of T and πs to
denote a generic path leading to state s.

Define ts.st(T ) to be the synchronization tree (Path(T ), ε, LT , T ran), where

((t1 · · · tn), a, (t1 · · · tntn+1)) ∈ Tran
⇔ tn = (sn−1, an, sn) and tn+1 = (sn, a, sn+1)

This procedure amounts to abstracting away from the internal structure
of a transition system and to looking at its behaviour. It is very inter-
esting to notice that this simple construction is functorial and, moreover,
that if forms the right adjoint to the inclusion functor of ST in TS. In
other words, the category of synchronization trees is coreflective in the cate-
gory of transition systems. The counit of such adjunction is the morphisms
(φ, idLT

) : ts.st(T ) → T , where φ : Path(T ) → ST is given by φ(ε) = sI
T , and

φ((t1 · · · tn)) = s if tn = (s′, a, s).

While looking at the behaviour of a system, a further step of abstraction
can be achieved forgetting also the branching structure of a tree. This leads
to another well-know model of behaviour: Hoare languages.
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Definition 1.5 (Hoare Languages)
A Hoare language is a pair (H, L), where ∅ �= H ⊆ A∗, and sa ∈ H ⇒ s ∈ H.
A partial map λ : L0 ⇀ L1 is a morphism of Hoare languages from (H0, L0)
to (H1, L1) if for each s ∈ H0 it is λ̂(s) ∈ H1, where λ̂ : L∗0 → L∗1 is defined
by

λ̂(ε) = ε and λ̂(sa) =

{
λ̂(s)λ(a) if λ ↓ a;

λ̂(s) otherwise.

These data give the category HL of Hoare languages.

Observe that any language (H, L) can be seen as a synchronization tree
just by considering the strings of the language as states, the empty string
being the initial state, and defining a transition relation where s

a−→ s′ if

and only if sa = s′. Let hl.st((H, L)) denote such a synchronization tree.

On the contrary, given a synchronization tree S, it is immediate to see that
the strings of labels on the paths of S form a Hoare language. More formally,
for any transition system T and any path π = (sI

T , a1, s1) · · · (sn−1, an, sn) in
Path(T ), define Act(π) to be the string a1 · · · an ∈ L∗T . Moreover, let Act(T )
denote the set of strings

{ Act(π) | π ∈ Path(T ) }.

Then, the language associated to S is st.hl(S) = Act(S), and simply by

defining st.hl((σ, λ)) = λ, we obtain a functor st.hl : ST → HL. Again,
this constitutes the left adjoint to hl.st : HL → ST and given above. The
situation is illustrated below, where represents coreflection and a
reflection.

Theorem 1.6

HL ST TS

The existence of a (co)reflection from category A to B tells us that there
is a full subcategory of B which is equivalent (in the formal sense of equiv-
alences of categories). Therefore, once we have established a (co)reflection,
it is sometime interesting to indentify such subcategories. In the case of HL
and ST such a question is answered below.

12



Proposition 1.7 (Languages are deterministic Trees)
The full subcategory of ST consisting of those synchronization trees which
are deterministik, say dST, is equivalent to the category of Hoare languages.

2 Deterministic Transition Systems

Speaking informally behaviour/system and linear/branching are independent
parameters, and we expect to be able to forget the branching structure of
a transition system without necessarily losing all the internal structure of
the system. This leads us to identify a class of models able to represent the
internal structure of processes without keeping track of their branching, i.e.,
the points at which the choices are actually taken. A suitable model is given
by deterministic transition systems.

Definition 2.1 (Deterministic Transition Systems)
A transition system T is deterministic if

(s, a, s′), (s, a, s′′) ∈ TranT implies s′ = s′′.

Let dTS be the full subcategory of TS consisting of those transition systems
which are deterministic.

Consider the binary relation 
 on the state of a transition system T
defined as the least equivalence which is forward closed, i. e.,

s 
 s′ and (s, a, u), (s′, a, u′) ∈ TranT ⇒ u 
 u′;

and define ts.dts(T ) = (S/
, [sI
T ]�, LT , T ran�), where S/
 are the equiva-

lence classes of 
 and

([s]�, a, [s′]�) ∈ Tran� ⇔ ∃(s̄, a, s̄′) ∈ TranT with s̄ 
 s and s̄′ 
 s′.

It is easy to see that ts.dts(TS) is a deterministic transition system. Ac-
tually, this construction defines a functor which is left adjoint to the inclusion
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dTS ↪→ TS. In the following we briefly sketch the proof of this fact. Since
confusion is never possible, we shall not use different notations for different

’s.

Given a transition system morphism (σ, λ) : T0 → T1, define ts.dts

((σ, λ)) to be (σ̄, λ), where σ̄ : ST0/
→ ST1/
 is such that σ̄([s]�) = [σ(s)]�.

Proposition 2.2 (ts.dts: TS → dTS is a functor)
The pair (σ̄, λ) : ts.dts(T0) → ts.dts(T1) is a transition system morphism.

Proof. First, we show that σ̄ is well-defined.
Suppose (s, a, s′), (s, a, s′′) ∈ TranT0 . Now, if λ↑a, then σ(s′) = σ(s) =
σ(s′′).

Otherwise, (σ(s), λ(a), σ(s′)), (σ(s), λ(a), σ(s′′)) ∈ TranT1 . Therefore, in

both cases, σ(s′) 
 σ(s′′). Now, since (s, a, s′) ∈ TranT0 implies (σ(s), λ(a),

σ(s′)) ∈ TranT1 or σ(s) = σ(s′), it easily follows that σ(
) ⊆ 
. It is now
easy to show that (σ̄, λ) is a morphism. ✓

It follows easily from the previous proposition that ts.dts is a functor.

Clearly, for a deterministic transition system, say DT , since there are
no pairs of transitions such that (s, a, s′), (s, a, s′′) ∈ TranDT , we have that

 is the identity. Thus, we can choose a candidate for the counit by con-
sidering, for any deterministic transition system DT , the morphism (ε, id) :
ts.dts(DT ) → DT , where ε([s]�) = s. Let us show it enjoys the couniversal
property.

Proposition 2.3 ((ε, id): ts.dts(DT) → DT is couniversal)
For any deterministic transition system DT , any transition system T and
any morphism (η, λ) : ts.dts(T ) → DT , there exists a unique k in TS such
that (ε, id) ◦ ts.dts(k) = (η, λ).
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Proof. The morphism k must be of the form (σ, λ), for some σ. We choose σ
such that σ(s) = η([s]�). With such a definition, it is immediate that k is
a transition system morphism. Moreover, the diagram commutes: (ε, id) ◦
ts.dts((σ, λ))= (ε ◦ σ̄, λ), and ε(σ̄([s]�))= ε([σ(s)]�) = σ(s) = η([s]�). To
show uniqueness of k, suppose that there is k′ which makes the diagram
commute. Necessarily, k′ must be of the kind (σ′, λ). Now, since s̄′([s]�) =
[σ′(s)]�, in order for the diagram to commute, it must be σ′(s) = η([s]�).
Therefore, σ′ = σ and k′ = k. ✓

Theorem 2.4 ( ts.dts � ←↩)
The functor ts.dts is left adjoint to the inclusion functor dTS ↪→ TS. There-
fore, the adjunction is a reflection.

Proof. By standard results of Category Theory as the inclusion is full (see
[8, chap. IV, pg. 811] . ✓

Next, we present a universal construction from Hoare languages to de-
terministic transition system. In particular, we show a coreflection HL
dTS. Let (H, L) be a language. Define hl.dts(H, L) = (H, ε, L, Tran), where
(s, a, sa) ∈ Tran for any sa ∈ H, which is trivially a deterministic transition
system.

On the contrary, given a deterministic transition system DT , define the
language dts.hl(DT ) = (Act(DT ), LDT ). Concerning morphisms, it is im-
mediate that if (σ, λ) : DT0 → DT1 is a transition system morphism, then
λ : Act(DT0) → Act(DT1) is a morphism of Hoare languages. Therefore,

defining dts.hl((σ, λ)) = λ, we have a functor from dTS to HL.

Now, consider the language dts.hl ◦ hl.dts(H, L). It contains a string
a1 · · · an if and only if the sequence (ε, a1, a1)(a1, a2, a1a2) · · · (a1 · · · an−1, an,

a1 · · · an) is in Path(hl.dts(T )) if and only if a1 · · · an is in H. It follows
immediately that id : (H, L) → dts, hl ◦ hl.dts(H, L) is a morphism of lan-
guages. We will show that id is actually the unit of the coreflection.

Proposition 2.5 (id: (H, L) → dts.hl ◦ hl.dts(H, L) is universal)
For any Hoare language (H, L), any deterministic transition system DT and
any morphism λ : (H, L) → dts.hl(DT ), there exists a unique k in dTS such
that dts.hl(k) = λ.
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Proof. Observe that since DT is deterministic, given a string s ∈ Act(DT ),
there is exactly one state in SDT reachable from sI

DT with a path labelled
by s. We shall use state(s) to denote such a state. Then, define k = (σ, λ) :
hl.dts(H, L) → DT , where σ(s) = state(λ̂(s)). Since DT is deterministic
and λ̂(s) is in Act(DT ), (σ, λ) is well-defined and the rest of the proof follows
easily. ✓

Theorem 2.6 (hl.dts � dts.hl)
The map hl.dts extends to a functor from HL to dTS which is left adjoint
to dts.hl. Since the unit of the adjunction is an isomorphism, the adjunction
is a coreflection.

Observe that the construction of the deterministic transition system as-
sociated to a language coincides exactly with the construction of the cor-
responding synchronization tree. However, due to the different objects in
the categories, the type of universality of the construction changes. In other
words, the same construction shows that HL is reflective in ST—a full sub-
category of TS—and coreflective in dTS—another full subcategory of TS.

Thus, we enriched the diagram at the end of the previous section and we
have a square.
Theorem 2.7 (The Interleaving Surface)
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3 Noninterleaving vs. Interleaving Models

Event structures [11, 22] abstract away from the cyclic structure of the pro-
cess and consider only events (strictly speaking event ocurrences), assumed
to be the atomic computational steps, and the cause/effect relationships be-
tween them. Thus, we can classify event structures as behavioural, branching
and noninterleaving models. Here, we are interested in labelled event struc-
tures.

Definition 3.1 (Labelled Event Structures)
A labelled event structure is a structure ES = (E, #,≤, ,, L) consisting of
a set of events E partially ordered by ≤; a symmetric, irreffexive relation
# ⊆ E × E, the conflict relation, such that

{e′ ∈ E | e′ ≤ e} is finite for each e ∈ E,

e # e′ ≤ e′′ implies e # e′′ for each e, e′, e′′ ∈ E;

a set of labels L and a labelling function , : E → L. For an event e ∈ E,
define �e� = {e′ ∈ E | e′ ≤ e}. Moreover, we write ∨∨ for # ∪ {(e, e) | e ∈
EES}. These data define a relation of concurrency on events: co = E2

ES\(≤
∪ ≤−1 ∪ #).
A labelled event structure morphism from ES0 to ES1 is a pair of partial
functions (η, λ), where η : EES0 ⇀ EES1 and λ : LES0 ⇀ LES1 are such that

i) �η(e)� ⊆ η(�e�),

ii) η(e) ∨∨ η(e′) implies e ∨∨ e′,

iii) λ ◦ ,ES0 = ,ES1 ◦ η.

This defines the category LES of labelled event structures.

The computational intuition behind event structures is simple: an event
e can occur when all its causes, i.e., �e� \ {e}, have occurred and no event
which it is in conflict with has already occurred. This is formalized by the
following notion of configuration.
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Definition 3.2 (Configurations)
Given a labelled event structure ES, define the configurations of ES to be
those subsets c ⊆ EES which are

Conflict Free: ∀e1, e2 ∈ c, not e1 # e2

Left Closed: ∀e ∈ c∀e′ ≤ e, e′ ∈ c

Let L(ES) denote the set of configurations of ES.
We say that e is enabled at a configuration c, in symbols c ! e, if

(i) e /∈ c; (ii) �e�\{e} ⊆ c; (iii) e′ ∈ EES and e′ # e implies e′ /∈ c.

Given a finite subset c of EES, we say that a total ordering of the el-
ements of c, say {e1 < e2 < · · · < en}, is a securing for c if and only if
{e1, . . . , ei−1} ! ei, for i = 1, . . . , n. Clearly, c is a finite configuration if and
only if there exists a securing for it. We shall write a securing for c as a string
e1e2 · · · en, where c = {e1, e2, . . . , en} and ei �= ej for i �= j, and, by abuse
of notation, we shall consider such strings also configurations. Let Sec(ES)
denote the set of the securings of ES.

Definition 3.3 (Deterministic Event Structures)
A labelled event structure ES is determistic if and only if for any c ∈ L(ES),
and for any pair of events e, e′ ∈ EES, whenever c ! e, c ! e′ and ,(e) = ,(e′),
then e = e′. This defines the category dLES as a full subcategory of LES.

In [20], it is shown that synchronization trees and labelled event structures
are related by a a coreflection from ST to LES. As will be clear later, this
gives us a way to see synchronization trees as an interleaving version of
labelled event structures or, vicerversa, to consider labelled event structures
as a generalization of synchronization tree to the non-interleaving case. In
the following subsection, we give a brief account of this coreflection.

3.1 Synchronization Trees and Labelled Event Struc-
tures

Given a tree S, define st.les(S) = (TranS,≤, #, ,, LS), where
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• ≤ is the least partial order on TranS such that (s, a, s′) ≤ (s′, b, s′′);

• # is the least hereditary, symmetric, irreflexive relation on TranS such
that (s, a, s′) # (s′, b, s′′)

• ,((s, a, s′))= a.

It is clear that st.les(S) is a labelled event structure. Now, by defining

st.les((σ, λ)) = (ησ, λ), where

ησ((s, a, s′))=
{

(σ(s), λ(a), σ(s′)) if λ ↓ a
↑ otherwise

it is not difficult to see that st.les is a functor from ST to LES.

On the contrary, for a labelled event structure ES, define les.st(ES) to

be the structure (Sec(ES), ε, LES, T ran) , where (s, a, se) ∈ Tran if and
only if s, se ∈ Sec(ES) and ,ES(e) = a. Since a transition (s, a, s′) implies
that |s| < |s′| (s is a string strictly shorter than s′), the transition system we
obtain is certainly acyclic. Moreover, by definition of securing, it is reachable.
Finally, if (s, a, se), (s′, a, s′e′) ∈ Tran and se = s′e′, then obviously s = s′

and e = e′. Therefore, les.st(ES) is a synchronization tree.

Concerning morphisms, for (η, λ) : ES0 → ES1, define les.st ((η, λ)) to
be (η̂, λ). This makes les.st be a functor from LES to ST.

Consider now les.st ◦ st.les(S). Observe that there is a transition

((sI
S, a1, s1) · · · (sn−1, an, sn), a, (sI

S, a1, s1) · · · (sn−1, an, sn)(sn, a, s))

in les.st◦st.les(S) if and only if (sI
S, a1, s1) · · · (sn−1, an, sn)(sn, a, s) is a path

in S. From this fact, and since S and les.st ◦ st.les(S) are trees, it follows
easily that there is an isomorphism between the states of S and the states
of les.st ◦ st.les(S), and that such an isomorphism is indeed a morphism of
synchronization trees.

Theorem 3.4 ( st.les � les.st)
For any synchronization tree S, the map (η, id) : S → les.st ◦ st.les(S),
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where η(sI
S) = ε and η(s) = (sI

S, a1, s1) · · · (sn, a, s), the unique path leading
to s in S, is a synchronization tree isomorphism.

Moreover, 〈st.les, les.st〉: ST ⇀ LES is an adjuction whose unit is given
by the family of isomorphisms (η, id). Thus, we have a coreflection of ST
into LES.

Consider now a synchronization tree S in dST, i.e., a deterministic tree.
From the definition of st.les, it follows eaily that st.les(S) is a deterministic
event structure; on the other hand, les.st(ES) is a deterministic tree when
ES is deterministic. Thus, by general reason, the coreflection ST LES
restricts to a coreflection dST dLES, whence we have the following corol-
lary.

Theorem 3.5 (HL dLES)
The category HL of Hoare languages is coreffective in the category dLES
of deterministic labelled event structures.

Proof. It is enough to recall that dST and HL are equivalent. Then, the
result follows by general reasons. ✓

To conclude this subsection, we make precise our claim of labelled event
structures being a generalization of synchronization trees to the non-interleaving
case. Once the counits of the above coreflections have been calculated, it is
not difficult to prove the following results.

Corollary 3.6 (L. Event Structures = S. Trees + Concurrency)
The full subcategory of LES consisting of the labelled event structures ES
such that coES = ∅ is equivalent to ST.

The full subcategory of dLES Tconsisting of the deterministic labelled event
structures ES such that coES = ∅ is equivalent to HL.

3.2 Transition Systems with Independence

Now, on the system level we look for a way of equipping transition systems
with a notion of “concurrency” or “independence”, in the same way as LES
may be seen as adding “concurrency” to ST. Moreover, such enriched tran-
sition systems should also represent the “system model” version of event
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structures. Several such models have appeared in the literature [17, 1, 18].
Here we choose a variation of these, the transition systems with independence.

Transition systems with independence are transition systems with an in-
dependence relation actually carried by transitions. The novelty resides in
the fact that the notion of event becomes now a derived notion. However,
four axioms are imposed in order to guarantee the consistency of this with
the intuitive meaning of event.

Definition 3.7 (Transition Systems with Independence)
A transition system with independence is a structure (S, sI , L, Tran, I) where
(S, sI , L, Tran) is a transition system and I ⊆ Tran2 is an irreffexive, sym-
metric relation, such that

i) (s, a, s′) ∼ (s, a, s′′) ⇒ s′ = s′′;

ii) (s, a, s′) I (s, b, s′′) ⇒ ∃u. (s, a, s′) I (s, b, u) and (s, b, s′′) I (s′′, a, u);

iii) (s, a, s′) I (s′, b, u) ⇒ ∃s′′.(s, a, s′) I (s, b, s′′) and (s, b, s′′) I (s′′, a, u);

iv) (s, a, s′) ∼ (s′′, a, u) I (w, b, w′) ⇒ (s, a, s′) I (w, b, w′);

where ∼ is least equivalence on transitions including the relation≺ defined by

(s, a, s′) ≺ (s′′, a, u) ⇔ (s, a, s′) I (s, b, s′′) and
(s, a, s′) I (s′, b, u) and
(s, b, s′′) I (s′′, a, u).
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Morphisms of transition systems with independence are morphisms of the
underlying transition systems which preserve independence, i.e., such that

(s, a, s′) I (s̄, a, s̄′) and λ ↓ a, λ ↓ b ⇒ ( σ(s), λ(a), σ(s′)) I (σ(s̄), λ(b), σ(s̄′))

These data define the category TSI of transition systems with indepen-
dence. Moreover, let dTSI denote the full subcategory of TSI consisting of
transition systems w.ith independence whose underlying transition system is
deterministic.

Thus, transition systems with independence are precisely standard transi-
tion systems but with an additional relation expressing when one transition
is independent of another. The relation ∼, defined as the reflexive, sym-
metric and transitive closure of a relation ≺ which simply identifies local
“diamonds” of concurrency, expresses when two transitions represent oc-
currences of the same event. Thus, the equivalence classes [(s, a, s)]∼ of
transitions (s, a, s′) are the events of the transition system with indepen-
dence. In order to shorten notations, we shall indicate that transitions
(s, a, s′), (s, b, s′′), (s′, b, u) and (s′′, a, u) form a diamond by writing Diam

((s, a, s′), (s, b, s′′), (s′, b, u), (s′′, a, u)).

Concerning the axioms, property (i) states that the occurrence of an event
at a state yields a unique state; property (iv) asserts that the independence
relation respects events. Finally, conditions (ii) and (iii) describe intuitive
properties of independence: two independent events which can occur at the
same state, can do it in any order without affecting the reached state.

Transition systems with independence admit TS as a coreflective sub-
category. In this case, the adjunction is easy. The left adjoint associates
to any transition system T the transition system with independence whose
underlying transition system is T itself and whose independence relation is
empty. The right adjoint simply forgets about the independence, mapping
any transition system with independence to its underlying transition system.
From the definition of morphisms of transition systems with independence,
it follows easily that these mappings extend to functors which form a core-
flection TS TSI. Moreover, such a coreflection trivially restricts to a
coreflection dTS dTSI.

So, we are led to the following diagram.
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Theorem 3.8 (Moving along the “interleaving/noninterleaving” axis)

4 Behavioural, Linear Time, Noninterleaving

Models

A labelled partial order on L is a triple (E,≤, ,), where E is a set, ≤ ⊆ E2

a partial order relation; and , : E → L is a labelling function. We say that
a labelled partial order (E,≤, ,) is finite if E is so.

Definition 4.1 (Partial Words)
A partial word on L is an isomorphism class of finite labelled partial orders.
Given a finite labelled partial order p we shall denote with [[p]] the partial
word which contains p. We shall also say that p represents the partial word
[[p]].

A semiword is a partial word which does not exhibit autoconcurrency,
i.e., such that all its subsets consisting of elements carrying the same label
are linearly ordered. This is a strong simplification. Indeed, given a labelled
partial order p representing a semiword on L and any label a ∈ L, such
hypothesis allows us to talk unequivocally of the first element labelled a,
of the second element labelled a, . . . , the n-th element labelled a. In other
words, we can represent p unequivocally as a (strict) partial order whose el-
ements are pairs in L× ω, (a, i) representing the i-th element carrying label
a. Thus, we are led to the following definition, where for n a natural num-
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ber, [n] denote the initial segment of length n of ω\{0}, i.e., [n] = {1, . . . , n}.

Definition 4.2 (Semi Words)
A (canonical representative of a) semiword on an alphabet L is a pair x =
(Ax, <x) where

• Ax =
⋃

a∈L ({a} × [nx
a]), for some nx

a ∈ ω, and Ax is finite;

• <x is a transitive, irreflexive, binary relation on Ax such that

(a, i) <x (a, j) if and only if i < j,

where < is the usual (strict) ordering on natural numbers.

The semiword represented by x is [[(Ax,≤, ,)]] , where (a, i) ≤ (b, j) if and

only if (a, i) <x (b, j) or (a, i) = (b, j), and ,((a, i)) = a. However, exploiting
in full the existence of such an easy representation, from now on, we shall
make no distinction between x and the semiword which it represents. In
particular, as already stressed in Definition 4.2, with abuse of language, we
shall refer to x as a semiword. The set of semiwords on L will be indicated by
SW (L). The usual set of words (strings) on L is (isomorphic to) the subset
of SW (L) consisting of semiwords with total ordering.

A standard ordering used on words is the prefix order $, which relates α
and β if and only if α is an initial segment of β. Such idea is easily extended to
semiwords in order to define a prefix order $ ⊆ SW (L)× SW (L). Consider
x and y in SW (L). Following the intuition, for x to be a prefix of y, it is
necessary that the elements of Ax are contained also in Ay with the same
ordering. Moreover, since new elements can be added in Ay only “on the
top” of Ax, no element in Ay \ Ax may be less than an element of Ax. This
is formalized by saying

x $ y if and only if Ax ⊆ Ay and <x=<y ∩ A2
x

and <y ∩ ((Ay \ Ax)× Ax) = ∅.

It is quickly realized that $ is a partial order on SW (L) and that it coincides
with the usual prefix ordering on words.
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Example 4.3 (Prefix Ordering)
As a few examples of the prefix ordering of semiwords, it is

However, it is neither the case that

We shall use Pref(x) to denote the set {y ∈ SW (L) | y � x} of proper
prefixes of x. The set of maximal elements in x will be denoted by Max(x).
Semiwords with a maximum element play a key role in our development. For
reasons that will be clear later, we shall refer to them as to events.

Another important ordering is usually defined on semiwords: the “smoother
than” order, which takes into account that a semiword can be extended just
by relaxing its ordering. More precisely, x is smoother than y, in symbols
x � y, if x imposes more order contraints on the elements of y. Formally,

x � y if and only if Ax = Ay and <x ⊇ <y

It is easy to see that �⊆ SW (L) × SW (L) is a partial order. We shall use
Smooth(x) to denote the set of smoothings of x, i.e., {y ∈ SW (L) | y � x}.

Example 4.4 (Smoother than Ordering)
The following few easy situations exemplify the smoother than ordering of
semiwords.
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On the other hand, neither

4.1 Semilanguages and Event Structures

Semilanguages are a straightforward generalization of Hoare languages to
prefix-closed subsets of SW (L).

Definition 4.5 (SemiLanguages)
A semilanguage is a pair (SW, L), where L is an alphabet and SW is a set
of semiwords on L which is

Prefix closed: y ∈ SW and x $ y implies x ∈ SW ;
Coherent: Pref (x) ⊆ SW and |Max(x)| > 2 implies x ∈ SW .

Semilanguage (SW, L) is deterministic if

x, y ∈ SW and Smooth(x) ∩ Smooth(y) �= ∅ implies x = y.

In order to fully understand this definition, we need to appeal to the
intended meaning of semilanguages. A semiword in a semilanguage describes
a (partial) run of a system in terms of the observable properties (labels) of
the events which have occurred, together with the causal relationships which
rule their interactions. Thus, the prefix closedness clause captures exactly
the intuitive fact that any initial segment of a (partial) computation is itself
a (partial) computation of the system.

In this view, the coherence axiom can be interpreted as follows. Suppose
that there is a semiword x whose proper prefixes are in the language. i.e.,
they are runs of the system, and suppose that |Max(x)| > 2. This means
that, given any pair of maximal elements in x, there is a computation of the
system in which the corresponding events have both occurred. Then, in this
case, the coherence axiom asks for x to be a possible computation of the
system, as well. In other words, we can look at coherence as to the axiom
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which forces a set of events to be conflict free if it is pairwise conflict free, as
in [11] for prime event structures and in [9] for proper trace languages.

To conclude our discussion about Definition 4.5, let us analyze the notion
of determinism. Remembering our interpretation of semiwords as runs of a
system, it is easy to realize how the existence of distinct x and y such that
Smooth(x) ∩ Smooth(y) �= ∅ would imply nondeterminism. In fact, if there
were two different runs with a common linearization, then there would be
two different computations exhibiting the same observable behaviour, i.e., in
other words, two non equivalent sequences of events with the same strings of
labels.

Also the notion of morphisms of semilanguage can be derived smoothly
as extension of the existing one for Hoare languages.

Any λ : L0 ⇀ L1 determines a partial function λ̂ : SW (L0) ⇀ SW (L1)
which maps x to its relabelling through λ, if this represents a semiword, and is
undefined otherwise. Consider now semilanguages (SW0, L0) and (SW1, L1),
and suppose for x ∈ SW0 that λ̂ is defined on x. Although one could be
tempted to ask that λ̂(x) be a semiword in SW1, this would by far too strong
a requirement. In fact, since in λ̂(x) the order <x is strictly preserved, mor-
phisms would always strictly preserve causal dependency, and this would be
out of tune with the existing notion of morphisms for event structures, in
which sequential tasks can be simulated by “more concurrent” ones. Fortu-
nately, we have an easy way to ask for the existence of a more concurrent
version of λ̂(x) in SW1. It consists of asking that λ̂(x) be a smoothing of
some semiword in SW1.

Definition 4.6 (Semilanguage Morphisms)
Given the semilanguages (SW0, L0) and (SW1, L1), a partial function λ :
L0 ⇀ L1 is a morphism λ : (SW0, L0) → (SW1, L1) if

∀x ∈ SW0 λ̂ ↓ x and λ̂(x) ∈ Smooth(SW1).

It is worth observing that, if (SW1, L1) is deterministic, there can be at
most one semiword in SW1, say xλ, such that λ̂(x) ∈ Smooth(xλ). In this
case, we can think of λ : (SW0, L0) → (SW1, L1) as mapping x to xλ.
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Example 4.7
Given L0 = {a, b} and L1 = {c, d}, consider the deterministic semilanguages
below.

Then, the function λ which maps a to c and b to d is a morphism from
(SW0, L0) to (SW1, L1). For instance,

Observe that the function λ′ : L0 → L1 which sends both a and b to
c is not a morphism since λ̂ applied to b < a gives c < c which is not
the smoothing of any semiword in SW1, while λ′′ : L1 → L0 which sends
both c and d to a is not a morphism from (SW1, L1) to (SW0, L0) since λ̂ is

undefined on c d .

It can be shown that semilanguages and their morphisms, with com-
position that of partial functions, form a category whose full subcategory
consisting of deterministic semilanguages will be denoted by dSL. In the
following, we shall define translation functors between dLES and dSL.

Given a deterministic semilanguage (SW, L) define dsl.dles((SW, L)) to
be the structure (E,≤, #, ,, L), where

• E = { e | e ∈ SW, e is an event, i.e., e has a maximum element};

• ≤ = $ ∩ E2;

• # ={(e, e′) ∈ E2 | e and e′ are incompatible wrt $};

• ,(e) is the label of the maximum element of e.
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Theorem 4.8
dsl.dles((SW, L)) is a deterministic labelled event structure.

Consider now a deterministic labelled event structure DES = (E,≤
, #, ,, L). Define dles.dsl(DES ) to be the structure (SW, L), where

SW = {[[(c,≤ ∩ c2, ,|c)]] | c is a finite configuration of DES.}
Theorem 4.9
dles.dsl(DES ) is a deterministic semilanguage.

It can be shown that dsl.dles and dles.dsl extend to functors which when
composed with each other yield functors naturally isomorphic to identity
functors. In other words, they form an adjoint equivalence [8, chap. III,
pg. 91], i.e., an adjunction which is both a reflection and a coreflection. It is
worthwhile noticing that this implies that the mappings dsl.dles and dles.dsl
constitute a bijection between deterministic semilanguages and isomorphism
classes of deterministic labelled event structures—isomorphism being iden-
tity up to the names of events.

Theorem 4.10
The categories dSL and dLES are equivalent.

In fact, dropping the axiom of coherence in Definition 4.5 we get semi-
languages equivalent to labelled stable event structures [22].

4.2 Trace Languages and Event Structures

Generalized trace languages extend trace languages by considering an inde-
pendence relation which may vary while the computation is progressing. Of
course, we need a few axioms to guarantee the consistency of such an exten-
sion.

Definition 4.11 (Generalized Trace Lunguages)
A generalized trace language is a triple (M, I, L), where L is an alphabet,
M ⊆ L∗ is a prefix-closed and 
-closed set of strings, I : M → 2L×L is a
function which associates to each s ∈ M a symmetric and irreffexive relation
Is ⊆ L× L, such that
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I is consistent: s 
 s′ implies Is = Is′ ;
M is I-closed: a Is b implies sab ∈ M ;
I is coherent: (i) a Is b and a Isb c and c Isa b implies a Is c;

(ii) a Is c and c Isc b
implies (a Is b if and only if a Isc b);

where 
 is the least equivalence relation on L∗ such that sabu 
 sbau if
a Is b.

As in the case of trace languages, we have an equivalence relation 
 which
equates those strings representing the same computation. Thus, I must be
consistent in the sense that it must associate the same independence rela-
tion to 
-equivalent strings. In order to understand the last two axioms,
the following picture shows in terms of computations ordered by prefix the
situations which those axioms forbid. There, the dots represent computa-
tions, the labelled edges represent the prefix ordering, and the dotted lines
represent the computations forced in M by the axioms.

It is easy to see that axiom (i) rules out the situation described by just
the solid lines in (A)—impossible for stable event structures, while axiom (ii)
eliminates cases (B)—which is beyond the descriptive power of general event
structures [22] and (C)—impossible for event structures with binary conflict.
They narrow down to those orderings of computations arising from prime
event structures. It is worthwhile to observe that axiom (B) corresponds
in our setting to what is called “cube axiom” in the setting of concurrent
transition systems [18].
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Definition 4.12 (Generalized Trace Language Morphisms)
Given the generalized trace languages (M, I, L) and (M ′, I ′, L′), a partial
function λ : L ⇀ L′ is a morphism λ : (M, I, L) → (M ′, I ′, L′) if

λ preserves words: s ∈ M implies λ∗(s) ∈ M ′;
λ respects independence: a Is b and λ ↓ a, λ ↓ b implies λ(a)I ′λ∗(s)λ(b);

where λ∗ is defined by λ∗(ε) = ε and λ∗(sa) =

{
λ∗(s)λ(a) if λ ↓ a
λ∗(s) otherwise

Generalized trace languages and their morphisms, under the usual com-
position of partial functions, form the category GTL.

A derived notion of event in generalized trace languages can be captured
by the relation ∼ defined as the least equivalence such that

a Is b implies s ∼ sba and s 
 s′ implies sa ∼ s′a.

The events occurring in s ∈ M , denoted by Ev(s), are the ∼-classes a repre-
sentative of which occurs as a non empty prefix of s, i.e.,

{[u]∼ | u is a non empty prefix of s }.

It can be shown that s 
 s′ if and only if Ev(s) = Eu(s′). Extending the
notation, we shall write Ev(M) to denote the events of (M, I, L), i.e., the
∼-equivalence classes of non empty strings in M .

Now, given a generalized trace language (M, I, L) define gtl.dles((M, I, L))
to be the structure (Ev(M),≤, #, ,, L), where

• [s]∼ ≤ [s′]∼ if and only if ∀u ∈ M, [s′]∼ ∈ Ev(u) implies [s]∼ ∈ Ev(u);

• [s]∼#[s′]∼ if and only if ∀u ∈ M, [s]∼ ∈ Ev(u) implies [s′]∼ /∈ Ev(u);

• ,([s]∼)= a if and only if s = s′a.

Theorem 4.13
gtl.dles((M, I, L)) is a deterministic labelled event structure.

On the other hand, in order to define a generalized trace language from
a deterministic labelled event structure DES = (E,≤, #, ,, L), consider
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M = {,∗(e1 · · · en)|{e1, . . . , en} ⊆ E and {e1, . . . , ei−1} ! ei, i = 1, . . . , n}.

Since DES is deterministic, any s ∈ M identifies unequivocally a string of
events Set(s) = e1 · · · en ∈ E∗ such that {e1, . . . , ei−1} ! ei, i = 1, . . . , n, and
,∗(e1 · · · en) = s. Now, for any s ∈ M , take

Is = {(ab)|sab ∈ M, Sec(sab) = xe0e1 and e0 co e1}.

Then, define (M, I, L) to be dles.gtl(DES ).

Theorem 4.14
dles.gtl(DES ) is a generalized trace language.

As in the case treated in the previous section, dles.gtl and gtl.dles ex-
tend to functors between GTL and dLES which form an adjoint equiva-
lence. Such an equivalence restricts to an isomorphism of generalized trace
languages and isomorphism classes of deterministic labelled event structures.

Theorem 4.15
Categories GTL and dLES are equivalent.

The result extends to labelled stable event structures by dropping the
‘only if ’ implication in part (ii) of the coherence axiom of Definition 4.11.
Of course, it follows from Theorem 4.10 and Theorem 4.15 that dSL and
GTL are equivalent. In the full paper [16], we also define direct translations
between such categories.

5 Transition Systems with Independence and

Labelled Event Structures

In this section, we show that transition systems with independence are an
extension of labelled event structures to a system model, by showing that
there exists a coreflection from LES to TSI. We split such a coreflection
in two parts. First, we define the unfolding of transition systems with in-
dependence. To this aim, we introduce the category oTSI of occurrence
transition systems with independence. Later, we shall show that labelled
event structures are coreflective in oTSI, thus obtaining
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LES oTSI TSI.

Our main reason for this decomposition is that we obtain as a corollary yet
another characterization of prime event structures, in terms of a subcategory
of TSI defined purely in terms of axioms in transition systems with indepen-
dence. This result supplements the many existing characterizations in terms
of e.g. domains [11] or nets [23].

Definition 5.1 (Occurrence Transition Systems with Independence)
An occurrence transition system with independence is a transition system
with independence OTI = (S, sI , L, Tran, I) which is reachable, acyclic and
such that

(s′, a, u) �= (s′′, b, u) ∈ Tran implies
∃s.(s, b, s′) I (s, a, s′′) and (s, b, s′) I (s′, a, u)

and (s, a, s′′) I (s′′, b, u),

or, in other words, (s′, a, u) and (s′′, b, u) form the bottom of a concurrency

diamond Diam((s, a, s′′), (s, b, s′), (s′′, b, u), (s′, a, u)).
Let oTSI denote the full subcategory of TSI whose objects are occurrence
transition systems with independence.

The key fact about occurrence transition systems with independence is
that they are particularly well structured. In particular, it is possible to
show that in an occurrence transition system with independence each dia-
mond of concurrency is not degenerate, i.e., it consists of four distinct states.
Other relevant features of occurrence transition systems with independence
are stated by the following lemmas.

Given a transition system with independence TI, define 
 ⊆ Path(TI)2

to be the least equivalence relation such that

πs(s, a, s′)(s′, b, u)πv 
 πs(s, b, s
′′)(s′′, a, u)πv

if Diam ((s, a, s′), (s, b, s′′), (s′, b, u), (s′′, a, u)).

Lemma 5.2
Given an occurrence transition system with independence OTI, let u be a
state and πu, π

′
u paths leading to it. Then πu 
 π′u.
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Lemma 5.3
Given a path π ∈ Path(OTI), at most one representative of any ∼-equivalence
class can occur in π.

5.1 Unfolding Transition Systems with Independence

Given a transition system with independence TI = (S, sI , L, Tran, I), we

define tsi.otsi(TI) = (Π�, [ε]�, L, Tran�, I�), where

• Π� is the quotient of Path(TI) modulo 
;

• ([π]�, a, [π′]�) ∈ Tran� ⇔ ∃(s, a, s′) ∈ Tran such that π′ 

π(s, a, s′);

• ([π]�, a,[π′]�) I� ([π̄]�, b, [π̄
′]�) ⇔

∃(s, a, s′),(s̄, b, s̄′) ∈ Tran such that
(s, a, s′) I (s̄, b, s̄′), π′ 
 π(s, a, s′), and π̄′ 
 π̄(s̄, b, s̄′).

Proposition 5.4
The transition system tsi.otsi(TI) is an occurrence transition system with
independence.

Figure 1 shows a simple example of unfolding of a transition system with
independence. Next, we want to show that tsi.otsi extends to a functor for
TSI to oTSI which is right adjoint to the inclusion functor oTSI ↪→ TSI.
As a candidate for the counit of such an adjunction, consider the mapping
(σε, id) : tsi.otsi(TI) → TI where

σε(ε) = sI
TI and σε([πs]�) = s

By Lemma 5.2, we know that σε is well-defined. Then, it is not difficult to
see that (σε, id) is a morphism of transition systems with independence.
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Figure 1: A transition system with independence TI and tsi.otsi(TI).

Proposition 5.5 ( (σε, id) : tsi.otsi(TI) → TI is couniversal)
For any occurrence transition system with independence OTI, transition
system with independence TI and morphism (σ, λ) : OTI → TI, there exists
a unique k : OTI → tsi.otsi(TI) in oTSI such that (σε, id) ◦ k = (σ, λ).

Proof. Clearly, in order for the diagram to commute, k must be of the
form (σ̄, λ). Consider the map σ̄(s) = [σλ(πs)]�, where σλ : Path(OTI) →
Path(TI) is given by
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σλ(ε) = ε, σλ(πs(s, a, s′))=

{
σλ(πs)( σs, λ(a), σ(s′)) if λ ↓ a

σλ(πs) otherwise.

This definition is well-defined: fixed s, let πs and πs′ be two paths leading to
s. Then, since OTI is an occurrence transition system with independence,
it is πs 
 πs′ , and since (σ, λ) is a morphism, it follows easily that σλ(πs) 

σλ(πs′). Now it is not difficult to see that (σ̄, λ) is indeed a morphism of
occurrence transition systems with independence.

In order to show that the diagram commutes, it is enough to observe that
each s is mapped to a
-class of paths leading to σ(s). Therefore, σε ◦ σ̄(s) =
σ(s). The uniquess of (σ̄, λ) is easily obtained following the same line. In
fact, the behaviour of σ̄ is compelled on any s : sI

OTI must be mapped to
[ε]�, while a generic s must mapped to a 
-equivalence class of paths leading
to σ(s). But, by Lemma 5.2, we know that there is a unique such class. ✓

Theorem 5.6 ( ↪→ � tsi.otsi)
The construction tsi.otsi extends to a functor from TSI to oTSI which is
right adjoint to the inclusion oTSI ↪→ TSI.

It will be useful later to notice that this coreflection cuts down to a core-
flections doTSI dTSI, where doTSI is the full subcategory of oTSI
consisting of deterministic transition systems. In order to achieve this result,
it is clearly enough to show that tsi.otsi maps objects from dTSI to doTSI.

Proposition 5.7 (oTSI dTSI)
If TI is deterministic, then tsi.otsi(TI ) is deterministic.

5.2 Occurrence TSI’s and Labelled Event Structures

Consider a labelled event structure ES = (E,≤, #, ,, L). Define les.otsi(ES)
to be the transition system with independence of the finite configurations of
ES, i.e.,

les.otsi(ES) = (LF (ES),∅, L, Tran, I),

where

• LF (ES) is the set of finite configuration of ES;
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• (c, a, c′) ∈ Tran if and only if c = c \ {e} and ,(e) = a;

• (c, a, c′) I (c̄, b, c̄) if and only if (c′ \ c) co (c̄′ \ c̄).

By definition, es.otsi(ES) is clearly an acyclic, reachable transition sys-
tem. Moreover, I ⊆ Tran2 is symmetric and irreflexive, since co is such. In
order to show that it is an occurrence transition system with independence,
it is important the following characterization of the relation ∼.

Lemma 5.8
Given (c, a, c′) and (c̄, a, c̄′) ∈ Tran, we have (c, a, c′) ∼ (c̄, a, c̄′) ∈ Tran if
and only if (c′ \ c) = (c̄′ \ c̄).

It is now easy to show the following.

Proposition 5.9
The transition system les.otsi(ES) is an occurrence transition system with
independence.

Proof. We verify just the property of occurrence transition systems with
independence. Suppose that (c′, b, c) �= (c′′, a, c) ∈ Tran. Then, we have
c = c′ ∪ {e′} = c′′ ∪ {e′′}. Since c′ �= c′′, it must be e′ �= e′′. Moreover, it

is e′#/ e′′, since both events appear in c. It cannot be e′ < e′′ nor e′′ < e′,
because otherwise either c′ or c′′ would not be a configuration. So, it is
e′ co e′′. It follows that c̄ = c′ \ {e′} = c′′ \ {e′′} is a configuration such that
Diam ((c̄, a, c′), (c̄, b, c′′), (c′, b, c), (c′′, a, c)). ✓

Let us define the opposite transformation from oTSI to LES. For OTI =
(S, sI , L, Tran, I) an occurrence transition system with independence, define
otsi.les(OTI) to be the structure (Tran∼,≤, #, ,, L) where

• Tran∼ is the set of the ∼-equivalence classes of Tran;

• [(s, a, s′)]∼ < [(s̄, b, s̄′)]∼ if and only if

∀π(s̄, b, s̄′ ∈ path(OTI) with (s̄, b, s̄′) ∼ (s̄, b, s̄′),

∃(s̄, a, s̄′) ∼ (s, a, s̄′) such that (s̄, a, s̄′) ∈ π,

and ≤ is the reflexive closure of <;
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• [(s, a, s′)]∼ # [(s̄, b, s̄′)]∼ if and only if

∀π ∈ path(OTI),

∀(s̄, b, s̄′) ∼ (s̄, b, s̄′) and ∀(s̄, b, s̄′) ∼ (s̄, b, s̄′)

(s, a, s′) ∈ π ⇒ (s̄, b, s̄′) /∈ π

• , ([(s, a, s′)]∼)= a;

and we write (s, a, s′) ∈ π to mean that (s, a, s′) occurs in the path π. Obvi-
ously, otsi.les(OTI) is a labelled event structure. Figure 2 shows an example
of the labelled event structure associated to an occurrence transition system
with independence.

Given (σ, λ) : OTI0 → OTI1, define otsi.les((σ, λ)) = (ησ, λ), where

ησ ([(s, a, s′)]∼)=
{

ησ [ (σ(s), λ(a), σ(s′))]∼ if λ ↓ a
↑ otherwise

Since (s, a, s′) ≺ (s̄, a, s̄′) and λ ↓ a implies (σ(s), λ(a), σ(s′)) ∼ (σ(s̄), λ(a),
σ(s̄′)), ησ is well-given. Indeed, it can be seen that this definition makes
otsi.les be a functor from oTSI to LES, the proof being however non-trivial.

Figure 2: An occurrence transition system OTI and tsi.otsi(OTI)
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In order to show that otsi.les and les.otsi form a coreflection, we need
the following key lemma.

Lemma 5.10
Consider a path πs ∈ Path(OTI) and a class [t]∼ such that

i) for each t′ in πs, it is [t]∼#/ [t]∼ and [t′]∼ �= [t]∼,

ii) for each [t′]∼ < [t]∼, there exists a representative of [t′]∼ in
πs.

Then, there exists (s, a, s′) ∈ TranOTI with (s, a, s′) ∼ t.

Next, we see that there is a one-to-one correspondence between the states
of OTI and the finite configurations of otsi.les(OTI), or, in other words,

states of les.otsi ◦ otsi.les(OTI). Consider the map C : sOTI → LF (otsi.les
(OTI)) given by the correspondence s (→ {[t]∼ | t ∈ πs, πs ∈ Path(OTI)}.
We already know that any path leading to s contains the same equivalence
classes, thus C is well-defined. Moreover, it is easy to show that C(s) is a
finite configuration of otsi.les(OTI).

On the contrary, let c be a finite configuration of otsi.les(OTI) and let
ς = [t0]∼[t1]∼ · · · [tn]∼ be a securing for c. Then, there is a unique path πς =
(s0, a1, s1) · · · (sn−1, an, sn) such that sI

OTI = s0, sn = s and [(si−1, ai, si)]∼ =
[ti]∼, for i = 1, . . . , n. The existence of πς is a consequence of the previous
Lemma 5.10 and its uniqueness follows from axiom (iv) of transition systems
with independence.

It is important to observe that, although the actual path πς strictly de-
pends on ς, the final state reached does not. Therefore, we can define a map
S : LF (otsi.les(OTI)) → SOTI by saying that c (→ s, where s is the state
reached by a path πς for a securing ς of c. Now, we can see that C is a set
isomorphism with inverse S.

Proposition 5.11
(C, id) : OTI → les.otsi ◦ otsi.les(OTI) and (S, id) : les.otsi ◦ otsi.les(OTI) →
OTI are morphisms of transition systems. Moreover, (S, id) = (C, id)−1

In addition, (S, id) is a transition system with independence morphism.
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However, (C, id) is not a morphism in TSI. It follows that (S, id), in gen-
eral, is not an isomorphism of transition systems with independence. Con-
sider now the property:

(E) t I t′ ⇒ ∃s. (s, a, s′) ∼ t and (s, b, s′′) ∼ t′.

Proposition 5.12
OTI enjoys property (E) if and only if (C, id) is a morphism of transition
systems with independence.

Next step is to define, for each labelled event structure ES a morphism
(η, id) : ES → otsi.les ◦ les.otsi(ES) as a candidate for the unit of the
adjunction. Let us consider η such that

η(e) = [(c, a, c ∪ {e})]∼.

We already know from Lemma 5.8 that (c, a, c′) ∼ (c̄, a, c̄′) if and only if
(c′ \ c) = (c̄′ \ c̄). It follows immediately that η is well-defined and is injec-
tive. Moreover, since any transition of les.otsi(ES), say (c, a, c′), is associated
with an event of ES, namely, c′ \ c, we have that η is also surjective. In fact,
it can be shown that (η, id) is an isomorphism of labelled event structures
whose inverse is (η̄, id), where η̄ : [(c, a, c′)]∼ (→ (c′ \ c).

Proposition 5.13 ( (η, id) : ES → otsi.les ◦ les.otsi(ES) is universal)
For any labelled event structure ES, any occurrence transition system with
independence OTI and any morphism (η̄, λ) : ES → otsi.les(OTI), there
exists a unique k in oTSI such that otsi.les(k) ◦ (η, id) = (η̄, λ).

Proof. Let us define k : les.otsi(ES) → OTI. Clearly, in order to make
the diagram commute, k must be of the form (σ, λ), for some σ. Let us
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consider σ : c (→ S(η̄(c)), i.e., (σ, λ) = (S, id) ◦ (η̄, λ) : les.otsi(ES) →
les.otsi(otsi.les(OTI)) → OTI. Then, we have immediately that σ is well-
defined and that (σ, λ) is a transition system with independence morphism
and it not difficult to conclude the proof. ✓

Theorem 5.14 (les.otsi ! otsi.les)
The map les.otsi extends to a functor from LES to oTSI which is left
adjoint to otsi.les. Since the unit of the adjunction is an isomorphism, the
adjunction is a coreflection.

Next, we show now that (S, id) is the counit of this coreflection. Actually,
the task is fairly easy now: by general results in Category Theory [8, chap.
IV, pg. 81], the counit of an adjunction can be determined through the
unit as the unique morphism ε : otsi.les ◦ les.otsi(OTI) → OTI such that
otsi.les(ε) ◦ (η, id) = (id, id). However, in the proof of Proposition 5.13, we
have identified a general way to find ε. From it we obtain ε = (S, id)◦(id, id),
which is (S, id).

The results we have shown earlier about (S, id) make it easy to identify
the full subcategory of oTSI and, therefore, of TSI which is equivalent to
LES, i.e., the category of those transition systems with independence which
are (representations of) labelled event structure. Such a result gives yet
another characterization of (the finite elements of) coherent, finitary, prime
algebraic domains, i.e., dI-domains. Moreover, this axiomatization is given
only in terms of conditions on the structure of transition systems.

By general results in Category Theory [8, chap. IV, pg. 911], an equiva-
lence of categories is an adjunction whose unit and counit are both isomor-
phisms, i.e., which is both a reflection and a coreflection. Then, Proposition
5.12 gives us a candidate for the category of occurrence transition system with
independence equivalent to LES: we consider oTSIE, the full subcategory of

oTSI consisting of those occurrence transition systems with independence
satisfying condition (E). To obtain the result, it is enough to verify that
les.otsi : LES → oTSI actually lands in oTSIE. In fact, this guarantees

that the adjunction 〈les.otsi, otsi.les〉: LES ⇀ oTSI restricts to an adjunc-
tion LES ⇀ oTSIE whose unit and counit are again, respectively, (η, id)

and (S, id), which are isomorphisms.
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Theorem 5.15
The categories LES and oTSIE are equivalent.

We can interpret such a result as a demonstration of the claim that tran-
sition systems with independence are a generalization of labelled event struc-
tures to a model system. However, there is point which is worth raising. The
fact that just unfolding transition systems to their occurrence version does
not suffice to get a category equivalent LES, shows that the independence
relation on transition is not exactly a concurrency relation. As an intuitive
explanation of this phenomenon, it is very easy to think of a transition sys-
tem with independence in which independent transitions never occur in the
same path, i.e., intuitively, they are in conflict. In the ligth of such obser-
vation, condition (E) can be seen exactly as the condition which guarantees
that independence is concurrency. It is then that the simple unfolding of
transition systems with independence yields the category oTSIE equivalent

to LES.

Next, we briefly see that the coreflection LES oTSI cuts down to a
coreflection dLES dTSI,which composes with the coreflection given ear-
lier in this section to give a coreflection dLES dTSI. As a consequence,
we have that dLES ∼= doTSIE, which can be added to results of Section 4.

These results are shown by the following proposition.

Theorem 5.16
If ES is deterministic, then les.otsi(ES) is deterministic. If OTI is deter-
ministic, then otsi.les(OTI) is deterministic.

Thus, we arrive to the following.

Theorem 5.17 (Moving along the “behaviour/system” axis)

6 Deterministic Transition Systems with In-

dependence

Now, we consider the relationship between dTSI and TSI, looking for a
generalization of the reflection dTS TS. Of course, the question to be
answered is whether a left adjoint for the inclusion functor dTSI ↪→ TSI
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exists or not. The answer to this question is positive, but the constructions
involved are surprisingly complicated.

Thinking about the issue, at a first sight, one could be tempted to refine
the construction given in case of transition systems by defining a suitable in-
dependence relation on the deterministic transition system obtained in that
way. However, this would not work, since, in general, no independence rela-
tion yields a transition system with independence. Let us see what happens
with the following example.

Example 6.1
Consider the transition system T in figure together with its deterministic
version ts.dts(T ). Now, suppose that (s, a, s′′) I (s′, b, u). Observe, that

in order to establish the reflection at the level of transition systems with
independence, since the unit would be a morphism from the original transi-
tion system to the deterministic one, independence must be preserved. Thus,
whatever the independence relation on the deterministic transition system is,
it must be ([s]�, a, [s′]�) I ([s′]�, b, [u]�). Then, we do not have a transition
system with independence, since axiom (iii) fails.
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However, in the rest of this section, we will show that it is always possi-
ble to “complete” the deterministic transition system obtained by ts.dts in
order to make it be a transition system with independence. Moreover, such
a completion will be “universal”, so that it will give the reffection we are
seeking. In the case of the transition system above, the resulting transition
system is shown below.

Observe also that a simple extension of the construction from transition
systems may also yield a non-irreflexive I relation. Of course, this happens
when there is a diamond of concurrency whose transitions carry the same
label. It is easy to understand that, in this case, the only way to cope with
those transitions is by eliminating them. In other words, autoconcurrency,
i.e., concurrency between events carrying the same label, add a further level
of difficulty to the problem.

Definition 6.2 (Pre-Transition Systems with Independence)
A pre-transition system with independence is a transition system together
with a binary and symmetric relation I on its transitions.

A morphism of pre-transition systems with independence is transition
system morphism which, in addition, preserve the relation I.

Let pTSI denote the category of pre-transition systems with indepen-
dence.

Given sets S and L, consider triples of the kind (X,≡, I), where X ⊆
S · L∗ = {sα | s ∈ S and α ∈ L∗}, and ≡ and I are binary relations on X.
On such triples, the following closure properties can be considered.

(Cl1 ) x ≡ z and za ∈ X implies xa ∈ X and xa ≡ za;
(Cl2 ) x ≡ z and za I yc implies xa I yc;
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(Cl3 ) xab ≡ xba and xa I xb or xa I xab implies
xa I yc ⇔ xba I yc.

We say that (X,≡, I) is suitable if ≡ is an equivalence relation, I is a
symmetric relation and it enjoys properties (Cl1 ), (Cl2 ) and (Cl3 ). Suitable
triples are meant to represent deterministic (pre) transition systems with
independence, the elements in X representing both states and transitions.
Namely, xa represents the state reached from (the state corresponding to) x
with an a-labelled transition , and that transition itself. Thus, equivalence ≡
relate paths which lead to the same state and relation I expresses indepen-
dence of transitions. With this understanding, (Cl1 ) means that from any
state there is at most one a-transition, while (Cl2 ) says that I acts on tran-
sitions rather than on their representation. Finally, (Cl3 )—the analogous of
axiom (iv) of transition systems with independence—tells that transitions on
the opposite edges of a diamond behave the same with respect to I.

For x ∈ S · L∗ and a ∈ L, let x � a denote the pruning of x with respect
to a. Formally,

s�a = s and (xb)�a =

{
x�a if a = b
(x�a)b otherwise

Of course, (x � a) � b = (x � b) � a and thus it is possibile to use unam-
biguously x � A for A ⊆ L. Given X ⊆ S · L∗, we use X � A to denote
the set {x � A | x ∈ X} and for a binary relation R on X R � A will be
{(x�A, y �A) | (x, y) ∈ R}.

For a transition system with independence TI = (S, sI , L, Tran, I), we
define the sequence a triples (Si,≡i, Ii), for i ∈ ω, inductively as follows. For
i = 0, (S0,≡0, I0) is the least (with respect to componentwise set inclusion)
suitable triple such that

S ∪ { sa | (s, a, u) ∈ Tran } ⊆ S0; {(sa, u) | (s, a, u) ∈ Tran} ⊆ ≡0;

and

{ (sa, s′b) | (s, a, u) I (s′, b, u′)} ⊆ I0;
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and, for i > 0, (Si,≡i, Ii) is the least suitable triple such that

(+) Si−1 �Ai−1 ⊆ si; ≡i−1�Ai−1 ⊆≡i; (Ii−1 \ TAi−1)�Ai−1 ⊆ Ii,
(D1 ) xa, xb ∈ Si−1 �Ai−1 and xa(Ii−1 \ TAi−1)�Ai−1xb

implies xab, xba ∈ Si and xab ≡i xba;
(D2 ) xa, xab ∈ Si−1 �Ai−1 and xa(Ii−1 \ TAi−1)�Ai−1xab

implies xb, xba ∈ Si and xab ≡i xba;

where Ai = {a ∈ L | xa Ii xa} and TAi = {(xa, yb) ∈ Ii | a ∈ Ai or b ∈ Ai}.
The inductive step extends a triple towards a transition system with

indepen-dence by means of the rules (D1 ) and (D2 ), whose intuitive meaning
is clearly that of closing possibly incomplete diamonds. The process could
create autoindependent transitions which must be eliminated. This is done
by (+) which drops them and adjusts ≡i and Ii.

A simple inspection of the rules shows that if a ∈ Ai, then it will never
appear again in the sequence. Thus, if x is removed from Si, it will not be
reintroduced, and the same applies to the pairs in ≡i and Ii. Then, it is easy
to identify the limit of the sequence as(

Sω =
⋃
i∈ω

⋂
j≥i

Sj, ≡ω=
⋃
i∈ω

⋂
j≥i

≡j, Iω =
⋃
i∈ω

⋂
j≥i

Ij

)

Proposition 6.3
The triple (Sω,≡ω, Iω) is suitable. Moreover, Iω is irreffexive.

The following proposition gives an alternative characterization of (Sω,≡ω

, Iω) which will be useful later on. In the following let Aω denote
⋃

i∈ω Ai

and let TAω be
⋃

i∈ω TAi.

Proposition 6.4

(Sω,≡ω, Iω) =

(⋃
i∈ω

(Si �Aω),
⋃
i∈ω

(≡i�Aω),
⋃
i∈ω

((Ii \ TAω)�Aω)

)
.

Corollary 6.5
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i) x ∈ Si implies x�Aω ∈ Sω;
ii) x ≡i y implies (x�Aω) ≡ω (y �Aω);
iii) xa Ii yb and a, b /∈ Aω implies (xa�Aω) Iω (yb�Aω).

As anticipated before, (Si,≡i, Ii) encodes a deterministic pre transition
system with independence which contains a deterministic version of the orig-
inal TI we started from (apart from the autoindependent transitions). For-
mally, for each κ ∈ ω ∪ {ω} , define

TSysκ =
(
Sκ/≡κ, [s

I ]≡κ , Lκ, T ran≡κ , I≡κ

)
where

• ([x]≡κ , a, [x′]≡κ) ∈ Tran≡κ if and only if x′ ≡κ xa;

• ([x]≡κ , a, [x′]≡κ) I≡κ ([x̄]≡κ , b, [x̄
′]≡κ) if and only if xa Iκ x̄b;

• Lκ = L \
⋃

j<κ Aj.

Observe that the above definitions are well given. In fact, concerning Tran≡κ ,
since xa ∈ Si if and only if xa ∈ Si for any x ≡i x, and since x′ ≡i xa if
and only if x′ ≡i xa for any x ≡i x and x′ ≡i x′, its definition is irrespective
of the representive chosen. The same holds for the definition of I≡κ , since
xa Ii x′b if and only if xa Ii x′b for any x ≡i x and x′ ≡i x′.

Proposition 6.6
TSysκ is a deterministic pre-transition system with independence.

It is not difficult to notice the similarity of TSys0 with the construction
of the deterministic version of a transition system as given in Section 2. Ac-
tually, when applied to a transition system TS, i.e., a transition system with
independence whose indepencence relation is empty, TSys0 is a determinis-
tic transition system isomorphic to ts.dts(TS). This fact supports our claim
that the construction we are about to give builds on ts.dts. However, in
Section 2 a simpler construction was enough, because we did not need to
manipulate transitions but only states.
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Proposition 6.7
The pair (in, id), where in : S → S0/≡0 is the function which sends s to
its equivalence class [s]≡0 and id is the identity of L, is an morphism of
pretransition systems with independence from TI to TSys0. Moreover, if
TI is deterministic, then (in, id) is an isomorphism.

For i ∈ ω \ {0}, consider the pair (ini, idi), where ini : Si−1/ ≡i−1→
Si/≡≡i is the function such that ini([x]≡i−1

) = [x � Ai−1]≡i
and idi : Li−1 ⇀

Li is given by idi(a) if /∈ Ai−1 and idi ↑ a otherwise. Then, we have the
following.

Lemma 6.8
The pair (ini, idi) : TSysi−1 → TSysi is a morphism of pre-transition sys-
tems with independence.

It is interesting to notice that TSysω is a colimit in the category pTSI.

Proposition 6.9
TSysω is the colimit in pTSI of the ω-diagram

D = TSys0
(in1,id1)−→ TSys1

(in2,id2)−→ · · · (ini,idi)−→ TSysi
(ini+1,idi+1)−→ · · ·

Proof. The reader is referred to [8, chap. III, pg. 62] for the definition of the
categorical concept involved.

For any i ∈ ω, consider the function inω
i : Si/ ≡i→ Sω/ ≡ω such that

inω
i ([x]≡i) = [x � Aω]≡ω and let idω

i : Li ⇀ Lω denote the function such that
idω

i (a) = a if a /∈ Aω and idω
i ↑ a otherwise. It is easy to see that (inω

i , idω
i )

is a morphism of pre-transition systems with independence from TSysi to
TSysω.

Since for any i we have inω
i+1 ◦ ini+1 = inω

i and idω
i+1 ◦ idi+1 = idω

i , then
TSysω and the morphisms {(inω

i , idω
i ) | i ∈ ω} form a cocone in pTSI

whose base is D. Now, consider any cocone {(σi, λi) : TSysi → PT | i ∈ ω},
for PT any pretransition system with independence. Then, by definition
of cocone, it must be σi = σi+1 ◦ ini+1 for each i ∈ ω, i.e., σi([x]≡i) =
σi+1([x � Ai]≡i+1), whence it follows easily that for any x ∈ Si and y ∈ Sj

such that x �Aω = y �Aω it must be σi([x]≡i) = σj([y]≡j ). Moreover, again
by definition of cocone, it must be λi = λi+1 ◦ idi+1. This implies that for
a ∈ L \ Aω we have λi(a) = λi+1(a) for any i ∈ ω, while for a ∈ Aj it must
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be λi ↑ a for any i ≤ j. Infact, if a /∈ Aω, since idi+1(a) = a, it must be
λi(a) = λi+1(a). Suppose instead that a ∈ Aj . Then, idj+1 ↑ a and thus
λj ↑a. Now, since idi(a) = a if i ≤ j, it follows that λi ↑a for any i ≤ j.

Now, define (σ̄, λ̄) : TSysω → PT , where σ̄([x]≡ω) = σi([x̄]≡i) for any i
and x̄ ∈ Si such that x̄ � Aω = x, and take λ̄ to be the restriction of λ0

to Lω. Exploiting the features of the morphisms (σi, λi), it is easy to see
that (σi, λi) = (σ̄, λ̄) ◦ (inω

i , idω
i ) for each i, and that (σ̄, λ̄) is the unique

morphism which enjoys this property. Observe that, in view of Proposition
6.4, σ̄ could be equivalently defined by saying that σ̄([x]≡ω) = σi([x]≡i) for
any x such that x ∈ Si. ✓

Besides enjoying a (co)universal property, TSysω has another property
which the reader would have already guessed by now: it is actually a deter-
ministic transition system with independence.

Proposition 6.10
TSysω is a deterministic transition system with independence.

Proof. Proposition 6.6 shows that Tsysω is a deterministic pre-transition
system with independence, while it follows immediately from Proposition
6.3 that I≡ω is irreflexive. Let us check that the axioms of transition system
with independence hold.

i) Trivial, since TSysω is deterministic.

ii) Suppose that ([x]≡ω , a, [x′]≡ω) I≡ω ([x]≡ω , b, [x′′]≡ω). Then, xa Iω xb and,
therefore, there exists an index i such that xa Ii−1 xb, which, in turn,
implies that there exist xab ≡i xba ∈ Si. Then, by (Cl3 ), xa Ii xb implies
xba Ii xb and xb Ii xa implies xab Ii xa. Since a, b /∈ Aω and x�Aω = x, then it is
xab ≡ω xba, and xa Iω xab and xb Iω xba, which implies that there exists
[xab]≡ω = [u]≡ω = [xba]≡ω in Sω/≡ω such that ([x]≡ω , a, [x]≡ω) I≡ω ([x′]≡ω , b, [u]≡ω),
and ([x]≡ω , b, [x′′]≡ω) I≡ω ([x′′]≡ω , a, [u]≡ω).

iii) Similar to the previous point.

iv) It is enough to show that
([x]≡ω , a, [x′]≡ω)(≺ ∪ -)([x′′]≡ω , a, [u]≡ω) I≡ω ([x̄]≡ω , b, [x̄′]≡ω)

implies ([x]≡ω , a, [x′]≡ω) I≡ω ([x̄]≡ω , b, [x̄′]≡ω).

49



Suppose that the ′ ≺′ case holds. Then, there exists an index i such that
x′ ≡i xa, x′′ ≡i xb, xa Ii, xb, xab ≡i u ≡i xba, and xba Ii x̄b. Then,
by (Cl3 ), we have xa Ii x̄b. Then, it is xa Iω x̄b, whence it follows that
([x]≡ω , a, [x′]≡ω) I≡ω ([x̄]≡ω , b, [x̄]≡ω ].

A similar proof shows the case in which ‘-’ holds. ✓

Thus, TSysω is the deterministic transition system with independence
we will associate to the transition system with independence TI. Formally,
define the map dsi from the objects of TSI to the objects of dTSI as
dtsi(TI) = TSysω. Figure 3 exemplifies the construction in an easy, yet
interesting, case.

Consider TI = (S, sI , L, Tran, I) and TI ′ = (S ′, s′I , L′, T ran′, I ′) to-
gether with a morphism (σ, λ) : TI → TI ′ in TSI. In the following let
(Sκ,≡κ, Iκ) and (S ′κ,≡′κ, I ′κ), κ ∈ ω∪{ω}, be the sequences of suitable triples
corresponding, respectiely, to TI and TI ′. Moreover, we shall write Aκ, TAκ,
Lκ, TSysκ, A′κ, TA′κ, L′κ and TSys′κ to denote the sets and the transition
systems determined respectively by (Sκ,≡κ, Iκ) and (S ′κ,≡′κ, I ′κ). We shall
construct a sequence of morphisms (σ̄i, λi) : TSysi → TSys′i, which will

determine a morphism (σ̄ω, λω) : TSysω → TSys′ω, i.e., dtsi ((σ, λ)).

For i ∈ ω, let σi be the function such that

σi(x) = σ(x) for x ∈ S;
and

σi(xa) =

{
σi(x)λi(a)(x) if λi ↓a
σi(x) otherwise;

where

λi(a) =

{
λi(a) if λi(a) /∈

⋃
j<i A

′
j

↑ otherwise;

Lemma 6.11

For any i ∈ ω, we have that

i) x ∈ Si implies σi(x) ∈ S ′i;

ii) x ≡i y implies σi(x) ≡′i σi(y);

iii) xa Ii yb and λi ↓a, λi ↓b implies σi(xa) I ′i σi(yb).
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It follows immediately from Lemma 6.11 that for i ∈ ω, σ̄i , defined to be
the map which sends [x]≡i

to [σi(x)]≡′i is a well-defined function from Si/≡i

to S ′i/≡′i. Then, it follows easily that, for i ∈ ω, the map (σ̄i, λi) : TSysi →
TSys′i is a morphism of pre-transition systems with independence.

For any i ∈ ω, consider the morphism of pre-transition systems with
independence (in

′ω
i , id

′ω
i ) ◦ (σ̄i, λi) : TSysi → TSys′ω. It is easy to see that

in
′ω
i ◦ σ̄i = in

′ω
i+1 ◦ σ̄i+1 ◦ ini+1 for any i ∈ ω. Moreover, since a ∈ Ai implies

λ(a) ∈ A′i, we have that id
′ω
i ◦ λi = id

′ω
i+1 ◦ λi+1 ◦ idi+1 for any i ∈ ω. Thus,

we have that

{ (in
′ω
i , id

′ω
i ) ◦ (σ̄i, λi) : TSysi → TSys′ω | i ∈ ω }

is a cocone for the ω-diagram D given in Proposition 6.9. Then, there exists
a unique (σ̄ω, λω) : TSysω → TSys′ω induced by the colimit construction,
which is the morphism of transition systems with independence we associate

to (σ, λ), i.e., dtsi((σ, λ)) = (σ̄ω, λω). The following proposition follows eas-
ily from the universal properties of colimits.

Proposition 6.12 (dtsi: TSI → dTSI is a functor)
The map dtsi is a functor from TSI to dTSI.

When we apply dtsi to a deterministic transition system with indepen-
dence DTI, the inductive construction of TSysω gives a transition system
which is isomorphic to DTI. More precisely, each ≡ω-equivalence class of
(SDTI)ω contains exactly one state of the original transition system, and the
transition system with independence morphism (inω

0 ◦ in, idω
0 ) : DTI →

dtsi(DTI)—whose transition component sends s ∈ SDTI to [s]≡ω—is actu-
ally an isomorphism. Moreover, we shall see that its inverse (ε, id), where
ε([x]≡ω) is the unique s ∈ SDTI such that s ≡ω x, is the counit of the ad-
junction.

Lemma 6.13
Let DTI be a deterministic transition system with independence and con-
sider a morphism (σ, λ) : TI → DTI in TSI. Let TSysκ, κ ∈ ω ∪ {ω} be
the sequence of pre-transition systems with independence associated to TI.
Consider a ∈ LTI and suppose that a ∈ Ai. Then λ↑a.
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Figure 3: An example of the construction of TSysω.

Proposition 6.14 ( (ε, id) : dtsi(DTI) → DTI is couniversal)
For any transition system with independence TI, deterministic transition
system with independence DTI and morphism (@, µ) : dtsi(TI) → DTI,
there exists a unique k : TI → DTI such that (ε, id) ◦ dtsi(k) = (@, µ).
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Proof. Let us consider k = (σ, λ), where σ(s) = ,([s]≡ω) and λ is the function
which coincides with µ on (LTI)ω and is undefined elsewhere. Observe that
this is the only possible choice for k. In fact, any k′ : TI → DTI which
has to make the diagram commute must be of the kind (σ′, λ′) with λ′(a) =
µ(a) = λ(a) for a ∈ (LTI)ω. Moreover, by Lemma 6.13, if a ∈ Aω, it must
be λ′ ↑ a, i.e., λ′ = λ. Furthermore, σ′(s) must be an s̄ in SDTI such that
ε([s̄]≡ω = s̄ coincides with ,([s]≡ω), i.e., σ′ is the σ we have chosen.

In order to show that (σ, λ) is morphism of pre-transition system with in-
dependence, it is enough to observe that (σ, λ) can be expressed as the
composition of the transition system with independence morphisms (π, µ) ◦
(inω

0 ◦ in, idω
0 ) : TI → dtsi(TI) → DTI. This makes easy to conclude the

proof. ✓

Theorem 6.15 ( dtsi ! ←↩)
Functor dtsi is left adjoint to the inclusion functor dTSI ↪→ TSI. Therefore,
the adjunction 〈dsi,←↩〉: dTSI ⇀ TSI is a reflection.

The adjunction dTSI TSI that we have so established closes another
face of the cube. In particular, we have obtained the following square, which
matches the one presented in Section 2.
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7 Deterministic Labelled Event Structures

In this section we prove that there exists a reflection from the category of de-
terministic labelled event structures to labelled event structures. A reflection
dTSI TSI does exist, for it follows from the reflections we have presented
in the previous sections. In fact, the results in Section 5 and 6 show that
there exist adjunctions

dLES dTSI TSI LES.

Now, in order to show that there is a reflection from dLES to LES, since
dLES ∼= doTSIE and LES ∼= oTSIE, it is enough to show that dTSI

TSI cuts down to a reflection doTSIE oTSIE. In this case, we would

have an adjunction

dLES ∼= doTSIE doTSIE
∼= LES,

whose right adjoint is isomorphic to the inclusion functor dLES ↪→ LES. As
usual, to establish that doTSIE oTSIE, it is enough to show that if OTI

in oTSI satisfies axiom (E), then dtsi(OTI) is a deterministic occurrence
transition system with independence which satisfies (E).

However, since this task is rather boring, we prefer to introduce the re-
flection dLES LES as a construction given directly on labelled event
structures. In order to simplify the exposition, we factorize dLES LES
in two parts: dLES LESI LES, where LESI is the category of la-
belled event structures without autoconcurrency, i.e., those labelled event
structures in which all the concurrent events carry distinct labels.

7.1 Labelled Event Structures without Autoconcur-
rency

As already remarked in Section 6, the only way to cope with autoconcurrent
events is by eliminating them. However, the reader will notice that the task
is now much easier than in the case of transition systems with independence.
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Once again, this is due to the difference between independence and concur-
rency and it gives a “measure” of how this difference can play when dealing
with transition systems with independence.

Let ES = (E, #,≤, ,, L) be a labelled event structure. Consider the
sets A(ES) = {a ∈ L | ∃e, e′ ∈ E, e co e′ and ,(e) = a = ,(e′)} and
TA(ES) = {e ∈ E | ,(e) ∈ A(ES)}. Then define

lesi(ES) = (Ē, # ∩ (Ē × Ē),≤ ∩(Ē × Ē), ,̄, L̄)

where Ē = E \ TA(ES), L̄ = L \ A(ES) and ,̄ : Ē → L̄ is , restricted to Ē.

Of course lesi(ES) is a labelled event structure without autoconcurrency.
As a candidate for the unit of the adjunction, consider the map (īn, īd): ES →
lesi(ES) where

īn(e) =

{
e if e ∈ Ē
↑ otherwise

and īd(a) =

{
a if a ∈ L̄
↑ otherwise

It is extremely easy to verify that this definition gives a morphism in LES.

Lemma 7.1
Let (η, λ) : ES → ES ′ be a morphism of labelled event structures and sup-
pose that ES ′ has no autoconcurrency. Then, η↑e for any e ∈ TA(ES).

It is now easy to show that lesi extends to a functor from LES to LESI
which is left adjoint to the inclusion LESI LES.

Proposition 7.2 ( (īn, īd) : ES → lesi(ES) is universal)
For any labelled event structure ES, any labelled event structure without
autoconcurrency ES ′ and any morphism (η, λ) : ES → ES ′, there exists a
unique (η̄, λ̄) : lesi(ES) → ES ′ in LESI such that (η̄, λ̄) ◦ (īn, īd) = (η, λ).

55



Proof. Consider η̄ : ĒES → EES′ and λ̄ : L̄ES → LES′ to be, respectively, η
restricted to ĒES and λ restricted to L̄ES . Exploiting Lemma 7.1 it is easy
to conclude. ✓

Therefore, we have the following.

Theorem 7.3 ( lesi � ←↩)
The map lesi extends to a functor from LES to LESI which is left adjoint

to LESI ↪→ LES. Thus, the acdjunction 〈lesi,←↩〉: LES ⇀ LESI is a

reflection.

7.2 Deterministic Labelled Event Structures

Let us now turn our attention to dLES LESI. Given a labelled event

structure without autoconcursrency ES = (E,≤, #, ,, L) consider the se-
quence of relations (∼i,≤i, #i) for i ∈ ω, where

• ∼0= {(e, e) |e ∈ E }; ≤0=≤; #0 = #;

and, for i > 0,

• ∼i is the least, equivalence on E such that

i) ∼i−1 ⊆ ∼i;

ii) e �≤i−1 e′, e′ �≤i−1 e, ,(e) = ,(e′)

�e�≤i−1
#/ i−1 �e′�≤i−1

\ {e′} and

�e�≤i−1
#/ i−1 �e′�≤i−1

\ {e′} implies e ∼i e′,

where �e′�≤i
is a shorthand for {e′ ∈ E | e′ ≤i e} and, for x, y ⊆

E, x#/i y stands for ∀e ∈ x, ∀e′ ∈ y, not e #i e′.

• e ≤i e′ if and only if ∀ē′ ∼i e′ ∃ ē ∼i e. ē ≤i−1 ē′;

• e #i e′ if and only if ∀ē′ ∼i e′ ∀ ē ∼i e. e #i−1 e′;
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Observe from the previous definitions that, while ∼i ⊆ ∼i+1 and #i ⊇ #i+1,
it is ≤i �⊆ ≤i+1 and ≤i �⊇ ≤i+1. Each triple (∼i,≤i, #i) represents a quotient
of the original labelled event structure in which—informally speaking—the
“degree” of non-determinism has decreased. This will be delevoped in the
following.

Lemma 7.4
For any i ∈ ω,

i) ≤i is a preorder such that e ≤i e′ and e′ ≤i e if and only if e ∼i e′;

ii) #i is a symmetric, irreffexive relation and e #i e′ ≤i e′′ implies e #i e′′;

iii) for any e ∈ E, the set { [e′]∼i
| e′ ≤i e, e′ ∈ E} is finite.

Lemma 7.5
Let (∼i,≤i, #i), i ∈ ω, be the sequence constructed from a labelled event
structure without autoconcurrency ES as given above. Then

i) for any i ∈ ω and for any j ≤ i, e ≤i e′ ⇔ ∀ ē′ ∼i e′ ∃ ē ∼i e. ē ≤j ē′;

ii) for any i ∈ ω and for any j ≤ i, e #i e′ ⇔ ∀ ē ∼i e ∀ ē′ ∼i e′. ē #j ē′;

The next lemma shows that, although neither ≤i ⊆ ≤i+1 nor ≤i ⊇ ≤i+1,
the “behaviour” of the sequence of preorders ≤i is not so bad as it could seem.

Lemma 7.6
If e ≤j e′ and e �≤j+1 e′, then ∀ i > j. e �≤i e′.

Now, consider the triple of relations (∼ω,≤ω, #ω), where

∼ω=
⋃
i∈ω

∼i, ≤ω=
⋃
i∈ω

⋂
j>i

≤i, #ω =
⋂
i∈ω

#i

or, equivalenty, ≤ω is defined by

e ≤ω e′ if and only if ∃ k ∀i > k e ≤i e′.

Thanks to Lemma 7.6, it is immediate to show that ≤ω enjoys the following
relevant property.

Lemma 7.7
e �≤ω e′ if and only if ∃ k. ∀i > k e �≤i e′.
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The following characterization of ≤ω derives (not trivially) from Lemma
7.5 and Lemma 7.7, and helps in showing the equivalent of Lemma 7.4 for
the triple (∼ω,≤ω, #ω).

Lemma 7.8
For any j ∈ ω, e ≤ω e′ if and only if ∀ē′ ∼ω e′∃ē ∼ω e. e ≤j ē′.

Lemma 7.9

i) ≤ω is a preorder such that e ≤ω e′ and e′ ≤ω e if and only if e ∼ω e′;
ii) #ω is a symmetric, irreffexive relation and e #ω e′ ≤ω e′′ implies e #ω e′′;

iii) For any e ∈ E, the set { [e′]∼ω | e′ ≤ω e, e′ ∈ E} is finite.

It follows immediately that, for any κ ∈ ω ∪ {ω},

Evκ = (E/∼κ,≤∼κ , #∼κ , ,∼κ , L),

where

• E/∼κ is the set of ∼κ-classes of E;

• [e]∼κ ≤∼κ [e′]∼κ if and only if e ≤κ e′;

• [e]∼κ #∼κ [e′]∼κ if and only if e #κ e′;

• ,∼κ([e]∼κ) = ,(e);

is a labelled event structure. Observe that Ev0 is (isomorphic to) the labelled
event structure ES we started from. Using the same notation as in Section
6, we denote by (in, id) : ES → Ev0 the isomorphism which sends e to [e]∼0

The interesting fact about the labelled event structures Evi is that they
have no autoconcurrency. This fact plays a crucial role in establishing the
adjunction we are seeking.

Lemma 7.10
For any i ∈ ω, Evi is in LESI.

Similarly to the case of the sequence TSysi, i ∈ ω, presented in Section
6, event structures Evi are related to each other by inclusion morphism.
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For i ∈ ω \ {0}, let ini : E/∼i−1→ E/∼i be the function such that ini

([e]∼i−1
)= [e]∼i

. Then we have the following.

Lemma 7.11
For any i ∈ ω \ {0}, (ini, id) : Evi−1 → Evi is a labelled event structure
morphism.

Next, we shall show that Evω is the colimit of the ω-diagram formed by
the Evi’s. For any i ∈ ω, consider the mapping inω

i : E/∼i→ E/∼ω which,
for any e ∈ E, sends [e]∼i

to [e]∼ω .

Lemma 7.12
For any i ∈ ω, (inω

i , id) : Evi → Evω is a labelled event structure morphism

Proposition 7.13
Evω is the colimit in LESI of the ω-diagram

D = Ev0
(in1,id)−→ Ev1

(in2,id)−→ · · · (ini−1,id)−→ Evi
(ini,id)−→ · · ·

Proof. Since for any 1 < j < i it is inω
j = inω

i ◦ ini ◦ · · · ◦ inj+1 , then
{(inω

i , id) : Evi → Evω | i ∈ ω} is a cocone with base D.

Consider now any other cocone {(ηi, λi) : Evi → ES | i ∈ ω} for D, ES
being any object in LESI. Since for any i it is (ηi, λi) = (ηi+1, λi+1) ◦
(ini+1, id), it must necessarily be λi = λ0 = λ and ηi([e]∼i)= ηi+1 ([e]∼i+1),

for any i. Thus, we can define η̄ : E/∼ω EES by η̄ ([e]∼ω)= η0 ([e]∼0).
Clearly, we have that

η̄([e]∼ω)= η0([e]∼0)= ηi([e]∼i)

i.e., for any i, ηi = η̄ ◦ inω
i , and, moreover, η̄ is clearly the unique mapping

for which that happens. Thus, to conclude the proof, the missing step is to
show that (η̄, λ) : Evω → ES is a labelled event structure morphism. ✓

Exploiting the characterizations of ≤ω, previously given, it is not difficult
to show the following.

Lemma 7.14
Evω is deterministic.
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Proof. Consider a configuration cω of Evω and two events [e]∼ω �= [e′]∼ω

enabled at cω, i.e., such that cω ! [e]∼ω and cω ! [e′]∼ω . We shall show
that there exists i and a configuration ci of Evi in which [e]∼i and [e′]∼i are
enabled. Since [e]∼i+1 �= [e]∼i+1 which follows from the fact that [e]∼ω �=

[e′]∼ω , and since [e]∼i

≤
>/ i [e′]∼i , which follows from the fact that both are

enabled at ci, it must necessarily be

/∼ω([e]∼ω )= /∼i([e]∼i ) �= /∼i([e′]∼i )= /∼ω([e′]∼ω )

which shows that Evω is deterministic.

Suppose that [ē]∼ω ≤∼ω [e]∼ω . Then, there exists k such that ∀j > k [ē]∼j ≤∼j

[e]∼j . Since the set �[e]∼ω�≤ω is finite, we can find k̄′ such that for any
j > k̄′[ē]∼ω ≤ [e]∼ω implies [ē]∼j ≤∼j [e]∼j . If otherwise [ē]∼ω �≤∼ω [e]∼ω

and [ē]∼k̄′ ≤∼k̄′ [e]∼k̄′ , there exists j > k such that [ē]∼j �≤∼j [e]∼j . Now,
observe that there can be only finitely many such [ē]∼k

. In fact, if it were
not, exploiting Lemmas 7.5 and 7.7, it would be possible to derive a contra-
diction showing that e has infinitely many pre-events in Ev0. Then, we can
find k̄′′ such that for any j > k̄′′

[ē]∼ω ≤∼ω [e]∼ω ⇔ [ē]∼j ≤∼j [e]∼j

In the same way, we can find ¯̄k
′′

such that for any j > ¯̄k
′′
, [ē]∼ω ≤∼ω [e′]∼ω

if and only if [ē]∼j ≤∼j [e′]∼j Thus, considering k̄ = max{k̄′′, ¯̄k′′} we have
that for any i > k̄

[ē]∼ω ∈ �[e]∼ω�≤ω ⇔ [ē]∼i ∈�[e]∼i�≤i

and

[ē]∼ω ∈ �[e′]∼ω�≤ω ⇔ [ē]∼i ∈�[e′]∼i�≤i

Now, consider [ē]∼k̄ ≤k̄ [e]∼k̄ and [ē′]∼k̄ ≤k̄ [e′]∼k̄. It is still possible that

[ē]∼k̄
#∼k̄

[ē′]∼k̄
. However, since [ē]∼ω /∼ω# [ē′]∼ω , it must exist k such

that for any i > k [ē]∼i /∼i# [ē′]∼i . Then, since there can be only finitely
many such pairs, we can find an integer i (greater than k̄) such that the set

�[e]∼i�≤i∪ �[e′]∼i�≤i is conflict free (wrt. to #∼i). It is immediate now to
see that
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Figure 4: An event structure ES and dles(ES)

ci = (�[e]∼i�≤i \ {[e]∼i}) ∪ (�[e′]∼i�≤i \ {[e′]∼i})
is a configuration of Evi which enables [e]∼i and [e′]∼i . ✓

As was probably clear, the object component of the functor dles : LESI →
LES is the function which maps a labelled event structure without autocon-
currency ES to the deterministic event structure Evω limit of the sequence
of event structures Evi built from it.

An example of the construction is given in Figure 4, in which we also
show how the construction of the deterministic transition system with inde-
pendence works on the transition system of configurations of ES. Now, the
last step we miss is to show that dies can be extended to a functor which

61



is left adjoint to the inclusion functor dLES ↪→ LESI. This is done in the

following proposition.

Proposition 7.15 ( (inω
0 ◦ in, id) : ES → dles(ES) is universal)

For any labelled event structure without autoconcurrency ES, any determin-
istic labelled event structure DES and any (η, λ) : ES → DES, there exists
a unique (η̄, λ) : dles(ES) → DES in dLES such that (η̄, λ)◦(inω

0 ◦ in, id) =
(η̄, λ).

Proof. Suppose for a while that we are able to show that (η, λ) : ES → DES
gives rise to a cocone {(ηi, λ) : Evi → DES | i ∈ ω} with base D such
that η = η0 ◦ in, (in, id) being the isomorphism of ES and Ev0 . Then, by
Proposition 7.13, there exists a unique (η̄, λ) : dles(ES) → DES such that,
for any i, ηi = η̄ ◦ inω

i . Then, in particular, η0 = η̄ ◦ inω
0 , and thus

(η, λ) = (η0 ◦ in, λ) = (η̄, λ) ◦ (inω
0 ◦ in, id).

In other words, η̄ : EES/∼ω → EDES given, as in the proof of Proposition
7.13, by η̄([e]∼ω)= η(e) would be such that (η̄, λ) makes the diagram com-
mute.

The hypothesis above are sufficient also to show the uniqueness of (η̄, λ).
Suppose in fact that there exists ¯̄η such that η = ¯̄η ◦ (inω

0 ◦ in), then it is
η0 = ¯̄η ◦ inω

0 . It follows that, for any i,

ηi([e]∼i) = (η̄ ◦ inω
i )([e]∼i) = (η̄ ◦ inω

0 )([e]∼0)
= (¯̄η ◦ inω

0 )([e]∼0) = (¯̄η ◦ inω
i )([e]∼i)

i.e., for any i it is ηi = η ◦ inω
i . Then, by definition of colimit, it is η = η .
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Thus, we only need to show that the cocone {(ηi, λ) : Evi → DES | i ∈
ω} actually exists. However, by defining for any integer i the mapping
ηi : EES/∼i→ EDES by ηi([e]∼i) = η(e), we obviously have a cocone
{(ηi, λ) | i ∈ ω} as required. So, we just need prove that (ηi, λ) is a well-
defined labelled event structure morphisms from Evi to DES. This can be
done—with some efforts—by induction on i. ✓

As usual, the universality of (inω
0 ◦ in, id) allows us to conclude what follows.

Theorem 7.16 ( dles !←↩)
The mapping dles extends to a functor which is left adjoint of the inclusion
of dLES in LESI Then, 〈dles,←↩〉 is a reflection.

The coreflection dLES LESI closes the last two faces of the cube. So,

our results may be summed up in the following cube of relationships among
models.

Theorem 7.17 (The Cube)

Conclusion

We have established a “cube” of formal relationships between well-known
and (a few) new models for concurrency, obtaining a picture of how to
translate between these models via adjunctions along the axes of “interleav-
ing/noninterleaving”, “linear/branching” and “behaviour/system”. Notice
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the pleasant conformity in the picture, with coreflections along the “inter-
leaving/noninterleaving” and “behaviour/system” axes, and reflecions along
“linear/branching”. All squares (surfaces) of the “cube” commute, with di-
rections along those of the embeddings.

It is worth remarking that all the adjunction in this paper would still hold
if we modified uniformly the morphisms of the involved categories by elimi-
nating the label component. However, if we considered only total morphisms,
the reflections dTSI TSI and dLES LESI would not exist.
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