691-4d

soSenSue] pare[dy pue §O) I0J SONUEWIG INIINIIG JUIAY [IYSUIW "D

ISSN 0105-8517

EVENT STRUCTURE SEMANTICS
FOR CCS AND RELATED LANGUAGES

Glynn Winskel

DAIMI PB-159
April 1983

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK a T

Telephone: 06 — 12 83 55 |

EVENT STRUCTURE SEMANTICS FOR CCS AND RELATED LANGUAGES

Glynn Winskel

Abstract

We give denotational semantics to a wide range of parallel pro-
gramming languages based on the idea of Milner's CCS [M1], that
processes communicate by events of mutual synchronisation.
Processes are denoted by labelled event structures. Event struc-
tures represent concurrency rather directly as in net theory [NT]
The semantics does not simulate concurrency by non-deterministic
interleaving.

We first define a category E of event structures ([NPW1, 2], [W])
appropriate to synchronised communication. The category bears a
natural relation to a subcategory of trees through an interleaving
functor; so results transfer to trees neatly. Then we introduce
the concept of a synchronisation algebra (S.A.) on labels by
adopting an idea of Milner [M2]. An S.A. specifies how two pro-
cesses synchronise via labels on their events. From each S.A., L,
we derive a category EL of labelled event structures with natural
operations for composing labelled event structures. In particular
the parallel composition L is derived from the product in E. We
obtain semantics for a class of CCS-like languages by varying the
S.A. Synchronisation algebras are very general so the class is very
broad, handling synchrony and asynchrony in a common framework.

As a corollary we get an event structure semantics for CCS. When
interleaved our semantics is Milner's synchronisation/communication
tree semantics [M1]. However our semantics distinguishes more

terms as it reflects concurrency. Event structure semantics is at

a rather basic level of abstraction but should support all abstract
notions of equivalence (see [M1] for examples), including those

which take concurrency into account.

TABLE OF CONTENTS

Introduction
Event structures

A "cpo" of event structures

A category of event structures

Two subcategories, prime event structures and trees
A semantics for communicating processes

Conclusion

Appendix A, Sets and partial functions

Appendix B, Domains of configurations

Acknowledgements

References

17
25
35
42
54
56
57
66
66

0. INTRODUCTION

We consider languages which are related to Robin Milner's
"Calculus of Communicating Systems" - CCS, described in [M1].
The most important feature of the languages is the form of
parallel composition. The idea is that two processes communicate
by events of mutual synchronisation which we illustrate by

a simple example. (The reader familiar with [M1] is warned that
our approach is not gquite the same as Milner's; we do not
serialise, or interleave, event occurrences. We promise a neat

connection with Milner's synchronisation trees later.)

Consider a simple reading machine M capable of performing only

two events ey - the event of accepting a coin - and ey - the event
of delivering an item. By event we mean what others might call an
event occurrence, so the machine is really quite short-lived; it
accepts one coin and delivers one item. Naturally it only delivers
the item after accepting a coin. We can represent the machine as
all the sets of events it can have performed up to various stages.
We call each set a configuration. Ordered by inclusion the con-

figurations are:

{eo,e1}
Ul
{eo}
u
@

Initially M has performed no events of interest, the configura-
tion @; then it can perform ey to realise the configuration‘{eo}
and afterwards e, to realise the configuration {eo,e1}. Notice
how the machine's behaviour in time is reflected by the inclusion
relation on configurations; configurations of events which have
occurred later include those which have occurred earlier. Such
diagrams can be simplified by using the "covering" relation. In
a partial order t one point x is covered by another y if x and y

are distinct and no point can be inserted in between. Formally,

x is covered by y is written x —«<y and defined by:
X —y iff xcy & VZ.XSzZEy= (x=z Oor Xx=Vy).

For the above partial order of inclusion, if one point covers
another it just means one action event has occurred so we can

draw
{egreql
u [€4
{eo} equivalently as . specifying what
] T eo
@ °
)

the extra event occurs at each covering.

To be of use the machine will be set in an environment consisting
perhaps of other machines and possible customers. To the en-
vironment the events e

e, are not generally of interest in

’
themselves. Rather it gs t;eir nature, what kinds of event they
are, that determines how, for instance, a customer interacts with
the machine. The machine M performs two kinds of events, accepting
a coin, abbreviated to o, and delivering an item abbreviated to i.

We label e0 by o and e1 by 1 to indicate their kind, so:

M:
L 4
Teoa
*
)

Imagine our single machine in use. It relates to customers by
accepting a coin from them. At the very least a customer should
be able to perform an event of inserting a coin. This kind of

event is, in a sense, complementary to accepting a coin so we

label it by a. A typical customer C is modelled by:

C: I, e, a
o

Recall this is really just an abbreviation for {%2}where e,
?
is an event of kind a. A customer can do one event of the kind

insert a coin.

Now M can accept a coin from its environment and C can insert a
coin to his. In particular, when they are set together M can accept
a coin from C. This produces a new kind of‘event, an _event of syn-
chronisation between M and C, which we label by 1. In the world of
just customers that can only insert coins and machines that can
only accept coins and deliver - we would not expect this new event
to synchronise further. In a more varied world it might. Of course,
the synchronised event need not occur; quite possibly M could
accept a coin from elsewhere, perhaps from another customer, just
as C could spend his coin differently. How are we to model this
parallel composition of M and C?

Firstly it is natural to take the synchronisation event as a
combination of the event e0 of M, accepting a coin, and the event
e, of C, inserting a coin. Name the synchronised event by a pair
(eo,ez) because to M the event looks like ey and to C the event
looks like e, As explained we label it by t. What about a name
for the event where M accepts a coin from something in its en-
vironment other than C? To M the event looks like e, while to C,
who is only sensitive to having his coin accepted, it is invisible.
We introduce *, a sort of undefined, and name the event (eo,*).
Clearly, it is the same kind of event as e, so we label it the
same by a. Similarly there is an event (*,e,) labelled o corres-
ponding to C inserting his coin into something other than M and

an event (e,,*) labelled 1.

What form do the configurations of the parallel composition of

M and C take? Suppose first M and C do not synchronise. Then M
can deliver an item (e1,*) only after accepting a coin (eo,*)
and both events are independent of C inserting a coin, (*,ez).
All these events are performed with the environment and not with
each other. Alternatively together they synchronise to perform
the event (eo,ez) whereupon M can do (e1,*). It is not possible
for (eo,*) and (eo,ez) to occur together. This informal argument
should convince the reader that the parallel composition (M|C)
of M and C has the following configurations

(e1,*)
o o
. (eo.*) <ﬁff (eT,*) ~.
\/ VY
(M|C) (*,e,) (egrey) | (*,e)) (*re,)
B (egi¥) T (eq.%)

There are several points to note about this diagram. Notice that
intuitively the events (eo,*) and (*,ez) (and similarly (e1,*),

(*,e2)) are concurrent in that they can occur independently, and
this fact is reflected by the little commuting square ﬂ<j>= .

Notice too there are obvious projections from the parallel com-
position (M| C) back to the component processes M and C; for
example the configuration {(eo,ez),(e1,*)} in (M|C) projects to
the configuration {eo,e1} of M and to the configuration {e2} of C.
This is natural and expresses the intuition that the behaviour of
a compound process should be consistent with the behaviours of

its processes. Interestingly we shall derive parallel composition
from a product, in a category suitable for synchronised commu-
nication, thus giving mathematical leverage to the idea of pro-

jecting down to a subprocess.

The category will have event structures as its objects; an event
structure consists of a pair, a set of events and a set of configu-
rations, satisfying suitable axioms. Processes will be denoted

by labelled event structures where the labels specify the kinds of
events. In the machine-customer example it is intuitively clear

how two events of certain kinds may or may not combine to form
synchronised events. But of course it can all be done more abstractly.
We just need a general way to say when and how pairs of labelled
events can combine to form synchronised events and what labels

such combinations carry. We shall do this by using synchronisation

algebras on labels. The idea is to have a binary composition ope-
ration, ® , on a set of labels. When a pair of events of which two
labels do not synchronise we make the composition of the labels
give 0. For example we would make aea = 0 and as1 = 0 for our
machine and customer. When two labelled events can combine we

make the labelled compositions give the new kind of the synchronised
event e.g. in our example a® o = T. Our machine-customer example
also makes clear that there may be some asynchrony in the parallel
composition. In fact there, every event of M and C could occur
asynchronously in the parallel composition; every event of M need
not be synchronised with an event of C and vice versa, reflected
by all those events of the form (eo,*), (e1,*) and (*,ez) in the
parallel composition. To allow asynchrony we introduce another
constraint * into the algebra. Then for example a e * = o shows an
event of kind a can occur asynchronously in a parallel composition
and that its new kind in the parallel composition is still the
same, viz. a. Our machine-~customer example would have this syn-
chronisation algebra:

o | * o a 1 T 0
* * Q a 1 0
o a 0 T 0 0
o fa T 0
1 1 0 (0 elsewhere)
T T 0
0 0

The parallel composition (M|C) consists of events determined
by the synchronisation algebra and configurations which are
subsets of these events which "project down" to configurations
of M and C.

This gives a rough idea of how we shall model the parallel com-
position of two processes. Of course we shall model other opera=-
tions on processes and need techniques for defining infinite event
structures recursively. Then we can give denotational semantics

to a range of such languages of which CCS is typical. Of course

we also want methods for relating our semantics to others
especially Milner's. The details follow.

. EVENT STRUCTURES

Processes are modelled by event structures. An event structure
consists of a set of possible event occurrences together with a
family of configurations; a configuration is a set of events
which occur by some stage in the process, possibly after infinite
time. To define operations on event structures neatly we modify
the definition of [NPW1, 2] so that an event can occur in several
incompatible ways. The definition is motivated further in propo-
sition 1. 8.

Notation Let F be a family of subsets of a set E. Let XcF.
We write X+F for 3y€Fvx€X.xgy and say X is compatible. When x,y€F

we write x?Fy for {x,y}+F.

1.1 Definition An event structure is a pair (E,F), where E

is a set of events and FgP(E) is a family of configurations,

which is:

coherent VXgF.(Vx,yex,foy) sUxeF
stable VXcF. X#0 & X+F = \XeF
(iii coincidence-free VX€F ve,e'€x.efe' = 3JyefF.ycx &

((e€y & e'?y) or (egy & e'€y))

finitary Vx€F Ve€x 3y€F.e€y & yex & lyl< o
In addition, we say an event structure is full when it satisfies
Ve€E 3Ix€F.e€x (i.e. E = UF).

1.2 Example Let E = {0,1,2} and F be

{0,2} {o0,1} {1,2}
U ¢ NV or equivalently 2 1 0 2

{0} {1}
AN & V
@

where —C is the covering-relation representing the occurrence of
one event. Then (E,F) is an event structure. The events 0 and 1

are concurrent, neither depends on the occurrence or non-occurrence
of the other to occur (see [NPW1, 2] and [NT]). The event 2 can
occur in two incompatible ways, either through event 0 having
occurred or event 1 having occurred. This possibility makes event
structures of 1.1 easier to work with than those of [NPW1, 2].

1.3 Example "A ticking clock". Let @ consist of events w and

configurations the sets ¢,{0},{0,1},...,{0,...,n},...w. Then Q is
an event structure which models a clock ticking 0,1,2,... .

1.4 Example Coincidence-freeness. Let E = {0,1} and F = {@,{0,1}}.
Then (E,F) is not an event structure. It is not coincidence-free.

The "events" 0 and 1 are coincident in that together they behave

like a single event with respect to F.

1.5 Example Finite causes. Let E = wU{w}and F = {@,{1},...,
{1,2,...,n}, w,wU{=}}. Then (E,F) is an event structure which is

not finitary. The event « can only occur after the finite set of
events w. Nor is the event structure (E,P(w)U {w U {»}}) ¥initary.
Such processes are unnatural in computer science because they
require an infinite set of events to occur within a finite time.

1.6 Example Fullness. The event structure. ({e},{d,{e}}) is

full while the event structure ({el},{®}) is not full. For con-
venience we do not assume all event structures are full. Clearly
any event structure (E,F) determines a full event structure (UF,F)
with the same configurations. With trivial modifications all our
results hold with the assumption of fullness.

The next proposition motivates the axioms of 1.1. It shows that
event structures possess an intrinsic causal dependency relation
local to each configuration. The stability axiom ensures that

when an event is in some configuration its occurrence has depended
on a unique set of events. The set on which the event depends will
be finite because of the finitary axiom and the dependency relation

will be a partial order because of coincidence freeness. The ways
in which events can occur correspond to complete primes of con-
figurations ordered by inclusion; they form a subbasis making the

domain of configurations prime algebraic [NPW1, 2].

Let (D,E) be a partial order. Let p€D. Say p
is a complete prime iff for all XgD when the lub LJX exists and
p £ UX then p € x for some xX€X. Say D is prime algebraic iff

Vx€D.x = U{pEx p is a complete prime}

1.8 Proposition Let E be a set and FcP(E). Then
(1) (E,F) is coherent according to 1.1 iff (F,g) is a coherent cpo

such that for all XEF if the lub of X exists it is UX. (Thus PEF.)

For x€F define the causal dependency relation éx on x by esxe' <=>
Vy€F.yex => (e'€y =>e€y) and for eex define [e]l = {e'€x | e's el.

Then [e]x=l\{z€F | e€zcx}, and we have

(ii If (E,F) is coherent then
(E,F) is stable according to 1.1 iff VxEFVeEx.[e]xeF
and Vx,yEFVeExOy.foya[e]x=[e]y

(iidi (E,F) is coincidence-free according to 1.1 iff

<. is a partial order for all x€F.

(iv) If (E,F) is stable then
(E,F) is finitary according to 1.1 iff Vx€Fve€x. [el I< .

Suppose (E,F) is coherent and stable. Then (F,g) is a coherent
prime algebraic partial order [NPW1, 2]; the complete primes are
of the form [e]X for x€F and e€x. Further (E,F) is finitary iff
each isolated element of the domain (F,g) dominates only a finite

number of elements.

Proof Let E be a set and FcP(E) as above

is obvious.

These two facts follow from the definitions of gx and [e]x:
For x€F the relation S¢ defined above is a preorder on x and for
e€x we have [e]x = N{zeF | e€zgx}, a more workable characteri-

sation of [e] than its definition. ¢

(ii) Assume (E,F) is coherent.

"=>" Suppose (E F) is stable. Let e€x and x€F. Then as

{yeF | e€y§x}+ we have [e] = \{yeF | e€ycx}€F Let x,y€F and
foy and e€xNy. Then [e]x, [e] €F and [e] 4 [e] so e€fe] n[e]ygx
with [el ﬂ[e]yEF Thus [e]xg[e] , and 51m11arly (el c[e]

Therefore [e] —[e] as requlred.

"<=" Suppose VxEFVe€x [e] €F and vx,y€Fve€xny.xt y=[e] —[e]\

Let @#XgF and x+F. [Choose xex Let e€NX. Then [el —[e] for all
y€X. Thus NX= v [e] . Now by coherence \XeF. As requlred (E,F)
is stable. e€NX

(iii) Follows directly from the definitions of s, and coincidence-

freeness.

(iv) Assume (E,F) is stable.

"=>" Suppose (E,F) is finitary. Let e€x and x€F. Then for some
finite z€F we have e€zcx. By the characterisation of [e]x it must
also be finite.

"<=" Let e€x€F. Then as (E,F) is stable [e]XEF and clearly
eE[e]xgx. Thus if [e]x is finite for all x€F and e€x we get that
(E,F) is finitary. '

Assume (E,F) is coherent and stable. .

Let y€F and e€y. Then as (E,F) is stable [e] €F. We show [e]y is

a complete prime. Let Xcf and XfF. Suppose [e]ygUX. Then for some
x€X we have efx. Also as [e]yfo we have e€l[e] nNxcy with

[e]yﬂxEF. Thus by the characterisation of [e]y we have [e]yg[e]ynx

S0 [e]ygx. Thus [e]y is a complete prime.

11

Clearly for x€F we have x = e%é[e]x' Thus each element of F is
the l.u.b. of the complete primes it dominates. This means

(F,€) is a prime algebraic po. It is obviously coherent.

Suppose (E,F) is also finitary. Let X be an isolated element

of (F,c). Take S to be the directed set of all finite unions of
complete primes below x. Then x =Us and as x is isolated Xcs

for some s€S. Thus x is a finite union of finite sets and so finite.
Conversely as complete primes are isolated assuming isolated
elements are finite implies that (E,F) is finitary. This means

(E,F) is finitary iff each isolated element dominates only a

finite number of elements. n

As a corollary to 1.8 (ii) we can relate the stability axiom of 1.1
to the concept of stable function due to Gé&rard Berry (see [B] and

[BC]). It is thus axiom (ii) of 1.1 derives its name.

1.9 Corollary Let E be a set and FcP(E) satisfy the coherence

axiom. Let ©® be the two element cpo 1%¥T. For each e€E define

Xt (F,g) » 0 by 36e(x) = T if e€x, L otherwise. Then (E,F) is
stable according to 1.1 iff for all e€E the function ?Oe is stable
in the sense of Berry [B].

Proof Recall the definition of a stable function. Let A,B be
cpos. Let f:A~B be continuous. Then £f:A-B is stable iff
VXEAVyEB yeEf(x) IM(f,x,y)€A such that VzEx.y=f(z)eM(f,x,v)=z.
Hence M(f,x,y) is the least element z less than x such that

yE £(z). Clearly each)Ce above is continuous as (E,F) satisfies
the coherence axiom. If (E,F) is stable in addition then take
M(%e,x,T) = [e]x to show Ze is a stable function. Conversely
supposing each Ze is stable if e€x€F we have M(%e,x,T) =
N{zeF | e€zcy} = [el so [e]l €F, while if e€xNy for xty in F we
have [el = M(:te,ny,T) = [el_. Then by 1.8 (ii) we have (E,F)
is stable. i

12

1.10 Example Let (E,F)be the event structure of example 1.2.
Let x = {0,2} and y = {1,2}. Then [2]X = x and [2]y =y
correspond to the two ways the event 2 can occur.

Proposition 1.8 suggests a subclass of event structures for which
each event can occur and always causally depends on the same set
of events, no matter in what configuration it occurs; so then events

correspond to complete primes.

1.11 Definition Let (E,F) be an event structure. Say (E,F is

prime iff it is full and Vx,yEFVeExny.[e]x = [e]y.

For prime event structures the local causal dependency relations
(éx for configurations x) are restrictions of one global causal
dependency (<) and incompatibility of configurations stems from
a pairwise incompatibility, or conflict (#), between events. In
accord with intuitions the configurations are then precisely the

left-closed consistent subsets (w.r.t. £ and #).

Let (E,<,#) be a set E with partial order
£ and binary symmetric relation #. Define the left-closed consistent
subsets of E by xX€L(E,<,#) iff xcE
& Ve,e'.e'se€x = e'ex (left-closed)

& Ve,e'ex.1e#e’) (consistent)

1.13 Proposition Let (E,F) be a prime event structure. Define

the relations < (called the causal dependency relation) and #
(called the conflict relation) on E by

e'se iff Vx€EF.e€x = e'ex

e#fe' iff Vx€EF.e€x = e'¢x

Then £ is a partial order s.t. [el=g.¢ {e'€E|e'<e} is finite for
all e€E and # is a binary irreflexive symmetric relation s.t.
effe'se" = efe" for all e,e',e"€E. Further the configurations F are

precisely the left closed consistent subsets L(E,s,#).

13

Conversely, suppose (E,<,#) consists of a partial order < and
binary symmetric relation # s.t. |[ell<» and e#e'<e" = e#e" for all

e,e',e". Then (E,L(E,<,#)) is a prime event structure.

Proof Let (E,F) be a prime event structure. Take < and # as
defined above. From 1.8 clearly they satisfy the properties stated
above and any configuration is a left closed consistent subset w.r.t.
< and #. Also any left-closed consistent subset is a configuration:
by the coherence of (E,F).

Let (E, <,#) consist of a p.o. £ and symmetric relation # s.t.
I[el]l<= and effe'<e" = e#e" for events e,e',e". Then it is easily
verified that (E,L(E,<,#)) is a prime event structure.]

1.14 Example We show the configurations of a prime event structure

alongside its causal dependency £ and conflict relation #. Its
events are {0,1,2}.

Consequently prime event structures are in 1~1 correspondence with
structures (E,<,#) which consist of a set of events with causal

dependency and conflict relations satisfying simple axioms. They

give a simple, intuitive model of concurrent processes related
to net theory in [NPW1, 2] and [W]. In fact any event structure of
1.1 determines a prime event structure with an isomorphic domain

of configurations by taking the complete primes as the new events.

1.15 Definition Let (E,F) be an event structure. Define Pr(E,F)
to consist of events P = {[e]X | e€ex€F} and configurations F
where

o 3IxEF. z = {[e]x e€x}

14

1.16 Proposition Let (E,F) be an event structure.

Then Pr(E,F) is a prime event structure; its events are the
complete primes P of (F,c), its causal dependency relation is
cMp and its conflict relation is fFPP.

There is an isomorphism (F,c) = (Fp,g) vhere Fp are the configuration

of Pr(E,F); it is given by x —> {[e]X | e€x} with inverse y +—> Uy.

7 - Let (E,F) be an event structure. Take P = {[e] | e€x€F}

- then P is the set of complete primes of (F,c) by proposition 1.8.
Take £ = ¢ MP and # = fPP as above. Certainly (P,L(P,s,#)) is a
prime event structure. For any configuration x of Pr(E,F) we have
x€L(P,<,#). Conversely if y€L(P,<,#) then by coherence UyEF. But
then y = {p ¢ Uy | p is a complete prime}. (The inclusion "<" is
obvious. Suppose pé€r.h.s. Then pcp'€y as p is a complete prime,
which as y is left-closed means p€y.) Thus y ={[e]Uy | eeVy} and

y is a configuration of Pr(E,F).

isomorphism follows directly from prime algebraicity. i

We work with more general event structures because it is difficult

to define parallel composition directly on prime event structures;

for prime event structures events correspond to the ways they can
occur so to compose them in parallel we must duplicate as many

copies of an event as there are ways introduced for it to occur.

In the more general class we avoid a messy inductive naming of events,

and can "tap out" prime event structures by the construction Pr.
Trees are another simple kind of event structure.

1.17 Definition An event structure (E,F) is a pre-tree iff

Vx,yEF.x*Fy = XQy Or ysX. A tree is an event structure which is
prime and a pre-tree.

15

1.18 Example The event structure with events {0,1,2} and

configurations

is a pre-tree but not a tree.

The event structure with events {0,1,2,3} and configurations

is a tree, with configurations clearly order isomorphic to those

of the pre-tree.

The reader may check that the configurations of a pre-tree are
isomorphic to sequences of events ordered by extension - so
configurations correspond to partial and maximal branches - and
that for a tree the events correspond to arcs. For this reason
we shall often write a tree as (A,B) consisting of events A -
for "arcs" - and configurations B - for "branches". By insisting
a tree is prime we have "abstracted away" from the events of
which it is built. (This is justified formally when morphisms
are introduced; then the tree and pre-tree above will not be
isomorphic.)

To sum up we have a class of event structures which includes trees
and those event structures of [NPW1, 2] which satisfy a simple
finiteness restriction.

With an eye to possible generalisations we note: The coherence
axiom is rather strong, too strong for the event structures of

1.1 to model processes such as "fair merge" in a natural way;

not all infinite configurations would correspond to a possible
infinite behaviour of a fair merge. Perhaps there is an appropriate
weaker substitute for which much of the following work still goes

16

through. One advantage of the coherence axiom, however, is that
it allows a smooth connection with Petri nets via the work of
[NPW1,2]. The stability axiom would go if one wished to model
processes which had an event which could be caused in several
compatible ways ~ see [KP] and [W] for examples; then I expect
complete irreducibles would play a similar role to complete
primes here. The axioms in 1.1 are like those for a topology.
Possibly they can be modified to model continuous processes but,

of course, then the finiteness axiom should be dropped.

Those familiar with [KP], [BC], or [W] may wonder why we do not
work with event structures (E,},#) where E is a set of events,

F <P(E)xE is an enabling relations and # is a conflict relation.
The main reason is that our morphisms will only be interested

in events and configurations, not the exact nature of and #.
Besides the complete primes (the [e]x's) give us an enabling
relation, a rather special one because in a configuration an event
is enabled in a unique way, - a property unfortunately called
"deterministic" in [BC]. (Note incidentally that because of
example 1.2 configurations and events are a bit more general than
those of "deterministic" event structures (E,F,#) with a binary
conflict relation.)

17

2. A "CPO" OF EVENT STRUCTURES

By restricting the configurations of an event structure (E,F)

to those inside a subset E' of E a new event structure is

formed.
2.1 Definition Let (E,F) be an event structure. Let E'cE
Define the restriction (E,F)ME' to be (E',F') where F' =

{x€FIxgE"'}.

Lemma The restriction (E,F)PE' above is an event struc-
ture
All the properties (i) - (iv) of 1.1 required for
(E,F) MNE' to be an event structure follow directly from the corre-
sponding properties of (E,F). B -

Such restriction accompanies an idea of substructure - the relation
3 below.

2.3 Definition Let (EO,FO), (E1,F1 be event structures
Define (EO,FO) 4 (E1,F1) iff E0§E1
and FOgF1
and ngEo.xEF1 = X € FO.
Lemma Let (EO,FO), (E,l,F1 be event structures. Then
(EO,FO) 4 (Eq,F, iff E,cE; and (EO,FO) = (E1,F1) PEO.
Proof Directly from the definitions. |

2.5 Example Let (EO,FO), (E1,F1) be event structures with

events E0 = {0,1}, E, = {0,1,2} and configurations as shown:

1

18

{0,1} {0,1} {2,1}
N \! v
FO: {0} Fq: {0} {2}
) VW ¢
o ?
In (EO,FO) the event 1 can only occur after the event 0. 1In
(E1,F1) the event 1 can occur in two ways, either after event 0

or after event 2. So (E1,F1) introduces a new way for the event

1 to occur even though '(EO,FO) g (E1,F1).

The relation < specifies the sense in which one event structure
approximates another. Our semantics for recursively defined proces-
ses is based on the relation 2 . Event structures ordered by ¢
almost form a cpo. The ordering is not a c¢po merely because
event structures form a class and not a set. (The same kind of situ-

ation occurs in [S] and [BC]l.)

2.6 Theorem (i) The relation £ is a partial order on event

structures with least event structure (?,{0}). Let
(EO,FO) d... §(En,Fn) d... be an w-chain of event structures. Then
it has a lub with respect to <. The lub is (E,F) where E-= {) E

and new

x€F iff (xc<E & (Vn€w.x_€F & x = Ux j, 1in which
n n new B

X = der{zan z&xX }

(ii) Let A be a set. Define EA to be the set of event

structures (E,F) with EcgA. Then ($A,§) is a c.p.o. with
bottom element (@,{®#}) and 1l.u.b.s of chains given as above in

19

Proof (i) Let (EO,FO)g...s(En,Fn)S... be an w-chain of event
structures. Take (E,F) as defined above. As above, for XcE we
take x, = U{zEFnIzgx}. Note for xcE we have X X if n<m.

Firstly we check that (E,F) is an event structure.

Suppose XcF and Vx,yEX.x+Fy. If x,y€X then x,ycz for
some z€F. Thus XY S2, where xn,yn,anFn for n€w. Consequently
{x_|x€X} is pairwise compatible in (F_,c). Thus U x_€F_.

n n’= xex B D

we show (UX)_ = U x_; then clearly (UX) €F_ and
n o gD n-'n

U{xnlxex & nEw} = Lrjl(UX)n

so UX€F as required. The inclusion U xng(UX)n is obvious. To

show the converse inclusion supposeXEX eE(Ux)n. Then as (En,$n)

is finitary for some finite z€Fn we have e€zcl/X. For each e'€z

there is some x€X with e'€x. Thus as xX€F there is some m€w for
which e'Exm. However as z is finite we can choose some m, uniformly,

so that zc L)xm. Now by the definition of 4, zEFm and, as above,
xeX E
(J X €F . Thus for each x€X, z+ B so zNx €F_. This implies
cex mm m m m
zNx _€F_ by the definition of 2. Therefore e€z = znl/ x_ =
m 'n x€x |

U (x.nz) Lj X . We have shown the required converse inclusion
x€x ™ T xex ©

Wx) <« U =x_.
Mxex ™
F Y
Stable Suppose @#XcF & X+ . Clearly (nx)n = x¥, for n€w. As
n 1 - n U":
éxn|x€X}¢ we get (ﬂX)HEFn. Noting X = <€% ntw¥n %MAX)H we have
XEF.

Let e,e'€x€F and e*e'. Then e,e'Exn for some

n€w. As (En,Fn) is coincidence-free e€z«e'¢z for some zEFn s.t.
ZSX . But it is easily checked that z€F so (E,F) is coincidence-
free.

Finitary Suppose e€x€F. Then e€xn for some n. Then e€zgxn for
some finite z€Fn. This gives z€F and e€zcx as required.

20

Therefore (E,F) is an event structure. We now show it is the lub
of the chain (EO,FO)s..._(E ,F)d... .

For (E,F) to be an upper bound we require (En,Fn)s(E,F) for all
n€w. Clearly E cE. From the definition of 4 it follows that anF.
Suppose XCE & xX€F. Then x-m%Lxm with X EF for all m€w. However,
x cE so by the definition of ¢ we get X €F for each m€w. As (E F
is coherent and XgSe . EX C... is a chaln in F we have x-U& EF .
Thus (En,Fn)s(E,F) for all n€w so (E,F) is an upper bound of the

chain.

To see (E,F) is the least upper bound of the chain, let (E',F') be
an event structure which is an upper bound of the chaih. Then cer-
tainly EcE' and %LFn;F'- Let x€F. Then the chain XyE...SX C... is
included in F'. As (E',F') is coherent x = U& €F'. Thus FcF'. Sup-
pose now y€F' & ycE. We have Yo U{zEF Iz_y}EF' so as (E F)<WE' F')
we get ynGFn. Clearly\Jy nSY - To show the converse lnclu51on, take
e€y. Then as (E',F') is finitary e€zcy for some finite z€F'. As z
is finite zcE_ for some n. But (En,Fn)ﬁ(E',F') SO zan. Evidently
zey, - Thus eegyn. Therefore y==gyn. So (E,F)4(E',F') and (E,F) is

the least upper bound of the chain of event structures.

ii Obvious, by (i). |

The naturalness of dand its lubs is easier to see on prime event
structures because then the way an event can occur stays fixed

in a d-chain.

2.7 Proposition (i) Let (EO,FO), (E1,F1) be prime event structures

with causal dependency relations so, gv and conflict relations
. 1 P =
#0,#1. For e€Ei write [e]i = 36f ‘{e* EE le §ie}, for i =0,1. Then
(Eq,Fo) AE,F) iff EcE, & (VeEEO.[e]O = lel,) & #, = #,TE,
iff FogF1, & Vx€F1.anO€F0.
Let (E ' F)_...ﬂ(En,Fn)g... be an w-chain of prime event structures.

Let (En,Fn) have causal dependency and conflict relations §n’#n'

21

Then the lub of the chain is (E,F) where E = v E_ and x€F iff

neEw n
Vn€w.ann€F ; the lub (E,F) is prime with causal dependency rela-
1 < = £ i i ~=U
tion < n€,sn and conflict relation # nEw#n'

1ii) Let (AO,BO),E(A1,B1) be trees. Then (AO,BO)Q(A1,B1) iff B0
Let (AO,BO)g... S(An,Bn)s... be an w-chain of trees. Then its lub

is a tree (A,B) where A = Ua and x€B iff VnE€w.xNA_€EB_.
ney B n n

cB

1°

Proof (i) Let (EO,FO), (E1,F1) be prime event structures with
causal dependency and conflict relations as above. Suppose

(Eo,Fo)s(E1,F1). Then EOEE1. Let eEEO. Then [e]OEF1 so [e]1;[e]0.

However then by the definition of 4, eE[eH,EFO. This implies

[e]0 = [e]1. Now, let e,e'EE Then e#oe'== [e]o?o[e']0 >

f 0

[eJOU[e']O€F0 = [e]1U[e']1GF1 = [e]ﬂ’[e']1 = e#1e' using proper-
» 4 -

ties of 4. Thus (EO,FO)g(E1,F1) = E0 17 & (VeEEO.[eJO [e]1) &

#0 = #1FEO. To show the converse implication assume the r.h.s.. Then

E05E1 and xEL(EO,éo,#O) = xcE, & x€L(E1,S1,#1). This gives

cE

We show the second equivalent. Suppose (EO,FO)s(E1,F1). Then F0§F1.
Also if x€F1,then x€L(E1,§1,#1). Thus by the first equivalent
anOEL(EO,SO,#O) = FO. Conversely suppose FOEF1 and Vx€F1.an0€FO.
Then by fullness E05E1. Also if xEE0 and x€F;, then x = anOEFO.
This gives (EO,FO)s(E1,F1).

Now let (EO,FO)s...ﬁ(En,Fn)ﬁ... be a chain of prime event structures
so (En,Fn) is associated with the relations Sn’#n’ Take < =(égn

and # = g#n. Define (E,f) by E = gEn.and F = L(E,&,#); it is a prime
event structure. Then by the definition of g as Fn = L(En,g,#n) we
get (En,Fn)g(E,F). This means (E,F) is an upper bound of the chain.
By Theorem 3.6 the lub of the chain is (E,F') for some set of con-
figurations F'. Thus (E,F')3(E,F). However by the definition of ¢

we then have F' = F. Thus (E,F) is the lub. Clearly x€L(E,<,#) = F
iff xNE €L(E ,< ,#) = F,for all n.

(ii) Let (AO’BO)' (A1,B1) be trees. Obviously (AO,BO)s(A1,B1) im=-
plies B05B1. Suppose conversely that BOEB1- Then AogA1 by fullness.

22

Let aEAO. Then [a]1g[a]0 where [a]i is the smallest configuration
in By gontaining a. Let a'€lal, and a'#a. Then ad[a']OEB1 and

. 1 , .
[a]0+ [a]1 so [a]og[a]1 as (A,,B,) is a tree. Thus [a]og[a]1.

Therefore [a]0 = [a]1.

Remembering for treethhat compatible cgnfigurations are com-
parable we get [a]0,+.0[a']0 iff [a]1 4 1[a']1 for a,a'EAO.
Thus a#oa' <=> a#1a' for a,a'EAO, where #0,#1 are the conflict
relations of (AO,BO), (A1,B1) respectively.

By i) we have (AO,BO)g(A1,B1

The recursive definition of a process will be associated with an
operation continuous w.r.t. 2. The denotation of the recursively
defined process will be the least fixed point of the operation.

2.8 Definition Let op be an n-ary operation on the class of e-

vent structures.

Say op is monotonic iff when for event structures we have
q Y Q!
E1=E1,...En=En then

op(Ey,...,E 2op(E},...,E').

op is continuous iff for all countable chains

<
E11=E12_...SE11~...
4 4q
En1_En2S..._Enl_...
we have op(LilE1i,...I_i_lEni) = liJOp(Eu, 'Eni)

where |l denotes the lub with respect to 4.

As is wellknown (seel[S]) an operation is continuous iff it is con-
tinuous in each argument separately. Given this the following lem-

ma provides simple necessary and sufficient conditions for an ope~

23

ration to be continuous on event structures; it should be mono-
tonic and act continuously on the component sets of events orde-
red by inclusion.

Let op be aunary operation on E. Then op is continu-
ous iff (i) op is monotonic and (ii)if(EO,Fo)ﬁ...s(En,Fn)g... is
a chain in E then each event of rpp(LJ(En,Fn)) is an event of

n
lﬁJop(En, Fn) .

Proof "=" obvious.

" "

<" Suppose (i) and (ii) above. Let (Eo,fo)s”.ﬁ(En,Fn)s... . Then as
op is monotonic the event structure LJop(En,Fn) exists and
n

" P F
%ﬂoP(En’Fn)§°p(y(En’Fn))' Now by (ii), k{op(En, n) and oP(%#(En'Fn
have the same events. From the definition of ¢ they have the same
configurations. Thus H{oP(En’Fn) = Op(%%(En’Fn))‘ Therefore op is
continuous. [|

As an example we show how the operation Pr is continuous. Recall
from 1.15,16 that from an event structure Pr constructs a prime
event structure with an isomorphic domain of configurations. This
will mean Pr commutes with the operation of defining event struc-

tures recursively.

2.10 Theorem The operation Pr defined in 1.15 is d-continuous.

Proof We use lemma 2.9.

We first show Pr is monotonic w.r.t. 3. Suppose (EO,FO)S(E1,F1)
for event structures (EO,FO) and (E1,F1)..We requifg Pr(EO,FO)s
BﬂEq,F1). Let Pr(Ei,Fi) = (Pi,ni) for 1i=0,1, so Pi the set of
complete primes of (Fi,g) Suppose Po€EPy. As (Eo,Fo)g(E1,F1) we

- 5 1 = , = Un
have p,€F,. Assume YcF,Yt ' and pOEUY.Then Pq (UY)n&) y€YY.Po
where ynpOGF1 and ynpogEo so ynpoeFo for each y€Y. Thus as Py is
a complete prime of FO’ PoSY for some y€Y. Therefore Py is a com-

plete prime of F1.wConsequently POEP . Now from the definitions of

1

24

I, and H1 - see 1.10 - as (EO,FO)s(E1,F1 we get zeﬂvszngoc»zeno.
This means Pr(EO,FO)sPr(E1,F1).
We now show Pr is continuous on event sets. Let (EO,FO)gu._(E IQS"

be a chain of event structures with lub(E, F). Let p be an event
of Pr(E,F), so p is a complete prime of (F,c). To use Lemma 2.9
we require that p is an event of Pr(E ' F) for some n. However p
is finite so pSE_ for some n (we have E -tJE) Now pEFn
(EnFn)S(E F). Also as p is a complete prime of (E,F) it must be a
complete prime of (En,En). Thus p is an event of ?r(En,Fn) as re-
quired.

Applying 2.9 gives Pr is continuous. [|

As a corollary we can give another characterisation of the lub of

an w-chain of event structures ordered by g. The lub is simple to
define for prime event structures in terms of their causal depen-
dency and conflict relations. So,we first convert an w-chain of arbi-
trary event structures to a chain of prime event structures using
Pr, find its lub and then image back using Lemma 1.16 which shows
the isomorphism between configurations of an event structure and

its image under Pr.

2.11 Corollary Let (E F)_..._(E n)g... be an w=-chain of
event structures. It has lub (E,F) where E = n%LEn and

x€Fe 3zEL(P,c, 4) .x =z where

-V !
P = nEm{[e]x»e€X€Fn}

F

n
n€w$

and $ =

Proof From the d-continuity of Pr we have Pr(E,F) = |J Pr(E_,F

, n
new

From Lemma 1.16 we know F is the image of the configurations of
Pr (E,F) under U, |

25

3. A CATEGORY OF EVENT STRUCTURES

We define a rather basic class of morphisms on event structures.

They are partial functions between event-sets which respect

events and configurations. An event is imagined to synchronise

with its image event whenever this is defined. One notable example
of morphism will be a projection from the compound process of an
event structure put in parallel with another back to the original
event structure - see the product of event structures 3.4. Refer

to the appendix for our treatment of partial functions - we use

* to represent undefined - and a formal definition of the #

operator which extends a function on events to a function on subsets.

3.1 Definition Let (Ej,Fq), (E,,F, be event structures.

A (partially synchronous) morhpism 6: (EO,FO)»(E1,F1) is a partial

function 6:E0+*E1 such that

(i ngro.é(x)eF1

and (ii) VXGFOVe,e'Ex.e(e)=e(e' # * se=e',

A morphism 6 is synchronous iff 6 is a total function

Note that condition (ii) above says no two distinct events are
together synchronised with a common image event. Notice if we
have (EO,FO)g(E1,F1), for two event structures (EO,FO) and
(E1,F{), then the inclusion map i: ES*E1 is a morphism, in fact
a rather special one, so i is a rigid embedding in the sense of

Kahn and Plotkin [RP].

3.2 Example Let (EO,FO), (E1,F1) be event structures with
E0 = {ao,a1,b0,b1}, E1 = {a,b} and configurations

e e fb a
I,x] /ab g)\.

@ 72

26

Then 6 defined so e(a0)=6(a1) =a and 6(b0)=6(b1)=b is a
(synchronous) morphism. (Incidentally this morphism, although
total, cannot be induced on event structures by a net morphism
on Petri nets - see [NT], [NPW1, 2].)

It is easy to check that the morphisms defined above give a cate-
gory of event structures with the usual composition of partial
functions and identity morphisms the identity functions on sets of
events.

Define ¥ to consist of objects event structures

and morphisms as defined in 3.1 with composition that of partial
functions Set, defined in the appendix. Define Esyn to consist of
event structures and synchronous morphisms with the usual composi-

tion of functions.

are categories with identity

n
morphisms the identity functions. We have E is a proper sub-
syn

3.4 Proposition Both E and Esy

category of E. Both categories E and Esyn have the null event

structure (@,{@}) as initial object. The null event structure is
also the: terminal object of E (but not Esyn)'

Let 6: (EO,FO) - (E1,F1) be a morphism in E. Then 6 is an iso-
morphism iff 6 is a total 1-1 and onto function such that

xEF0 P 6(x)€F1.

0 is a monomorphism in E (Esyn iff 6 is a monomorphism in
8 is an epimorphism in B (Esyn iff 6 is an epimorphism in

0n
(D
rt.
*
02]
(]

+

0n
0
(-'-
%
w0
[}

The category E has products and coproducts characterised, to
within isomorphism, by the following constructions. They provide a
basis for defining, and proving relations between, different

semantics of CCS and its wvariants.

t

27

The parallel composition of two processes will be denoted by a
restriction of the product. The product corresponds to a very

loose synchronisation discipline between processes; any event of

one may or may not synchronise with an event of the other. A con-
figuration of the product of two event structures E0 and E1 may - -
contain events of synchronisation between E, and E, and must project

0 1
to configurations of E0 and E1 by natural. projection morphisms.

3.5 Definition (Partially synchronous) product

Let (EO,FO), (E1,F1) be event structures. Define their product

(Eq,Fy) x (E{,F;) to be (E,F) where E=E)}E,, the product in

Set, with projections ﬂo,n1, and F is given by:

iff xcE, § E,
& (a) Ty (x)EF, & T, (x)€EF,
& (b) Ve,e'€x.n0(e)=ﬂ0(e')# * or w1(e)=n1(e')# * =» e=e'!
& (c) Ve,e'Ex.e#e':Hygx.%o(y)EFO & ﬁ1(y)€F1 &

(e€y & e'fy) or (efy & e'€y))

& (d) VeExBygx.%O(y)€FO & %1(y)€F1 & e€y & |yl<e

Note how (a) and (b) express that the projections are morphisms
while (c) and (d) say the structure (E,F) is coincidence-free

and finitary respectively.

3.6 Example (product) Let (EO,FO) be ({0},{@,{0}} and (E,,F,)
be ({1},{9,{1}}). Then their product (Eo,Fo)x (E1,F1 consists of
events E0;E1={(O,*),(0,1),(*,1)} with configurations

(*,1) (0,%)

(0,1)
(0,%) (*,1)

28

Intuitively (EO,FO), (E1,F1) can proceed asynchronously or
alternatively communicate through synchronising events 0 and 1
to form the event (0,1) (c.f. (aNIL|aNIL) in Milner's CCS -
see §5).

It is useful to also define a product in the category Esyn o
event structures with synchronous morphisms, induced by just

total functions.

3.7 Synchronous product Let (EO,FO), (E1,F1) be event structures.
Define their synchronous proudct (EO,FO) ® (E1,F1) to be (E,F)

where E = E0 x E1, the product in Set with projections Tor Tqo
and F is given by

X€F iff xcE, xE

0"
& (a) %O(x)ero & %1(x)EF1

& (b) Ve,e'Ex.ﬂo(e)=n0(e') or ﬂ1(e)=n1(e') = e=e'
& (c) Ve,e'ex. e#e'aaygx.ﬁo(y)eFo & ﬁ1(y)€F1 &

((e€y & e'¢y) or (efdy & e'€ey)

& (d) Ve€x3dycx.m.(y)€EF. & ﬁ1(y)€F1 & €€y & |y|<eo

0 0

Note that the synchronous product is the restriction of the pro-
duct to the events EOxE1 c EO,’gE1 i.e. (EO,FO) ® (E1,F1) =

Notice how in the above definition an event of E0 must synchronise
with some event of E1 if it is to occur. We use the synchronous
product to define an interleaving operator on event structures.
The operator synchronises occurrences of events one at a time
with the ticking of a clock.

3.8 Proposition Let @ be the event structure of example 1.3 -

the "ticking clock". Let (E,F) be an event structure. The syn-
chronous product (E,F)e is a pre-tree which consists of events
Exw and configurations all finite or infinite sequences
{(eO,O),(e1,1),...,(en,n) ...} such that eizejéi=j and
{eo,e1,...,en}€F for all i,j, n at which the sequence is defined.

29

‘ Obviously from the definition of ® the events of
(E,F)eoQ are Exw. Let x be a configuration of (E,F)ef. Then
xcExw and by conditions (a) and (b) x is a "sequence", either
null or of the form {(eo,O),(e1,1),...,(en,n),...}. Condition
(c) now implies {eo,...,en}EF for any n at which e exists -
if n marks the end of the sequence use (a), otherwise separate
(en,n) and (en+1,n+1) using (c). Clearly any sequence satisfying
the conditions stated in the proposition is a configuration of
(E,F)oQ. |

A simpler construction is that of coproduct which is essentially

the disjoint union of event structures.

Coproduct

Let (EO,FO), (E1,F1) be event structures. Define their coproduct
(EO,F0)+(E1,F1) to be (E,F) where E={0}XE0U{1}xE1 and
F={{0}xx | XEFO}U{{1}XX>' x€F,}. (Note the evident injections

iO:EO»E and i1:E19E.)

3.10 Example (coproduct) Let (Ey,Fj)=({a},{8,{a}}) a
(E1,F1)=({b},{¢,{b}}). Then (EO,FO)+(E1,F1) has events
{(0,a),(1,b)} and configurations

(0,a) (1,b)
?

3.11 Example (the necessity of (c¢) in definitions 3.5 and 3.7).Let
Thenwithout the restriction (c) in 3.5 and 3.7 both "products"

would not be coincidence-free. They would have "configuration"

x={(0,b),(1,a)} so that (0,b)<x(1,a)< (0,b) - a non-trivial
#X

loop in the local causality relation.

30

3.12 Example (the necessity of (d) in definitions 3.5 and 3.7)
The necessity of (d) is best shown using the representation of
[NPW1, 1] - see proposition 1.9. Without (d) the "product" of

two (finitary) event structures need not be finitary. Let E

0
consist of events 0,0',1,1',...,n,n',... with no conflict,and

causal dependency given by the partial order

0 L 1 [} n 1
Vi Vi wvil
0 1 n

Let E1 be an isomorphic partial order with events 5,5',...,5,5'
Both partial orders determine prime event structures by taking
their left closed subsets as configurations. However omitting
(d) from the restrictions defining configurations of product
would allow the "configuration" consisting of the synchronised
events x={(0,0"),(0,1"),(1,7"),...,(n,n"),(n,(n+1)"),...} which
has an infinite descending chain with respect to the local
causality relation éx.

Now we verify that the constructions x, ®, + always give event
structures characterising the categorical product, synchronous
product and coproduct. To show x gives an event structure we
need a lemma.

3.13 Lemma Let e:EO——>*E1 be a partial function between sets

E, and E,. Let XSP(E)). Then if (Vee'eUx.8(e)=6(e')#* = e=e')

then 6 (NX)=NBX.

Suppose 6(e)=6(e')# * implies e=e' for every e,e'€UX.
Clearly 8§ is monotonic w.r.t. c so 8(NX)cNBX. Take -eel\fX and xe€X.
For some e'€x we have 6(e')=e. Take y€X. Then for some ey€y we
have 6(eY)=e. However e_,e€UXx and 6(ey)=6(e'). Thus by hypothesis
ey=e'. Therefore e'€NX so e€B (IX). .This establishes the converse
inclusion; so 8(\X)=N6X as required. [|

31

The following theorem shows the above constructions were
already determined to within isomorphism by our choice of
morphism. However our rather concrete constructions do give
continuous operations on event structures ordered by 3, so

they can be used in recursive definitions.

3.14 Theorem Let (EO,FO), (E1,F1) be event structures. Then

(l) (EO,FO)X(ET,F‘])””O’

product in E.

m, as defined in 3.5 is their categorical

ii) (EO,FO)o(E1,F1),1TO,1r1 as defined in 3.7 is their categorical

product in Esyn'

(iii (EO'F0)+(E1’F1) as defined in 3.9 is their categorical
coproduct in ¥ and Esyn'

Further, each operation x, ® and + is continuous w.r.t. S.
Proof i Let (E,F) be (Eo,Fo)x(E1,F1 and Tor T, be as-defined
in 3.5.

Suppose xgE0§E1 and e,e'€x. We shall say "y is a separating set
for e,e' in x" when ycx & ?ri(y)EFi for i=0,1 & ((e€y & e'¢y) or
(efy & e'€y)).

We first check (E,F) is an event structure.

' ’ Suppose XcF & Vx,y€X.xty. We require Ux satisfies

(a)-(d) of 3.5.

(a) Clearly ﬁi(UX)=UﬁiX. As X is pairwise compatible in F so
is #,X in F,. Thus %, (UX)€F,.

(b) By the pairwise compatibility of X, if e,e'€UX and
ni(e)=ﬂi(e')# * for i=0 or 1 then e=e'.

(c) Suppose e,e'€UX and e#e'. Then 3Ix,y€X.e€x & e'€y. If either
ey or e'¢x we have respectively either y or x is a
separating set for e,e' in UX. Otherwise e,e'€x or e,e'€y.
Then as both x and y satisfy (c) we obtain the required
separating set.

(d) is obvious as e€UX means e€x for some x€X where x satisfies
(d).

32

Stable Suppose @#XcF & X*. We require X satisfies (a)-(d)

of 3.5.

(a) By lemma 3.13, ﬁi(ﬂx)=nﬁiX. But ﬂﬂixeFi as f,X is a compat-
ible set in F; we have ﬁi(ﬂX)€Fi.

(b) As any x€X satisfies (b) and NXcx certainly NX satisfies (b).

(c) Suppose e,e'€NX and €#e'. Choose xX€X. Because x€EF there is
a separating set y for e,e' in x. Take v=yNfix. Clearly vy,
NXcx so because (E;,F;) is stable, by lemma 3.13
ﬁi(v)=ﬁi(y)nﬁi(ﬂX)€Fi. This makes v a separating set for
e,e' in NX.

(d) is 1like (c) above.

Suppose e,e'€xEF and efe'. As x satisfies (c)

there is a separating set y for e,e' in x. We further require

yEF. Clearly y satisfies (a), (b). To show y satisfies (c), assume
€,e'€y & e#e'. Take a separating set v for e€,e' in x. Take u=vNy.
Then, just as in the proof of stability part (c), we get u is a
separating set for e€,e' in x. Property (d) for y follows from
property (d) holding for x, using lemma 3.13.

Thus we have shown (Eo,Fo)x(E1,F1) is an event structure. It

remains to show that with projections Tor T4 it forms the categorical
product in E. First note Ty and T, are morphisms by (a), (b) of

3.5. Suppose there are morphisms ei:(E"F')*(Ei’Fi) in B for

i=0,1. We require a unique morphism ¢ such that the following

diagram commutes:

o

6
=

=
\i
s «

33

j(eo(e),e1(e) if eo(e)# * or 61(e)#*
Take w=60§61 i.e. g(e) =
1* otherwise

Obviously Ty e Y = ei in set, for i=0,1 so provided ¢ is a
morphism in E it is unique so the diagram commutes. To show ¢

is a morphism we need:

I VXEF'. B(x)eF
II VXEF'Ve,e'ex. w(e)=p(e')# * = e=e!

We prove II first:

Suppose e,e'€x€EF'. Then if @(e)=0(e')# * then ei(e)=ei(e')#*
for either i=0 or i=1. As each ei is a morphism e=e' as

required to prove II.

Now we prove I. Let xX€F'. We need ®(x) satisfies (a)-(d) of 3.5
Both (a) and (b) follow from the commutations L ° P = ei using
the morphism properties of 60 and 61. To prove (c), suppose
e,e'€$(x) and e#e'. Then e=@(e) and e'=@p(e') for some e,c'€Ex.
We must have e#e'. Thus as (E',F') is coincidence-free we have
some y€F' such that ycx & ((e€y & e'¢y) or (efy & €'€y)). As we
know ¢ satisfies II above it follows that one and only one of
e,e' is in %(y). The commutations T,e @ = ei give "i$(y)€Fi‘
Thus &(y) separates e,e' in x. Property (d) follows as (E',F')

is finitary.

Thus finally we have shown (EO,FO)x(E1,F1 is a categorical
product in E with projections TorTqe
(ii) Clearly (EO,FO)Q(E1,F1) is the restriction
(EO,FO)x(E1,F1)PE0xE1. Thus by lemma 2.2 it is an event structure.
In this case the projections TyrTMq are total so synchronous

and the mediating morphism (¢ above) stays in the category Esyn’

This means (EO,FO)@(E1,F1)1TO,W1 is a product‘in Esyn'

34

(iii) It is easily checked that (EO,FO)+(E1,F1) is an event
structure. The injections are clearly (rigid) morphisms.
Suppose in E (or Esyn) we had:

+(E F1)

/

Fo) (E 1,F

0 (E,F)

OI

. (eo) if e=(0, eo)EOxE0
Then define 6: E0 G E, > E by 6(e) {
(e) if e= 1,e1)€1.xE1
Then 6 is the unique morphism in E (B respectively) such that

syn

the diagram commutes. This means (EO,F0)+(E1,F1),iO,i1 is a co-

product in B (and Esyn)'

Now we show the operations product x, synchronous product ® and
coproduct + are continuous operations on event structures with

respect to 4.

Recall an operation is continuous iff it is continuous in each
argument separately. If (EO,FO)S(E1,F1) and (E,F) are event
structures then by inspecting definition 3.5 it is clear that
(EO,FO!x(E,F)=(E1,F1)X(E,F)PEOQE so x is monotonic in its first
argument. Thus property (i) of lemma 2.9 holds and property (ii
is obvious. Therefore x is continuous in its first and, by
symmetry, its second argument. Therefore x is continuous.

Similarly so are ® and +. a

Similarly one can define infinite products, synchronous products
and coproducts - left to the reader.

35

4. TWO SUBCATEGORIES, PRIME EVENT STRUCTURES AND TREES

Importantly our work transfers over to the two subcategories
of £ with objects the prime event structures and trees. In
particular this means we can relate event structure semantics

to semantics based on trees using interleaving.

Define P to be the full subcategory of E with

objects the prime event structures. Define Tr to be the full

subcategory of E with trees as objects.

We characterise morphisms in the two categories prime event

structures P and trees Tr.

4.2 Proposition (i) Let (EO,FO), (E1,F1) be prime event structures
with causal dependency relations §0,§1 and conflict relations

u . —— = (] — .
#oyr#q. For e€E, write [e], = _ {e'€E; | e'se} for i = 0,1. Write

d
W, = #;Ulgp . Let 6: Ey»«E, be a partial function. Then 6 is a
morphism iff Ve€Ej.0(e)# * = [B(e)], < §([e]0) and
Ve,e'EEo.e(e)# * & B(e")# * & e(e)W1e(e') = eWOe'.

(ii) Let (AO,BO), (A1,B1) be trees. Let-—<i be the covering relation

in (Bi,:). Write ==<i = -—(iU1Bi. Let f: (Bo,g) - (B1,§) be a

continuous function. Then there is a unique morphism
0: (Aj,Bg) > (A,,By) with £ = 8 iff £(8) = & &
Vb,b'EBO. b —(0 b' = f(b) ﬁ.] f(b').

(i) "=>" Suppose 6 is a morphism. Assume 6(e)#* for
eEEO. Then §[e]€F1. Therefore 8[e] is leftclosed. Therefore

[6(e)],cBlely -

Let e,e'EEO. Assume 6 (e),0(e')# * and 9(e)W16(e').
Suppose ﬂe#oe'. Then e,e'€x for some x€F0. As 6 is a morphism
8(x)€F,. Thus 70 (e)#,0(e'). But then as 6 is a morphism e=e'.

36

"<=" Suppose 6 satisfies the r.h.s. conditions of i above.

We require that 6 is a morphism.

Let XEFO. Assume eas1e1€§(x). Then e1=6(e) for some eEEo. By
assumption e.'le[e(e)]1 c @[e]O c 8(x). Thus 8(x) is left-closed.
Assume e1,e;€§(x). Suppose e1#1e;. Then e1=9(e) and ei=6(e') for
some e,e'€x. However then by assumption eWOe'. This yields a con-
tradiction as neither e#oe' (they are both in x) nor e=e' (as
e1#e% by supposition). Thus 1(e1#1ea). Consequently 8(x) is con-

sistent. Therefore xEFO = @(x)€F1.

We also need e,e'€x & 6(e)=0(e')# *= e=e' for 6 to be a morphism.
Assume e,e'€x & 6(e)=6(e')# * . Then by assumption eWOe'. However

as e,e'€x we have ﬂ(e#oe') so e=e' as required.

(ii) Let 6: (AO,BO)»(A1,B1) be a morphism between trees. Then
as § is additive it is continuous and 6(@)=@. If b—b' for
b,b'eBo, then there is a unique event a€A0 s.t. a€b'~b. Then
clearly 8(b)—< 8(b') if 6(a)# * and B8(b)=8(b"') if 6(a)=*.
Conversely given a function f: B0—>B1 satisfying the conditions
above we define 6: AO-->*A1 as follows. For ath, there are unique
b,b'€B, s.t. b'~b={a}. Then b—¢b'. If f(b)—¢, £(b') take 8(a)
to be the unique event in £(b')~f(b). Otherwise f(b)=f(b') so
take 6(a)=* . The partial function 6 checks to be a morphism

so f=0.]

The inclusion function ¥<eX has as right adjoint Pr (see 1.16)
which to an event structure associates a prime event structure
with an isomorphic domain of configurations. Intuitively the
operation Pr renames events of a process so each event has a
unique causal history. Similarly the inclusion functor Tres}
has a right adjoint I which is an interleaving operation
defined with the synchronous product ® and "ticking clock" of
3.8. These adjunctions determine the form of products and co-
products in ® and Tr (see [Mac]). Both operations Pr and I are
d-continuous so a fixed point semantics based on event struc-
tures will image under Pr to a semantics based directly on prime

event structures, or under I to one based directly on trees.

37

4.3 Theorem Let (E,F) be an event structure.

(i) Define Pr(E,F) to consist of events P={[e]x | ecxefF} and

configurations Fp where zEFp iff 3x€F.z={[e]x | e€x}. Then

Pr(E,F) is a prime event structure. There is a morphism

ev :Pr(E,F)->(E,F) given by ev ([e]l_)=e for e€x€F. In fact
E,F E,F X

Pr(E’F),eVE,F

:(E',F')>(E,F) with (E',F') a prime event structure, there is

is cofree over (E,F) i.e. for any morphism
a unique morphism y: (E',F')-Pr(E,F) such that e=evE Fw.
r

(ii) Define I(E,F)=Pr((E,F)®Q). Then I(E,F) is a tree. There

is a morphism g F:I(E,F)-»(E,F) given by where
r

E,F "0°V(E,F)en

ﬂO:(E,F)eﬂa(E,F) is the projection morphism. In fact I(E,F), e F
4

is cofree over (E,F). .

Further, both operations Pr and I are d-continuous.

Proof Let (E,F) be an event structure.

(i) By lemma 1.16 Pr(E,F) is a prime event structure. We require
that evE’F:Pr(E,F)»(E,F) above is a morphism. First we need ev

is well-defined as a function ev:P-E, where P={[e]x | eexeF}.
Suppose [e]x=[e']y for e€x & x€F and e'€y & y€F. Then by the
coincidence-freeness of (E,F) we have e=e', giving ev well-defined
as a (total) function. From the definition if z is a configuration
of Pr(E,F) then z={[e]X | e€x} for some x€F; thus év (z) Uz=xeF.
Let z be a configuration of Pr(E,F) so p,p'€z and ev(p)=ev(p')=e
say. Then p=p'=[e]uz. Thus ev is a morphism.

We show Pr(E,F), Vg F is cofree over (E,F). Let 6:(E',F')>(E,F)
be a morphism from a prime event structure (E',F'). We require
a unique morphism y: (E',F')-Pr(E,F) s.t. the following diagram

commutes:

38

[6(e)]4 if 6(e)# *
Define Y:ESP by y(e) = [6([e])
' * otherwise

where [e] is the smallest configuration of F' containing e
(possible because (E',F') is prime).
Let x€F'.

Then §(x) ={[6(e)] | e€x & 0(e)# *}

B(lel)

= {[e']é(x) | e'€ed(x)} so $(x) is a configuration
of Pr(E,F). If e,e'ex and yY(e)=y(e')#* then 0(e)=0(e')#* so
e=e', as 6 is a morphism. Thus y is a morphism. Clearly evy = 0

so y makes the diagram commute.

Let @¢: (E',F')»Pr(E,F) be a morphism such that the diagram
commutes i.e. ev@=6. We require @=y. Let e€cE'. Firstly note
if 6(e)=* then because ewv is a total function we must have
@(e)=* which agrees with y. So suppose that 6(e)# * . Then
@(e) is a complete prime of (F,c) s.t ev(@(e)=6(e). Now &V is

just union so using the assumed commutation we get
dle) c UB(lel) = év B(lel) = B([e])

Aé @(e) is a complete prime in @([e]) and ev(@(e))=06(e) we have

¢(e)=[e(e)]@([e])1 i.e. ¢(e)=‘P(e) .
Consequently ¢y is the unique morphism making the diagram commute.

(ii) We have already shown ® is an operation on event structures
and by (i) so is Pr. Thus I (E,F) = Pr((E,F)e) is an event

structure. Clearly also 7 :I (E,F)-»(E,F) is a morphism.

E’F

We show I (E,F),m is cafree over (E,F). Let 6:(A,B)-»(E,F) be a
morphism from a tree (A,B) . We require a unique morphism

y: (A,B)»I (E,F) s.t. the following diagram commutes:

(E,F) -—"—— 1(E,F)

39

Recall from proposition 3.8 that the configurations of (E,F)e Q

are sequences {(eO,O),(e1,1),...,(en,n),...} for distinct en's

s.t. {eo,e1,...,en}€F for each n at which e, is defined. It is
convenient to write (eo,e1,...,en,...) for {(eo,O),(e1,1),...,
(en,n),...}, a configuration of (E,F)e2 . The complete primes

of such configurations are finite non-null sequences (eo,e1,...,enj
The map m acts as ﬂ((eo,e1,...,en))=en.
As (A,B) is a tree each event a€A corresponds 1-1 to a unique
finite non-null sequence (ao,a1,...,an) s.t. a=a, and
{ao},...,{ao,...,am},...,{ao,...,an}EB. Thus it is sufficient
to define Y on such sequences by the following induction:

If n=0 and 6(a0)¢* define w((ao) =(9(a0)) and otherwise *

V(lag,.--ra _)6,
if 8(a) # *
* otherwise

For 0, define w((ao,...,an_1,an)) =

(We use ™ to represent concatenation of a value to the end of
a sequence.)

We write ¥ for the function determined on A, too. Clearly ¢ is the
unique partial function s.t. my=6. It is a morphism by the
above identifications of configurations as particular kinds of

sequences

Finally we note Pr and I are continuous by Theorems 2.10 and 3.14
i

We observe some intuitive properties of Pr and I.

4.4 Lemma (i If (E,F) is a prime event structure then
Px(E,F)=(E,F).

(ii) Let (EO,FO), (Ej,F1) be event structures. Then
Pr(Ey,Fy) = Pr(E,,F) & (FyrS) = (Fi.2).

40

(iii) Let (E,F) be an event structure and Pr(E,F)=(P,Fp).
Then (FP,E) = (F,2).

(iv) If (A,B) is a tree then I(A,B) = (A,B).
Proof Details are left to the reader

(i) follows because for a prime event structure events

correspond to primes.

(ii) follows because Pr(EO,FO), Pr(E1,F1) are built from the
complete primes of (Fo,g), (F1,§) respectively, just using their
order theoretic properties.

(iii) is just 1.16.
(iv) Events a of (A,B) correspond to finite non-null sequences

{(ao,O),(a1,1),...,(an,n)} s.t. a=ag and {ao},{ao,a1},...,
{ao,...,an}EB. ‘ -

4.5 Corollary (i) Let (EO,FO), (E1,F1)€P. Their product in P
is Pr((EO,FO)x (E1,F1). Their coproduct in ? is (EO,F0)+(E1,F1)

(ii) Let (AO,BO), (A1,B1)€Tr. Their product in Tr is
I((AO,BO)x(A1,B1)). The coproduct in Tr is (AO,BO)+(A1,B1

(Note x and + stand for product and coproduct in E.)

B ' The right adjoints Pr and I preserve limits [Macl, in
particular products giving the form of products in P and Tr by
4.4 (i), (iv). The inclusion functors are left-adjoints so pre-
serve coproducts. Thus coproducts in P and Tr coincide with
those of E. B

41

Another characterisation of product T; in Tr relates it to
Milner's parallel combinator on synchronisation trees [M1].
When labels are introduced his combinator is just a restriction

of the product of trees.

4.6 Definition Let (E,F)€E and e¢E. Define é\E,F)=(EU{E},F€

where zEFE iff z=¢ or (c€z & z~{cl€F).

4.7 Proposition Let the trees T, S be coproducts T= +‘a§Ta
_ ~_ aea
and S= -+ b"Sy. Then
beB
T x § = -[- (a,*)nT xS + + (a,b)A'I be + + (*,b)nT be
Tr a€A 8y (a,b) €EAxB Grr bEB Tr

We give the idea. Using proposition 3.8 and 3.5,
characterising product in E one shows the configurations of ‘both
the 1l.h.s. and r.h.s. are isomorphic when ordered by inclusion
to sequences of events of TxS, ordered by extension, of : the form

(eo,e1,...,e re.-) S.t. ﬁo({eo,...,en}) is a configuration of T

n
and ﬁ1({eo,...,en}) is a configuration of S for all n at which
e, is defined. As both the l.h.s. and r.h.s. are trees, so prime,
isomorphism of configurations implies isomorphism of the event

structures l.h.s. and r.h.s. |

4,8 Example Let a, b, ¢ be distinct events. Let T be the tree
ab(@,®) and S the tree c(®,?). We show their products in E, P
and Tr. We label coverings and events to show how they project

to T and S. :
% (a)C) P4

b 3

—2> < L /

n '/* b gff# ,ﬁ.éff1t4”"h”—4a
K, — ¢ M"‘V\A«{X“% (b o ./(e
(a,0) ¢ c .)
» | £ 7o /°
2 < b : ¢ —:
a b & (7)) 4 b

Note how the events of T;S are the complete primes of the confi-

gurations of TxS. See how interleaving makes branches out of
—C-chains of the original configurations.

42

5. A SEMANTICS FOR COMMUNICATING PROCESSES

Now we label the events of processes. Possible synchronisations
between two processes set in parallel are determined by a syn-
chronisation algebra (S.A.). An S.A. specifies how, depending on
their labels, pairs of events are combined to form synchronised
events and what labels such combinations carry. We adopt an idea
from [M2] and present an S.A. as a binary operation on labels.
Unlike [M2] our algebra is not necessarily a monoid (it may not
have 1) and has two distinguished constants * and a zero 0.

The constant * still represents undefined, exactly as it does for
morphisms and is important for handling asynchrony. No real event
is ever labelled *. However when two processes are set in parallel,
an event of one process may be left to occur asynchronously,
unsynchronised with any event of the other. Then it is enormously
convenient to pretend, mathematically, that the event is syn-
chronised with the unreal "event"* labelled by * - just as we did
in the product 3.5.

The constant 0 is another ficticious label; no real event is
labelled 0. We have A-A'=0, for two labels A,\', when two events
labelled X and A' cannot be synchronised. The introduction of 0

saves us from a partial operation on labels.

A synchronisation algebra (S.A.) is a quadruple

(L,*,0,+) where L is a set of labels, containing * and 0 with
I~{*,0}#@¢ and - is a binary associative, commutative operation on
L which satisfies:

(i) VXAE€EL. A-0=0
(ii) *.*=* and VA,A'EL.A-A'=*= A= A' = *

43

An S.A. determines a "divides" relation as follows. It says when

one label is a divisor, or factor, of another.

5.2 Definition Let (L,*,0,+) be an S.A. For o,RBEL define

oodiv B = (a=B or IyEL.a-y = RB).

Thus condition (ii) in the definition of an S.A. says * is the

unique divisor of *
5.3 Lemma Let (L,*,0,- be an S.A. Then

(i) The relation div is reflexive and transitive.
(1i) For X€L, if Adiv* then X = *,
(iii) Por MA€EL, if 0div) then X =0.

(iv) Let ao,a1,60,61 €L. If ocodivB0 and o divB1 then

1
ao-a1diVBO-B1.

Proof (i) by associativity.
(ii) by property (ii) in the definition of an S.A.
(iii) as 0 is. a zero.

(iv) Dby commutativity and associativity. |

5.4 Example

Without value passing
Recall that in CCS [M1] there are three kinds of (non*,0) labels;
labels o,B8, ..., their complementary labels %,B,... and the label

Only pairs of events with complementary labels can synchronize to
produce a T-labelled event. Thus we get the following S.A. table
and division relation for CCS. In this case * behaves like an

identity - this is not true in general (see ex. 5.6).

44

*

*
—
Q
el
W
o
o

o] |
el
o
=]
o
o
*

o0 0

o
o
o

e e e 0 0 o

With value passing

Suppose values V€V are passed during synchronisation. Take labels
of the form *,00v (receiving the values v labelled by a), av
(sending of value v labelled by o), with an S.A. like above but
now with ov the complement of av.

An S.A. determines a category of labelled event structures. Morphisms
are event structure morphisms such that the label of the image of an
event divides the event's label.

5.5 Definition Let (L,*,0,.) be an S.A. Define the category EL
to consist of objects (E,F,1) where (E,F)€EE and 1l: E-I~{*,0},
and morphisms 6: (EO,FO,lo)-»(E1,F1,l1) where 6: (EO'FO)_’(E1’F1)
is a morphism of B and Ve€E0.116(e)divlo(en composition is that
of E. Define PL and TrL to be the full subcategories of labelled
prime event structures and trees respectively.

Note in the above definition that the composition 16 is understood
0 then .16(e)=*. Then for
6 to be a morphism in E we would require * divlo(e). Thus an S.A.

to be in Set,. If 6(e)=* for some e in E

can specify whether morphisms are partial or total functions. For

example the categories k and msyn arise from very simple S.A.s.

45

5.6 Example The S.A.'s for E and Esyn
Take the S.A.'s A, S to be given by

A * T 0 S * T 0
* * T 0 * * 0 0
T T T 0 T 0 T 0
0 0 0 0 0 0 0 0

Notice how morphisms in EA may be partial functions as *divT. We
get EAEE. However morphisms in ES must be total functions as *
does not divide T. We get ES;Esyn'

We now define the parallel composiEion of two labelled event struc-

tures as a restriction of the product in E. Only pairs of events
(one of which may be the fictitious event *) whose labels have a
non-zero compoéition can be synchronised. (See definition 3.5 of
product; Tor™q below are the projection morphisms.).

5.7 Definition Let L be an S.A. Let (E 0,l), (E 11)€EL
Define their parallel composition (EO,FO,l)(:)(E1,F1,1)
((Ey,Fy) x (E4,F,) PE,1) where E= {eEEo*E1 1,7y (e) -1 7, (e) #0} and
l1(e)=l,my(e)-1,m, (e).

5. 8 Example Let L be the S.A. for CCS without value passing -
refer to 5.5. Suppose (Eo,Folo), (E1,F1,l1)€EL. Then their parallel
composition is their product in E restricted to the events

* *
{(60,)IeOEE} u {(,e1)Ie1€E1}U{(e0,e1)€onE1llo(eo),l1(e1) are
complementary} with a subsequent labelling l(eo,*)= lo(eo),

l(*,e1)==l1(e1), l(eo,e1) =T,

5.9 Example "Broadcasting" Let L be the S.A. with labels

,0,0,T satisfying laws of the form a-a=0, a.=a.1=0 and T -*=T1.
Then the parallel composition of several processes must synchronise
on a while t-labelled events occur asynchronously (such multiway

synchronisation is used in [H], [Mi], [LST] - see [M2] too).

46

a 0 o 0 0

5.10 Example The following S.A. ensures all events occur asyn-

chronously in a parallel composition (cf. S of 5.6 which ensures

all events occur synchronously)

There are obvious projection functions for a parallel composition

which suggests <:> is a product. Although, in fact, the operation

<:) is associative and does extend to a functor it is not always

a product. It is however when the operation - behaves like the

operation of least common multiple (l.c.m).

5.11 Proposition Let L be an S.A.

(1)

(i1)

(iii)

The operation <:> extends to a functor'ELz-amLk For morphisms
60, 61 1n.EL define 60<:)61 = 60461. The functor is associa-
tive i.e. for EO,E1,E2€|£'L there is a natural isomorphism

E,(D & DE,) = E(DEN(DE,.

Let (Eq,Fyslg), (Eq,Fi,1,)€E . Then (EO,FO,IO)@(E1,F1,11
with the obvious projections, is their categorical product
in EL iff

VYEL VaEldEg, B€11E1. odivy and Bdivy= (a-B)divy.

The parallel composition <:) with the evident projections

always gives a categorical product in EL iff

Vo,B,YEL. adivy and Bdivy = (a-B)divy.

47

- (i) Let 6,: (EfFiJli} -?(Ei,Fi,la) be morphisms in ¢L
for i=0,1. Let e be an event of (EOFO’lO)(:>(E1'F1’l1)

e€E0;§E1 s.t. lono(e)-11ﬂ1(e)#=0. As 90”91 are morphisms
lieiﬂﬁe)divliﬂ(e)for i=0,1. Then by ©Lemma 5.3 (iv),
(lbeono(e)-lye1ﬂ1(e»div(loﬂo(e)-11n1(e)). By 5.3 (iii),
1beoﬂ0(e)-1361ﬂ1(e)¢0 so (6ym,(e),0,m, (e)) is an event of

(B FA1y) @) (B, F1,12).

The functor laws and associativity property of (:) follow as
it is a restriction of x,,the product functor on E.

(ii The "if" part follows as the condition stated above
ensures the mediating morphism for x exists and, be-
cause <:>is a restriction of the product in k. The "on-
ly if" part relies on event structures not having to be
full: Take a€loE0,
({e},d,{(e,v)}) and morphisms 6y e, where 1,(ej)=a
and 91:&:»11 where 11(e1)=6. Assuming (:) is the product

B€l1E1 so odivy and Bdivy. Take

there is a mediating morphism E+(e0,e1) where the event
(eo,e1) must be labelled a-+B and must divide vy.

(iii) The "if" part follows as in (ii). The "only if" part
would be true even if event structures had to be full.
Suppose o and f divide y. Take E0=({eo},{¢,{eo}},{(eo,a)l)
and E, = ({51},{¢,{€1}}, {(81,8)}). The product is E0<:>E1
with the cbvious projections, by assumption. Let E2 =
({e, }, {0, {e, 1, {(ey,v)}) and 6,:e,>gyand 0,:e,e, —
both 60,61 are morphisms. Because the mediating morphism
exist a-Bdivy. []

5.12 Examples
(i) Let L be the S.A. for CCS. Then (:) does not coincide with
product: We may have odivt and BRdivt and a-B=0 so a-B

cannot divide T (#0).

(ii For the S.A.'s A’ and S of E and Esyn it may be checked
that - does satisfy the condition in proposition 5.11 (ii).

As we know they do have products given by and @ .

48

More generally for SA's L of the following forms C)
coincides with products:

* o R 0 2 o R 0
* * o R 0 * * 0 0 0
o o o 0 0 o 0 o 0 0
B B8 0 8] 0 g 0 0 B
0 0 0 0 0 0 0 0 0 0

Before giving the programming language based on an S.A. we pre-
sent a few extra much simpler operations on labelled event struc-
tures based on [M1, 2].

Definitions Let L be an S.A. Define the following operations
on EL. Let (E,F,1), (Ei,Fi,li)GEL for i=0,1.

5.13 Lifting Suppose A€EL~{*,0}. Define A(E,F,1 = (E',F',1°
where E' = {0}uf1} x E)and

XEF' e xgE' and x=0 or (0€x and {el 1,e)€Ex}€EF)

l(e' =X if e=0, 1l(e) if e' = (1,e) for e'€E'

5.14 sum Define (Ey,Fq,15) + (B ,F,,1,) = ((Ej,Fo) + (E,Fy ,1)
where + is the coproduct of 3.8 and 1((0,e)) =10(e) and

1((1,e)) =1, (e).

1

5.15 Restriction Let A€L~{*,0}. Define (E,F,1)~A= (E,F)}ME',1"
where E' = {e€E|l(e)#1} and 1' =1ME".

5.16 Relabelling Let S be an endomorphism on L (i.e. S pre-
serves *, 0 and - and VAEL. S(A) =0=X=0 & S(A) =*=) =*), De-
fine (E,F,1) <S> = (E,F,Sl).

49

Apart from restriction, the above operations extend to functors
on EL in an obvious way. Sum is coproduct in EL. They are all
continuous with respect to SL the labelled version of 4. Thus
we can take fixed points of them and their compositions.

5.17 Proposition Let L be an S.A., For (Eo,Fo,lo),(E1,F1,l1)€E
i g i Q =

define (EO’FO’IO“"L(E1’F1'11) iff (EO,FOJ (E1,F1) and l0 l1rEo.

Then

L

(i EL has lubs of all w=-chains ordered by 2.

(ii Each operation above is continuous with respect to SL i.e.

they preserve lubs of w-chains ordered by gL.

(iii Let T be a continuous operation on EE-»EL. Let v
1.=((¢i¢},¢),...,(¢,{¢},¢))€E£. Define fixI' to be the lub

Of 19/ T19 ...9 T"L3 Then T (£ixT) = £ixT.

Proof (i) follows from the corresponding property of 2. (ii) In
particular <:), + are continuous because x,+ are. For the remaining

operations use Lemma 2.9, (iii) is well known see [S]. |

Given L, an S.A., we define a language for communicating proces-

ses called Proc.. Each term of Proc, denotes an event structure

L L
in E_.

L

5.18 The syntax of Proc Assume an infinite set of process-

L
variables x€X. Define a term of Proc

L by:
t::=NILIx|Atlt+tlt~A1t<s> Dt Ix isrec t, where x€X, AEL~{*,0}
and S is an endomorphism of L.

5.19 The semantics of ProcL Define an environment to be a func-

tion p: X-»EL from process-variables to labelled event structures.

For a term t and an environment p, define [[tllp, the event struc-
ture t denotes with respect to p, by the following structural in-
duction. (Note, that syntactic operators occur on the left and

their semantic counterparts, operations on EL occur on the right.)

50

[x1p = p(x)

UArtllp = A([t1lp)

[[t1+t2]]p = [[t1]]p + [[tZ]]o
[[t~A1lp = [[tllp~ A

[[t<s>1lp = ([[tlp)<sS>
teDt,lle = (e, 001D (e, N0

([x isrectllp fix I where T: $L+RL is given by

T(E) = [t plx<E]

A structural induction shows that T is indeed continuous so the
above definition is justified by Proposition 5.17.

In a similar way one can obtain semantics in ?L and TrL; define
parallel composition in either category as a restriction of x the
product of § 3 and take environment into the categories. Equlva-

lently one obtains semantics in kL and Tr by composing the above
semantics with Pr and I extended to cope with labels.

5. 20 Definition

(i Define PrL:EL->$IJ by PrL(E,F,l) = (Pr(E,F),leVE)F) - refer
to 4.3.
For p: X~ P; and t € Procy define [[t]]P p=Pr ([[tllp).
(ii Define IL:EL—>TrL by IL(E,F,l) = (I(E,F),lﬁE’F) - refer to
4.3. C
For p: X- TrL and t € Proc; define [[t]]Trp = IL([[t]]D) .

When L is the S.A. for CCS our interleaved semantics in TrL

agrees with Milner's synchronisation/communication tree semantics
because of the following fact. (Our treatment of recursion is more
general than Milner's so our denotations as trees may be XO—

branching when recursion is not "guardedly well-defined".)

51

5.21 Proposition Let L be an S.A. Write the parallel composition
operation in Tr as @ so T@S =1 (T@S) Suppose T, SETr

are sums of the form T”jfk T and S”4‘u S] for labels A

quL\{*,O} indexed by i and j. Then T S is given recur51vely
Tr
by

T(L)s=, * A,e*)T.(L)S + + @s + * *w)T (OS]
© #0 M 1@ Ay uj# "U #0 ¥y Q;Dr Jj
Proof From 4.7 by restricting the product of trees. |

Isomorphism in each category ¥, P Tr; induces a congruence on
closed terms of Proc, , where L is an S.A

5.22 Definition Let L be an S.A. For closed terms t, t' € Proc

L
and any environment p define

1Y

t ~t' iff [[t]lp ft'Nop
t~pt' iff [[t]]Ppg [[t']]P P.
t t' iff [[t]] N [[t']]Trp

5.23 Proposition The relations ~, Nb' ~or define congruences
on the closed terms ProcL w.r.t. @, +, A=, =~\A, —-<S5>. We have
Proof Each operation on ﬁLrespects isomorphism. |

Generally because the event structures of $L and ?L reflect con-

currency their congruences are strictly included in that for TrL

5.24 Example Let L be the S.A. for CCS. We look at denotations
of the terms aBNIL(Z)&NIL in the categories $L’ ?L and TrL (ob-
tained by restricting the products drawn in Example 4.8).

52

B T < B B
Foe A
‘ #
—_ B . o "J'—-‘C'—“‘LB'(
l # t’_“—‘c
a T a o 5 T ot /
(04 o
<
@ a < B ¢ g o B
In EL In PL In TrL

We . have: labelled events and coverings. Clearly in TrL we have
o8 NIL@ GNIL ~_. QoBNIL % TBNIL + a(aBNIL + BGNIL) which does
not hold for the other two congruences.

This strict inclusion fails in an interesting special case where

communication is purely synchronous, when no asynchrony is allowed
because L satisfies a strict synchronous law:

5.25 Definition Let L be an S.A. Say L is synchronous iff
VIELN{*}.X-* = 0.

When an S.A. is synchronous parallel composition is purely syn-
chronous, if an event is to occur in a parallel composition it
must synchronise, no event can occur asynchronously. Then parallel
composition is a restriction of the synchronous product '@ . The
synchronous product e is based on Set so parallel composition
inherits some nice préperties.from product in gg;.

5.26 Proposition Let L be an S.A. Then the following are equi-
valent

(i) L is synchronous

(ii) NIL . is "an.@ -zero i.e. t@NIL.~ NIL for all terms t € Proc
(iii) Parallel composition @ distributes.over sum i.e.

to(D (£4+t,) ~to(Dt, + 1:0<13t2 for all terms t,t,,t, € Proc,

L°

When L is synchronous denotationsof closed terms in PL are

isomorphic to: those in .TrL,so ~p T Ve

53

This indicates how assumptions on L determine laws and proof

rules for congruences on terms.

Milner's synchronous calculi [M2] can be based on synchronous

S.A.s as the following proposition shows:

5.27 Proposition (The synchronous calculi of [M2])

Any Abelian monoid (M,-.,1) extends to an S.A. (L,*,0,-) simply

by adjoining elements * and 0 to M and extending composition so
. =% and *-A=0 for all A€EL. The language ProcL includes the
synchronous calculus associated with the monoid M in [M2]. In

the parallel composition Eo(:)E1 every event e of E0 is synchro-
nised with an event e1 of E1; the event may be labelled by 1

when it represents a delay or idle action. Denotations of closed

terms of Proc are pre-trees in ¢L and trees in ?L.

54

CONCLUSION

Thus we have a framework in which to give denotational semantics

to a wide range of parallel programming languages. But more, the
framework makes connections between different kinds of semantics
and different approaches. Milner's synchronisation trees are

a special kind of labelled event structure. Thus we link up to the
work in [M1]. (Notice incidentally that Milner's idea of "sequential
observer" is embodied in the interleaving operator.) Then the syn-
chronous calculi of Milner [M2] arise once synchronisation algebras
satisfy a strict law, which essentially bans all synchrony. Unlike
Milner in [M2] we do not model asynchrony in a synchronous frame-
work but rather allow a free-mix of synchrony and asynchrony,
depending on the synchronisation algebra. Prime event structures
correspond to intuitive and simple structures of events with a
causal dependency and conflict relation. We automatically get
semantics in terms of these structures. This is important because
for example Mogens Nielsen and Torben Fogh of Aarhus [F] and Ugo
Montanari and coworkers of Pisa (see e.g. [MS]) have given seman-
tics in terms of such structures, and also because the works

[NPW1, 2], [W] establish links between such structures and Petri
nets. Net semantics like that in [LTS] translates to prime event
structure semantics by the techniques of [NPW1, 2] and [W]. (In
fact there is a more direct connection between Petri nets and

event structures. A condition event system [NT] with initial marking,
which is contact-free and such that every condition occurs at most
once in playing the token game, determines an event structure as
follows: Take the configurations to be those sets of events which
have occurred by some stage possibly infinite in playing the token
game.) Then, event structures represent Scott domains and partially
synchronous and synchronous morphisms induce rather special con-
tinuous functions between domains - see appendix B.

Clearly we have left several loose ends like:

55

How to go from our semantics to proof rules.

How to go from our rather basic semantics to more
abstract semantics.

How to give an operational semantics which justifies
denotations which are sensitive to concurrency (the
most philosophical and probably the most difficult
loose end to tidy up);

How to generalise event structures and still keep a
useful category (for example are there more general
event structures which model continuous processes or
express "fairness"in some way? Then our present defi-
nition of morphisms should still be useful.).

How to define homomorphisms of synchronisation
algebras and use the attendant algebraic constructions.

56

APPENDIX A

Sets and partial functions

We take Set to be the category of sets with usual function-
composition. To cope with partial functions, we take Set, to have
sets as objects but morphisms are now functions which may take
the value * (representing "undefined"). A morphism in Set, is
drawn as 9:X»,Y. The morphisms X % Y and Y g Z compose to

eo(x)= (0(x)) if O6(x)#*, and * otherwise. Morphisms in Set (total
functions) correspond to those morphisms of Set, which never
yield *. For 6:X 3 Y and AcX define 6(a) = {9(e) | e€A & 0 (e)#*}.

For us, a notable fact about Set, is the nature of its products.
If X and Y are sets their categorical product in Set, takes the

form XfY=def{(x’*) | x€x}u{(*,y) | veviu{(x,y) X€EX & y€EY} with
the obvious projections.

57

APPENDIX B

Domains of configurations

Here we show the relation between our categories of event

structures and categories of Scott-domains.

B1 Some basic definitions: Let (D,E) be a partial order.

A directed subset of D is a non-null subset ScD such that

Vs,t€S 3u€S. stu & ttu. The p.o. D is a complete partial order
(cpo) iff there is a least element L€ED and all directed subsets

S have a least upper bound (lub) LIS.

If D is a cpo, an element xX€D is isolated (= finite = compact)
iff for all directed subsets S, if x=|JS then x=s for some se€S.
A cpo D is said to be algebraic iff for each x€D the set S of
isolated elements below x is directed and x = |]S. (An algebraic
cpo is generally called a domain though some authors insist it
also be consistently complete - see below.)

Let XgD. Then X is said to be pairwise compatible iff

Vx,y€EX 3d€D.x=d & y=d. The po (D,t) is coherent iff every pairwise
compatible subset has a lub. (Clearly every coherent po is a cpo.)
Similarly a subset X is said to be finitely compatible iff every

finite subset of X has an upper bound in D. Then a po (D,E) is

consistently complete iff every finitely compatible subset has a

lub. (Clearly coherence implies consistent completeness.)

By proposition 1.8 an event structure (E,F) represents a domain
(F,c) of configurations satisfying rather special properties. Such
domains are coherent, prime algebraic and so that every isolated
element dominates only a finite number of elements. Conversely

any such domain is represented, to within isomorphism, by an

event structure, in fact a prime event structure, in the following
way: Take the complete primes as events and all the sets of com-

plete primes below some element as configurations.

58

Let (D,=) be a prime algebraic coherent partial

order satisfying the property that every isolated element dominates

only a finite number of elements. Then define p (D) =daf(P’F) where
P = complete primes of D and xX€F iff 3z€D. x = {peP | p=z}.
B3 Lemma In the above definition p(D) is a prime event struc-

ture so (D,E) = (F,c) under x +—> {p€P | pcx} with inverse
X —— LIX.

Proof Directly from the definitions. [|

The concept of prime algebraicity was introduced in [NPW 1].
There Petri net concepts were related to Scott-domain concepts.
In particular an event occurrence in a net showed itself as a
complete prime in a domain of event configurations associated
with the net. The complete primes formed a subbasis giving rise
to the concept of prime algebraic domain. Now it turns out that,
saying a domain is prime algebraic is just the same as saying it
is completely distributive and algebraic, so really the concept
is well known (see [CL]). We present the proof for lattices and

its corollaries for domains.

It will follow that domains of configurations are, to within
isomorphism, precisely the distributive, algebraic coherent par-
tial orders which satisfy the finiteness property that every
isolated element dominates only a finite number of elements.

B4 Definition Let (D,=) be a partial order with meets of all

non-null subsets. Say (D,t) is distributive iff xn(ywz)=(xny)uwo(xnz)

for all x,y,zeD sO yuz exists. Say (D,=) is completely distributive
iff (MX)uy = [] xuy for subsets XcD s.t. xuy exists for all x€X and

x€X
(UX)ny = Ll xny for non-null subsets XcD s.t. |JX exists.
X€X
B5 Theorem Let (D,£) be a complete lattice. Then (D,=) is

prime algebraic iff (D,Z) is completely distributive and algebraic.

59

Proof It is easy to show a prime algebraic lattice is
completely distributive and algebraic (or see [NPW1, 2]).
Conversely suppose (D,E) is completely distributive and algebraic.

Algebraicity expresses a kind of discreteness, it will mean:

(1) 'X,y€D.xLy = 3z,2'€D.x5z —€ z'ty where —~<is the covering re-
lation.

Complete distributivity will mean that each covering interval

determines a complete prime, so:

(ii) Let x-—<x' in D. Then pr[x,x']=defﬂ{yED | x'Exuyl}l is a com-
plete prime of D.

To show (i), suppose x,y€ED and XCy. By algebraicity there is an
isolated element a s.t. a¥x and aty. By Zorn's lemma there is a
maximal chain C of elements above x and strictly below xua. As a
is algebraic from the construction of C we must have

XE |] C ~—¢ xuaty.

To show (ii), let x,x'€D and x — x'. Suppose p imfrT{YED | x'sxuyl.
Note first that xup =[1{xuy | x'Sxwy} = x' using complete dis-
tributivity. Now suppose pEljZ for some subset ZcD. Then

x' = xupExu(lJz) = |J (xuz). However as x —¢ x' we must then have

x'sxuz for some zez?eﬁut then p=z. Thus p is a complete prime of D.

Let z€D. Then we require z =J{pr[(x,x'] | x— x'€z} in order to make
D prime algebraic. Write w =|J{prix,x'] | x~<ex'S2}. Clearly zzw.
Suppose zgw. Then wEx—x'Sz for some X,x' in D. Write p = prix,x'l].
Then pSw making xup = x, a contradiction as xup = x'. Thus D is

prime algebraic as required. [

It is easy to see that a more general version of the above theorem
also holds. The proof would work if the partial order (D,E) were
coherent or consistently complete (sets with upper bounds have least

upper bounds), and not necessarily a lattice.

As a corollary we obtain a representation theorem for completely
distributive algebraic lattices; a completely distributive algebraic
lattice is isomorphic to the left-closed subsets ordered by < of
some partial order. The converse is clear. (Surely this result
exists in the lattice theory literature somewhere, but where?)

60

B6 Corollary (i) Let (P,<) be a partial order. Then the left
closed subsets (L(P,<),c) form a completely distributive algebraic
lattice with complete primes of the form [p] =def{p'€P | p'sp} for
pEP.

(ii) Let (D,E) be a completely distributive algebraic lattice
Let (P,<) be the complete primes ordered by £ = £}Mp. Then

(D,=) = L(P,<) under x > {p€P | p=x}.
Proof By the above theorem and the properties of prime alge-
braic lattices spelt out in [NPW1, 2] or [W]. [3

Proposition 1.8 shows configurations of event structures give
coherent prime algebraic domains satisfying the finiteness re-
striction that every isolated element dominates only a finite
number of elements. In the presence of algebraicity and the
finiteness restriction, complete distributivity is equivalent
to the generally more humble distributivity. This gives the
following characterisation of the domains of configurations.

B7 Proposition Ordered by inclusion the configurations of

an event structure form a distributive, algebraic coherent partial
order in which every isolated element dominates only a finite num-
ber of elements. Moreover any such partial order can be repre-
sented, to within isomorphism, by the configurations of a prime

event structure.

Proof Domains of configurations clearly satisfy the above
properties. To show the converse, we need only show that a dis-
tributive algebraic coherent partial order satisfying the above
finiteness restriction is necessarily completely distributive.
Let (D,=) be such a p.o. Then this distributive law follows:
xu(ynz) = (xuy)n(xuz) for x,y,z€D in which xuy and xuz exist.
(See [Bir] or [KP] for detailsL Incidentally, because we do not
work with lattices the two distributive laws are not equivalent.

Now we show the two infinite distributivities hold.

61

(a) Let X<D s.t. LJX exists and y€D. Clearly then |] (xny) & (LX)ny.
xX€eX
To show the converse inequality, suppose a is isolated and

at (lUX)ny. Then as a=lJX and as a is isolated for some finite X'cX

we have at|JX'. Then as(UX)ny = as(JX"')ny = a= || (xny) (by
xX€EX!
distributivity) = at= lJ (xny).
xeX

Thus as D is algebraic we have the converse inequality so

U (xny) = (UX)ny.
xeX

(b) We require in addition that (M X)uy = T (xuy) for y€D and

xeX
@#XcD s.t. xuy exists for all x€X. Clearly (MX)uy = [xuwy.
X€eX
Suppose a is isolated and at [1 xuy. Then a = [(xuy))na =
xXeX

Now a dominates only a finite number of elements. Thus for some

finite X'cX we must have a = [1 (xuy)na).
XEX'
Then by distributivity a = (([X')na) u (yra) € ([MX)uy. By
algebraicity we have [1 (xuy) = (f1X)uy and so the required
. xeX
equality. |

Thus event structures represent a natural class of domains.
Similarly morphisms on event structures induce morphisms on
domains.

are the properties they satisfy.

B8 Definition Let (DO’EO)’(D1’E be partial orders. Let f be

1

a function f: D0 - D1. Say f is

conditionally additive (c.a.) iff VXgDO.X+ = f(JX)=L]l£fX
conditionally multiplicative (c.m.) iff VXgDO.X#¢ &
Xt = £(MNX)=lT£X
(iidi (a) =< -preserving iff Vx,x'eDo.x——<x' = f(x)=<£f(x")
(b) —< -preserving iff Vx,x'EDO.x——<x' = f(x)—<£f(x')

(We use —< to mean —< UId.)

62

(i) Let ©: (EO,FO) - (E1,F1) be a morphism of event
structures. Then 6: FO--»F1 is c.a., c.m. and —<-preserving. If
& is synchronous then 6 is —< -preserving.

(ii) Let (EO,FO), (E1,F1) be prime event structures. Let
f: (Fo,g) - (F1,§) be c.a., c.m. and —< -preserving. Then there
is a unique event structure morphism 6:(EO,F0) - (E1,F1) s.t.

f = 8. If further f is —< -preserving then 6 is synchronous.

(i) needs a routine verification.
(ii) Let (EO,FO), (E1,F1) be prime event structures. Let f:FO-»F1
be a c.a., c.m. and —< ~-preserving function with respect to the
inclusion ordering on configurations. We show how f is induced by

an event structure morphism 6: E, »,E. so £ = 8.

0 1

Recall some basic facts explained more fully in [NPW1, 2]:

A prime interval is a pair [x,x'] where x—<x'. Define a relation
< between prime intervals by [x,x'] < [y,y'] iff x = x'ny and

y' = x'uy. Form an equivalence relation ~ as the symmetric transi-
tive closure ~ = (< U <_1)*. In fact, for a prime event structure,
events are in 1-1 correspondence with ~-equivalence classes of
prime intervals in the configurations because there [x,x'] ~ [y,y"'

iff x'~x = y'\y.

These facts make it easy to define the required event structure
morphism 6. Let x—<x' and y—y"' in (Fo,g) and [x,x'] < [y,y']
Then because f is c.a. and c.m. we get

£ (x)
£(y'

f(x'ny) f(x' n f£(y)

fF(x' u f(y).

f(x'uy)

Because f is —< -preserving too the above equations make f(x)—< f£(x'
iff f(y)—<£f(y'").

It follows that if [x,x'] ~ [y,y'] and f(x)—< f(x' then
[£(x),£(x')] ~ [£(y),£(y"']

63

Thus the following definition of 0: E; =4E is well-defined:

1
for e€E, take x,x'€F, s.t. x'~x = {e}; then if f(x)—<f(x"')
take 6(e) to be the unique event of f(x')~f(x), and otherwise

set 6 (e) = =*.

A simple induction on the size of x shows that for all finite

xEFO we have 8(x) = f(x). Thus as 6 and f are c.a. we have

6 = £. From the fact that f is c.m. it follows that 6(e) = 6(e') # =*
for e,e'€x, a configuration in FO’ implies e=e'. Thus 6 is an event
structure morphism inducing f. Any other event structure morphism
inducing f must act like 6 on prime intervals and so on events,

making 6 unique.
Clearly event structure morphisms which are total correspond to
—< -preserving functions as (i) and (ii) specialise to synchronous

morphisms. |

As a corollary we can exhibit a natural equivalence between a

category of domains and the category of prime event structures

B10 Definition Let D be the category of coherent distributive

algebraic domains with morphism. functions which are c.a., c.m.

and —< -preserving. Let ms be the subcategory with morphisms

yn
which are —< -preserving.

B11 Proposition Taking <:P -» D to act on objects by (E,F)r—>(F,c
and on morphisms by

) 6
1 (F,.c

defines a functor which is a natural equivalence of categories.

It restricts to a natural equivalence ':Psyn - msyn.

64

It is easy to check that ¢ is a functor. In [Mac]
(theorem 1, page 91) it is shown that a functor is an equivalence
of categories iff it is full, faithful and dense (i.e. every
object in the codomain category is isomorphic to an object in the
range of the functor) - all of which hold for *. |

This means that all the categorical properties of P, Psyn transfer
to b and msyn respectively. For example we know there are products
in D and msyn and what form they take. It is hard to see how one
could confirm the existence of products in b and Dsyn without the
aid of an event structure representation.

Viewed abstractly in the category I the approximation relation 4
corresponds to a special type of morphism on domains - the rigid
embeddings of Kahn and Plotkin (see [KP]).

Let DO’D1 be two cpos. Let f:DO - D1 be a con-
tinuous function. Say f is an embedding iff there is a continuous

function g:D1 - D0 called a projection such that

x for all x€D0

1°

g (f (x)
and f(g(y) = y for all yeD

Say f is a rigid embedding iff it is an embedding with projection g
such that y=f(x) = fg(y) = y for all xeDo, yeD

1.

B13 Theorem (i) Let (EO,FO) 3 (E1,F1) for two event structures.

Let 1 be the inclusion 1:E, - E.,. Then 1 is a morphism of event

0 1

structures such that T:(Fo,g) - (F1,§) is a rigid embedding.
(ii) The categories D and msyn have colimits of w-chains of
rigid embeddings.

Proof (i) routine verification.
f f
(ii) Let D0 50 D1 - ... Dn -% ... be an w-chain of rigid embeddings

By induction, there is a chain (EO,FO) g (E1,F1)§ .es g(En,Fn)s cee
of (prime) event structures with (Fn,g) ® D, so

65

Hh
I.".'ﬂil
v

D D

n n+1

.h 113

n
(Foe 2> (F_,..c

commutes for each n, where th is the inclusion map 1n:EﬂLq.En

+1
Let (E,F) be its 3-lub. Then (F,c) is easily seen to 23 the
colimit of the chain (Fo,c_:_)i0_>f(1-'1,E)J_> ceeg—{F,S) D5 L

Thus (F,c) is a colimit of D, 0. .. — >D_ ny B

Thus we see event structure concepts in a domain setting. The
categories E and P of event structures represent the category
D of domains.

One can base semantics for synchronised communication directly

on D, though this will be essentially the same as a semantics based
on prime event structures P because D and P are equivalent cate-
gories. One obtains labelled domains DL by labelling prime intervals
by elements of a synchronisation algebra L but in a ~-respecting

way (the same relation ~ as above). We leave the detailed definition
of DL to the reader; it should be equivalent to PL. The treatment

of recursion can be based on rigid embeddings. One expects a re-
cursive definition to correspond to an w=-cocontinuous functor, for
which we shall seek the "least fixed point". Starting with the null
event structure repeated application of the functor will yield an
w-chain of rigid embeddings. The least fixed point will be its
colimit (see [KP], [F], [P1]). There may be some lessons to be
learnt from the categories DL because they are closely akin to
labelled transition systems often used to give operational seman-
tics (used in e.g. [M1, 2]).

By the way the categories I and b do not have exponentiations

syn
so are not cartesian closed; however a larger category in which
morphisms are merely c.m. is cartesian closed and in fact is a

full subcategory of Gé€rard Berry's dI-domains with stable functions

(see [Berl’

66

Acknowledgements

I am grateful for discussions with Mogens Nielsen. Mogens has
previously given a prime event structure semantics to CCS. Thanks
to Gordon Plotkin for encouraging morphisms even when they were
quarter-baked. The stability axiom is essentially Gé&rard Berry's
"deterministic" condition [BC]. Related ideas appear in [Fland
[MS]. Many thanks to Karen Mgller and Angelika Paysen for typing
a symbol-laden paper. The work was supported in part by an SRC
grant directed by Robin Milner and Gordon Plotkin and in part by
the Royal Society.

References

[B] G. Berry, "Modéles complement adéquats et stables des
A-calculs typés", Thése de Doctorat d'Etat, Universit~
Paris VII, 1979.

G. Berry, P.L. Curien, "Sequential algorithms on. concrete
data structures", to appear in TCS.

[Bi G. Birkhoff, "Lattice theory", Coll. Pub., vol, 25,
Amer. Math. Soc., Providence, R.I., 3rd edition, 1967.

G. Gierz, K.H. Hoffman, K. Keimal, J.D. Lawson, M. Mislove
D. Scott, "A Compendium of Continuous Lattices", Springer-
Verlag (1980).

T. Fogh, "En semantik for synkroniserede parallelle pro-
cesser", Master's Thesis, Aarhus University, 1981.

C.A.R. Hoare, "A Model for Communicating Sequential
Processes", Programming Research Group, Oxford University,
1978.

[KP] G. Kahn, G. Plotkin, "Structures de Données concrétes",
IRIA-Laboria Report 336, 1979.

[LTS] P.E. Lauer, P.R. Torrigiani, M.W. Shields, "COSY: A System
Specification Language based on Paths and. Processes",
Acta Informatica 12, 1979.

67

[Mac S. Maclane, "Categories for the working mathematician"
Springer-Verlag, 1971.

G.J. Milne, "Synchronised Behaviour Algebras: a model for
interacting systems", Dept, of Comp. Sci., University of
Southern California, 1979.

[M1 R. Milner, "A Calculus for Communicating Systems",
LNCS 92, Springer-Verlag, 1980.

[M2] R. Milner, "On relating Synchrony and Asynchrony", Dept. of
Comp. Sci., University of Edinburgh, 1980.

U. Montanari, C. Simonelli, "On distinguishing between
concurrency and nondeterminism", Proc. Ecole de Printemps

on Concurrency and Petri Nets, Colleville, 1980 (to appear)

[NPW1 M. Nielsen, G. Plotkin, G. Winskel, "Petri nets, event
structures and domains", Proc. Conf. on Semantics of Con-

current Computation, Evian, LNCS 70, Springer-Verlag, 1979

[NPW2] M. Nielsen, G. Plotkin, G. Winskel, "Petri nets, event
structures and domains, part I", TCS 13, 1981.

W. Brauer (ed.), "Net Theory and Applications", LNCS 84,
Springer-Verlag, 1980.

G.D. Plotkin, "A Structural View of Operational Semantics”,
Lecture Notes, Computer Science Department, Aarhus Univer-
sity, 1981.

G.D. Plotkin, "Lectures on Domains", Summerschool, Pisa,
1978.

D.S. Scott, "Lectures on a Mathematical Theory of Computation”,

Lecture notes in mathematics, University of Oxford, 1980.

(W] G. Winskel, "Events in Computation", Ph.D. Thesis, Dept. of
Comp. Sci., University of Edinburgh, 1980.

	Abstract
	TABLE OF CONTENTS
	0. INTRODUCTION
	1. EVENT STRUCTURES
	2. A "CPO" OF EVENT STRUCTURES
	3. A CATEGORY OF EVENT STRUCTURES
	4. TWO SUBCATEGORIES, PRIME EVENT STRUCTURES AND TREES
	5. A SEMANTICS FOR COMMUNICATING PROCESSES
	CONCLUSION
	APPENDIX A, Sets and partial functions
	APPENDIX B, Domains of configurations
	Acknowledgernents
	References

