
~

=
I

~
C3t
CC

ISSN 0105-8517

~.

~
"".
=

~
~
-..

~
<
~
=

~
~
=
I")

=
~
~
~
~

e
~
=
"".
I")
rIJ
~
Q
~

~
~
~
~
=
Q.

~-
~
~
Q.

~
~
=

~
~

~rIJ

Glynn Winskel

DAIMI pB-159
April 1983

Computer Science Department

AARHUS UNIVERSITY

Ny Munkegade -DK ~ Aarhus C -DENMARK

r-phone: æ -7283 55

EVENT STRUCTURE SEMANTICS FOR CCS AND RELATED LANGUAGES

Glynn Winskel

Ab s tr c3;:ct

We give denotational sernantics to a wide range of parallel pro-

gramming languages based on the idea of Milner's ccs [M1], that

processes communicate by events of rnutual synchronisation.

Processes are denoted by labelled event structures. Event struc-

tures represent concurrency rather directly as in net theory [NT]

The sernantics does not sirnulate concurrency by non-deterrninistic

interleaving.

We first define a category ~ of event structures ([NPW1, 2], [W])

appropriate to synchronised comrnunication. The category bears a

natural relation to a subcategory of trees through an interleaving

functor; So results transfer to trees neatly. Then we introduce

the concept of a synchronisation algebra (S.A.) on labeIs by

adopting an idea of Milner [M2]. An S.A. specifies hoW tWO pro-

cesses synchronise via labels on their events. From each S.A., L,

we derive a category ~L of labelled event structures with natural

operations for Composing labelled event structures. In particular

the parallel Composition L is derived from the product in $. We

obtain sernantics for a class of CCS-like languages by varying the

S.A. Synchronisation algebras are very general So the class is very

broad, handling synchrony and asynchrony in a comrnon framework.

As a corollary we get an event structure semantics for ccs. When

interleaved our semantics is Milner's synchronisation/communication

tree semantics [M1]. However our semantics distinguishes more

terms as it reflects concurrency. Event structure semantics is at

a rather basic level of abstraction but should support all abstract

notions of equivalence (see [M1] for examples) , including those

which take concurrency into account.

TABLE OF CONTENTS

o. Introduction 1

1 . Event structures 7

2. A "cpo" of event structures 17

3. A category of event structures 25

4. Two subcategories, prime event structures and trees 35

5. A sernantics for communicating processes 42

Conclusion 54

Appendix A, Sets and partial functions 56

Appendix B, Domains of configurations 57

Acknowledgements 66

References 66

1

o. INTRODUCTION

We consider languages which are related to Robin Milner's

"Calculus of Comrnunicating Systems" -CCS, described in [M1].

The most important feature of the languages is the form of

parallel composition. The idea is that two processes comrnunicate

by events of mutual synchronisation which we illustrate by

a simple example. (The reader familiar with [M1] is warned that

our approach is not quite the same as Milner's; we do not

serialise, or interleave, event occurrences. We promise a neat

connection with Milner's synchronisation trees later.)

Consider a simple reading machine M capable of performing only

two events eO -the event of accepting a coin -and e1 -the event

of delivering an item. By event we mean w hat others might call an

event occurrence, so the machine is really quite short-lived; it

accepts one coin and delivers one item. Naturally it only delivers

the item af ter accepting a coin. We can represent the machine as

all the sets of events it can have performed up to various stages.

We call each set a configuration. Ordered by inclusion the con-

figurations are:

{eO'e1}

Uf

{eO}

Uf

Ø

Initially M has performed no events of interest, the configqra~

tion Ø; then it can perform eO to realise the configuration {eO}

and afterwards e1 to realise the configuration {eO'e1}. Notice

how the machine's behaviour in time is reflected by the inclusion

relation on configurations; configurations of events which have

occurred later include those which have occurred earlier. Such

diagrams can be simplified by using the "covering" relation. In

a partial order ~ one point x is covered by another y if x and y

are distinct and no point can be inserted in between. Formally,

2

x is covered by y is written x-< y and defined by:

x -<y iff x t y & vz.x~z~~ (x=z ar x=y) .
;2!

For the above partial order of inclusion, if one point covers

another it just means one action event has occurred so we can

draw

{eO'e1}

Uf

{eO}

U,

ø

e1

equivalentlyas spæifying w hat

r
.
ø

eo

the extra event occurs at each coveringo

To be of use the machine will be set in an environment consisting

perhaps of other machines and possible customers. To the en-

vironment the events eO' e1 are not generally of interest in

themselves. Rather it is their nature, w hat kinds of event they

are, that determines hoW, for instance, a customer interacts with

the machine. The machine M performs tWO kinds of events, accepting

a coin, abbreviated to a, and delivering an item abbreviated to i.

We label eO bya and e1 by 1 to indicate their kind, So:

f
f
.
ø

e1

M:

eo a.

Imagine OUr single machine in use. It relates to customers by

accepting a coin from them. At the very least a customer ShoUld

be able to perform an event of inserting a coin. This kind of

event is, in a sense, complementary to accepting a coin So we

3

label it by a. A typical customer C is modelled by:

ac: e2r.
ø

Recall this is real ly just an abbreviation for {~2}Where e2

Ø

a. A customer can do one event of the kindis an event af kind

insert a cain.

Now M can accept a coin from its environment and C can insert a

coin to his. In particular, when they are set together M can accept

a coin from c. This produc es a new kind of event, an event of syn-

chronisation between M and C, which we label by T. In the world of

just customers that can only insert coins and machines that can

only accept coins and deliver -we would not expect this newevent

to synchronise further. In a more varied world it might. Of course,

the synchronised event need not occur; quite possibly M could

accept a coin from elsewhere, perhaps from another customer, just

as C could spend his coin differently. flow are we to model this

parallel composition of M and C?

Firstly it is natural to take the synchronisation event as a

combination of the event eO of M, accepting a coin, and the event

e2 of C, inserting a coin. Name the synchronised event by a pair

(eO'e2) because to M the event looks like eO and to C the event

looks like e2. As explained we label it by L. W hat about a name

for the event where M accepts a coin from something in its en-

vironment other than C? To M the event looks like eO while to C,

who is only sensitive to having his coin accepted, it is invisible.

We introduce *, a sort of undefined, and name the event (eO'*) .

Clearly, it is the same kind of event as eO so we label it the

same by a: Similarly there is an event(*,e2) labelled & corres-

ponding to C inserting his coin into something other than M and

an event (e1'*) labelled 1.

4

w hat form do the configurations of the parallel composition of

M and C take? Suppose first M and C do not synchronise. Then M

can deliver an item (e1'*) only after accepting a coin (eO'*)

and both events are independent of C inserting a coin, (*,e2) .

All these events are performed with the environment and not with

each other. Alternatively together they synchronise to perform

the event (eO'e2) whereupon M can do (e1'*) .It is not possible

for (eO'*) and (eO'e2) to occur together. This informal argument

should convince the reader that the parallel composition (MIC)

of M and C has the folIowing configurations

(M Ic) (*,e2) (*,e2)

There are several points to note about this diagram. Notice that

intuitively the events (eO'*} and (*,e2} (and similarly (e1'*} ,

(*,e2}} are concurrent in that they can occur independently, and

this fact is reflected by the little commuting square O

Notice too there are obvious projections from the parallel com-

position (MIC} back to the component processes M and C; for

example the configuration {(eO'e2}' (e1'*}} in (M IC} projects to

the configuration {eO'e1} of M and to the configuration {e2} of c.

This is natural and expresses the intuition that the behaviour of

a compound process should be consistent with the behaviours of

its processes. Interestingly we shall derive parallel composition

from a product, in a category suitable for synchronised commu-

nication, thus giving mathematical leverage to the idea of pro-

jecting down to a subprocess.

5

The category will have event structures as its objects; an event

structure consists of a pair, a set of events and a set of configu-

rations, satisfying suitable axioms. Processes will be denoted

by labelled event structures where the labels specif y the kinds of

events. In the machine-customer example it is intuitively clear

how two events of certain kinds may or may not combine to form

synchronised events. But of course it can all be done more abstractly.

We just need a general way to say when and how pairs of labelled

events can combine to form synchronised events and w hat labels

such combinations carry. We shall do this by using synchronisation

algebras on labels. The idea is to have a binary composition ope-

ration, e, on a set of labels. When a pair of events of which two

labels do not synchronise we make the composition of the labels

give O. For example we would make a.a = 0 and a.t = 0 for our

machine and customer. When two labelled events can combine we

make the labelled compositions give the new kind of the synchronised

event e.g. in our example a. a = T. Our machine-customer example

also makes clear that there may be some asynchrony in the parallel

composition. In fact there, every event of M and C could occur

asynchronously in the parallel composition; every event of M need

not be synchronised with an event of C and vice versa, reflected

by all those events of the form (eo,*), (e1'*) and (*,e2) in the

parallel composition. To allow asynchrony we introduce another
constraint * into the algebra. Then for example a. * = a shows an

event of kind a can occur asynchronously in a parallel composition

and that its new kind in the parallel composition is still the

same, viz. a. Our machine-customer example would have this syn-

chronisation algebra:

6

The parallel composition (MIC) consists of events determined

by the synchronisation algebra and configurations which are

subsets of these events which "project down" to configurations

of M and C.

This gives a rough idea of how we shall model the parallel com-

position of two processes. Of course we shall model other opera-

tions on processes and need techniques for defining infinite event

structures recursively. Then we can give denotational sernantics

to a range of such languages of which ccs is typical. Of course

we also want methods for relating our sernantics to others

especially Milner's. The details follow.

7

.EVENT STRUCTURES

Processes are modelled by event structures. An event structure

consists of a set of possible event occurrences together with a

family of configurations; a configuration is a set of events

which occur by some stage in the process, possibly af ter infinite

time. To define operations on event structures neatly we modify

the definition of [NPW1, 2] so that an event can occur in several

incompatible ways. The definition is motivated further in propo-

sition 1.8.

Notation Let F be a family of subsets of a set E. Let xSF.

We write xtF for 3yEFVxEX.x~y and say X is compatible. When x,yEF

we write xtFy for {x,y}tF.

(iii

coherent VX~F.(Vx,yEX,xtFy) ~VXEF

stabl~ ~X~F.X#Ø & xtF ~ {\XEF

coincidence-free VxEF Ve,e'Ex.e#e' ~3yEF.y~x &

((eEy & e'~y) ar (e~y & e'Ey))

f-initary , VxE F Ve Ex 3yE r. eEy & ys x &. 1y I < =

In addition, we say an event structure is full when it satisfies

VeEE 3xEF.eEx (i.e. E = UF) .

1.2 Example Let E = {0,1,2} and F be

{0,2}

U

{0}

{0,1} {1,2}

V

{ 1 }

~v ar equivalently

~ v
ø

8

where ~is the covering-relation representing the occurrence of

one event. Then (E,F) is an event structure. The events O and 1

are concurrent, neither depends on the occurrence or non-occurrence

of the other to occur (see [NPW1, 2] and [NT]) .The event 2 can

occur in two incompatible ways, either through event O having

occurred or event 1 having occurred. This possibility makes event

structures of 1.1 easier to work with than those of [NPW1, 2].

1.3 ExampIe "A ticking cIock". Let Q consist of events wand

configurations the sets Ø,{0},{0,1}r...,{0,...,n},...w. Then Q is

an event structure which modeIs a cIock ticking 0,1,2,... .

1.4 Example Coincidence-freeness. Let E = {0,1} and F = {0,{0,1}}.

Then (E,F) is not an event structure. It is not coincidence-free.

The "events" 0 and 1 are coincident in that together they behave

like a single event with respect to F.

1.5 Example Finite causes. Let E = wU{=} and F = {0,{1},...,

{1,2,...,n}, w,wU{~}}. Then (E,F) is an event structure which is

not finitary. The event = can only occur after the finite set of

events w. Nor is the event structure (E,P(w)U {w U {=}}) firlita.ty.

Such processes are unnatural in computer science because they

require an infinite set of events to occur within a finite time.

1.6 Example Fullness. The event structure ({e},{Ø,{e}}) is
, .

full whJ.le the event structure ({e},{Ø}) is not full. For con-

venience we do not assume all event structures are full. Clearly

any event structure (E,F) determines a full event structure (UF,F).

with the same configurations. With trivial modifications all our

results hold with the assumption of fullness.

The next proposition motivates the axioms of 1.1. It shows that

event structures possess an intrinsic causal dependency relation

local to each configuration. The stability axiom ensures that

when an event is in some configuration its occurrence has depended

on a unique set of events. The set on which the event depends will

be finite because of the finitary axiom and the dependency relation

9

will be a partial order because of coincidence freeness. The ways

in which events can occur correspond to complete primes of con-

figurations ordered by inclusion; they form a subbasis making the

domain of configurations prime algebraic [NPW1, 2].

1.7 Definition Let (D,~) be a partial order. Let pED. Say p

is a complete prime iff for all X~D when the lub UX exists and

p ~ Ux then p ~ x for some x EX. Say D is prime algebraic iff

VxED.x = U{p~x p is a complete prime}

1.8 Proposition Let E be a set and Fs:P(E) .Then

(i) (E,F) is coherent according to 1.1 iff (F,~) is a coherent cpo

such that for all ~F if the lub of X exists it is Ux. (Thus ØEF.)

For xEF define the causal denendenc" relation ~ on x by e~ el <=>~-, T ~ X -X

VyEF.y~x => (e.Ey => eEy) and for eEx define [e]x =;: {e.Ex I el~xe}.

Then [e] =~{zEF I eEzcx}, and we havex -

(ii If (E,F) is coherent then

(E,F) is stable according to 1.1 iff VxEFVeEx.[e] EF
x F

and Vx,yEFVeExQy.xt ~[e] =[e]x y

(iii 1.1 iii(E,F) is coincidence-free according to

~~ is a partial order for all xEF.

(iv) Tf (E,F) is stable then

(E,F) is finitary according to 1.1 iff VxEFVeEx.

Suppose (E,F) is coherent and stable. Then (F,~) is a coherent

prime algebraic partial order [NPW1, 2]; the complete primes are

of the form [e] for xEF and e Ex. Further (E,F) is finitary iff
x

each isolated element of the domain (F,~) dominates only a finite

number of elements.

Let E be a set and FSP(E)Proof as above

is obvious.

These two facts follow from the definitions of ~ and [e] :
x x

For xEF the relation ~ defined above is a preorder on x and for
x

e Ex we have [e] = A{zEF I eEz~x}, a more workable characteri-
xsation of [e] than its definition. .

x

(ii) Assume (E,F) is coherent.

"=}" Suppose (E,F) is stable. Let e Ex and xEF. Then as

{yEF I eEysx}tF we have [e]x = ~{yEF I eEysx}EF. Let x,yEF and
F F

xt y and eExny. Then [e] , [e] EF and [e] t [e] so eE[e] n[e] ~x
x y x y x y

with [e] n[e] EF. Thus [e] c:[e] , and similarl y [e] c:[e] .
x y x- y y- x

Therefore [e] =[e] as required.
x y F

"<=" Suppose 'v'xEF'v'eEx.[e] EF and 'v'x,yEFVeExny.xt y=>[e] =[e] \
x x y

Let ØfX~F and xtF.lChoose x EX. Let eEAX. Then [e] =[e] for all
x y

y EX. Thus f\X= V [e] .Now by coherence{\XEF. As required, (E,F)
.eEI\X x

J.s stable.

(iii) Fallaws directly from the definitions af ~

freeness.

x and coincidence-

(iv) Assume (E,F) is stable.

II=)" Suppose (E,F) is finitary. Let e Ex and xEF. Then .for some

finite zEF we have eEzcx. B y the characterisation of [e] it must
-x

al so be finite.
"<= II Let eExEF. Then as (E,F) is stable [e] EF and clearly

x
eE[e] cx. Thus if [e] is finite for all xEF and e Ex we get thatx- x
(E,F) is finitary.

Assume (E,F) is coherent and stable.

Let yEF and eEy. Then as (E,F) is stable [e] EF. We show [e] is
F y y

a complete prime. Let XcF and Xt .Suppose [e] cUX. Thenfur some
-y-

x EX we have e Ex. Also as [e] tFx we have eE[e] nxcy withy y -
[e] nxEF. Thus by the characterisation of [e] we have [e] c[e] n x

y y y- y
so [e] cx. Thus [e] is a com p lete p rime.

y- y

11

Suppose (E,F) is also finitary. Let x be an isolated element

of (F,S) .Take S to be the directed set of all finite unions of

complete primes below x. Then x = Vs and as x is isolated xSs

for some sES. Thus x is a finite union of finite sets and so finite.

Conversely as complete primes are isolated assuming isolated

elements are finite implies that (E,F) is finitary. This means

(E,F) is finitary iff each isolated element dominates only a

finite number of elements. .

As a corollary to 1.8 (ii) we can relate the stability axiorn of 1.1

to the concept of stable function due to Gerard Berry (see [B] and

[BC]) .It is thus axiorn (ii) of 1.1 derives its narne.

1.9 Corollary Let E be a set and FSP(E) satisfy the coherence

axiom. Let ~ be the two element cpo ~~T. For each eEE define

~e: (F,S) ~ ~ by ~e(x) = T if, e Ex, ~ otherwise. Then (E,F) is

stable according to 1.1 iff for all eEE the function)V is stable
e

in the sense of Berry [B].

Proof Recall the definition of a stable function. Let A,B be

cpos. Let f:A~B be continuous. Then f:A~B is stable iff

VxEAVyEB y~f(x) 3M(f,x,y)EA such that Vz~x.~f(z)~M(f,x,y)~z.

Hence M(f,x,y) is the least element z less than x such that

y~f(z). Clearlyeach X above is continuous as (E,F) satisfies
e

the coherence axiom. If (E,F) is stable in addition then take

M(X ,x,T) = [e] to show ~ is a stable function. Conversely
e x e

supposing each Ze is stable if eExEF we have M(Xe,x,T) =

f'\{zEF I eEzs:y} = [e]x so [e]xEF, while if eExny for xty in f we

have [e] = M('V ,xUy,T) = [e] .Then by 1.8 (ii) we have (E,F)
x /l.ie x

is stable. .

the louobo of the complete primes it dominateso This means

(F,S) is a prime algebraic poo It is obviously coherento

12

1.10 Example Let (E,F)be the event structure of example 1.2.

Let x = {0,2} and y = {1,2}. Then [2] = x and [2] = yx y

correspond to the two ways the event 2 can occur.

Proposition 1.8 suggests a subclass of event structures for which

each event can occur and always causally depends on the same set

of events, no matter in w hat configuration it occurs; so then events

correspond to complete primes.

is1.11 Definition Let (E,F) be an event structure. Say (E,F

prime iff it is full and Vx,yEFVeExny.[e] = [e] .
x y

For prime event structures the local causal dependency relations

(~ for configurations x) are restrictions of one global cau~alx
dependency (~) and incompatibility of configurations stems from

a pairwise incompatibility, or conflict (#) , between events. In

accord with intuitions the configurations are then precisely the

left-closed consistent subsets (w.r.t. ~ and #) .

1.12 Definition Let (E,~,#) be a set E with partial order

~ and binary symmetric relation #. Define the left-closed consistent

subsets of E by xEL(E,~,#) iff x~E

& Ve,e'.e'~eEx ~ e'Ex (left-closed)

& Ve,e'Ex.,(e#e') :(consistent)

1.13 Proposition Let (E,F) be a prime event structure. Define

the relations ~ (called the causal dependency relation) and #

(called the conflict relation) on E by

e'~e iff VxEF.eEx ~ e'Ex

e#e' iff VxEF.eEx ~ e'tx

Then ~ is a partial order s.t. [e]=def {e'EEle'~e} is finite for

all eEE and # is a binary irreflexive symmetric relation s.t.

e#e'~e" => e#e" for all e,e',e"EE. Purther the configurations f are

precisely the left closed consistent subsets L(E,~,#}.

13

Conversely, suppose (E,~,#) consists of a partial order ~ and

binary symmetric relation # s.t. I [e] I«X) and e#e'~e" ~ e#e" for all

e,e',e". Then (E,L(E,~,#» is a prime event structure.

Proof Let (E,F) be a prime event structure. Take ~ and # as

defined above. From 1.8 clearly they satisfy the properties stated

above and any configuration is a left closed consistent subset w.r.t.

~ and #. Also any left-closed consistent subset is a configuration

by the coherence of (E,F).

Let (E, ~,#) consist of a p.o. ~ and symmetric relation # s.t.

I [e]!<= and e#e'~e" ~ e#e" for events e,e',e". Then it is easily

veriIied that (E,L(E,~,#» is a prime event structure. .

1.14 Example We show the configurationsofa prime event structure

alongside its causal dependency ~ and conflict relation #. Its

events are {0,1,2}.

1

Consequently prime event structures are in 1-1 correspondence with

structures (E,~,#) which consist of a set of events w~th causal

dependency and conflict relations satisfying simple axioms. They

give a simple, intuitive model of concurrent processes related

to net theory in [NPW1, 2] and [W]. In fact any event structure of

1.1 determines a prime event structure with an isomorph~c domain

of configurations by taking the complete primes as the new events.

~ 3xEF. z = {[e]
x

e EX}

14

1.16 Proposition Let (E,F) be an event structure.

Then Pr(E,F) is a prime event structure; its events are the

complete primes P of (F,c) , its causal dependency relation is

~tP and its conflict rel~tion is tF~P.

where F are the configuration
p

I e Ex} with inverse y r--> Vy.

There is an isarnarphisrn (F,c) ~ (F ,c)
-p -

af Pr(E,F); it is given by x r--> {[e]
x

-Proof Let (E,F) be an event structure. Take P = {[e] I eExEF}
x

-then P is the set of complete primes of (F,S) by proposition 1.8.

Take ~ = S ~P and # = ~~P as above. Certainly (P,L(P,~,#» is a

prime event structure. For any configuration x of Pr(E,F) we have

xEL(P,~,#). Conversely if yEL(P,~,#) then by coherence UyEF. But

then y = {p S Vy I p is a complete prime}. (The inclusion "S" is

obvious. Suppose pEr.h.s. Then psp'Ey as p is a complete prime,

which as y is left-closed roeans pEy.) Thus y ={[e]uy I eEVy} and

y is a configuration of Pr(E,F).

.isomorphism follows directly from prime algebraicity.

We work with more general event structures because it is difficult

to define parallel composition directly on prime event structures;

for prime event structures events correspond to the ways they can

occur so to compose them in parallel we must duplicate as many

copies of an event as there are ways in troduc ed for it to occur.

In the more general class we avoid a messy inductive naming of events,

and can "tap out" prime event structures by the construction Pr.

Trees are anather simple kind af event structure.

1.17 Definition An event structure (E,F) is a pre-tree iff

vx,yEF.xtFy ~ x~y or y~x. A tree is an event structure which is

prime and a pre-tree.

15

1.18 Example

configurations

The event structure with events {0,1,2} and

The event structure with events {0,1,2,3} and configurations

The reader may check that the configurations of a pre-tree are

isomorphic to sequences of events ordered by extension -so

configurations correspond to partial and maximal branches -and

that for a tree the events correspond to arcs. For this reason

we shall often write a tree as (A,B) consisting of events A -

for "arcs" -and configurations B -for "branches". By insisting

a tree is prime we have "abstracted away" from the events of

which it is built. (This is justified formally when morphisms

are introduced; then the tree and pre-tree above will not be

isomorphic.)

To sum up we have a class of event structures which includes trees

and those event structures of [NPW1, 2] which satisfy a simple

finiteness restriction.

With an eye to possible generalisations we note: The coherence

axiom is rather strong, too strong for the event structures of

1.1 to model processes such as "fair merge" in a natural way;

not all infinite cohfigurations would correspond to a possible

infinite behaviour of a fair merge. Perhaps there is an appropriate

weaker substitute for which much of the following work still goes

16

through. One advantage of the coherence axiom, however, is that

it allows a smooth connection with Petri nets via the work of

[NPW1,2]. The stability axiom would go if one wished to model

processes which had an event which could be caused in several

compatible ways -see [KP] and [W] for examples; then I expect

complete irreducibles would play a similar role to complete

primes here. The axioms in 1.1 are like those for a topology.

Possibly they can be modified to model continuous processes but,

of course, then the finiteness axiom should be dropped.

Those familiar with [KP], [BC], or [W] may w onder why we do not

work with event structures (E,~,#) where E is a set of events,

~~P(E)xE is an enabling relations and # is a conflict relation.

The main reason is that our morphisms will only be interested

in events and configurations, not the exact nature of ~ and #.

Besides the complete primes (the [e] IS) give us an enabling
x

relation, a rather special one because in a configuration an event

is enabled in a unique way, a propert y unfortunately called

"deterministic" in [BC]. (Note incidentally that because of

example 1.2 configurations and events are a bit more general than

those of "deterministic" event structures (E,~,#) with a binary

conflict relation.)

17

2. A "CPO" OF EVENT STRUCTURES

By restricting the configurations of an event structure (E,F)

to those inside a subset E' of E a newevent structure is

formed.

2.1 Definition (E, F)

(E,F) ~E'

Let be an event structure. Let E' ~ E

to be (E',F') where F' =Define the restriction

{xE F I x~E ' } .

2.2 L emma (E,F) ~E'The restriction above is an event struc-

ture

Proof All the properties (i) -(iv) of 1.1 required for

(E,F) ~E' to be an event structure follow directly from the corre-

sponding properties of (E,F) ..~

Such restriction accompanies an idea of substructure -the relation

~ below.

(EO'FO) , (E1'F1

iff EO S E1

be event structures

and
FOS F1

and Vxs Ea"xE F1 ~ x E Fa"

2.4 (EO'FO) ,

iff EO s: E1

Lemma Let (E1 ' f1

and

be event structures. Then

(EO'FO) = (E1 ,F1) ~ EO.(EO'FO) ~

Proof Directly from the definitions. .

2.5 Example Let

events Eo ={0,1},

(Eo,Fo) , (E1'F1) be event structures with

E1 = {0,1,2} and configurations as shown:

18

{0,1}

~

{0,1}

~

{2,1}

v
{o} {o} {2}Fa: F1:

~ u~

ø ø

..

(EO'FO) ~ (E1'F1).

In (EO'FO) the event

(E1'F1) the event 1

or after event 2. So

1 to occur even though

The relation ~ specifies the sense in which one event structure

approximates another. Our sernantics for recursively defined proces-

ses is based on the relation ~ .Event structures ordered by ~

almost form a cpo. The ordering is not a cpo merely because

event structures form a class and not a set. (The same kind of situ-

ation occurs in [S] and [BC].)

Ux

nEw

xEF e: Fiff in which(x~E & ('v'nEw.x & x = n' ,nn

z!:;X}x n

(ii Let A be a set. Define]f;
A

structures (E,F) with ESA. Then

hottom element <0,{0}) and l.u.h.s

to be the set of event

(tA'~) is a c.p.o. with

af chains given as abave in

1 can only occur af ter the event O. In

can occur in two ways, either af ter event 0

(E1'F1) introduces a new way for the event

19

(i) Let (EO'FO)~...~(En'Fn)~... be an w-chain of event

structures. Take (E,F) as defined above. As above, for x SE we

take x n = V{zEF Izcx}. Note for xcE we have x c x if n~m.
n --n- m

Firstly we check that (E,F) is an event structure.

Proof

Coherent F
Suppose x~F and Vx,yEX.xt y. If x,yEX then x,y~z for

some zEF. Thus x ,y cz where x ,y ,z EF for nEw. Consequently
n n- n n n n n

{x IxEX} is pairwise compatible in (F ,c) .Thus U x EF .
n n- x EX n n

u x i then clearly (Ux) EF
x EX n n

and=
n

u (Ux) n
n

so UXEF as required. The inclusion U x c(Ux) is obvious. To
n- n

show the converse inclusion supposeXEX eE(UX) .Then as (E ,\F)
n n n

is finitary for some finite zEF we have eEzcVx. For each e'Ezn -
there is some x EX with e'Ex. Thus as xEFthere is some mEw for

which e'Exm. However as z is finite we can choose some m, uniformly,

so that z~ Ux .Now by the definition of ~, zEF and, as above,
x EX m m

U x EF .Thus for each x EX, ztFmx so z n x EF .This implies
x EX m m m m m

z n x EF by the definition of ~. Therefore eEz = znV x =
m n x EX m

lJ (xmnz) = LJ x. We have shown the required converse inclusion
x EX x EX n

(Vx) c U x .
n-xEX n

Coincidence:::fI;ee Let e,e'ExEF and e*e'. Then e,e'Ex for some
n

nEw. As (E n 'F) is coincidence-free eEz~e'~z for some zEF s.t.
n n

ZSxn. But it is easily checked that zEF so (E,F) is coincidence-

free.

Finitarv Suppose eExEF. Then e Ex for some n. Then eEzcx for' n -n

some finite ZEFn. This gives zEF and eEzsx as required.

20

Therefore (E,F) is an event structure. We now show it is the lub

of the chain (E O I F O) ~ ...~ (E I F) ~ n n

For (E,F) to be an upper bound we require (E ,F)~(E,F) for all
n n

nEw. Clearly En~E. From the definition of ~ it follows that Fn~F.

Suppose xc:E & xEF. Then x = V
E x with x EF for all mEw. However,

-n mwm m m

x c:E so by the definition of ~ we get x EF for each mEw. As (E n 'F nm- n m n
is coherent and x Oc:...c:x c:... is a chain in F we have x=Vx EF

n .

--m- n m m

Thus (E ,F)~(E,F) for all nEw so (E,F) is an upper bound of the
n n

chain.

To see (E,F) is the least upper bound of the chain, let (E'.,F') be

an event structure which is an upper bound of the chain. Then cer-

tainly E~E' and V Fn~F'. Let xEF. Then the chain x O S...Sx~S... is
nEw

included in F'. As (E',F') is coherent X=~XnEF'. Thus Fs.F'. Sup-

p ose now yEF' & yc:E. We have

y = V{zEF Izsy}EF' so as (E ,F

n)~(E',F') -n n n

we get y EF .Clearly Vy c:y. To show the converse inclusion, take

n n n n-

eEy. Then as (E',F') is finitary eEzsy for some finite zEF'. As z

is finite zc:E for some n. But (E ,F)~(E',F') so zEF .Evidently

-n n n n

zc:y. Thus eEVy .Therefore y=Uy .So (E,F)~(E',F') and (E,F) is

-n nn nn

the least upper bound of the chain of event structures.

ii Obvious, by (i) . .

The naturalness of ~ andits lubs is easier to see on prime event

structures because then the way an event can occur stays fixed

in a ~-chain.

2.7 Proposit,ion (i) Let (Eo,Fo), (E1'F1) be prime event structures

with causal dependency relations ~O' ~" and conflict relations

0 '# 1 .For eEE. write [e] .=~ f '.{e'EE.le'~.e}, for i = 0,1. Then
1 1 ...e 1 1

(Eo,Fo)~(E1'F,) iff Eo.SE, & (VeEEo0[e]0 = [e],) & #O = #,1'EOO

iff Fo.SF1' & VxEF10xnEoEF00

Let (EO'FO)~...~(En'Fn)~... be an w-chain of prime event structures.

Let (E ,F n) have causal dependency and conflict relations ~ ,# .n n n

21

Then the lub of the chain is (E, F) where E = VE E and x6F iff
n w n

VnEw.xnEnEF; the lub (E,F) is prime with causal dependency rela-

tion $ = nld:~n and conflict relation # = nl{w#n.

iii) Let (AO ,BO) , (A1 ,B1) be trees. Then (AO'BO) ~ (A1 ,B1) iff BO~B1.

Let (AO'BO)~... ~ (An'Bn)~... be an w-chain of trees. Then its lub

is a tree (A,B) where A = VA and xEB iff VnEw.xnA EB .
nE w n n n

Proof (i) Let (Eo,Fo), (E1'F1) be prime event structures with

causal dependency and conflict relations as above. Suppose

(Eo'Fo)~(E1'F1) .Then EoSE1. Let eEEo. Then [e]oEF1 so [e]1~[e]0.

However then by the definition of ~, eE[e]1'EFo. This implies

[e]o = [e]1. Now, let e,e'EEo. Then e#oe'~ [e]o}O[e']o ~

[e]oU[e']oEFo ~ [e]1U[e']1EF1 ~ [e]1~[e']1 ~ e#1e' using proper-

ties of ~. Thus (Eo,Fo)~(E1'F1) => EoSE1' & (VeEEo.[e]o = [e]1) &

#O = #1 ~o. To show the converse implication assume the r.h.s.. Then

Eo.SE1 and XEL(Eo,~0,#o) ~ XSEo & XEL(E1'~1'#1) .This gives

(Eo, Fo) ~ (E1 ' F1) .

We show the second equivalent. Suppose (EO'FO)~(E1'F1) .Then FO~F1.

Also if xEF1' then xEL(E1'~1'#1) .Thus by the first equivalent

XnEOEL(EO'~0'#O) = FO. Conversely suppose FOSF1 and VxEF1.xnEOEFO.

Then by fullness EOSE1. Also if xs:EO and xEF1' then x = xnEOEFO.

This gives (EO'FO)~(E1'F1) .

Now let (EO'FO)~...~(En'Fn)~... be a chain of prime event structures

so (E ,F) is associated with the relations < ,# .Take ~ = U~
n n -n n n n

and # = U# .Define (E,F) by E = UE .and F = L(E,~,#) ; it is a prime
n n n n

event structure. Then b y the definition of~ as F = L(E ,< , #) we
n n -n

get (E ,F)~(E,F) .This roeans (E,F) is an upper bound of the chain.n n
By Theorem 3.6 the lub of the chain is (E,F') for some set of con-

figurations F'. Thus (E,F')~(E,F) .However by the definition of ~

we then have F' = F. Thus (E,F) is the lub. Clearly xEL(E,~,#) = F

iff xnE EL(E ,~ ,#) = fn for all n.
n n n n

(ii) Let (AO'BO)' (A1'B1) be trees. Obviously (AO'BO)~(A1'B1) im-

plies BOSB1. Suppose conversely that BOSB1. Then AOSA1 by fullness.

22

Let aEAO. Then [a]1~[a]O where [a]i is the smallest configuration

in Bi ~~ntaining a. Let a'E[a]O and a'*a. Then ai[a']oEB1 and

[a']ot [a]1 so [a']0~[a]1 as (A1'B1) is a tree. Thus [a]OS[a]1.

Therefore [a]O = [a]1.

Remembering for trees that compatible configurations are com-
B B

parable we get [a]ot O[a']o iff [a]1 t 1[a']1 for a,a'EAo.

Thus a#oa' <=> a#1a' for a,a'EAo, where #0'#1 are the conflict

relations of (Ao,Bo), (A1'B1) respectively.

By i) we have (AO'BO)~(A1'B1 .

The recursive definition of a process will be associated with an

operation continuous w.r.t. ~. The denotation of the recursively

defined process will be the least fixed point of the operat~on.

2.8 Definition Let op be an n-ary operation on the class of e-

vent structures.

Say op is monotonic iff when for event structures we have

E1~E1'...En~E~ then

op (E 1 ' o. o, En

op is continuous iff for all countable chains

E11~E12~. ..~E1i~. ..

E 1 ~E 2 ~...~E .~...
n n nJ.

we have op (~ E1i ' o o o ~I Eni

1 1

where U denotes the lub with respect to ~.

As is wellknown (see[S]) an operation is continuous iff it is con-

tinuous in each argument separately. Given this the following lem-

ma provides simple necessary and sufficient conditions for an ope-

23

ration to be continuous on event structures; it should be mono-

tonic and act continuously on the component sets of events orde-

red by inclusion.

2.9 LernIna Let op beaunary operation on t. Then op is continu-

ous iff (i) op is monotonic and (ii)if(E O 'F O)~...~(E ,F)~... isn n
a chain in :It then each event of op(U (E ,F)) is an event of

n n~Op(En'Fn). n

Proof "=>,, obvious.

"40;" Suppose (i) and "(ii) above.. Let (EO'fO)~...~(En'Fn),s1... .Thenas

op is monotonic the event structure U op (E, F) exists and
n n n

UOp(E n 'F n).1op(t1(E ,F n ». Now by (ii), Ilop(E ,F) and op(11 (E ,F
n ~ n Ir n n l'r n n

have the same events. From the definition of ~ they have the same

configurations. Thus Ilop(E ,F) = op(U (E ,F ». Therefore op is
'n' n n n n n

continuous. .

As an example we show how the operation Pr is continuous. Recall

from 1.15,16 that from an event structure Pr constructs a prime

event structure with an isomorphic domain of configurations. This

will mean Pr commutes with the operation of defining event struc-

tures recursively.

2.10 Theorem The operation Pr defined in 1.15 is ~-continuous.

Proof We use lemma 2.9.

We first show Pr is monotonic w.r.t. ~. Suppose (Eo,Fo).1(E1'F1)

for event structures (EO'FO) and (E1'F1). We requi;X:-e pr(Eo,Fo) ~

Pr(E 1 'F 1). Let Pr(E.,F.) = (P. ,n.) for i = 0,1, so P. the set of
1 1 1 1 1

complete primes of (Fi'S~F Suppose POEPo. As (Eo,Fo)~(E1'F1,) we
have POEF1. Assume YSF,Yt' 1 and PoSVY.Then Po = (Vy)nIU' =yl{yYnpo

where ynpoEF1 and ynposEo so ynpoEFo for each yEY. Thus as Po is

a complete prime of Fo' PoSY for some yEY. Therefore Po is a com-

plete prime of F1. Consequently POSP1. Now from the definitions of

24

no and n1 -see 1.10- as (Eo'Fo)~(E1'F1

This roeans pr(Eo,Fo)~pr(E1'F1) .

we get zEll1'& ZSPO<=>zEnO.

We now show Pr is continuous on event sets. Let (EO'FO) ~...~(En'Fd;;)..

be a chain of event structures with lub(E, F). Let p be an event

of Pr(E,F) , so p is a complete prime of (F,S) .To use Lemma 2.9

we require that p is an event of pr(En'Fn) for some n. However p

is fini te so pC=E for some n (we have' E = VE) .Now pE F as
-n n n n

(E F)~(E,F). Also as p is a complete prime of (E,F) it must be a
n n

complete prime of (En'Fn) .Thus p is an event of -Pr(En'Fn) as re-

quired.

Applying 2.9 gives Pr is continuous. .

As a corollary we can give another characterisation of the lub of

an w-chain of event structures ordered by ~. The lub is simple to

define for prime event structures in terms of their causal depen-

dency and conflict relations. So,we first convert an w-chainof arbi-

trary event structures to a chain of prime event structures using

Pr, find its lub and then image back using Lemma 1.16 which shows

the isomorphism between configurations of an event structure and

its image under Pr.

2.11 Coro!lary Let (EO'FO)~...~(En' n)~... be an w-chain of

event structures. It has lub (E,F) where E = n"wEn and

xEF4"* 3zEL(P,s;.,t) .x = lJz where

p =

v tFn

nEw l'
and t =

Proof From the ~-continuity of Pr we have Pr(E,F) = U pr(En'Fn
nEw

From Lemma 1.16 we know F is the image of the configurations of

Pr (E, F) under V. .

25

3. A CATEGORY OF EVENT STRUCTURES

We define a rather basic class of morphisms on event structures.

They are partial functions between event-sets which respect

events and configurations. An event is imagined to synchronise

with its image event whenever this is defined. One notable example

of morphism will be a projection from the compound process of an

event structure put in parallel with another back to the original

event structure -see the product of event structures 3.4. Refer

to the appendix for our treatment of partial functions -we use

* to represent undefined -and a formal definition of the 4

operator which extends a function on events to a function on subsets.

be event structures.

(EO'FO)~(E1'F1) is a partial

(i

and (ii) VxEFOVe,e'Ex.8(e)=8(e'
f * =>e=e' .

A rnorphisrn e is synchronous iff e is a total function

Note that condition (ii} above says no two distinct events are

together synchronised with a common image event. Notice if we

have (EO'FO}~(E1'F1}' for two event structures (EO'FO} and

(E1'F1}' then the inclusion map i: EO~E1 is a morphism, in fact
A

a rather special one, so i is a rigid embedding in the sense of

Kahn and Plotkin [KP].

3.2 Example Let (EO'FO)" (E1'F1) be event structures with

EO = {aO'a1'bO'b1}' E1 = {a,b} and configurations

~Fo~

V
ø

26

Then 8 defined so 8(aO)=8(a1) =a and 8(bO)=8(b1)=b is a

(synchronous) morphism. (Incidentally this morphism, although

total, cannot be induced on event structures by a net morphism

on Petri nets ~ see [NT], [NPW1, 2].)

It is easy to check that the morphisms defined above give a cate-

gory of event structures with the usual composition of partial

functions and identity morphisms the identity functions on sets of

events.

3.3 Definition Define t to consist of objects event structures

and morphisms as defined in 3.1 with composition that of partial

functions Set * defined in the a pp endix. Define t to consist of= sYI;l

event structures and synchronous morphisms with the usual composi-

tion of functions.

3.4 Proposition Both ~ and ~ are categories with identity
syn

morphisms the identity functions. We have ~ is a proper sub-
syn

category of ~. Both categories ~ and ~ have the null event
syn

structure (Ø,{Ø}) as initial object. The null event structure is

also the-terminal object of ~ (but not ~) .
syn

Let e: (EO'FO) -+ (E"F1) be a morphism in E. Then e is an iso-

morphism iff e is a total 1-1 and onto function such that
A

XEFO ~ e(x)EF,.

e is a monomorphism in E (E
syn

e is an epimorphism in E (E
syn

(~) .

(~) .

iff e is a monomorphism in ~*

iff e is an epimorphism in ~*

The category E has products and coproducts characterised, to

within isornorphism, by the following constructions. They provide a

basis for defining, and proving relations between, different

sernantics of ccs and its variants.

27

The parallel composition of two processes will be denoted by a

restriction of the product. The product corresponds to a very

loose synchronisation discipline between processes; any event of

one may or may not synchronise with an event of the other. A con-

figuration of the product of two event structures EO and E1 may -

contain events of synchronisation between EO and E1 and must project

to configurations of EO and E1 by natural,projection morphisms.

3.5 Definition (Partially synchronous) product

Let (EO'FO) , (E1'F1) be event structures. Define their product

(EO'FO) x (E1'F1) to be (E,F) where E=EO~E1' the product in

~* with projections #O,w1' and F is given by:

iff Xs:EO ~ E1

A A
(a) nO (X)EFO & n1 (x) EF1&

(b)&

(c)&

Ve,e.Ex.nO(e)=nO(e')~ * ar n1(e)=n1(e.)~ * ~ e=el

ve,e.Ex.e~e'~3ysX.no(y)EFo & w1(Y)EF1 &

(eEy & e'~y) or (e~y & e'Ey))

& (d) I y I <CXI

Note how (a) and (b) express that the projections are morphisms

while (c) and (d) say the structure (E,F) is coincidence-free

and finitary respectively.

and (E1 ' F1)

consists of

3.6 Example (product) Let (E ,F o) be ({0},{0,{0}}
O

be ({1},{0,{1}}) .Then their product (Eo,Fo) x (E1'F1

events Eo~E1={(0,*), (0,1) , (*,1)} with configurations

28

Intuitively (Eo,Fo) , (E1'F1) can proceed asynchronously or

alternatively communicate through synchronising events O and 1

to form the event (0,1) (c.f. (aNILlaNIL) in Milner's CCS -

see §S).

It is useful to also define a product in the category ~ o
syn

event structures with synchronous morphisms, induced by just

total functions.

3.7 Synchronous product Let (EO'FO) , (E1'F1) be event structures.

Define t.heir synchronous proudct (EO'FO) ~ (E1'F1) to be (E,F)

where E = EO x E1' the product in ~ with projections nO' n1'

and F is given by

xEF iff xsEOxE1

A A
& (a) 1fO(X)EFO & 1f1(X)EF1

& (b) Ve,e'EX.1fO(e)=1fO(e') or 1f1(e)=1f1(e') ~ e=e'

& (c) Ve,e'Ex. e#e'~3ysx.'iTO(y)EFO & 7i'1(Y)EF1 &

«eEy & e'~y) or (e~y & e'Ey)

(d)&
lyl<O:)

Note that the synchronous product is the restriction of the pro-

duct to the events EOxE1 S EO~E1 i.e. (EO'FO) ~ (E1'F1) =

(EO'FO) x (E1'F1) ~EO x E1.

Notice how in the above definition an event of EO must synchronise

with some event of E1 if it is to occur. We use the synchronous

product to define an interleaving operator on event structures.

The operator synchronises occurrences of events one at a time

with the ticking of a clock.

3.8 Proposition Let.{7; be the event structure of example 1.3 -

the "ticking clock". Let (E,F) be an event structure. The syn-

chronous product (E,F)e.{7; is a pre-tree which consists of events

Exw and configurations all finite or infinite sequences

{ (e O 'O) , (e 1 ,1) , ..., (e ,n) ...} such that e. ~e .~i=j and
n 1 J

{eO'e1'...'en}EF for all i,j, n at which the sequence is defined.

29

Proof Obviously from the definition of ~ the events of

(E,f)~Q are Exw" Let x be a configuration of (E,f)~Q" Then

xSExw and by conditions (a) and (b) x is a "sequence", either

null or of the form {(eO'O),(e1'1),""",c(en'n),"""}" Condition

(c) now implies {eO'"""'en}Ef for any n at which en exists -

if n marks the end of the sequence use (a) , otherwise separate

(e ,n) and (e
1 'n+1) using (c)" Clearly any sequence satisfying

n n+

the conditions stated in the proposition is a configuration of

(E,f)~Q" .

A simpler construction is that of coproduct which is essentially

the disjoint union of event structures.

3.9 Definition ---~ Coproduct

Let (EO'FO) , (E1'F1) be event structures. Define their coproduct

(EO'FO)+(E1'F1) to be (E,F) where E={O}xEOU{1}xE1 and

F={{O}xx I XEFO}U{{1}xx XEF1}. (Note the evident injections

iO:EO-+E and i1:E1-+E.)

3.10 Example (coproduct) Let (Eo,Fo)=({a},{0,{a}}) a

(E1'F1)=({b},{0,{b}}). Then (Eo,Fo)+(E1'F1) has events

{(O,a) , (1,b)} and configurations

3.11 Example (the necessity of (c) in definitions 3.5. and 3.7) .Let

(E O' F O) = ({ O, 1 } , { Ø, { O} , { O, 1 } }) and (E 1 ' F 1) = ({ a, b} , { Ø, { a} , { a, b} }) .

Thenwi.thout the restriction (c) in 3.5 and 3.7 both "products"

would hot be coincidence-free. They would have "configuration"

x={(O,b) ,(1,a)} so that (O,b)< (1,a)< (O,b) -a non-trivial
#x #x

loop in the local causalit y relation.

30

3.12 Example (the necessity of (d) in definitions 3.5 and 3.7)

The necessity of (d) is best shown using the representation of

[NPW1, 1] -see proposition 1.9. Without (d) the IIproduct" of

two æinitary) event structures need not be finitary. Let Eo

consist of events 0,0',1,1' ,...,n,n',... with no conflict,and

causal dependency given by the partial order

o , 11 n'

VII vu VII

o 1 n

Let E1 be an isomorphic partial order with events O,OI,...,n,nl

Both partial orders determine prime event structures by taking

their left closed subsets as configurations. However omitting

(d) from the restrictions defining configurations of product

would allow the IIconfiguration" consisting of the synchronised

events x= { (O, O I) , (O, 11) , (1 ,11) , ..., (n, n I) , (n, (n + 1) I) , ...} which

has an infinite descending chain with respect to the local

causality relation ~ .
x

Now we verify that the constructions x, ~, + always give event

structures characterising the categorical product, synchronous

product and coproduct. To show x gives an event structure we

need a lemma.

Proof Suppose 8(e)=8(e')# * implies e=e' for every e,e'EUX.

Clearly ~ is monotonic w.r.t. S so ~(AX)sn~x. Take-eEneX and x EX.

For some e'Ex we have 8(e')=e. Take y EX. Then for some e Ey we
y

have 8(e)=e. However e ,eEUX and 8(e)=8(e') .Thus by hypothesis
y y y

e =e'. Therefore e'EAX so eE~(nX) ..This establishes the converse
y

inclusion; so ~(nX)=n~x as required. .

31

The following theorem shows the above constructions were

already determined to within isomorphism by our choice of

morphism. However our rather concrete constructions do give

continuous operations on event structures ordered by ~, so

they can be used in recursive definitions.

ii)

(iii

(EO'FO)~(E1'F1) ,nO'n1 as defined in 3.7 is their categorical

product in](: .
syn

(EO'FO)+(E1'F1) as defined in 3.9 is their categorical

coproduct in](: and](: .
syn

<
=.Further, each operation x, ~ and + is continuous w.r.t.

Proof

in 3.5.

i Let (E,F) be (EO'FO) x (E1 ,F1 be ~s qefinedand 'lTo, 'IT1

Suppose XSEO~E1 and e,e'Ex. We shall say "y is a separating set

for e,e' in x" when YSx & 'iTi(Y)EFi for i=O,1 & ((eEy & e'fy) or

(ef y & e' E y)) .

We first check (E, F) is an event structure.

Coherent Suppose x~F & Vx,yEX.xty. We require V X satisfies

(a)-(d) of 3.5.

(a) Clearly ft. (Vx)=Vft.X. As X is pairwise compatible in F so
:1. :1.

is ft.x in F.. Thus n. (UX)EF..
:1. :1. :1. :1.

(b) By the pairwise compatibility of X, if e,e'EUX and

n. (e)=n. (e')# * for i=O or 1 then e=e'.
:1. :1.

Suppose e,e'EVX and e#e'. Then 3x,yEX.eEx & e'Ey. If either

e~y or e'~x we have respectively either y or x is a

separating set for e,e' in Ux. Otherwise e,e'Ex or e,e'Ey.

Then as both x and y satisfy (c) we obtain the required

separating set.

is obvious as eEUX means e Ex for some x EX where x satisfies

(d) .

(c)

(d)

32

Stable Suppose Ø~XSF & xt. We require x satisfies (a)-(d)

of 3.5.

(a) By lemrna 3.13, ft. (nX)=~ft.X. But nft.XEF. as ft.X is a compat-
J. J. J. J. J.

ible set in F. we have ft. (~X)EF. .
J. J. J.

(b) As any x EX satisfies (b) andl\XSx certainlyf\X satisfies (b) .

(c) Suppose e,e'E~X and efe'. Choose x EX. Because xEF there is

a separating set y for e,e' in x. Take v=ynnx. Clearly y,

Axcx so because (E.,F.) is stable , b y lemrna 3.13
-J. J.

ft. (v)=ft. (y)nft. (AX)EF.. This makes v a separating set for
J. J. J. J.

e,e' in f\X.

(d) is like (c) above.

Coincidence-free Suppose e,e'ExEF and e#e'. As x satisfies (c)

there is a separating set y for e,e' in x. We further require

yEF. Clearly y satisfies (a) , (b) .To show y satisfies (c) , assume

e:,e:rEy & e:#e:'. Take a separating set v for e:,e:' in x. Take u=vny.

Then, just as in the proof of stability part (c) , we get u is a

separating set for e:,e:' in x. Propert y (d) for y follows from

proper ty (d) holding for x, using lemma 3.13.

Thus we have shown (EO'FO)x(E1'F1) is an event structure. It

remains to show that with projections nO' n1 it forms the categorical

product in ~. First note nO and n1 are morphisms by (a) , (b) of

3.5. Suppose there are morphisms e.: (E' ,F')~(E. ,F.) in Æ for
1. 1. 1.

i=O,1. We require a unique morphism ~ such that the following

diagram commutes:

(EO'FO) x (E1 ,F1)

ny r ~1
(EO'FO) ,<p (E1'F1

~ A
(E' ,F')

33

(80(e) ,81 (e) if 60(e);i * or 81(e)# *

Take w=eO~e1 i.e. ~(e) =
* otherwise

Obviously ni o ~ = 6i in ~* for i=O,1 so provided ~ is a

morphism in t it is unique so the diagram commutes. To show ~

is a morphism we need:

I

II

'v'xEF'. Ø(x)EF

VxEF"v'e,e'Ex. tP(e)=Ø(e')# * ~ e=e'

We prove II first:

Suppose e,eIExEFI. Then if ~(e)=~(el)# * then e. (e)=e. (el)# *
1 1

for either i=O or i=1. As each e. is a rnorphisrn e=el as
1

required to prove 11.

"
Now we prove I. Let xEF'. We need W(x) satisfies (a)-(d) of 3.5

Both (a) and (b) follow from the commutations ~. o Ø = e. using
J. J.

the morphism properties of eo and e1. To prove (c) , suppose
"

e,e'E~(x) and e~el. Then e=~(E) and el=~(El) for some E,E1Ex.

We must have E~E1. Thus as (E',F') is coincidence-free we have

some yEF' such that YSx & ((EEy & Elrty) or (Erty & E'Ey)). As we

know ~ satisfies II above it follows that one and only one of
" "

e,e' is in (P(y). The commutations ~, ø ~ = e. give ~.W(y)EF..
" J. J. J. J.

Thus {p(y) separates e,el in x. Propert y (d) follows as (E',F')

is finitary.

Thus finally we have shown (Ea'Fa)x(E1'F1

product in t with projections ~a'~1.

is a categorical

(ii) Clearly (EO'FO)~(E1'F1) is the restriction

(EO'FO)X(E1'F1)~EOxE1- Thus by lemma 2-2 it is an event structure.

In this case the projections ~0'~1 are total so synchronous

and the mediating morphisro (~ above) stays in the category t -
syn

This roeans (EO'FO)~(E1'F1)~0'~1 is a product in tsyn-

34

(iii) It is easily checked that (EO'FO)+(E1'F1) is an event

structure. The injectians are clearly (rigid) marphisms.

Suppase in t (ar t) we had:
syn

(EO'FO +(E1'F1)

~1

(E1'F1

(E,F)~

if e=(O,eO)EOxEO
Then define e: EO y E1 -+ E by e(e) = jo(eo)

j1(e1)

if e=
1,e1)E1xE1

Then e is the unique morphisro in $ ($ respectively) such that
syn

the diagram commutes. This roeans (EO'FO)+(E1'F1)'iO'i1 is a CO-

product in $ (and $) .
syn

Now we show the operations product x, synchronous product e and

coproduct + are continuous operations on event structures with

respect to ~.

Recall an operation is continuous iff it is continuous in each

argument separately. If (EO'FO)~(E1'F1) and (E,F) are event

structures then by inspecting definition 3.5 it is clear that

(EO'FO~X(E,F)=(E1'F1)x(E,F) ~EO~E so x is monotonic in its first

argument. Thus propert y (i) of lemma 2.9 holds and propert y (ii

is obvious. Therefore x is continuous in its first and, by

symmetry, its secondargument. Therefore x is continuous.

Similarly so are ~ and +. I

Similarly one can define infinite products, synchronous products

and coproducts -left to the reader.

35

4. TWO SUBCATEGORIES, PRIME EVENT STRUCTURES AND TREES

Importantly our work transfers over to the two subcategories

of t with objects the prime event structures and trees. In

particular this means we can relate event structure sernantics

to sernantics based on trees using interleaving.

4.1 Definition Define ~ to be the full subcategory of t with

objects the prime event structures. Define Tr to be the full

subcategory of t with trees as objects.

We characterise morphisms in the two categories prime event

structures ~ and trees Tr.

4.2 Proposition (i) Let (Eo,Fo) , (E1'F1) be prime event structures

with causal dependency relations ~0'~1 and conflict relations

#0'#1. For eEEi write [e]i =def {e'EEi I e'~e} for i = 0,1. Write

Wi = #iU1E. .Let e: Eo~*E1 be a partial function. Then e is a

morphism itf veEEo.e(e)f * [e(e)]1 S 8([e]0) and

Ve,e'EEo.e(e)f * & e(e')f * & e(e)w1e(e') ewoe'.

(ii) Let (AO'BO)' (A1'B1) be trees. Let--(i be the covering relation

in (B. ,~ .Write =<' .= -<.U1 B .Let f: (B O 'C) -+ (B 1 'c) be a1. 1. 1. .--
1.

continuous function. Then there is a unique morphism

8: (AO'BO) -+ (A1'B1) with f = § iff f(Ø) = Ø &

Vb,b'EBO. b -<O b' ~ f(b) =<1 f(bt).

Proof -
(i) "=> " Suppose 6 is a morphismo Assume 6(e)1*

A "'
eEEOo Then 6[e]EF1° Therefore 6[e] is leftclosedo Therefore

[6(e)]1C::G[e]O °

for

Let e,e'EEOo Assume e(e) ,e(e')f * and e(e)W18(e')o

Suppose ,e#Oe'o ~hen e,e'Ex for some xEFoo As 8 is a morphism
A
8(X)EF1° Thus ,e(e)#1e(e')o But then as e is a morphism e=e'o

36

"<=" Suppose 8 satisfies the r.h.s. conditions of

We require that 8 is a morphism.

i above.

A
Let xEFO. Assurne e;~1e1Ee(x). Then e1=e(e) for sorne eEEO. By

assurnption e1E[e(e)]1 S ~[e]O S ~(x). Thus ~(x) is left-closed.

Assurne e1'e1E~(x). Suppose e1#1e1. Then e1=e(e) and e1=e(e') for

sorne e,e'Ex. However then by assurnption ewOe'. This yields a con-

tradiction as neither e#Oe' (they are both in x) nor e=e' (as
A

e1~e1 by supposition). Thus ,(e1#1e1). Consequently e(x) is con-

sistent. Therefore xEFo ~ ~(X)EF1.

We also need e,e'Ex & 6(e)=6(e');i *~ e=e' for 6 to be a morphism.

Assume e,e'Ex & 6(e)=6(e');i * .Then by assumption eWOe'. However

as e,e'Ex we have ,(e#Oe') so e=e' as required.

(ii) Let e: (AO'BO)~(A1'B1) be a morphism between trees. Then
" "

as e is additive it is continuous and e(ø)=ø. If b-<, b' fore
b,b'EBO' then there is a unique event aEAO s.t. aEb"b. Then

clearly e(b)-<l~(b') if e(a)# * and ~(b)=~(b') if e(a)= * .

Conversely given a function f: BO~B1 satisfying the conditions

above we define e: AO~*A1 as follows. For aEAO there are unique

b,b'EBO s.t. b"b={a}. Then b-<ob'. If f(b)-<lf(b') take e(a)

to be the unique event in f(b')'f(b). Otherwise f(b)=f(b') so

take e (a) = * .The partial function e checks to be a morphism
"

so f=e. I

The inclusion function W~t has as right adjoint Pr (see 1.16)

which to an event structure associates a prime event structure

with an isomorphic dommain of configurations. Intuitively the

operation Pr renarnes events of a process so each event has a

unique causal history. Similarly the inclusion functor Tr..t

has a right adjoint I which is an interleaving operation

defined with the synchronous product ~ and "ticking clock" of

3.8. These adjunctions determine the form of products and co-

products in W and Tr (see [Mac]). Both operations Pr and I are

~-continuous so a fixed point sernantics based on event struc-

tures will image under Pr to a sernantics based directly on prime

event structures, or under I to one based directly on trees.

37

4.3 Theorem Let (E,F) be an event structure.

(i) Define Pr(E,F) to consist of events P={[e] I eExEF} and
" x

configurations F where zEF iff 3XEf.z={[e] I e Ex}. Then
p p x

Pr(E,F) is a prime event structure. There is a morphism

evE,F:pr(E,F)~(E,F) given by evE,F([e]x)=e for eExEF. In fact

pr(E,F),evE,Fis cofree over (E, F) i.e. for any morphism

e: (E' ,F')~(E,F) with (E' ,F') a prime event structure, there is

a unique morphism W: (E',F')~Pr(E,F) such that e=evE,Fw.

(ii) Define I(E,F)=Pr«E,F)~~). Then I(E,F) is a tree. There

is a morphism wE,F=I(E,F)~(E,F) given by wE,F=wOev(E,F)e~ where

wO= (E,F)~~~(E,F) is the projection morphism. In fact I(E,F) , wE,F

is cofree over (E,F). .

Purther, both operations Pr and 1 are ~-continuous.

Proof Let (E,f) be an event structure.

(i) By lemma 1.16 Pr(E,f) is a prime event structure. We require

that evE,f:pr(E,f)~(E,f) above is a morphism. First we need ev

is well-defined as a function ev:P~E, where P={[e]x I eExEf}.

Suppose [e] =[e'] for e Ex & xEf and e'Ey & yEf. Then by the
x y

coincidence-freeness of (E,f) we have e=e', giving ev well-defined

as a (total) function. From the definition if z is a configuration

of Pr(E,f) then z={[e] I e Ex} for some xEf; thus ev(z)dUz=xEf.
x

Let z be a configuration of Pr(E,f) so p,p'Ez and ev(p)=ev(p')=e

say. Then p=p'=[e]uz. Thus ev is a morphism.

We show Pr(E,F) , evE,F is cofree over (E,F). Let e:(E',F')~(E,F)

be a morphism from a prime event structure (E',F') .We require

a unique morphism $: (E' ,F')~Pr(E,F) s.t. the following diagram

commutes:

39

Recall from proposition 3.8 that the configurations of (E,F)~Q

are sequences { (ea'a) , (e1'1),..., (en'n),...} for distinct en's

s.t. {ea'e1'...'en}EF for each n at which en is defined. It is

convenient to write (ea,e1'...'en'...) for {(ea'a),(e1'1),...,

(e ,n) ,...}, a configuration of (E,F)~Q .The complete primes
n

of such configurations are finite non-null sequences (ea'e1'...'en

The map n acts as n((ea'e1'...'en»=en.

As (A,B) is a tree each event aEA corresponds 1-1 to a unique

finite non-null sequence (aO'a1'"""'an) s"t" a=an and

{aO}'"""'{aO'""" ,am}'"""'{aO'"""'an}EB" Thus it is sufTicient

to define ~ on such sequences by the following induction:

=(8(aO)) and otherwise *If n=O and 8(aO)f * define 1/1((aO)

1\
'/I((a o ,... ,a 1 » e(an- n

if e(a)# *
n

For n>O, define ~«a O '...'a 1 'a)) n- n
=

* otherwise

(We use ~ to represent concatenation of a value to the end of

a sequence.)

We write ~ for the function determined on A, too. Clearly ~ is the

u~ique partial function s.t. n~=e. It is a morphism by the

above identifications of configurations as particular kinds of

sequences

Finally we note Pr and I are continuous by Theorems 2.10 and 3.14

I

We observe some intuitive properties of Pr and 1.

4 .41; Lemma (i If (E,F) is a prime event structure then

Pr(E,F) ~ (E,F) .

be event structures. Then

'S) ~ (F 1 ,S) .

40

(iii) Let (E,F) be an event structure and Pr(E,F)=(P,F).

p

Then (F ,c) ~ (F,c).p --

is a tree then I(A,B) ~ (A,B).If (A IB)(iv)

Details are left to the readerProof

(i) follows because for a prime event structure events

correspond to primes.

(ii) follows because Pr(Ea'Fa) , pr(E1'F1) are built from the

complete primes of (Fa'S) , (F1'S) respectively, just using their

order theoretic properties.

(iii) is just 1.16.

(iv) Events a of (A,B) correspond to finite non-null sequences

{(aO'O),(a1'1),ooo,(an'n)} Soto a=an and {aO}'{aO'a1}'ooo,

{ aO ' O O o, an} E B O I

Let (EO'FO)' (E1'F1)EP. Their product in p

). Their coproduct in p is (EO'FO)+(E1'F1)

4.5 Corollary

is pr((EO'FO)

(i)

x (E1'F1

(ii) Let (AO'BO)' (A1'B1)ETr. Their product in Tr is

1 ((AO ,BO) x (A1 ,B1)) .The coproduct in tr is (AO ,BO) + (A1 ,B1

(Note x and + stand for product and coproduct in t.)

Proof The right adjoints Pr and 1 preserve limits [Mac], in

particular products giving the form of-products in p and Tr by

4.4 (i) , (iv) .The inclusion functors are left-adjoints so pre-

serve coproducts. Thus coproducts in p and Tr coincide with

those of i:. .

41

Another characterisation of product ~I~ in ~r relates it to

Milner's parallel combinator on synchronisation trees [M1].

When labels are introduced his combinator is just a restriction

of the product of trees.

e:

E:

Let the trees T, S be coproducts T= + a~Ta
aEA

4.7 Proposition

and S= ~ b"sb. Then
bEB

+
(a,b)EAxB

(a ,b)I\T+
aEA

(a,*)"Ts ~ a x Sb
Tr

+ + (*,b)f\T xSb
bEB Tr

T xS +
aTr

x

Tr

Proof We give the idea. Using proposition 3.8 and 3.5,

characterising product in]f: one shows the configurations of 'both

the l.h.s. and r.h.s. are isomorphic when ordered by inclusion

to sequences of events of TxS, ordered by extension,ot~ the form

(eO'e1'...'en'...) s.t. ~0({eO'...'en}) is a configuration of T

and ft1({eO'...'en}) is a configuration of S for all n at which

e is defined. As both the l.h.s. and r.h.s. are trees, so prime,n
isomorphism of configurations implies isomorphism of the event

structures l.h.s. and r.h.s. I

4.8 Example Let a, b, c be distinct events. Let T be the tree

ab(Ø,Ø) and S the tree c(Ø,Ø). We show their products in ~, ~

and Tr. We label coverings and events to show how they project

to T and s.

"b

I~.

~.

øf.~~ 1.l,
,:-. .

:#rb
""~~~() 1,c.)c.

c.-<-
~

~ b (.. .t.ba
9J ~ ø 3 'b.

Note how the events of TxS are the complete primes of the confi-
p

gurations of TxS. See how interleaving makes branches out of

~-chains of the original configurations.

42

5. A SEMANTICS FOR COMMUNICATING PROCESSES

Now we label the events of processes. Possible synchronisations

between two processes set in parallel are determined by a syn-

chronisation algebra (S.A.) .An S.A. specifies how, depending on

their labels, pairs of events are cornbined to form synchronised

events and w hat labels such combinations carry. We adopt an idea

from [M2] and present an S.A. as a binaryoperation on labels.

Unlike [M2] our algebra is not necessarily a monoid (it may not
have 1) and has two distinguished constants * and a zero O.

The constant * still represents undefined, exactly as it does for

morphisms and is important for handling asynchrony. No real event

is ever labelled *. However when two processes are set in parallel,
an event of one process may be left to occur asynchronously, \

unsynchronised with any event of the other. Then it is enormously

convenient to pretend, mathematically, that the event is syn-
chronised with the unreal "event"* labelled by * -just as we did

in the product 3.5.

The constant O is another ficticious label; no real event is

labelled O. We have A.A'=O, for two labels A,A', when two events

labelled A and A' cannot be synchronisede The introductio~ of 0

saves us from a partial operation on labelse

5.1 Definition A synchronisation algebra (S.A.) is a quadruple

(L,*,0,.) where L is a set of labels, containing * and O with

L'{*,O}FØ and. is a binaryassociative, commutative operation on

L which satisfies:

(i)

(ii)

VAEL. A.O=O

.=* and VA,A'EL.A.A'=*=> A= A' = *

'43

An S.A. determines a "divides" relation as follows. It says when

one label is a divisor, or factor, of another.

Thus condition (ii)

unique divisor of *

in the definition of an S.A. says * is the

5.3 Lemma Let (L,*,O, . be an S.A. Then

(i)

(ii)

(iii)

(iv)

The relation div is reflexive and transitive.

For AEL r if Adiv* then A = * °

For AELr if OdivA then A = O °

Let aora1rSorS1 EL. If aOdivSO and a1divS1 then

aO.a1divSO.S1.

Proof (i)

(ii)

(iii)

(iv)

byassociativity.

by propert y (ii) in the definition of an S.A.

as O is a zero.

by commutativity and associativity. .

The S.A. for ccs5.4Example

Withoutvalue passing

Recall that in ccs [M1] there are three kinds of (non*,O) labels;

labels a,S, ..., their complementary labels ~,S,... and the label T.

Only pairs of events with complementary labels can synchronize to

produce a T-labelled event. Thus we get the following S.A. table

and division relation for CCS. In this case * behaves like an

identity- this is not truein general (see ex. 5.6) .

45

A s

Notice how morphisms in !A may be partial functions as *divT. We

get !A=!. However morphisms in !s must be total functions as *

does not divide T. We get ! s =! .
syn

Wenow define the parallel composition of two labelled event struc-

tures as a restriction of the product in]f;. Only pairs of events

(one of which may be the fictitious event *) whose labels have a

non-zero composition can be synchronised. (See definition 3.5 of

product; TrO'Tr1 below are the projection morphisms.) .

5.7 Definition Let L be an S.A. Let (EO'FO'lO)' (E1'F1'11)EtL.

Define their parallel composition (EO'FO'l0)@ (E1'F1'11) =

«EO'FO) x (E1'F1) ~E,l) where E={eEEO~E1Il0nO(e) .11n1 (e)~O} and

1(e)=lOnO(e).11n1 (e).

5.8 Examp1e Let L be the S.A. for CCS without va1ue passing -

refer to 5.5. Suppose (EO'FO10)' (E1'F1'11)E!L. Then their parallel

composition is their product in! restricted to the events

{ (eO'*) leOEE} U { (*,e1) le1EE1}u{ (eO'e1)EEOxE1110(eO) ,11 (e1) are

comp1ementary} with a subsequent labelling l(eO'*) = 10(eO)'

1(*,e1) = 11 (e1) , 1(eO'e1) = T.

5.9 Example "Broadcasting" Let L be the S.A. with labels

,O,a,T satisfying laws of the form a.a=a, a.=a.T=O and T .*=T.

Then the parallel composition of several processes must synchronise

on a while T-labelled events occur asynchronously (such multiway

synchronisation is used in [H], [Mi], [LST] -see [M2] too) .

46

5.10 Example The following S.A. ensures all events occur asyn-

chronously in a parallel composition (cf. S of 5.6 which ensures

all events occur synchronously)

There are obvious projection functions for a parallel composition

which suggests ~ is a product. Although, in fact, the operation

@ is associative and does extend to a functor it is not always

a product. It is however when the operation. behaves like the

operation of least common muLtiple (l.c.m) .

5.11 Proposition Let L be an S.A.

(i) The operation @ extends to a functor]f:L 2 -+]f:l : For morphisms

eo' e1 in]f:L define eO@e1 = eO~e1. The functor is associa-

tive i.e. for EO'E1'E2EJt~ there is a natural isomorphism

Eo0(E10E2) ~ (EO@E1)@E2.

(ii) Let (EO'FO'lO>' (E1'F1'11)E~L. Then (EO'FO'l0>@ (E1'F1'11

with the obvious projections, is their categorical product

in :IE'.L iff

YyEL Ya.EIOE&, 8E11E1. a.divy and 8divy=> (a..8)divy.

(iii) The parallel composition @ with the evident projections

always gives a categorical product in tL iff

Va,S,yEL. adivy and Sdivy ~ (a.S)divy.

47

Proof

ieee

(i) Let 6i: (Ei'F i~1i) ~ (Ei,Fi,1'i) b~ mQrphisms in ~L

for i=0,1. Let e be an event of (EoFo,10)~(E1'F1'11

eEEo~E1 s.t. 101T0(e) .111T1 (e) * O. As 60.'61 are morphisms

1!6.1T.(e)div1.1T(e) for i = 0,1. Then by Lemma 5.3 (iv),
1. 1. 1. 1.

(1'0601T0(e).11611T1(e})div(101TO(e).111T1(e)). By 5.3 (iii),

1'0601T0(e) .1'1611T1 (e)*O so (601T0(e) ,611T1 (e) is an event of

(EO'Fo1O)@(E1,F1,11) .

asThe functor laws and associativity propert y of @ follow

it is a restriction of x"the product functor on]f:.

(ii The "if" part follows as the condition stated above

ensures the mediating morphism for x exists and, be-

cause @is a restriction of the product in]f:. The "on-

ly if" part relies on event structures not having to be

full: Take aE1OEO' BE"l1E1 so adivy and Bdivy. Take

({e:},Ø,{(e:,y)}) and morphisms eO:Et-+eO where lO(eO)=a

and e1:E:~11 where l1(e1)=B. Assuming @ is the product

there is a mediating morphism g+(eO'e1) where the event

(eO'e1) must be labelled a.B and must divide y.

(iii) The lIif" part follows as in (ii) .The "only if" part

would be true even if event structures had to be full.

Suppose (1. and 13 divide y. Take Eo=({EO}'{Ø,{EO}}'{(f:;0'(1.)I)

and E1 = ({e:1}'{Ø,{f:;1}}' { (E1'13)}) .The product is EO@E1

with theobviousprojections, by assumption. Let E2 =

({E2}'{Ø,{E:2}} , {(E:2'Y)}) and 80:E2-'+"~and 81:e:2-'+"e:1 -

both 80'81 are morphisms. Because the mediating morphism

exist (1..13divy. .

5.12 Examples

(i) Let L be the S.A. for ccs. Then C!) does not coincide with

product: We may have adivT and BdivT and a.B= D so a.B

cannot divide T(# D) .

(ii For the S.A.'s A: and S of]f; and]f; it may be checked

syn

that. does satisfy the condition in proposition 5.11' (ii) .

As we know they do have products given by ~ and QY .

48

More generally for SA's

coincides with products:

L

Befare giving the pragramming language based an an S.A. we pre-

sent a few extra rnuch sirnpler aperations an labelled event struc-

tures based an [M1, 2].

Definitions

an]f:L. Let

Let L be an S.A. Define the following operations

(E, F, 1) , (E. , F. , I .) Et L for i = O, 1 .
3. 3. 3.

= (E',F',l'5.13 Lifting Suppose AEL {*,O}. Define A(E,F,l

where E' = { O} U({ 1 } x E) and

xE F' <=> x~ , and x=ø ar (O Ex and {el 1,e)Ex}EF)

I (e , = A if e= O, l(e) if e' = 1,e) for e'EE'

,1)

5.15 Restriction Let AEL'{*,O}. Define (E,F,I)'A =

where E' = {eEEil(e)#A} and l' = I}-E'.

(E, F) ~E' , l'

5.16 Relabelling Let S be an endamarphism an L (i.e. S pre-

serves *" O and. and VAEL. S(A) = O=> A = 0 & S(A) = *=> A = *) .De-

fine (E, F"l) <S> = (E, F,Sl) .

where + is the capraduct af 3.8 and l«O,e» = lO(e) and

1«1,e» =11(e).

49

Apart from restriction, the above operations extend to functors

on tL in an obvious way. Sum is coproduct in tL. They are all

continuous with respect to ~L the labelled version of ~. Thus

we can take fixed points of them and their compositions.

5.17 Proposition

define (EO'FO'lO:

Then

Let L be an S.A. For (EO'FO'10)' (F1'F1'11)E:lf:L

~L(E1'F1'11) iff (EO'Fo)~(E1'F1) and 10=11~EO.

(i tL has lubs of all w-chains ordered by ~L.

(ii Each operation above is continuous with respect to ~L i.e.

they preserve lubs af w-chains ordered by ~L.

(iii Let r be a continuous operation on t~~tL. Let

~ = ((Ø,{Ø} ,Ø) , ..., (Ø, {Ø} ,Ø)) Et~. Define fixr to be the lub

of ~~Lr~~L...~Lrn~~L... .Then r(fixr) = fixr.

Proof (i) follows from the corresponding property of ~. (ii) In

particular ~, + are continuous because x,+ are. For the remaining

operations use Lemma 2.9. (iii) is well known see [S]. .

Given L, an S.A., we define a language for communicating proces-

ses called Pro CL. Each term of Pro CL denotes an event structure

in JtL.

5.18 The syntax af Pro cL Assume an infinite set af pracess-

variables x EX. Define a term af Pro cL by:

where x EX, AEL'{*,O}t::=~lxIAtlt+tlt'Alt<S>I~tlx isrect,

and S is an endornorphisrn of L.

5.19 The sernantics of Pro CL Define an environment to be a func-

tion p: x~tL from process-variables to labelled event structures.

For a term t and an environment p, define [[t]]p, the event struc-

ture t denotes with respect to p, by the following structural in-

duction. (Note, that syntactic operators occur on the left and

their sernantic counterparts, operations on tL occur on the right.)

50

[[liIL]] = (Ø, {Ø} ,Ø)

[[x]] p = p (x)

[[A t]] p = A ([[t]] p)

[[t 1 + t 2)] p = [[t 1)] p + [[t 2)] p

[[t'A)] p = [[t)] P' A

[[t < S >)] p = ([[t)] p) < S >

[[t1@t2)]p = ([[t1)]P)CY ([[t2)]P)

[[x isrect)] p = fix r where r: t: L +n is given by
L

r (E) = [[t)] p [x+ E]

A structural induction shows that r is indeed continuous so the

above definition is justified by Proposition 5.17.

In a sirnilar way one can obtain sernantics in fL and trL; define

parallel cornposition in either category as a restriction o fx the

product of § 3 and take environrnent into the categoriese Equiva-

lently oneobtains sernantics in fL and trL by cornposing the above

sernantics with Pr and I extended to cope with labelse

5.20 Definition

(i Define prL::lf:L-.:fL by prL(E,F,l} = (pr(E,F},levE F} -re fer
,

to 4.3.

For p: X-. :J>L and t E Fro cL define [[t]]p p = prL ([[t]] p} .

(ii Define lL:]f;L-+'!'rL by IL(E,F,l) = (I(E,F),l1TE,F) -re fer to

4.3.

For p: X-+trL and t E Pro CL define [[t]]T.rP = IL([[t]]p) .

When L is the SoAo for CCS our interleaved sernantics in TrL

agrees with Milner's synchronisation/communication tree sernantics

because of the following facto (Our treatmment of recursion is more

general than Milner's so our denotations as trees may be Xo-

branching when recursion is not "guardedly well-defined"o)

51

5.21 Proposition Let L be an s.A. Write the parallel composition

operation in '1'rL as @ so T@ S = IL (T@ S} .suppose T,sE'1'rL
Tr Tr

are sums of the form T=~A.T. and s=4-~.s. for labels A. ,
r-3. 3. Jd J 3.

~.EL'{*,O} indexed by i and j. Then T~S is given recursively
J Tr

by

Proof From 4.7 by restricting the product of trees. .

Isaroarphisro in each categary *L' :l!>L' trL

clased terros af pracL' where L is an S.A

induces a cangruence an

t t'

t t'
p

t t'
Tr

iff [[t]] p ~ [[t']] p

i f f [[t]1p p ~ [[t']]p p .

iff [[t]] TrP ~ [t'llTrP.

5.23 Proposition The relations ' ,

on the closed terrns Pro cL w.r.t. @,

~ , ~
T define congruences

p r

+, A-, -'A, -(s>. We have

,..,c,.., c,..,
p- Tr

.Proof Each operation on ~respects isomorphism.

Generally because the event structures of *L and ~L reflect con-

currency their congruences are strictly included in that for trLo

5.24 Exarople Let L be the S.A. for CCS. We look at denotations

of the terros a8NIL~aNIL in the categories *L' 'L and trL (ob-

tained by restricting the products drawn in Exarople 4.8) .

52

~ sL

-
a

s
In]f:L In JPL In '!'rL

We have labelled events and coverings. Clearly in trL we have

aS NILØ C:tNIL ""'Tr CtaSNIL Tot TSNIL + a (C:tSNIL + S'&NIL) which does

not hold for the other two congruences.

This strict inclusion fails in an interesting special case where

communication is purely synchronous, when no asynchrony is allowed

because L satisfies a strict synchronous law:

5.25 Definition Let L be an S.A. Say L is synchronous iff

VAEL'{*}.A.* = O.

When an S.A. is synchronous parallel composition is pure ly syn-

chronous, ii an event is to occur in a parallel composition it

must synchronise, no event can occur asynchronously. Then parallel

composition is a restriction of the synchronous product '~ .The

synchronous product ~ is based on ~ so parallel composition

inherits some nice properties from product in ~.

5.26 Proposition

valent

(i) L is synchronous

(ii) NILcis an@ -zero i.e. t@NIL-"' NIL for all terms t E Pro CL.

(iii) Parallel composition @ dcistributesov-er sum i.e.

to@ (t1+t2) ",tO@t1 + tO@t2 for all terms tO,t1't2 E ~

Let L be an S.A. Then the following are equi-

When L is synchronous denotationsø~ closed terrns in ~L are

isomorphic tO' those intrL'so "'p = "'Tro

53

This indicates how assuroptions on L deterroine laws and proof

rules for congruences on terros.

Milner's synchronous calculi [M2] can be based on synchronous

S.A.s as the following proposition shows:

5.27 Proposition (The synchronous calculi of [M2])

Any Abelian monoid (M,.,1) extends to an S.A. (L,*,O,.) simply

by adjoining elements * and O to M and extending composition so

* .* = * and * .A = O for all AEL. The language Pro CL includes the

synchronous calculus associated with the monoid M in [M2]. In

the parallel composition EO@E1 every event eO of EO is synchro-

nised with an event e1 of E1; the event may be labelled by 1

when it represents a delay or id le action. Denotations of closed

terros of Pro cL are pre-trees in *L and trees in 'L.

54

CONCLUSION

Thus we have a framework in which to give denotational sernantics

to a wide range of parallel programming languages. But more, the

framework makes connections between different kinds of sernantics

and different approaches. Milner's synchronisation trees are

a special kind of labelled event structure. Thus we link up to the

work in [M1]. (Notice incidentally that Milner's idea of "sequential

observer" is embodied in the interleaving operator.) Then the syn-

chronous calculi of Milner [M2] arise once synchronisation algebras

satisfya strict law, which essentially bans all synchrony. Unlike

Milner in [M2] we do not model asynchrony in a synchronous frame-

work but rather allow a free-mix of synchrony and asynchrony,

depending on the synchronisation algebra. Prime event structures

correspond to intuitive and simple structures of events with a

causal dependency and conflict relation. We automatically get

sernantics in terms of these structures. This is important because

for example Mogens Nielsen and Torben Fogh of Aarhus [F] and Ugo

Montanari and coworkers of Pisa (see e.g. [MS]) have given sernan-

tics in terms of such structures, and also because the works

[NPW1, 2], [W] establish links between such structures and Petri

nets. Net sernantics like that in [LTS] translates to prime event

structure sernantics by the techniques of [NPW1, 2] and [W]. (In

fact there is a more direct connection between Petri nets and

event structures. A condition event system [NT] with initial marking,

which is contact-free and such that every condition occurs at most

once in playing the token game,determines an event structure as

follows: Take the configurations to be those sets of events which

have occurred by some stage possibly infinite in playing the token

game.) Then, event structures represent Scott domains and partially

synchronous and synchronous morphisms induce rather special con-

tinuous functions between domains -see appendix B.

Clearly we have left several loose ends like:

55

l How to go from our semantics to proof rules.

l How to go from our rather basic semantics to more
abstract semantics.

l How to give an operational semantics which justifies
denotations which are sensitive to concurrency (the
most philosophical and probably the most difficult
loose end to tidy up);

l How to generalise event structures and still keep a
useful category (for example are there more general
event structures which model continuous processes or
express "fairness"in some way? Then our present defi-
nition of morphisms should still be useful.).

l How to define homomorphisms of synchronisation
algebras and use the attendant algebraic constructions.

56

APPENDIX A

Sets and partial functions

We take ~ to be the category of sets with usual function-

composition. To cope with partial functions, we take ~* to have

sets as objects but morphisms are now functions which may take

the value * (representing "undefined") .A morphism in ~* is

drawn as e:x~*y. The morphisms X ~ y and y ~ Z compose to
* *

~e(x)= (e(x)) if e(x)~*, and * otherwise. Morphisms in ~ (total

functions) correspond to those morphisms of ~* which never

yield *. For e:x * y and A~X define 6(A) = {e(e) I eEA & e(e)~*}.

For us, a notable fact about ~* is the nature of its products.

If X and y are sets their categorical product in ~* takes the

form XxY=æf {(x,*) I xEX}U{(*,y) I yEY}U{ (x,y) xEX & yEY} with
*

the obvious projections.

57

APPENDIX B

Domains of configurations

Here we show the relation between our categories of event

structures and categories of Scott-domains.

Let (D,~) be a partial order.B1 Some basic definitions:

A directed subset af D is a nan-null subset S~D such that

Vs,tES 3uES. s~u & t~u. The p.a. D is a camplete partial arder

(cpa) iff there is a least element ~ED and all directed subsets

S have a least upper baund (lub) US.

If D is a cpo, an element xED is isolated (= finite = compact)

iff for all directed subsets S, if x~US then x~s for some sES.

A cpo D is said to be algebraic iff for each xED the set S of

isolated elements below x is directed and x = US. (An algebraic

cpo is generally called a dommain though some authors insist it

also be consistently complete -see below.)

Let X~D. Then X is said to be pairwise compatible iff

Vx,yEX 3dED.x~d & y=d. The po (D,~) is coherent iff every pairwise

compatible subset has a lub. (Clearly every coherent po is a cpo.)

Similarlya subset X is said to be finitelycompatible iff every

finite subset of X has an upper bound in D. Then a po (D,~) is

consistently complete iff every finitely compatible subset has a

lub. (Clearly coherence "implies consistent completeness.)

By proposition 1.8 an event structure (E,F) represents a domain

(F,S) of configurations satisfying rather special properties. Such

domains are coherent, prime algebraic and so that every isolated

element dominates only a finite number of elements. Conversely

any such domain is represented, to within isomorphism, byan

event structure, in fact a prime event structure, in the following

way: Take the complete primes as events and all the sets of com-

plete primes below some element as configurations.

58

B2 Definition Let (D,~ be a prime algebraic coherent partial

order satisfying the property that every isolated element dorninates

onlya finite nurnber of elernents. Then define p(D) =def (P,F' where

P = cornplete prirnes of D and xEF iff 3zED. x = {pEP I p~z}.

B3 Lemma

ture so (D,~)

X > UX .

In the above definition p(D)

~ (F,S) under x ~ {pEP I

is a prime event struc-

p~x} with inverse

Proof Directly from the definitions. .

The concept of prime algebraicity was introduced in [NPW 1].

There Petri net concepts were related to Scott-domain concepts.

In particular an event occurrence in a net showed itself as a

complete prime in a dommain of event configurations associated

with the net. The complete primes formed a subbasis giving rise

to the concept of prime algebraic domain. Now it turns out that,

saying a domain is prime algebraic is just the same as saying it

is completely distributive and algebraic, so real ly the concept

is well known (see [CL]) .We present the proof for lattices and

its corollaries for domains.

It will follow that domains of configurations are, to within

isomorphism, precisely the distributive, algebraic coherent par-

tial orders which satisfy the finiteness property that every

isolated element dominates only a finite number of elements.

B4 Definition Let (D,~) be a partial order with meets of all

non-null subsets. Say (D,~) is distributive iffxn(yuz)=(xny)[J(xnz)

for all x,y,zED so yt]z exists. Say (D,~) is cbmpletelydiStributive

iff (nX)uy = n xuy for subsets XSD s.t. xuy exists for all x EX and
x EX

(UX)ny = U x ny for non-null subsets XSD s.t. UX exists.
xE}{

59

Proof It is easy to show a prime algebraic lattice is

completely distributive and algebraic (or see [NPW1, 2]).

Conversely suppose (D,~) is completely distributive and algebraic.

Algebraicity expresses a kind of discreteness, it will mean:

Vx,yED.X~y ~ 3z,z'ED.x~z-<z'~y where-<is the covering re-(i)

lation.

Complete distributivity will mean that each covering interval

determines a complete prime, so:

To show (ii) , let x,xlED and X-<XI. Suppose p =defn{yED I xl~xuy}.

Note first that X up =n{xuy I xl~xuy} = XI using complete dis-

tributivity. Now suppose p~UZ for some subset ZSD. Then
x I = xup~xu (U Z) = U (xu z) .However as x--< x I we must then have

xl~xuz for some ZEZ~E~ut then p~z. Thus p is a complete prime of D.

Let zED. Then we require z =U{pr[x,x'] I x-c x'~z} in order to make

D prime algebraic. Write w =U{pr[x,x'] I x-<x'~z}. Clearly z~w.

Suppose z~w. Then w~x-<x'~z for some x,x' in D. Write p = pr[x,x'].
~

Then p~w making x~p = x, a contradiction as x up = x'. Thus D is

prime algebraic as required. .

It is easy to see that a more general version of the above theorem

also holds. The proof would work if the partial order (D,~) were

coherent or consistently co~plete(sets with upper bounds have least

upper bounds) , and not necessarily a lattice.

As a corollary we obtain a representation theorem for completely

distributive algebraic lattices; a completely distributive alg~braic

lattice is isomorphic to the left-closed subsets ordered by = of

some partial order. The converse is clear. (Surely this result

exists in the lattice theory literature somewhere, but where?)

plete prime of D.

To show (i) , suppose x,yED and x~y. By algebraicity there is an

isolated element a s.t. a~x and a~y. By Zorn's lemma there is a

maximal chain C of elements above x and strictly below xua. ~s a

is algebraic from the construction of C we must have

x~ U c-(xua~y .

60

B6 Corollary (i) Let (P,~) be a partial order. Then the left

closed subsets (L(P,~) ,~) form a completely distributive algebraic

lattice with complete primes of the form [p] =def{P'EP I pl~p} for

pEP.

(ii) Let (D,~) be a completely distributive algebraic lattice

Let (P,~) be the complete primes ordered by ~ = ~~P. Then

(D,~) ~ L(P,~) under x ~ {pEP I p~x}.

Proof By the above theorem and the properties of prime alge-

braic lattices spelt out in [NPW1, 2] or [W]. .

Proposition 1.8 shows configurations of event structures give

coherent prime algebraic domains satisfying the finiteness re-

striction that every isolated element dominates only a finite

number of elements. In the presence of algebraicity and the

finiteness restriction, complete distributivity is equivalent

to the generally more humble distributivity. This gives the

following characterisation of the domains of configurations.

B7 Proposition Ordered by inclusion the configurations of

an event structure form a distributive, algebraic coherent partial

order in which every isolated element dominates only a finite num-

ber of elements. Moreover any such partial order can be repre-

sented, to within isomorphism, by the configurations of a prime

event structure.

Proof Domains of configurations clearly satisfy the above

properties. To show the converse, we need only show that a dis-

tributive algebraic coherent partial order satisfying the above

finiteness restriction is necessarily completely distributive.

Let (D,~) be such a p.o. Then this distributive law follows:

xu(ynz) = (xuy)n(xuz) for x,y,zED in which xuy and xuz exist.

(See [Bir] or [KP] for details). Incidentally, because we do not

work with lattices the two distributive laws are not equivalent.

Now we show the two infinite distributivities hold.

61

(a) Let XSD s.t. U (x ny) ~ (
x EX

To show the converse inequality, suppose a is isolated and

a~(Ux)ny. Then as a~UX and as a is isolated for some finite X'S X

we have a~UX'. Then a~(UX)ny ~ a~(UX')ny ~ a~ U (x ny) (by
x EX'

ux exists and yED. Clearly then LJX)ny.

distributivity) ~ a~ U (x ny) .
x EX

Thus as D is algebraic we have the converse inequality so

U (x ny) = (UX)ny.
x EX

(b) We require in addition that (nX)uy = n (xuy) for yED and
x EX

Ø~XSD s.t. xuy exists for all x EX. Clearly (nX)uy ~ n xuy.
x EX

n (xuy).)na =
x EX

Suppose a is isolated and a~ n xuy. Then a =

n ((xuy) f1a) .x EX

x EX

Nowa dorninates only a finite nurnber of elernents. Thus for sorne

finite X'S X we rnust have a = n (xuy)na) .
x EX'

Then by distributivity a = ((nX')na) u (yna) ~ (nX)uy. By

algebraicity we have n (xuy) ~ (.nX)uy and so the required
equality. x EX

I

Thus event structures represent a natural class of dornains.

Sirnilarly rnorphisrns on event structures induce rnorphisrns on

dornains.

are the properties they satisty.

BB Definition be partial orders. Let f beLe t (D O' ~ o) , (D 1 ' E 1

-+ D1" Say f isa function f: DO

(iii

conditionallyadditive (c.a.) iff VX,=DO.Xt ~ f(UX)=UfX

conditionally multiplicative (c.m.) iff VX,=DO.X~Ø &

xt ~ f (n X) = n fX

(a) =<-preserving iff Vx,X'EDO.X-<X' ~ f(x)=<f(x')

(b) -<-preserving iff Vx,x'EDO.X-<X' ~ f(x)--<f(x')

(We use =< to mean --< Uld.)

62

B 9 Lemma (i) Let e: (Ea'Fa) ~ (E1'F1) be a morphism of event
"

structures. Then e: Fa~ F1 is c.a., c.m. and ~-preserving. If
"

e is synchronous then e is -<-preserving.

(ii) Let (Ea'Fa)' (E1'F1) be prime event structures. Let

f: (Fa'S) ~ (F1'S) be c.a., c.m. and ~-preserving. Then there

is a unique event structure morphism e: (Ea'Fa) ~ (E1'F1) s.t.
"f = e. If further f is -<-preserving then e is synchronous.

Proof (i) needs a routine verification.

(ii) Let (EO'FO)' (E1'F1) be prime event structures. Let f:FO~ F1

be a c.a., c.m. and ~-preserving function with respect to the

inclusion ordering on configurations. We ShoW hoW f is induced by
Aan event structure morphism e: EO ~*E1 So f = e.

Recall some basic facts explained more fully in [NPW1, 2]:

A prime interval is a pair [x,x'J where x--<x'. Define a relation

< between prime intervals by [x,x'J < [y,y'J iff x = x'ny and

y' = x'uy. Form an equivalence relation ~ as the symmetric transi-

tive closure ~ = « U <-1)*. In fact, for a prime event structure,

events are in 1-1 correspondence with ~-equivalence classes of

prime intervals in the configurations because there [x,x'J ~ [y,y'

iff x"x = y"Y.

These facts make it easy to define the required event structure

morphism 6. Let x--<x' and y--<y' in (Fa'S) and [x,x'] < [y,y']

Then because f is c.a. and c.m. we get

f (x)

f (y'

= f(x'ny) = f(x'

= f (x' uy) = f (x ,

n f (y)

u f (y) .

Because f is ~-preserving too the above equations rnake f(x)~ f(x'

iff f (y)-< f (y') .

[y,yl] and f (x)-< f (XI thenIt follows that if [x,x']

[f (x) , f (x')] [f (y) , f (y'

63

Thus the following definition of e: EO ~*E1 is well-defined:

for eEEO take x,x'EFO s.t. xl,x = {e}; then if f(x)-<f(x')

take e(e) to be the unique event of f(x')'f(x), and otherwise

set e(e) = *.

A simple induction on the size of x shows that for all finite
A A

XEFO we have 8(x) = f(x) .Thus as 8 and f are c.a. we have
A
8 = f. From the fact that f is c.m. it follows that 8(e) = 8(e') # *

for e,e'Ex, a configuration in FO' implies e=e'. Thus 8 is an event

structure morphism inducing f. Any other event structure morphism

inducing f must act like 8 on prime intervals and so on events,

making e unique.

Clearly event structure morphisms which are total correspond to

~-preserving functions as (i) and (ii) specialise to synchronous

morphisms. .

As a corollary we can exhibit a natural equivalence between a

category of domains and the category of prime event structures

B10 Definition Let ~ be the category of coherent distributive

algebraic dornains with rnorphisrn-functions which are c.a., c.rn.

and --<-preserving. Let ~ be the subcate g or y with rnor p hisrns

-syn

which are =< -preserving.

Taking ~:~ ~ ~ to act on objects by (E,F)~F,SB" Proposition

and on morphisms by

(EO'FO)
(F o 's

1
(F1 ,S

A
ee

1

defines a functor which is a natural equivalence of categories.

It restricts to a natural equivalence ~:~ ~ ~ .
syn syn

64

Proof It is easy to check that ~ is a functore In [Mac]

(theorem 1, page 91) it is shown that a functor is an equivalence

of categories iff it is full, faithful and dense (ieee every

object in the codomain category is isomorphic to an object in the

range of the functor) -all of which hold for ~ .

This means that all the categorical properties of ~, ~ transfer
syn

to ~ and ~ respectively. For example we know there are products
syn

in ~ and ~ and w hat form they take. It is hard to see how one
syn

could confirm the existence of products in ~ and ~ without the
syn

aid of an event structure representation.

Viewed abstractly in the category ~ the approxirnation relation ~

corresponds to a special type of rnorphisrn on dornains -the rigid

ernbeddings of Kahn and Plotkin (see [KP]) .

B12 Definition Let DO'D1 be two cpos. Let f:DO ~ D1 be a con-

tinuous function. Say f is an embedding iff there is a continuous

function g:D1 ~ DO called a projection such that

g (f (x)

f (g (y)

= x for all xEDO

= y for all yED1.and

Say f is a rigid embedding iff. it is an embedding with projection g

such that y~f(x) ~ fg(y) = y for all xEDO' yED1°

B13 Theorem (i) Let (Ea'Fa) ~ (E1'F1) for two event structures.

Let 1 be the inclusion l:Ea -+ E1. Then 1 is a morphism of event

structures such that t: (Fa'S) -+ (F1'S) is a rigid embedding.

(ii) The categories ~ and ~ have colimits of w-chains of
syn

rigid embeddings.

Proof (i) routine verification.
f f

(ii) Let DO ~O D1 ~ ...Dn ~n ...be an w-chain of rigid embeddings

By induction, there is a chain (EO'FO) ~ (E1'F1)~ ...~(En'Fn)~ ...

of (prime) event structures with (F ,c) ~ D so
n -n .

65

f=

~>D
Dn+1
II!

n

~

-E->(F ,cn - (F n+1 ,S

n+1.

.

cornmutes for each n, where 1 is the inclusion map 1 :E ~ E
n n n

Let (E,F) be its ~-lubo The~(F,s) is easily seen to be the

colimit of the chain (F o 'c)~} (F 1 ,C)~} o o o"-=-:>(F ,C)~} o o o-f -f n -
Thus (F,S) is a colimit of DO ~). o o -} Dn ~ o o o o

Thus we see event structure cancepts in a damain setting. The

categaries t and ~ af event structures represent the categary

U> af damains.

One can base sernantics for synchronised communication directly

on ~, though this will be essentially the same as a sernantics based

on prime event structures p because ~ and p are equivalent cate-

gories. One obtains labelled domains ~L by labelling prime intervals

by elements of a synchronisation algebra L but in a ~-respecting

way (the same relation ~ as above) .We leave the detailed definition

of ~L to the reader; it should be equivalent to PL. The treatmment

of recursion can be based on rigid embeddings. One expects a re-

cursive definition to correspond to an w-cocontinuous functor, for

which we shall seek the "least fixed point". Starting with the null

event structure repeated application of the functor will yield an

w-chain of rigid embeddings. The least fixed point will be its

colimit (see [KP], [F], [P1]) .There may be some lessons to be

learnt from the categories ~L because they are closely akin to

labelled transition systems often used to give operational sernan-

tics (used in e.g. [M1, 2]) .

By the way the categories ~ and ~ do not have exponentiations
syn

so are not cartesian closed; however a larger category in which

morphisms are merely c.m. is cartesian closed and in fact is a

full subcategory of Gerard Berry's dI-domains with stable functions
(see [Ber .

66

Acknowledgernents

I am grateful for discussions with Mogens Nielsen. Mogens has

previously given a prime event structure sernantics to CCS. Thanks

to Gordon Plotkin for encouraging morphisms even when they were

quarter-baked. The stability axiorn is essentially Gerard:Berry's

"deterministic" condition [BC]. Related ideas appear in [F]and

[MS]. Many thanks to Karen MØller and Angelika Paysen for typing

a symbol-laden paper. The work was supported in part by an SRC

grant directed by Robin Milner and Gordon Plotkin and in part by

the Royal Society.

References

[B] G. Berry, "Modeles complement adequats et stables des

A-calculs types", These de Doctorat d'Etat, Universit.-

Paris VII, 1979.

G. Berry, P.L. Curien, "Sequential algorithms on concrete

data structures", to appear in TCS.

[Bi G. Birkhoff, "Lattice theory", Coll. Pub., vol, 25,

Arner. Math. Soc., Providence, R.I., 3rd edition, 1967.

G. Gle~z, K.H. Haffman, K. Kelmal, J.D. Lawsan, M. M:i.slaye

D. Scatt, "A Campendlum af Cantlnuaus Lattlces", Springer-

Verlag (1980) .

T. Fogh, "En semantik for synkroniserede parallelle pro-

cesser", Master's Thesis, Aarhus University, 1981.

C.A.R. Hoare, "A Model Ior Communicating Sequential

Processes", Programming Research Group, Oxford University,

1978.

[KP] G. Kahn, G. Plotkin, "Structures de Donnees concretes",

IRIA-Laboria Report 336, 1979.

[LTS] P.E. Lauer, P.R. Tarrigiani, M.W. Shields, "COSY: A System

Specificatian Language based an Paths and"Pracesses",

Acta Infarmatica 12, 1979.

67

S. Maclane, "Categories for the working mathematician"

Springer-Verlag, 1971.

[Mac

G.J. Milne, "Synchronised Behaviour Algebras: a model for

interacting systems", Dept, of Comp. Sci., University of

Southern California, 1979.

R. Milner, "A Calculus for Cornrnunicating Systems",

LNCS 92, Springer-Verlag, 1980.

[M1

R. Milner, "On relating Synchrany and Asynchrany"

Camp. Sci., University af Edinburgh, 1980.

, Dept. of[M2]

u. Montanari, C. Simonelli, "On distinguishing between

concurrency and nondeterminism", Proc. Ecole de Printemps

on Concurrency and Petri Nets, Colleville, 1980 (to appear)

[NPW1 M. Nielsen, G. Platkin, G. Winskel, "Petri nets, event

structures and darnains", Prac. Canf. an Sernantics af Can-

current CarnputatiGn, Evian, LNCS 70, Springer-Verlag, 1979

[NPW2] M. Nielsen, G. Plotkin, G. Winskel, "Petri nets, event

structures and domains, part I", TCS 13, 1981.

"Net Theory and Applications", LNCS 84,

1980.

w. Brauer (ed.),

springer-Verlag,

G.D. Plotkin, "A Structural View of Operational Sernantics",

Lecture Notes, Computer Science Department, Aarhus Univer-

sit y, 1981.

"Lectures an Damains", Summerschaal, Pisa,G.D. Plotkin,

1978.

D.S. Scott, "Lectures on a Mathematical Theory of Computation",

Lecture notes in mathematics, University of Oxford, 1980.

[w] G. Winskel, "Events in Camputatian", Ph.D. Thesis, Dept. af

Camp. Sci., University af Edinburgh, 1980.

	Abstract
	TABLE OF CONTENTS
	0. INTRODUCTION
	1. EVENT STRUCTURES
	2. A "CPO" OF EVENT STRUCTURES
	3. A CATEGORY OF EVENT STRUCTURES
	4. TWO SUBCATEGORIES, PRIME EVENT STRUCTURES AND TREES
	5. A SEMANTICS FOR COMMUNICATING PROCESSES
	CONCLUSION
	APPENDIX A, Sets and partial functions
	APPENDIX B, Domains of configurations
	Acknowledgernents
	References

