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Abstract

We study the complexity of several standard problems for 1-safe
Petri nets and some of its subclasses. We prove that reachability,
liveness, and deadlock are all PSPACE-complete for 1-safe nets. We
also prove that deadlock is NP-complete for free-choice nets and for
1-safe free-choice nets. Finally, we prove that for arbitrary Petri nets,
deadlock is equivalent to reachability and liveness.
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This paper is to be presented at FST&TCS 13, Foundations of
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1 Introduction

Petri nets are one of the oldest and most studied formalisms for the inves-
tigation of concurrency [33]. Shortly after the birth of complexity theory,
Jones, Landweber, and Lien studied in their classical paper [24] the com-
plexity of several fundamental problems for Place/Transition nets (called in
[24] just Petri nets). Some years later, Howell, Rosier, and others studied
the complexity of numerous problems for conflict-free nets, a subclass of
Place/Transition nets [21][22].

In the 1980’s, process algebras were introduced as an alternative approach to
the study of concurrency; they are more compositional and of higher level.
The relationship between Petri Nets and process algebras has been thor-
oughly studied; in particular, many different Petri net semantics of process
algebras have been described, see for instance [3][7][16][32]. Also, a lot of
effort has been devoted to giving nets an algebraic structure by embedding
them in the framework of category theory, see among others [38][29]. Al-
though part of this work has been done for Place/Transition nets [16][29], it
has been observed that the nets in which a place can contain at most one to-
ken, called in the sequel 1-safe nets, have many interesting properties. Places
of 1-safe nets no longer model counters but logical conditions; a token in a
place means that the corresponding condition holds. This makes 1-safe nets
rather different from Place/Transition nets, even though both have similar
representations; for instance, finite Place/Transition nets can have iniinite
state spaces, but finite 1-safe nets cannot.

The advantages of 1-safe nets are numerous, and they have become a signifi-
cant model. Several semantics can be smoothly defined for 1-safe nets [4][31],
but are however difficult to extend to Place/Transition nets. Nielsen, Rozen-
berg and Thiagarajan [36][31] have shown that a model of 1-safe nets, called
Elementary Net Systems, has strong categorical connections with many other
models of concurrency, such as event structures (another good reference is
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[39]). Finally, 1-safe nets are closer to classical language theory, and can be
interpreted as a synchronisation of finite automata.

These properties have motivated the design of verification methods partic-
ularly suited for 1-safe nets. Several different proposals have recently been
presented in the literature [37][15][28][11]. In order to evaluate them, and as
a guide for future research, it is necessary to know the complexity of verifica-
tion problems for 1-safe nets. This paper provides the first systematic study
for 1-safe nets.

Figure 1: Summary of complexity results for Petri nets.

We study the maybe three most important verification problems for Petri
nets: reachability, liveness and existence of deadlocks. We determine their
complexity for 1-safe nets, and for three important subclasses: acyclic, conflict-
free and free-choice nets. In all cases, we compare the results with the com-
plexity of the corresponding problems for Place/Transition nets. In a brief
final section we study some other problems of interest.

This paper is a mixture of survey and new results. Our new results have
enabled us to complete Table 1. Throughout, we attribute previously known
results to their authors.

Two interesting subclasses of Petri nets are not covered by Table 1, namely
S- and T-systems [36]. For those, reachability, liveness, and deadlock are
known to be polynomial in the Place/Transition case [36][6][14], hence also
in the 1-safe case. Related work concerning not the complexity of particular
verification problems but the complexity of deciding different equivalence
notions can be found in [23].

The paper is organised as follows. Section a contains basic definitions. In
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section 3 we show that the deadlock problem is recursively equivalent to the
liveness and reachability problems. Section 4 shows that the three problems
are PSPACE-complete in the 1-safe case. In section 5, the different classes
of Petri nets mentioned above are considered. Finally, in section 6 other
problems are studied.

We finish this introduction with a remark. In the paper, 1-safe nets are
defined as a subclass of Place/Transition nets. Other versions of 1-safe nets
can be found in the literature, namely the Condition/Event systems [33] and
the Elementary Net Systems [36]. This multiplicity of definitions is maybe
annoying but harmless: the differences among them are small, and of rather
technical nature (see [1] for a discussion). In particular, our results are
independent of the definition used.

2 Definitions

We recall in this section some basic concepts about Place/Transition nets
and 1-safe nets, and define the reachability, liveness and deadlock problems.

A Place/Transition net, or just a net, is a fourtuple N = (P, T, F,M − 0)
such that

1. P and T are disjoint sets; their elements are called places and transition,
respectively.

2. F ⊆ (P × T ) ∪ (T × P ); F is called the flow relation.

3. M0 : P → IN ;M0 is called the initial marking of N ; in general, a
mapping M : P → IN is called a marking of N

Given a ∈ P ∪ T , the preset of a, denoted by •a, is defined as {a′ | a′Fa};
the postset of a, denoted by a•, is defined as {a′ | aFa′}.
Sometimes, we denote that a transition t has preset I and postset O in the
following way:

t : I → O
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For technical reasons we only consider nets in which every node has a nonempty
preset or a nonempty postset. We will let + denote union of multisets.

Let N = (P, T, F,M0) be a net. A transition t ∈ T is enabled at a marking
M of N if M(p) > 0 for every place p in the preset of t. Given a transition

t, we define a relation
t−→ between markings as follows: M

t−→ M ′ if t is
enabled at M and M ′(s) = M(s) + F (t, s) − F (s, t), where F (x, y) is 1 if
(x, y) ∈ F and 0 otherwise. The transition t is said to occur (or fire) at M .

If M0
t1−→ M1

t2−→ . . .
tn−→ Mn for some markings M0,M1 . . .Mn, then the

sequence σ = t1 . . . tn is called an occurence sequence. Mn is the marking
reached by σ, and this is denoted M0

σ−→ Mn. A marking M is reachable
if it is the marking reached by some occurrence sequence. Given a marking
M of N , the set of reachable markings of the net (P, T, F,M) (i.e., the net
obtained replacing the initial marking M0 by M) is denoted by [M〉.
Notice that the empty sequence is an occurrence sequence and that it reaches
the initial marking M0.

A marking M of a net N is 1-safe if for every place p of the net M(p) ≤ 1.
We identify a 1-safe marking M with the set of places p such that M(p) = 1.
A net N is 1-safe if all its reachable markings are 1-safe.

A net N is unary if at every reachable marking at most one transition is
enabled. N is 1-conseruative if for every transition t, |• t |=| t• |.
The reachability problem for a net N is the problem of deciding for a given
marking M of N if it is reachable.

A net N is live if for every transition t of N and every reachable marking
M , some marking of [M〉 enables t. The liveness problem for a net is the
problem of deciding if it is live.

A marking of a net is a deadlock if it enables no transitions. The deadlock
problem for a net is the problem of deciding if any of its reachable markings
is a deadlock.
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3 Place/Transition Nets

For Place/Transition nets, it is known that the liveness and reachability
problems are recursively equivalent [18], and that they are both decidable
and EXPSPACE-hard [26]. We complete the picture by showing that the
deadlock problem is recursively equivalent to them, and thus decidable and
EXPSPACE-hard.

Theorem 1 Reachability is polynomial-time reducible to dead-
lock.

Proof. Given a net N = (P, T, F,M0), and a marking M of N , we construct
a net N ′ = (P, T ′, F ′,M ′

0), as follows. Let V be the set of places marked in
M . The places and transitions of N’ are:

Figure 2: Reducing reachability to deadlock.

The flow relation of N ′ is given by:

For each t ∈ T : tc : •t+ pt → t• + pt
For each p ∈ P : tp : p→ p
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terminate :
∑
t∈T pt →

∑
q∈V bq

For each q ∈ V : loopq : cq → cq
For each q ∈ V : subq : cq + q + bq → bq

Finally,

M ′
0 = M0 +

∑
q∈V αqcq +

∑
t∈T pt

where

M =
∑
q∈V αqq, αq > 0

The construction of N ′ is illustrated in Figure 2.

Claim: M is reachable in N if and only if N ′ has a deadlock. To see this,
first notice that terminate can occur at most once, that this disables all the
tc transitions, and that as long as it has not occurred, no marking can be
dead: terminate can occur.

Suppose now that M is reachable in N . Having reached M in N ′ firing only
tc transitions, fire the terminate transition and use the subq transitions to
remove, for each q ∈ V , αq tokens from q. This yields a dead marking.

Suppose then that M is not reachable in N . Before terminate has fired, there
is no deadlock. When terminate has fired, no transition in N can fire. There
are two cases. Suppose first that M is the empty marking. Since M is not
reachable in N , there are still tokens in N . Thus, at least one tp transition
will remain enabled. Suppose then that M is a non-empty marking. If there
are no tokens in N , then at least one loopq transition will remain enabled. If
there are still tokens in N , then at least one tp transition will remain enabled.
2

Theorem 2 Deadlock is polynomial-time reducible to liveness.

Proof. Given a netN = (P, T, F,M0), we construct a netN ′ = (P ′, T ′, F ′,M ′
0),

as follows. The places and transitions of N ′ are:
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P ′ = P ∪ {ok}
T ′ = {tc, t′ | t ∈ T} ∪ {live}

The flow relation of N ’ is given by:
For each t ∈ T : tc : •t→ t•

For each t ∈ T : t′ : •t→ ok
live : ok → P ′

Finally, M ′
0 = M0.

Claim: N has no reachable dead marking if and only if N ’ is live. To see
this, suppose first that N can reach a dead marking Md. Clearly, also N ’
can reach Md without firing any t’ transitions, and since the t’ transitions in
N ’ have the same presets as the transitions in N , Md is dead in M ’. Thus,
N ’ is not live.

Suppose then that N has no reachable dead marking. Then the initial mark-
ing is not dead, so fire one of the t’ transitions. This places a token on the
ok place, and there the token remains. Thus from now on, the live transition
is enabled, and because the live transition places tokens on all places in N ’,
N ’ is live.
2

Corollary 3 The deadlock, liveness and reachability problems are
recurively equivalent. Thus, the deadlock problem is decidable and
EXPSPACE-hard.

Proof. For the equivalence of the problems, combine theorems 1 and 2 with
Hack’s reduction from liveness to reachability [18]. For the complexity of
the deadlock problem, use the equivalence with reachability and obtain the
decidability from Mayr [27] and the EXPSPACE-hardness from Lipton [26].
2

4 1-Safe Nets

In this section we prove that the reachability, liveness and deadlock problems
are PSPACE-complete for 1-safe nets. First we consider the liveness problem.
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Theorem 4 The liveness problem for 1-safe nets is PSPACE-
complete.

Proof. To prove that the liveness problem is in PSPACE, we can use essen-
tially the technique of Jones, Landweber, and Lien [24, Theorem 3.9]. They
proved that the liveness problem for 1-conservative (not necessarily 1-safe)
nets is in PSPACE.

To prove completeness, we show that the problem (DETERMINISTIC) LIN-
EAR BOUNDED AUTOMATON ACCEPTANCE (which is PSPACE-complete
[13, pp.265]) is polynomial-time reducible to the liveness problem. A linear
bounded automaton is a Turing machine which only visits the cells of the
tape containing the input. The input is bounded by a left and a right marker,
say # and $, and the head can visit no cell to the left of # and no cell to
the right of $ (see [20] for a formal definition).
The problem is deiined as follows:

Given: a deterministic linearly bounded automaton M0 and an
input x forM0,
To decide: ifM0 accepts x.

First, we construct in polynomial time a deterministic linearly bounded au-
tomaton M, satisfying the following two properties:

(1)M accepts x iffM0 accepts x, and
(2)M has a unique accepting configuration.

M simulatesM0, but, before accepting,M erases the tape, moves the head
to the leftmost cell, and then enters its unique final state (a new state not
present inM0). In this way,M satisfies (2).

LetM = (K,
∑
,Γ, δ, q1, q2,#, $) whereK is the set of states,

∑
the alphabet,Γ ⊇

{#, $} is the set of tape symbols, δ is the transition relation, q1 the initial
state, q2 the final state, and # and $ are the boundary symbols. More-
over, let K = {q1, . . . , qm},Γ = {a1, . . . , ap}, n = the size of #x$, and
β = K×Γ×{C,R, L}×K×Γ (i.e., the transition relation is a subset of β).

We construct a 1-safe net N = (P, T, F,M0) as follows:
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• P = {Ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}
∪ {Qi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪ {B,C}

P contains a place Ai,j for every tape cell i and every tape symbol
aj; a token in Ai,j means that the symbol on tape cell i is aj. It also
contains a place Qi,j for every tape cell i and every state qj; a token
in Qi,j means that the automaton scans the cell i in state qj. Given a
configuration c of the automataM, c can be encoded as a subset of P
in the following way:

- if the automaton is in state qj scanning the i-th tape cell, then Qi,j

belongs to the set,

- if the tape cell i contains the symbol aj, then Ai,j belongs to the set,
and

- no other place belongs to the set.

Denote the set of places associated to the configuration c by M(c).
Notice that M(c) can also be interpreted as a 1-safe marking of N .

B and C play the role of a switch, as follows. If there is a token on B,
then the net simulates M ; if there is a token on C, then the net behaves
nondeterministically in such a way that any marking corresponding to
a configuration of the linear automaton can be reached.

• T contains the following transitions for every element of β:

- If (qs, at, R, qr, al) ∈ δ (move right), then T includes for every cell
1 ≤ i < n a transition

Qi,s + Ai,t → Qi+1,r + Ai,l

(where we use + instead of set union to use the notation of [24];
notice that no transition is needed for the n-th cell). Similarly
for left moves and no motion. The transitions corresponding to
an element of β \ δ have C in their preset, and can therefore only
occur if C is marked.

- If (qs, at, R, qr, al) ∈ β \ δ, then T includes for every cell 1 ≤ i < n a
transition

C +Qi,s + Ai,t → Qi+1,r + Ai,l + C
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Similarly for left moves and no motion.

- T contains the following two transitions tB→C , tC→B where ci is the
initial configuration ofM, and Cf its unique accepting configura-
tion.

tB→C : B +M(cf )→ C +M(cf )

If the net reaches the marking corresponding to the accepting configura-
tion cf then the transition tB→C can occur and the net starts behaving
nondeterministically in such a way that for any configuration c, the
marking C +M(c) is reachable.

tC→B : C +M(ci)→ B +M(ci)

The net can return to simulatingM if, while behaving nondeterministi-
cally, it reaches the marlcing corresponding to the initial configuration.

• The initial marking M0 is the one corresponding to the initial configu-
ration, plus one token on the place B i.e., M0 = B +M(ci)

IfM does not accept x, then N never reaches the marking B+M(cf ), corre-
sponding to the accepting configuration cf . This implies that the transition
tB→C can never occur, and therefore N is not live.

If M accepts x, then the net reaches the accepting configuration cf . So
the transition tB→C can occur, and N starts behaving nondeterministically.
Now, for every possible configuration c, the net can reach C +M(c). Hence
every transition, but tB→C , can become enabled at some reachable marking
containing C. In particular, the marking M(ci) +C can be reached too; this
marking enables tC→B. Therefore, the net can return to simulatingM, and
everything starts anew, in particular tB→C can occur again.
2

We now consider the reachability problem. It is again possible to use a
reduction from linear bounded automaton acceptance. However, we prefer
to give another reduction from quantified boolean formulas. This reduction
has some interest in itself, and moreover shows that the problem is still
PSPACE-complete even if restricted to unary 1-safe nets.

Theorem 5 The reachability problem for unary 1-safe nets is
PSPACE-complete.
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Proof. The reachability problem is clearly in PSPACE: given a net N and
a marking M of N , guess an occurrence sequence, and check in linear space
that the occurrence sequence leads to M .

To prove PSPACE-hardness, we show that QUANTIFIED BOOLEAN FOR-
MULAS (which is PSPACE-complete [13]) is polynomial-time reducible to
the reachability problem.

The problem is defined as follows:

Given: A well-formed quantified Boolean formula

F = (Q1, x1)(Q2, x2) . . . (Qn, xn)E

where E is a Boolean expression involving the variables x1, x2, . . . , xn
and each Qi is either “∃” or “∀”.

To decide: is F true?

If we are given a quantified boolean formula F , then we construct a unary
1-safe net N and a marking M of N such that M is reachable if and only if
F is true.

Before constructing the net and the marking, we rewrite F , in polynomial
time, into an equivalent closed formula G generated by the grammar:

P ::= x | ¬P | P ∧ P | ∃x.P

and such that all bound variables in G are distinct. Notice that G needs not
be a quantified boolean formula: the quantifiers in G need not occur at the
outermost level.

The construction of the net for G is illustrated in Figure 2. Intuitively, the
idea is to try all possible assignments of bound variables. The construction
is essentially compositional. The only complication is the interpretation of
variables.

The net for G contains the places:

{P in, P T, P F | P is an occurrence of a subformula of G}∪
{x is T, x is F | x is bound in G}
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Figure 3: Reduction from quantified boolean formulas

For readability, when in the following we name places and transitions, we
write not P for ¬P , we write P and Q for P ∧ Q, and we write Ex.P for
∃x.P .

The initial marking is {G in}.
The net for G contains the following transitions for each occurrence of a
subformula of G:

To avoid name clashes we could let the name of an occurrence of a subformula
of G contain its position in the syntax tree for G. We omit these details, for
readability.

Intuitively, when P in (“the in-place for P”) becomes marked, then the check-
ing of the truth of P begins. When either P T (“true”) or P F (“false”)
becomes marked, this checking is completed. Let us consider in turn the
construction for each of the productions of the above grammar.

First, consider a variable x, see Figure 3, box B. The places x is T (“x is
true”) and x is F (“x is false”) are not part of the net for x but are included
to indicate that they will be added when treating the quantification that
binds x. Note that all occurrences of the same variable x share these two
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places. The two transitions implements the reading of the current value of
x.

Second, consider a negation ¬P , see Figure 3, box C. The transition call P
transfers the “control” to the subnet for P . The two other transitions imple-
ment the negation.

Third, consider a conjunction P ∧ Q, see Figure 3, box D. The transition
call P transfers the “control” to the subnet for P . The four other transitions
implement the conjunction.

Fourth, consider an existential quantification ∃x.P , see Figure 3, box E. The
places x is T (“x is true”) and x is F (“x is false”) are the ones we men-
tioned above. The transition call P with x T assigns true to x and transfers
the “control” to the subnet for P . In case P was not true, the transition
call P with x F assigns false to x and transfers again the “control” to the
subnet for P .

If a formula P is open, then we can obtain an extended net for P as follows.
For every free variable x in P we extend the net with two places x is T and
x is F and mark exactly one of them. This marking may be thought of as
assigning a value to x.
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The following fact expresses a relation between each formula P and the ex-
tended net for P . The proof is by straightforward induction on the structure
of P .

• Fact Let P be a formula generated from the above grammar and con-
sider the extended net for P . In the following we discount the marking
of the places for free variables; the marking of these are invariant. From
the marking {in P}, eventually either {P T} or {P F} will be reached.
The former is reached if and only if P is true under the given assignment
of its free variables, and the latter if not.

Using this observation it is easy to see that the marking {G T} is reachable
in the net for G if and only if G is true.

Clearly, the net for G is 1-safe. Notice that for each reachable marking at
most one transition is enabled.
2

Theorem 6 The deadlock problem for 1-safe nets is PSPACE-
complete.

Proof. To show that the deadlock problem is in PSPACE, given a 1-safe net
N guess a marking M of N , and check in constant space if it is a deadlock;
guess an occurrence sequence from the initial marking (only the marking
reached so far needs to be stored, which uses linear space); check after each
step if the occurrence sequence constructed so far leads to M .

To prove completeness, we reduce the problem QUANTIFIED BOOLEAN
FORMULAS to the deadlock problem. Extend the net in the proof of The-
orem 5 with the transition

G F → G F

Clearly, the new net has a deadlock if and only if F is true.
2

The deadlock and and reachability problems turn out to be PSPACEcomplete
even for 1-conservative unary 1-safe nets. This follows directly from the
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constructions in the proof of Theorem 5 and the following “conservativeness”
observation.

First, we define the notion of reachability graph. The reachability graph of
a net N is the edge-labeled graph whose vertices are the reachable markings

of N ; if M
t−→ M ′ for a reachable marking M , then there is an edge from

M to M ′ labeled with t.

Fact 7 There is a linear time algorithm which converts a 1 -safe net N into
a 1 -conservative 1 -safe net N’ with the following property: there exists a
simple function f from the markings of N to the markings of N’ such that (1)
M is reachable in N iff f(M) is reachable in N’; (2) the initial marking of N
is mapped by f to the initial marking of N’; and (3) M is a deadlock of N iff
f(M) is a deadlock of N’. Hence the conotruction ’preserves’ reachability and
the existence of deadlocks.

For N = (P, T, F,M0), the net N ′ is constructed by adding for every place
p of P a new place p̄ called the complement of p. Then, for every arc (p, t)
of F\F−1, a new arc (t, p̄) is added; similarly, for every arc (t, p) of F\F−1,
a new arc (p̄, t) is added. Finally M ′

0 is defined by M ′
0(p) = M0(p) for every

place p of N , and M ′
0(p̄) = 1 − M0(p) for each complement place. The

construction is very similar to the one of [33], and therefore we omit the
proof of the result; the only difference is the special treatment of the case in
which two arcs (p, t) and (t, p) exist.

5 Subclasses

In this section we study the complexity of our three problems for three sub-
classes of nets which have been often studied in the literature. Most results
are already known; we have collected them and filled some gaps. The nets of
these subclasses satisfy some structural condition that rules out some basic
kind of behaviours. In our first case, the acyclic nets, recursive or iterative be-
haviours are forbidden. The conflict-free nets do not allow nondeterministic
behaviours (actually, this depends slightly on the notion of nondeterminism
used). Finally, free-choice nets restrict the interplay between nondeterminism
and synchronizations. In particular, in 1-safe free-choice net the phenomenon
known as confusion [36] is ruled out.
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5.1 Acyclic nets

A net N = (P, T, F,M0) is said to be acyclic if F+ (the transitive closure of
F ) is irreflexive. The reachability problem remains untractable for acyclic
1-safe nets, although the problem is no longer PSPACE-complete (assuming
NP neq PSPACE).

Theorem 8 The reachability problem for acyclic 1-safe nets is
NP complete.

Proof. The problem is in NP because in an occurrence sequence of a 1-
safe acyclic net each transition occurs at most once. So we can guess an
occurrence sequence in linear time and check in polynomial time if it leads
to the given marking.

For the completeness part, see the paper by Stewart [35]. The result is proved
by means of a reduction from the HAMILTONIAN CIRCUIT problem.

Since all 1-safe acyclic nets contain deadlocks, the liveness and deadlock
problems are trivial.

We can compare these results with the ones corresponding to the general
case.

Theorem 9 The reachability problem for acyclic Place/Transition
nets is NP-complete.

Proof. The problem can be polynomial-time reduced to INTEGER LINEAR
PROGRAMMING, because in an acyclic net N with initial marking M0 a
marking M is reachable iff the system of equations corresponding to the state
equationM = M0+C·X, where C is the incidence matrix ofN , has an integer
vector solution X (for the definitions of incidence matrix and state equation,
see, for instance, [30]). Since INTEGER LINEAR PROGRAMMING is in
NP [20], so is our problem.

The completeness follows trivially from the completeness of the problem for
the 1-safe case.
2
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It is easy to see that an acyclic net has no deadlocks if and only if some of
its transitions has empty preset; therefore the deadlock problem can easily
be solved in linear time. Similarly, an acyclic net is live if and only if every
place has some input transition; so the liveness problem is also linear. So,
as we can see, there are no essential differences between the general and the
1-safe case.

5.2 Conflict-free nets

Conflict-free nets are a subclass in which confiicts are structurally ruled out
(actually, this depends slightly on the notion of confict used). Their complex-
ity has been deeply studied in several papers; in particular, the complexity
of our three problems.

A net N = (P, T, F,M0) is conflict-free if for every place p, if |p•| > 1, then
p• ⊆• p.
It is shown by Howell and Rosier in [21][22] that the reachability, liveness, and
deadlock problems for 1-safe conflict-free nets are solvable in polynomial time.
They also show that, for Place/Transition nets, the deadlock and liveness
problems are still polynomial, whereas the reachability problem becomes NP-
complete [21][22].

5.3 Free-Choice nets

Free-choice nets are a well studied class, commonly acknowledged to be about
the largest class having a nice theory.

A net N = (P, T, F,M0) is free-choice if for any pair (p, t) ∈ F ∩ (P × T ) it
is the case that p• = {t} or •t = {p}.
In a free-choice net, if some transitions share an input place p, then p is their
unique input place. It follows that if any of them is enabled, then all of them
are enabled. Therefore, it is always possible to freely choose which of them
occurs.

The reachability problem is still PSPACE-complete for 1-safe free-choice nets.
The reason is that for a 1-safe net N and a marking M , we can construct a
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1-safe free-choice net N ′ containing all the places of N (and possibly more),
such that M is reachable in N if and only if it is reachable in N ′. N ′ is the
so called ’released form’ of N . Intuitively, every arc (p, t) such that |p•| > 1
and |•t| > 1 is removed and replaced by new arcs (p, t′), (t′, p′), (p′, t), where
p′ and t′ are a new place and a new transition. The interested reader can
find a formal definition in [24][19]. Figure 3 shows a non-free-choice net (on
the left), and its released form (on the right).

Perhaps surprisingly, the liveness problem is polynomial for this class.

Theorem 10 The liveness problem for free-choice 1-safe nets is
solvable in polynomial time.

Figure 4: A net and its released form.

Proof. See the paper by Esparza and Silva [12], and the paper by Desel [8].
2

We now show that the deadlock problem for 1-safe free-choice nets is NP-
complete. Membership in NP is non-trivial, and requires to introduce some
concepts and results of net theory.

Let N be a net and Q a set of places of N . For a marking M of N , M(Q)
denotes the total number of tokens that M puts in the places of Q (formally,
M(Q) =

∑
p∈QM(p). The set Q is said to be marked at M if M(Q) > 0,

and unmarked at M if M(Q) = 0.

A subset Q of places of N is a siphon if •Q ⊆ Q•, and a trap if Q• ⊆• Q.

We use some well known lemmata about siphons and traps. They can all be
found in ref17 or - a more accessible reference - in [2].

Lemma 11 Let N be a net, and M a marking of N.
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1. If Q is a siphon of N unmarked at M, then Q remains unmarked at all
markings reachable from M.

2. If Q is a trap of N marked at M, then Q remains marked at all markings
reachable from M.

Proof. Follows easily from the definitions of siphon, trap, and the occurrence
rule.
2

Lemma 12 Let M be a deadlock of a net N. Then, the set of
places of N unmarked at M is a siphon of N.

Proof. Let Q be the set of places of N unmarked at M . It suffices to observe
that, since M is a deadlock, every transition has some place in its preset
which is unmarked at M . So Q• contains all the transitions of N and, since
•Q is a subset of them, Q is a siphon.
2

Lemma 13 Let N be a free-choice net with initial marking M0.
Let Q be a siphon of N which contains no trap marked at M0.
Then, there exists a reachable marking M such that Q is unmarked
at it.

Proof. See [17][2]. This result is part of the proof of Commoner’s theorem.
2

Using these lemmata, we can now characterise when a free-choice net has a
deadlock.

Lemma 14 Let N be a free-choice net. N has a deadlock iff there
exists a siphon Q of N such that:

1. for every transition t of N, Q contains some place of •t, and

2. Q contains no trap marked at the initial marking.
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Proof. (⇒): Let M be a deadlock of N . Define Q as the set of places of N
unmarked at M . By Lemma 12, Q is a siphon. Since no transition of N is
enabled at M , we have that, for every transition t, Q contains some place of
•t.

To prove (2), assume that Q contains a trap marked at the initial marking.
Then, since marked traps remain marked by Lemma 11, this trap is marked
at M . So Q is marked at M too, which contradicts the definition of Q.

(⇐): By Lemma 13, there exists a reachable markingM such thatM(Q) = 0.
Since Q contains some place of the preset of each transition, no transition is
enabled at M . So M is a deadlock.
2

Theorem 15 The deadlock problem for 1-safe free-choice nets
is NP-complete.

Proof. To solve the problem in nondeterministic polynomial time, we use
Lemma 14. Guess for each transition t of the net a place of •t. Check
in polynomial time if the guessed set of places is a siphon; then, check in
polynomial time that it contains no trap marked at the initial marking using
Starke’s algorithm to find the maximal trap contained in a given siphon [34]
(see [9] for a reference in English).

We prove completeness by reducing the satisfiability problem of propositional
formulas in conjunctive normal form (CON-SAT) to the deadlock problem.

An instance φ of CON-SAT is a conjunction of clauses C1, . . . , Cm over vari-
ables x1, . . . , x− n. A clause is a disjunction of literals. A literal li is either
a variable xi or its negation x̄i.

Given an instance φ of CON-SAT, we construct a free-choice net N in poly-
nomial time and show that that it has a deadlock iff φ is satisfiable. The con-
struction is very similar to the one used in [24] to prove the NP-completeness
of liveness in general free-choice nets. We describe the set P of places and
the set T of transitions of N , together with their presets and postsets. The
set P contains the following elements:

(a) for every 1 ≤ i ≤ n, places Ai, xi, x̄i
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(b) for each clause Cj and every literal li appearing in Cj, a place (li, Cj)
and

(c) for each clause Cj, a place Fj.

The transitions in T are defined as follows:

1. for each literal li, Ai → li,

2. for each literal li, li → ∑
l̄i∈Cj

(li, Cj)

3. for each clause Cj, ∑
li∈Cj

(li, Cj)→ Fj

and

4. for each clause Cj, Fj → Fj.

The marking M0 is the set {Ai | 1 ≤ i ≤ n}.
An occurrence sequence of N is a truth sequence if:

• for every variable xi, it contains one of the two transitions Ai →
xi, Ai → x̄i, and

• it only enables transitions of type (3), if any.

A truth sequence σ is associated to the assignment f : {x1, . . . , xn} →
{true, false} given by f(xi) = true iff the transition Ai → xi occurs in
σ. The following fact follows easily from the construction of N:

• Fact The marking reached by a truth sequence enables a type (3)
transition iff the corresponding clause Cj is false under f .
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Assume φ is satisfiable. Then, there exists an assignment f which makes all
clauses true. By the fact above, any truth sequence associated to f leads to
a deadlock.

Now, assume thatM is a deadlock of N . It follows from the construction that
M only marks places of the form (li, Cj), and that any occurrence sequence
that leads to M is a truth sequence. By the fact above, no clause is false
under the assignment associated to σ. So φ is satisfiable.
2

There are differences between the 1-safe and the Place/Transition free-choice
nets. Using the releasing technique it is easy to show that the reachability
problem for free-choice nets is as hard as the reachability problem for arbi-
trary Place/Transition nets, and therefore EXPSPACE-hard. The liveness
problem was shown to be NP-complete in [24]. Finally, our proof of mem-
bership in NP for the deadlock problem did not rely on 1-safeness; therefore,
the deadlock problem is also NP-complete for Place/Transition free-choice
nets.

6 Other Problems

There exist other problems concerning Petri nets which have received atten-
tion in the literature.

The containment problem for two nets with the same set of places is the
problem of deciding whether all reachable markings of the first are reachable
in the second.

Given two 1-safe markings M , M ′ of a net, M is covered by M ′ if M ⊆M ′.
The coverability problem for a given net N and a marking M of N is the
problem of deciding whether some reachable marking of N covers M .

A net N is said to be persistent [25] if for every reachable marking M , if

two different transitions t, t′ are enabled at M then M
−→
t M ′ −→t M ′′ for

some markings M ′, M ′′. The persistency problem for a net is the problem of
deciding whether the net is persistent. Notice that unary nets are persistent.

Let N = (P, T, F,M0) be a net. For any subset T0 of T let hT0 be the
“erasing” homomorphism from T ∗ to T ∗0 which erases elements from T \ T0.
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For a transition t ∈ T \T0 we say that T0 controls t by an occurrence sequence
γ in T ∗0 if for every occurrence sequence σ from M0 if hT0(σ) = γ then t is
not enabled at the marking M reached by the occurrence of σ. Crudely
speaking, once γ has occurred, even interleaved with transitions of T \ T0, t
cannot occur until some transition of T0 occurs. T0 is said to control t if T0

can control t by at least one sequence γ. The controllabilty problem [24] for
a net is the problem of deciding whether T0 controls t given N , T0, and t as
above.

For arbitrary Petri nets, the containment problem is undecidable [19], whereas
the coverability, persistency and controllability problems are EXPSPACE-
hard. It is shown by Howell and Rosier in [21][22] that the coverability
problem for 1-safe confict-free nets is solvable in polynomial time.

We study the first three of these problems in the 1-safe case.

Theorem 16 The containment, coverability and persistency prob-
lems for 1-safe nets are PSPACE-complete.

Proof. We show that each of the three problems is in PSPACE. First, con-
sider the containment problem. Given two nets, guess a marking and check in
linear space that the marking is reachable in the first net and unreachable in
the second net. This shows that the containment problem is in co-NPSPACE
and thus in PSPACE (by Savitch’s theorem and because space complexity
classes are closed under complementation).

Second, consider the coverability problem. Given a 1-safe net N and a mark-
ing M of N , guess both a marking M ′ ⊇M and, step by step, an occurrence
sequence from the initial marking (only the marking reached so far needs to
be stored, which uses linear space); check after each step if the occurrence
sequence constructed so far leads to M ′.

Third, consider the persistency problem. Proceed as above, this time guess-
ing a marking M of N that enables two different transitions t and t′. If M is
reachable, then check in linear space that t′ cannot occur after the occurrence
of t.

To prove that each of the three problems is PSPACE-hard, we use the same
construction as in the proof of PSPACE-hardness of reachability. For each of
the following arguments, suppose we are given a quantified boolean formula
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F . To begin with, transform it into an equivalent formula G as was done for
Theorem 5.

First, consider the containment problem. Construct both the same 1-safe
net N as in the proof of Theorem 5 and the following net N ′. The net N ′

is obtained from N by removing all transitions and taking {G T} as initial
marking. For convenience we construct a net whose places have empty presets
and postsets (isolated nodes), see remark at the beginning of section 2. The
PSPACE-hardness can be shown for nets satisfying the assumptions of no
isolated nodes. Clearly, the set of reachable markings of N ′ is {G T}, and
therefore it is contained in the set of reachable markings of N if and only if
F is true.

Second, consider the coverability problem. Clearly, there is a reachable mark-
ing in N that covers {G T} if and only if F is true.

Third, consider the persistency problem. Extend the net in the proof of
Theorem 5 with two new places {V , W} and the transitions

G F → V
G F → W

Clearly, the new net is persistent if and only if F is true.
2

The proof of the result on controllability [24], [Theorem 4.1] was in fact
given for 1-conservative free-choice nets, and also works when restricted to
1-safe nets. This is the only one of the problems we consider for which the
complexity does not decrease for 1-safe nets.

Using the techniques from the proofs of Theorem 5 and 16 one can proceed to
prove that numerous other problems for 1-safe nets are PSPACE-complete:
“is there an infinite occurrence sequence?”, “can a certain transition ever
occur?”, “is a certain transition live?”, etc. The interested reader will find
no problem in carrying out the corresponding proofs.
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7 Conclusions

We have analysed the complexity of several problems for 1-safe nets. Table 1
summarises results on the complexity of reachability, liveness, and existence
of deadlocks. We can obtain some conclusions:

• All problems remain intractable, although, as could be expected, their
complexity decreases in comparison with Place/Transition nets. The
usual pattern is that problems are EXPSPACE-hard for Place/Transition
nets and PSPACE-complete in the 1-safe case.

• Most problems remain intractable even for unary 1-safe nets, which are
sequential and deterministic. So it is not possible to relate intractability
to nondeterminism or concurrency.

• Some problems become tractable when restricted to subclasses of 1-safe
nets defined using structural constraints, i.e., constraints on the flow
relation.

The most interesting direction for further research is probably the study of
the complexity of a problem when a certain desirable property is known to
hold, for instance liveness. The result of [10] can be seen as a first step in this
direction: it is shown that for live and 1-safe free-choice nets the reachability
problem is in NP, by proving that every reachable marking can be reached
by an occurrence sequence of polynomial length. So far nothing is known
about the complexity of deciding if a marking is reachable when the Petri
net is known to be live.
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