
Communicative Action Notation with Shared
Storage

Martin Musicante∗

UFPE - Departamento de Informatica
50.732-970 Cidade Universitária

Recife - PE - Brazil

mam@di.ufpe.br

Peter D. Mosses†

Computer Science Department
Aarhus University

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C - Denmark

pdmosses@daimi.aau.dk

August 1993

Abstract

A variation of the Communicative Action Notation is presented, in
order to allow the sharing of storage among agents. Examples of use of
the new notation are given by means of the description of semaphores,
monitors and RPC mechanisms. The operational semantics of the new
notation is also presented.

Introduction

Action Semantics [2] is a formal style of semantics definitions developed
to provide “tractable” descriptions of real-life languages. Action Semantics
descriptions resemble those written in denotational semantics [1], in the sense
that equations defining semantic functions are given to state the meaning
of each phrase of a language. Instead of the functional notation used in
denotational semantics, a special notation was developed for use in action

∗Partly funded by the Brazilian Science Research Council, CNPq, Grant 201.201/91-7.
†Partly funded by the Danish Science Research Council project DART (5.21.08.03).

1

semantics. This notation is called Action Notation, and it is used in action
semantics descriptions very much in the way in which the λ-notation is used
in denotational semantics.

In Action Semantics, the meaning of each phrase of a language is repre-
sented in terms of special entities called actions. Actions can be performed,
with various possible outcomes: normal termination (complete), exceptional
termination (escape), unsuccessful termination (fail) or non-termination (di-
verge). Action Notation provides some basic actions, and actions can be
combined in order to obtain complex actions. In [2], combinators corre-
sponding to many control patterns present in programming languages are
provided, and further data may be specified ad hoc.

Together with action notation, a Data Notation is used to describe se-
mantic entities in action semantics descriptions. A collection of algebraically
defined data constructors is provided within the data notation, including
numbers, characters, strings, sets, tuples, maps, etc.

There exists a third class of entities within the action semantics framework.
These entities are called Yielders, and represent data, whose value depends
on the current information managed by the enclosing action. Yielders can be
evaluated to yield data. An example of a pre-defined yielder is current bind-
ings, which yields the mapping from tokens to bindable data that represents
the bindings received by the enclosing action.

Action Notation possesses five facets in which each primitive action and
action combinator can behave.

Basic: This facet deals with pure control flow, without reference to infor-
mation processing issues.

Functional: This facet deals with transient data, which is given to or by
an action. For example, when the basic action give the given natural
is given a natural number as transient data, it completes, giving the
received natural number as a transient as well. The compound action
A1 then A2 performs the action A1 first. All transient data produced
by A1 is supplied to A2, which is performed after A1 completes.

Declarative: This facet deals with the manipulation of scoped information,
represented by associations of tokens to bindable data. For example,
the basic action bind “max-length” to 256 completes its performance,

2

producing a binding of the token “max-length” to the natural number
256.

Imperative: Storage handling primitives are provided by this facet. A stor-
age, in the action notation context, is a mapping from cells to storable
data. For example, the action

allocate a cell
then

store 26 in the given cell .

allocates a new cell of the storage, and stores a value in it. This action
combines features of both the functional and imperative facets. (Ver-
tical bars are used to enforce the intended grouping of actions, as an
alternative to parentheses.)

Communicative: This facet provides a system of agents, whose task is to
perform actions. Agents can communicate using asynchronous message
passing. Each agent has its own communication buffer, in which all the
messages sent to the agent are placed. Communication is reliable, in
the sense that no message can be lost during transmission; however,
there is no bound to the amount of time taken for a message to arrive
to its destination buffer, after transmission. Moreover, each agent is
created with its own storage.

Encapsulation of actions as data is also provided within action notation.
This feature gives a simple way to support the description of procedure and
function abstractions in programming languages. For example, the perfor-
mance of the action

give abstraction of allocate a cell
then

store 26 in the given cell .

completes, giving an abstraction as a transient. An abstraction is an item of
data which encapsulates an action. Abstractions can be enacted ; this oper-
ation results in the performance of the encapsulated action. Both transients
and bindings can be supplied to the enacted action.

For a more detailed description of action notation, the reader can refer to
[2] or [5] (the former covers all the aspects related with the formal system; the

3

latter does not cover the communicative facet nor the operational semantics
of the notation).

A variation on the usual communicative action notation is presented in this
work. Our purpose is to introduce storage sharing capabilities to the agents.
The modifications proposed here make it possible to write more succinct
and readable specifications of concurrent programming concepts than in the
original notation, since it is no longer necessary to represent shared storage
by auxiliary agents and communication protocols.

Our variation on the communicative action notation does not add any new
primitive actions or combinators to the original action notation. It provides
the notion of storage shared among several agents merely by introducing a
new sort of contracts (the sharing ones), and the corresponding extension of
the offer action. A couple of new yielders are introduced as well.

Then some conclusions are stated. An appendix provides the operational
semantics of the entire extended action notation, and can be compared to
[2, App. C]. Some examples of use of the new notation are given. The last
section of this work provides the operational semantics of the new notation.

1 Communicative Action Notation

In what follows, the shared storage variation of the communicative action
notation is presented. It includes the same set of actions present in the
original communicative action notation. Some new yielders are introduced.

The reader may like to compare this section with [2, Chapter 9]. See
also [2] for an explanation of the meta-notation used below for specifying
functionalities of operations, etc.

1.1 Actions

The communicative action notation is based on four primitive actions, whose
purpose is to provide the way of defining a system of agents performing
actions. Agents can communicate which each other by means of a simple
communication mechanism based on asynchronous message passing.

• send :: yielder → primitive-action .

4

• remove :: yielder → primitive-action .

• offer :: yielder → primitive-action .

• patiently :: action → primitive-action .

The primitive operation send Y takes a yielder Y that evaluates to a sort of
messages (for instance a message[to a:agent][containing d :data]), specializes
the sort to an individual message by determining the identification of the
sending agent and a serial number, and sends it. The message is assumed
to reach the communication buffer of its destination agent in a finite (but
unbounded) time.

The primitive action remove Y takes an individual message (yielder) Y
and eliminates the message from the current communication buffer, failing if
it was not there.

The action combinator patiently A keeps on trying to perform the action A
as long as it fails. Each performance of the argument action A is indivisible.

The action offer Y , where Y yields a sort of contract, agrees on the contract
with an agent W . The agent will perform the action corresponding to an
abstraction A. The usual forms of Y are:

a contract [to W][containing A]

a sharing contract [to W][containing A]

The first case corresponds to the original notation. The second case simply
adds storage sharing capabilities to the newly contracted agent, which will
adopt the storage of the contracting agent as its own.

1.2 Yielders

To the already existing current buffer, performing-agent and contracting-agent,
yielders to get the set of sharing agents of the current storage and to get the
next serial number of the agent configuration are added here.

• current buffer: yielder [of a list [of message]] .

• performing-agent, contracting-agent: yielder [of an agent] .

5

• next serial-number: yielder [of a natural] .

• sharing-agents: yielder [of a set [of agent]] .

The yielder sharing-agents evaluates to the set of those agents which share
the storage together with the performing agent.

The yielder next serial-number yields the natural giving the serial number
of the next communication of the agent. Actually, the addition of this yielder
is orthogonal to our storage sharing modification to the notation, and it is
only used to provide a cheap form of validation of a message, at the sender’s
side, as illustrated in section 2.1.1.

1.3 Data

Our only modification to the data related to the communicative facet in
action notation is the inclusion of a new sort of contracts, the sharing ones.
All the operations already defined on contracts are valid for sharing contracts.

Notice that the sorts of contracts and sharing contracts need to be disjoint,
in order to avoid ambiguous semantics for the offer action.

• agent ≤ distinct-datum .

• user-agent : agent .

• buffer = list [message] .

• communication ≤ distinct-datum .

• communication = message ||| contract ||| sharing contract (disjoint) .

• sharing :: contract → sharing contract (total) .

• sendable = abstraction ||| agent |||2 .

• contents :: message → sendable (total),
contract → abstraction (total),
sharing contract → abstraction (total) .

6

• sender :: communication → agent (total) .

• receiver :: communication → agent .

• serial :: communication → natural (total) .

• [containing] :: message, sendable → message (partial),
contract, abstraction → contract (partial),
sharing contract, abstraction → sharing contract (partial) .

• [from] :: communication, agent → communication (partial) .

• [to] :: message, agent → message (partial),
contract, agent → contract,
sharing contract, agent → sharing contract

• [at] :: communication, natural → communication (partial) .

1.4 Facets/Outcomes

• committing ≥ communicating .

1.5 Facets/Incomes

• income = 2 ||| current buffer ||| next serial-number ||| 2 .

2 Examples

Some examples of use of the new notation are now presented. First of all,
we consider the description of a Sun-style, serial RPC mechanism. This
first example does not exploit sharing. It shows that a description written
in the original notation does not need any changes to be adapted to the
new one. The serial RPC example helps also to understand the next one:
the description of a Sun-style, concurrent RPC mechanism. A third example
shows how to describe general semaphores within the new notation. A fourth,
and last example shows how to represent monitors.

7

2.1 Serial RPC

A description of a Sun-style Remote Procedure Call (RPC) system using the
modified communicative action notation is given in this section.

The RPC concept is a generalization of the procedure call concept found
in most imperative programming languages. The main idea is that the called
procedure is performed in a different environment than the calling one. The
only communication between the caller and callee procedures is done by
means of arguments and results.

The Sun RPC model, as described in [4], proposes the existence of remote
programs, consisting of versions and procedures within these versions. A
remote program is also called a server, and each procedure constitutes a
service. Each program version can be registered using a port mapper server,
present in each host, at a pre-defined address (port). The port mapper is
also an RPC program.

For simplicity reasons, we omit the notion of version in the following de-
scription, since it does not add any theoretical difficulty, but imposes some
syntactic complications.

In the serial RPC scheme, the invocation of the remote procedures is made
in a serial manner, allowing only one procedure to be executed at a time, by
a unique caller. The solution here is, in essence, the same as proposed in [3].
Since only one remote procedure within a program can be performed at a
time, there is no need to use the storage sharing allowed by the notation.

As it is described in [4], a remote procedure is determined by giving the port
in which the enclosing program and version can be localized, together with
its own, unique identification within its program and version. Program (and
version) names, as well as procedure names are represented in our description
by means of syntactic tokens. The port notion, present in the Sun description,
is represented by the agent notion in the action notation.

2.1.1 Actions

introduces: program-lD , service-lD , port , establish serial RPC with ,
rpc-call .

• program-lD ≤ token .

8

• service-lD ≤ token .

• port ≤ agent .

• establish serial-RPC with :: yielder[of map [service-lD to abstraction]] →
action [communicating] [giving a port] .

• rpc-call :: (yielder[of port], yielder[of service-lD], yielder[of data]) →
action [giving a tuple ||| diverging ||| communicating] [using next
serial-number] .

privately introduces: rpc-reply , stub-action , perform service using .

• rpc-reply :: (yielder[of message], yielder[of tuple]) → action
[communicating] .

• stub-action : action .
• perform service using ::yielder[of message[containing (service-lD, tuple)]]

→ action .

The performance of the action establish serial-RPC with M establishes an
RPC server whose remote procedures are given by the map M . Each ab-
straction in the range of the map M , when enacted, can use a given value
(the parameter to the remote call) and should give a value, the result, or
escape. Note that, as it happens with the existing implementation, ports are
allocated when the server is started. The agent identified with the service
will perform the stub-action, explained below.

(1) establish serial RPC with M :yielder =
bind “services” to the map [token to abstraction] yielded by M before

subordinate a port then
give it and send a message[to it] [containing closure of abstraction of
stub-action] .

The action rpc-call(A, S, V) is used in order to call the remote procedure
identified with the service-ID S, at the remote program A. The tuple V
represents the arguments to the remote procedure. The caller agent waits
until the service is (eventually) done.

9

(2) rpc-call (A:yielder[of agent], S:yielder[of service-lD, V :yielder[of tuple]) =
indivisibly

give next serial-number and then
send a message [to A] [containing (S, V)]

then receive a message[from A] [containing (the given natural, a tuple)]
then give rest of contents of the given message .

(3) rpc-reply (M :yielder[of message], V :yielder[of tuple]) =
send a message[containing (serial of M , V)] [to the sender of M] .

Notice that we are supposing the existence of the next serial-number yielder.
This is a selector over the local state, giving the serial number of the next
communication from the performing agent. It is a selector very much in
the style of contracting-agent, which yields the agent which originated the
performing one, or of current-storage, which yields to a map (from cells to
values), representing a snapshot of the storage at the moment. The inclusion
of this yielder allows a very simple way of message validation at the caller
agent, without any complication to the operational semantics of the action
notation.

The stub-action receives each remote procedure call, performs a simple val-
idation and then serves it.

(4) stub-action =
unfolding

receive a message[containing a (service-lD, tuple)] then
check it is a valid call and then

give it and perform service using the given message
then rpc-reply(the given message#1, the rest of the given tuple)

or
check not (the given message is a valid call) and then
rpc-reply (the given message, error “invalid remote call”)

and then unfold .

(5) perform service using M :yielder[of message] =
give the tuple yielded by the contents of M then
enact application of the abstraction yielded by

(the map bound to “services” at the given service-lD#1)
to the rest of the given tuple

trap give error “procedure failure” .

10

2.1.2 Yielders

• is a valid call :: yielder [of message] → yielder [of truth-value] .

(1) M :yielder is a valid call =
component#1 of contents of M is in mapped-set
(the map bound to “services”) .

2.1.3 Data

introduces: error , error-value , void-value .

• error :: string → error-value (total) .

(1) error-value ≤ datum .

• void-value = ()

• token = string .

2.2 Concurrent RPC

An RPC scheme is presented here that permits the concurrent execution of
several remote procedure calls. This example is based on the previous one,
in the sense that there exist the notions of program and procedure within a
program. The difference is that several remote procedure calls (possibly to
the same procedure) can be served at the same time.

All the remote procedures share the same storage. Each procedure is de-
scribed using a separate agent in the system. In the original version of com-
municative action notation [2], each agent has a separate storage, and shared
storage can be represented by introducing auxiliary agents and communi-
cation protocols for allocating, storing in, and inspecting the local storage
cells of these agents. A simpler description is obtained here, by using our
extended Action Notation.

As in the previous example, we identify the notion of port, in the Sun
RPC terminology, with the action semantics notion of agent. Once more,
each remote procedure within a program can be identified using a syntactic
token.

11

Figure 1 shows an example of a concurrent RPC system containing several
remote procedures. The arrows exemplify a possible flow of the messages
used to represent the RPC protocol.

Figure 1: A client and a remote program with two procedures.

There exists an RPC stub agent (the one identified with the RPC program
port). This agent will receive the remote procedure call messages from any
caller agent and, after a validation, forward the call message to the corre-
sponding procedure agent. In the case of failure of the validation, an error
reply is sent to the caller agent.

Once the agent corresponding to a service receives a call message, it at-
tempts to perform the required service and, then, sends a reply directly to
the caller agent (which is blocked, waiting for the answer). The service can
possibly yield an error state, in which case an error message is sent to the
caller agent.

2.2.1 Actions

introduces: port , program-lD , service-lD , establish RPC service with ,
rpc-call .

• program-lD ≤ token .

• port ≤ agent .

12

• service-lD ≤ token .

• establish concurrent-RPC with :: yielder [of map [service-lD to abstraction] →

action [communicating] [giving a port] .

• rpc-call :: (yielder[of port], yielder[of service-lD], yielder[of data]) →
action [giving a tuple ||| diverging ||| communicating]
[using next serial-number] .

privately introduces: rpc-reply , initiate sharing services of , server-
stub-action, service-stub-action, perform service using .

• rpc-reply :: (yielder[of message], yielder[of tuple]) → action [communicating] .

• server-stub-action : action

• initiatesharing services of ::
map [service-lD to abstraction] → action [giving a map [service-lD
to agent]] .

• service-stub-action: action[using a given abstraction ||| current bindings |||
current storage][communicating ||| binding ||| storing] .

• perform service using :: yielder[of message] → action .

Establishing an RPC service is done in the same way as in the serial case
of the previous example.

(1) establish concurrent-RPC with M :yielder[of a map] =
subordinate a port then

give it and send a message[to the given port][containing application of
closure abstraction of server-stub-action to M] .

An RPC call is performed by sending a call message to the agent representing
the remote program and, then, waiting for an answer to the message. Note
that, in this case, arbitrary calls are allowed, including recursive remote calls.

13

The use of the next serial-number yielder here gives an elegant and natu-
ral way of call validation at the caller’s side. In this way, several calls can
be made from the same agent without risk of confusion between the various
results.
(2) rpc-call (A, S, V) =

indivisibly
give next serial-number and then send a message [to A] [containing (S, V)]

then receive a message[from A [containing (the given natural, a tuple)]
then give rest of contents of the given message .

(3) rpc-reply (M , V) =
send a message[containing (serial of M , V)] [to the sender of M] .

The action that defines the remote program stub is a loop. It receives,
validates and forwards remote call messages to the procedure agents, and
sends an error reply message, in the case the call fails to validation.

As all the remote procedure agents share their storage with the stub agent,
there is room in this action to introduce some global initializations. This was
not considered here for simplicity reasons.

(4) server-stub-action =

initiate sharing services of the given map [service-lD to abstraction] then
bind “services” to the given map [service-lD to agent]

before
unfolding

receive a message[containing a (service-lD, tuple)] then
check (the given message is a valid call) and then

give it and perform service using the given message
then rpc-reply(the given message#1, the rest of the given tuple)

or
check not (the given message is a valid call) and then
rpc-reply (the given message, error “invalid remote call”)

and unfold .

(5) perform service using M :yielder[of message] =
give the map bound to “services” at component#1 of contents of M
then send a message[containing M] [to the given agent] .

14

The initiate sharing services M action takes a map from each service-ID in
the program to an abstraction, the body of the corresponding remote proce-
dure. The action allocates a sharing agent for each service and gives a map
from service-ID to the new contracted agents, as a transient.

(6) initiate sharing services of empty-map = give empty-map .

(7) initiate sharing services of disjoint-union (m1:map, m2:map) =

initiate sharing services of m1 and
initiate sharing services of m2

then give disjoint-union of the given map2 .

(8) initiate sharing services of map (T : service-lD) to (A: abstraction) =

offer a sharing contract [to an agent][containing abstraction
of subordinate-action]

and then
receive a message [containing an agent] then give the contents of it then

give (map T to the given agent) and
send a message[to the given agent]

[containing application of closure abstraction of service-stub-
action to A] .

The following action is used in order to add the call attention and reply
features to each abstraction denoting a service body. The service-stub-action
receives the service abstraction as a transient. It implements an infinite loop
(provided the service does not fail, or perhaps escape). The performance
of the service is preceded by the reception of the call message, containing
the arguments to the remote procedure. After the service is honored, a re-
ply message is sent to the caller agent, containing the results of the procedure.

15

(9) service-stub-action =

bind “service-abstraction” to the given abstraction before
unfolding

receive a message [from the contracting-agentl [containing a message] then
give contents of the given message then

regive and enact application of the abstraction bound to “service-
abstraction” to rest of contents of the given message

then rpc-reply (the given message#1, the rest of the given tuple)
trap rpc-reply (the given message#1, error “procedure failure”)

and unfold .

The following sections are similar to those of the previous examples, and
do not deserve further explanation.

2.2.2 Data

introduces: error , error-value, void-value .

• error :: string → error-value (total) .

(1) error-value ≤ datum .

• void-value = () .

2.2.3 Yielders

• is a valid call :: message → yielder [of truth-value] .

(1) M is a valid call =
component#1 of contents of M is in mapped-set(the map bound to
“services”) .

2.3 Semaphores

General semaphore operations are provided in this section.
Operations P() and V() are supposed to be used by a number of agents,
possibly sharing storage.

Though this example does not directly exploit the storage sharing allowed
by the notation, it provides a discipline for its use.

16

2.3.1 Actions

introduces: semaphore, setup with value , P() , V() .

• semaphore ≤ agent .

• setup with value ::
yielder[of semaphore], yielder[of natural] → action [giving a semaphore |||
communicating] .

• P() :: yielder [of semaphore] → action [communicating] .

• V() :: yielder [of semaphore] → action [communicating] [using current
buffer] .

privately introduces: semaphore-action .

• semaphore-action: action [using a given natural ||| current storage ||| current
bindings |||
current buffer] [communicating ||| storing ||| binding] .

The action setup S with value N is performed in order to create a semaphore
of sort S. The natural numberN represents the initial value of the semaphore.
The action gives the individual semaphore agent as a transient.

(1) setup S with value N =

subordinate an (S & semaphore) then
give the given semaphore and
send a message [to the given semaphore]

[containing application of closure of abstraction
of semaphore-action to N] .

The P operation on the semaphore is described here by a simple send-
receive pair of actions, while a V operation consists only on sending a V-
message to the semaphore agent.

(2) P(S) = give the semaphore yielded by S then

send a P-message [to the given semaphore] and then
receive a reply-message [from the given semaphore] .

17

(3) V(S) = send a V-message[to the semaphore yielded by S] .

The action describing the semaphore behavior consists of a main loop,
within which P and V messages are received. A counter (the value of the
semaphore) and a queue (of agents waiting for a positive value) are used, in
a standard way.

(4) semaphore-action =

give the given value and allocate a cell
then

store the given value#1 in the given cell#2 and
bind “value” to the given cell#2

and
allocate a cell then

store empty-queue in it and bind “waiting-queue” to it
before unfolding

receive a P-message then
check (the value stored in the cell bound to “value” is greater than 0)
and then decrement “value” and then
send a reply-message[to sender of the given message]

or
check (the value stored in the cell bound to “value” is 0)
and then enqueue the given message in “waiting-queue”

or
receive a V-message and then

check is-empty (“waiting-queue”) and then increment “value”
or

check not is-empty (“waiting-queue”) and then
dequeue a message from “waiting-queue” then
send a reply-message[to sender of the given message]

and then unfold .

2.3.2 Data

The data used in this example consists of messages (of three disjoint sorts),
stored queues and counters.

Queues are represented by lists, and stored in cells bound to tokens. All
operations on queues refer to the data being enqueued or dequeued, and the

18

token bound to the cell where the queue is stored. A similar treatment is
done to counters.

introduces: P-message , V-message , reply-message ,
queue , empty-queue , enqueue in , dequeue from ,
is-empty , increment , decrement .

(1) message = 2 ||| P-message ||| V-message ||| reply-message (disjoint) .

• token = string .

2.3.2.1 Queue

• queue ≤ list .

(1) empty-queue = empty-list .

• enqueue in :: yielder, token → action [using current bindings] [storing]
.

• dequeue from ::

datum, token→ action [using current bindings] [storing ||| giving
a datum] .

• is-empty :: token → yielder [of a truth-value] .

(2) enqueue D in T =
give concatenation(the list stored in the cell bound to T , list of D)

then store the given list in the cell bound to T .

(3) dequeue D in T =
give (D & head of the list stored in the cell bound to T) and then

give tail of the list stored in the cell bound to T
then store it in the cell bound to T .

(4) is-empty T = the queue stored in the cell bound to T is empty-queue .

2.3.2.2 Counters

19

• increment ,
decrement :: token → action [storing] [using current bindings ||| current
storage] .

(partial)

(1) increment T =

give successor of the natural stored in the cell bound to T
then store it in the cell bound to T .

(2) decrement T =

give predecessor of the positive-integer stored in the cell bound to T
then store it in the cell bound to T .

2.4 Monitors

This section is devoted to the formulation of actions establishing monitor
primitives. The example presented here is, in many aspects, similar to the
concurrent RPC description of section 2.2.

Figure 2 shows an example of a monitor containing two procedures. All the
agents corresponding to the procedures of the monitor share the same storage.
Aside from the procedure agents, two other agents are part of our monitor
descriptions: an entry queue manager and a condition queues manager. As
in the previous cases, the monitor will be accessible by referring to one of its
component agents. In this case, the entry queue manager agent will play the
role of the entry port.

As in the case of the concurrent RPC scheme, the figure shows a possible
flow of messages among agents. The entry manager is similar to the stub
agent of section 2.2. The only difference is that it needs the permission
of the queues manager to accept each new call to a procedure within the
monitor. Also the procedures here are similar to the services of section 2.2.
The difference is that they can use the wait and signal operations, and they
must send a notification to the queues manager when leaving the monitor.
The queues manager is responsible for allowing at most one agent to be active
within the monitor at a time.

The identification of the procedures of the monitor, as well as the condition
queues is done using syntactic tokens.

20

Figure 2: A client agent and a monitor.

introduces: monitor, establish a remote monitor with conditions and
procedures , call , .wait , .signal .

• monitor < agent .

• establish a remote monitor with conditions and procedures ::
yielder lof set[of token]], yielder [of map [token to abstraction]]
→ action [giving a monitor] [communicating] .

• call :: (yielder[of monitor], yielder[of token], yielder[of tupel]) →
action [communicating] .

• .wait , .signal ::
(yielder[of token], → action [communicating] [using current
buffer ||| current bindings] .

privately introduces: entry-manager-action , condition-manager-action ,
procedure-stub-action , initiate sharing procedures of ,
initiate condition queues using .

21

• entry-manager-action .

• condition-manager-action: action .

• procedure-stub-action: action .

• initiate sharing procedures of ::
map ltoken to abstraction] → action lgiving a map [token to agent]] .

• initiate condition queues using ::
set [of token] → action [storing ||| binding] [using current storage] .

Establishing a monitor is done in a way that is very similar to that of the
previous examples.

(1) establish a remote monitor with conditions (S:yielder[of set])

and procedures (M:yielderlof map]) =
subordinate an agent then

give the given agent and
send a message [to the given agent] [containing application of

closure abstraction of entry-manager-action to
(the set yielded by S, the map yielded by M)] .

The call, wait and signal operations are described by a similar pattern of
actions as the rpc-call in section 2.2.

(2) (call (M :yielder[of message], T :[of service-lD], V :yielder[of tuple]) =

indivisibly
give next serial-number and
send a call-message [to M] [containing (T , V)]

then receive a reply-message[from M] [containing (the given natural, a tuple)]
then give rest of contents of the given message .

22

(3) T :yielder [of token] ⇒
T .wait =

indivisibly
give next serial-number and
send a message [to the agent bound to “condition-manager”]
[containing (T)]

then receive a reply-message[from the agent bound to “condition
-manager”]

[containing the given natural]

(4) T :yielder [of token] ⇒
T .signal =

indivisibly
give next serial-number and
send a signal-message [to the agent bound to “condition-manager”]

[containing (T)]
then receive a reply-message[from the agent bound to “condition

-manager”][containing the given natural]

The entry manager, after the creation of the procedure of the monitor,
enters in a loop in which it receives alternatively messages from the clients
of the monitor and from the queues manager. No validation of the received
messages is made in this case, but it can be added. Some initialization actions
can be added to the entry manager, in the same way as discussed in section
2.2.

23

(5) entry-manager-action =

subordinate an agent then bound “condition-manager” to it
and

initiate sharing procedures of the given map#2
then bind “procedures” to the given (map [token to agent])

before
send a message [to the agent bound to “condition-manager”]

[containing application of closure abstraction of
condition-manager-action to the given set #1]

and then unfolding
receive a message[from any agent] [containing (token, data)] then

send a call-message[containing the given message] [to the map bound
to “procedures” at component#1 of contents of the given message]

and then
receive a free-way-message[from the agent bound to “condition-manager”]

and then unfold

The condition queues manager action is the most complex action in this
example. It behaves as a loop, in which three classes of messages are received.
When the agent performing this action receives an exit-message, it means that
a call is completed, and a new agent can became active within the monitor.

24

(6) condition-manager-action =

bind “conditions” to the given set and
initiate condition queues union(the given set, set of “waiting-in-monitor”)

before unfolding
receive an exit-message or

receive a waiting-message[containing a token] then
enqueue it in contents of it

and then
check (is-empty “waiting-in-monitor”) and then
send a free-way-message[containing nothing] [to contracting
-agent]

or
check not (is-empty “waiting-in-monitor”) and then
dequeue a message from “waiting-in-monitor” then
send a reply-message [to sender of the given message] [containing
serial of it]

or
receive a signal-message[containing a token] then

check is-empty(contents of the given message) and then
send a reply-message [to sender of the given message] [containing
serial of it]

or
check not (is-empty(contents of the given message)) and then
enqueue the given message in “waiting-in-monitor” and then

dequeue a message from the token yielded by contents of the
given message then send a reply-message
[to the sender of the given message]

[containing serial of it]
and then unfold .

When a wait-message is received, the call is enqueued, and a new agent
can became active in the monitor. When a signal-message is received, the
signaling agent is enqueued in a queue of waiting agents within the monitor,
and an agent of the signaled queue is permitted to became active in the
monitor. If there are no agents pending in the signaled queue, the reception
is acknowledged, and the signaling agent continues its performance. The
condition queues manager uses the same queues actions as in the semaphores

25

example, in order to implement the waiting queues.

The following actions are similar to those in section 2.2, and do not deserve
any explanation here.

(7) initiate sharing procedures of empty-map = give empty-map .

(8) initiate sharing procedures of disjoint-union (m1:map, m2:map) =
initiate sharing procedures of m1 and
initiate sharing procedures of m2

then give disjoint-union of the given tuple .

(9) initiate sharing procedures of map (T :token) to (A:abstraction) =
offer a sharing contract [to an agent][containing abstraction of subordinate-action]

and then
receive a message [containing an agent] then

give map T to contents of the given message
and send a message[to contents of the given message]

[containing application of closure abstraction of procedure-stub-
action to A] .

(10) procedure-stub-action =
bind “procedure-abstraction” to the given abstraction before
unfolding

receive a call-message [from the contracting-agent][containing a message] then
give contents of the given message then

regive and enact application of the abstraction bound to
“procedure-abstraction” to the rest of contents of the given message

then send-reply (the given message#1, the rest of the given tuple)
trap send-reply (the given message#1, error “procedure failure”)

then send an exit-message [to the agent bound to ”condition-manager”
and then unfold .

(11) initiate condition queues using empty-set = complete .

(12) initiate condition queues using union (s1:set[token], s2:set[token]) =

initiate condition queues using s1 and
initiate condition queues using s2 .

(13) initiate condition queues using set of (t:token) =

26

allocate a cell then
store empty-queue in it and bind t to it .

2.4.1 Data

introduces: wait-message , signal-message , call-message , reply-message,
free-way-message , error , error-value , void-value , queue ,
empty-queue , enqueue in , dequeue from , is-empty .

(1) message = 2 ||| wait-message ||| signal-message ||| call-message ||| reply-

message ||| free-way-message (disjoint) .

• token = string .

• error :: string → error-value (total) .

(2) error-value ≤ datum .

• void-value = () .

2.4.1.1 Queue

• queue ≤ list .

(1) empty-queue = empty-list .

• enqueue in :: datum, token→ action [using current bindings] [storing].

• dequeue from :: datum, token → action [using current bindings]
[storing ||| giving a datum] .

• is-empty :: token → yielder [of a truth-value] .

(2) enqueue D in T =
give concatenation(the list stored in the cell bound to T , list of D)

then store the given list in the cell bound to T .

(3) dequeue D from T =
give D& head of the list stored in the cell bound to T and then

give tail of the list stored in the cell bound to T
then store it in the cell bound to T .

(4) is-empty T = the queue stored in the cell bound to T is empty-queue .

27

Conclusions

Our work extends the communicative facet of Action Notation, introducing
direct sharing storage capabilities among agents. This capability simplifies
the description of many concurrent programming concepts, for which the ad-
dition of complicated auxiliary actions, agents and data would be necessary,
if using the original Action Notation [2].

The examples given in section 2 shows that the new primitives extend in
an elegant way the old ones.

In the appendix, the operational semantics of the new notation is given.
It is a modification of the operational semantics of the original notation in
[2, Appendix C].

Acknowledgements

Are due to Silvio Meira and Giovanni Lucero Palma for reading and com-
menting on previous versions of this report. Also to the Brazilian Science
Research Council (CNPq) and the Danish Science Research Council, project
DART, for funding in part the development of this work.

References

[1] P.D.Mosses, Denotational Semantics. In J. van Leeuwen, A. Meyer, M.
Nivat, M. Paterson, and D. Perrin, editors, Handbook of Theoretical
Computer Science, Volume M, chapter 11. Elsevier Science Publishers,
Amsterdam; and MIT Press, 1990.

[2] P.D.Mosses, Action Semantics. Cambridge University Press, Tracts in
Theoretical Computer Science Series No 26, 1992.

[3] M.Musicante, The Sun RPC Language Semantics, In Proceedings of:
PANEL’92, XVIII Latin-American Conference of Informatics, Las Pal-
mas, Spain, September 1992.

[4] Sun Microsystems, RPC: Remote Procedure Call Specification. RFC
1050, 1988.

28

[5] D.A.Watt, Programming Language Syntax and Semantics, Prentice Hall
International, 1991.

29

A Operational Semantics

This section corresponds to the operational semantics of the variation to the
action notation we propose. This section is a modified version of [2, Appendix
C], and gives the operational semantics of the whole action notation.

A.1 Abstract Syntax

The only modification to the abstract syntax given in [2] consists of adding
the terminals sharing-agents and next serial-number to the Yielder rule.

(1) closed except Data
grammar:

A.1.1 Actions

(1) Action = Simple-Action ||| [[Action-Prefix Action]] |||
[[Action Action-infix Action D]] .

(2) Simple-Action = Constant-Action ||| [[Simple-Prefix Yielder]] |||
[[To-Prefix Yielder “to” Yielder]] ||| [[“store” Yielder
“in” Yielder]] .

(3) Constant-Action = “complete” ||| “escape” ||| “fail” |||“commit” ||| “unfold”.
(4) Simple-Prefix = “give” ||| “choose” ||| “produce” ||| “unbind” |||

“unstore” ||| “reserve” ||| “unreserve” |||
“enact” ||| “send” ||| “remove” ||| “offer” |||
“undirect” ||| “inderectly produce” .

(5) To-Prefix = “bind” ||| “indirectly bind” ||| “redirect” .
(6) Action-Prefix = “unfolding” ||| “indivisibly” ||| “patiently” .
(7) Action-infix = “or’ ||| “and” ||| “and then” ||| “then” ||| “trap” |||

“moreover” ||| “and then moreover” |||
“then moreover” ||| “hence” ||| “thence” |||
“ before” |||“then before” .

A.1.2 Yielders

(1) Yielder = Data-Constant ||| Abstraction ||| [[Data-Unary “(|” Yielder “|)”]] |||
[[Data-Binary a Yielder “(|” Yielder “,” Yielder “|)]] |||

30

[[“if” Yielder “then” Yielder “else” Yielder D]] |||
[[“the” Data “yielded by” Yielder]] ||| [[Yielder “receiving” Yielder]] |||
“them” ||| “current bindings” ||| “current storage” ||| “current buffer” |||
“current redirections” ||| “performing agent” ||| “contracting-agent” |||
“sharing-agents” ||| “next serial-number” .

(2) Abstraction = Yielder ||| [[“abstraction of” Action]] ||| [[Abs-prefix Yielder]] |||
[[Action-Prefix Abstraction]] ||| [[Abstraction Action-infix
Abstraction]]

A.1.3 Data

(1) Data = Data-Constant ||| [[Data-Unary “(|” Data “|)”]] |||
[[Data-Binary “(|” Data “,” Data “|)”]] |||
“if” Data “then” Data “else” Data]] ||| 2

(2) Data-Constant = 2 .
(3) Data-Unary = 2 .
(4) Data-Binary = 2 .

A.2 Semantic Entities

Several changes are made to the original semantic entities in [2, appendix C],
in order to support shared storage among agents:

• Commitments are now represented as a pair of updates to the storage
and list of communications, instead of the original list of communica-
tions.

• The storage entity is removed from the local information of an agent,
and now appears as shared-info, as a part of the new configuration se-
mantic entity.

• a new sort of semantic entities is introduced, to contain the storage
updates performed by an agent.

includes: Data Notation .
includes: Action Notation/∗/Data(Abstracting for abstraction) .

31

A.2.1 Acting

As our proposal does not introduce any new actions, the Acting semantic
entities are not changed at all.

grammar:
(1) Acting = Terminated ||| Intermediate .
(2) Terminated = Completed ||| Escaped ||| Failed .
(3) Completed = 〈 “completed” data bindings 〉 .
(4) Escaped = 〈 “escaped” data 〉 .
(5) failed = “failed” .
(6) Intermediate = Simple-Action ||| [[Action-Prefix Acting]] |||

[[Acting Action-infix Acting]] |||〈Action data〉|||〈Action bindings〉|||
〈 Action data bindings〉|||〈 “redirect” redirections〉|||
[[Acting (“before” ||| “then before”) Acting bindings]]

(7) Sequencing = “and then” ||| “then” ||| “trap” |||
“and then moreover” ||| “then moreover” |||
“hence” ||| “thence” ||| “before” ||| “then before” .

(8) Interleaving = “and” ||| “moreover” .
(9) Sequencing = “and” ||| “and then” ||| “then” |||

“moreover” ||| “and then moreover” ||| “then moreover” |||
“hence” ||| “thence” ||| “before” ||| “then before” .

(10) Abstracting = [[“abstraction of’ Acting”]] .

A.2.2 Sort Unions

The sort-union of a tuple is the sort of all its components.

introduces: sort-union .
(1) sort-union :: data → datum .
(2) sort-union () = nothing .
(3) sort-union (d:datum, x:data) = d ||| sort-union x .

32

A.2.3 States

In order to made the same storage shared by several agents, a new compo-
nent of the state and info semantic entities is introduced. The shared-info
represents information that can be consulted and modified not only by the
local agent, but possibly by several others. Each time an agent is being ad-
vanced, a copy of the current shared storage gets added to its state, as shared
information. The storage is no more part of the local information of an agent.

introduces: state , local-info , shared-info , info .
(1) state = (Acting, local-info, shared-info) .
(2) local-info = (redirections, natural, buffer, agent, agent) .
(3) shared-info = (storage, set [of agent]) .
(4) info = (data, bindings, local-info, shared-info) .

A.2.4 Commitments

In the original version of action notation, a commitment is either uncommit-
ted, or a list indicating that the agent performed a committing action. This
list contains any communications that the action is emitting. An empty list
indicates that the agent performed a committing action that does not require
communication, like an storage action, or the commit primitive action.

In our modification, a commitment is uncommitted or a pair, containing a
set (of cells) and a list (of communications). Each time an agent performs
a committing action, a commitment will be constructed containing the set
of cells modified by the agent and the list of the communications the agent
performed, if any.

introduces: commitment , committing , committed , commitment of ,
uncommitted, blend , changed cells , items .

(1) commitment = committing ||| uncommitted (disjoint) .
(2) committing = (set[cell], list[of communication]) .
(3) committed = (empty-set, empty-list) .
(4) commitment of c:communication∗ = (empty-set, list of c) .
(5) commitment of s:set[cell] = (s, empty-list) .
(6) uncommitted: commitment .

33

(7) blend : commitment2 → commitment (unit is uncommitted) .
(8) c1 = (s1:set[cell], l1:list[of communication])

c2 = (s2:set[cell], l2:list[of communication]) ⇒

(1) blend(c1, c2) = (union(s1, s2), concatenation(l1, l2)) .

(9) c = (s:set[cell], I:list[of communication]) ⇒

(1) changed cells c = s .
(2) items c = items l .

(10) updates of uncommitted = empty-set .
(11) items of uncommitted = empty-list .

A.2.5 Processing

A configuration is now representing a snapshot of the system of agents. A
configuration entity is formed by the shared information at each instant, and
a distributed system of agents, possibly using the shared information.

The initial configuration of a system with only one agent (the user-agent,)
performing an action A, is also given.

introduces: processing, initial-processing , configuration ,
initial-configuration , agents , event , time , forever ,

delayed , undelayed , update of .
(1) (1) configuration = (shared-info+, processing) .

(2) initial-configuration (A:Acting) =
(empty-map, set of user-agent, initial-processing A) .

(2) (1) processing = (event delayed time)∗.
(2) initial-processing (A:Acting) =

undelayed (A, empty-map, 0, empty-list, user-agent, user-agent) .

In order to know the set of all of the present agents in the system, it is
enough to search within the shared info, since every agent has its storage
there, possibly shared.

34

(3) (1) agents :: shared-info∗ → set [of agent] .
(2) agents () = empty-set .
(3) initialagents (s:storage, a:set [of agent], i:shared-info∗)

= union (a, agents i) .
(4) (1) event = communication ||| update ||| (Acting, local-info) .

(2) time = natural ||| forever .
(3) forever: time .
(4) delayed :: state, time → processing (total),

communication∗, natural → processing,
update, 0 → processing (total) .

(5) (c:communication) delayed (n:natural): processing .
(6) (c1:communication∗, c2:communication∗) delayed (t ≤ natural) =

(c1 delayed t, c2 delayed t) .
(7) () delayed (t ≤ time) = () .
(8) undelayed e:event = e delayed 0 .

An update encapsulates the information needed to update the shared in-
formation of an

(5) update of :: (storage, set[cell], agent) → update .

A.3 Semantic Functions

Most of the equations of the original operational semantics were changed.
Most of these changes are a simple relocation of the (now shared) storage,
introducing the set of the sharing agents as well.

A few changes are significant. They deal with the operations related to
updating shared storages and to start shared contracts. These modifications
are explained in detail below.

A.3.1 Data

No changes here.

introduces: entity , unary-operation , binary-operation .

35

• entity :: Data → Data .

(1) entity [[O:Data-Unary “(|” D:Data “|)”]] = unary-operation O (entity D) .
(2) entity[[O:Data-Unary “(|” D1:Data “,” D2:Data“|)”]] =

binary-operation O (entity D1) (entity D2) .
(3) entity [[“if” D1:Data “then” D2:Data “else” D3:Data]] =

if (truth-value & entity D1) then entity D2 else entity D3 .

• Unary-operation :: Data-Unary, Data → Data .

• Binary-operation :: Data-Binary, Data, Data → Data .

A.3.2 Yielders

The only changes in this section are the addition of equations (7)(8) and
(7)(9).

introduces: evaluated

• evaluated :: (Yielder, info) → data .

(1) evaluated(Y :Data-constant, i :info) = entity Y .
(2) evaluated[[O:Data-Unary, “(|” Y :Yielder “|)”]], i:info) =

unary-operation O (evaluated (Y , i)) .
(3) evaluated[[O:Data-Binary, “(|” Y1:Yielder, Y2:Yielder “|)”]], i:info) =

binary-operation O (evaluated (Y1, i)), (evaluated (Y2, i)) .
(4) evaluated([[“if” Y1:Yielder “then” Y2:Yielder “else” Y3:Yielder]], i:info) =

[[“if” (truth-value & evaluated(Y1, i)) then evaluated(Y2, i) else
evaluated(Y3, i) .

(5) evaluated([[“the” D:Data “yielded by” Y :Yielder]], i:info) =
entity D & evaluated(Y , i)

(6) evaluated([[Y1 “receiving” Y2:Yielder]], d:data,
b:bindings, x:(local-info, shared-info)) =
evaluated(Y1, d, bindings & evaluated(Y2, d, b, x), x) .

(7) i = (d:data, b:bindings, r:redirections, n:natural, q:buffer, a1:agent, a2:agent,
s:storage, a:set[agent]) ⇒

36

(1) evaluated(“them”, i:info) = d .
(2) evaluated(“current storage”, i:info) = s .
(3) evaluated(“current bindings”, i:info) = b .
(4) evaluated(“current buffer”, i:info) = q .
(5) evaluated(“current redirections”, i:info) = r .
(6) evaluated(“performing-agent”, i:info) = a1 .
(7) evaluated(“contracting-agent”, i:info) = a2 .
(8) evaluated(“sharing-agents”, i:info) = a .
(9) evaluated(“next serial-number”, i:info) = n .

(8) evaluated([[“abstraction of” A:Action]], i:info) = [[“abstraction of” A]]
(9) evaluated(Y, i) = d:data ⇒

evaluated([[“provision” Y :Yielder]], i:info) =
[[“abstraction of” “completed” d empty-map]] .

(10) evaluated(Y , i) = b:bindings ⇒
evaluated([[“production” Y :Yielder]], i:info) = [[“abstraction of”
“completed” () b]] .

(11) evaluated(Y , i) = r:redirections ⇒
evaluated([[“indirect production” Y :Yielder]], i:info) = [[“abstraction of”
“redirect” r]] .

(12) evaluated(Y , i) = [[“abstraction of” A:Acting]] ⇒
evaluated([[O:Action-prefix Y :Yielder]], i:info) = [[“abstraction of” [[O A]]]] .

(13) evaluated(Y1, i) = [[“abstraction of” A1:Acting]];
evaluated(Y2, i) = [[“abstraction of” A2:Acting]] ⇒
evaluated([[Y1 :Yielder O:Action-prefix Y2:Yielder]], i:info) =

[[“abstraction of” [[A1OA2]]]]

A.3.3 Actions

Except for A.3.3.1.4 and A.3.3.1.6, the changes mainly amount to adding the
extra component s:shared-info, and removing the old local storage.

introduces: run , stepped .

(1) run :: state → (Terminated, local-info, shared-info, commitment) .
(2) stepped (A, l, s) ≥ (A′:Intermediate, l′:local-info, s′:shared-info, c′:commitment);

run (A′, l′, s′) ≥ (A′′:Terminated, l′′:local-info, s′′:shared-info, c′′:commitment)

37

⇒
run (A:Acting, l:local-info, s:shared-info) ≥ (A”, l”, s”, blend(c”, c’)) .

(3) stepped (A, l, s) ≤ (A’:Terminated, l’:local-info, s’:shared-info, c’:commitment)
⇒
run (A:Acting, l:local-info, s:shared-info) ≥ (A’, l’, s’, c’) .

• stepped :: state → (state, commitment) .
(4) stepped (A:Terminated, l:local-info, s:shared-info) = nothing .

A.3.3.1 Simple

(1) i = (d:data, b:bindings, l:local-info); evaluated (Y , i) = nothing ⇒
stepped ([[P :Simple-Prefix Y :Yielder]], i:info) =
stepped ([[P :To-Prefix Y :Yielder “to” Y2:Yielder]], i:info) =
stepped ([[P :To-Prefix Y1:Yielder “to” Y :Yielder]], i:info) =
stepped ([[“store” Y :Yielder “in” Y2:Yielder]], i:info) =
stepped ([[“store” Y1:Yielder “in” Y :Yielder]], i:info) =
(“failed”, l, uncommitted).

A.3.3.1.1 Basic

(1) stepped (“complete”, d:data, b:bindings, l:local-info, s:shared-info) =
(“completed”, (), empty-map, l, s, uncommitted) .

(2) stepped (“escape”, d:data, b:bindings, l:local-info, s:shared-info) =
(“escaped”, d, l, s, uncommitted) .

(3) stepped (“fail”, d:data, b:bindings, l:local-info, s:shared-info) =
(“failed”, l, s, uncommitted) .

(4) stepped (“commit”, d:data, b:bindings, l:local-info, s:shared-info) =
(“completed”, (), empty-map, l, s, committed) .

(5) stepped (“unfold”, d:data, b:bindings, l:local-info, s:shared-info) = nothing .

A.3.3.1.2 Functional

(1) evaluated (Y , d, b, l, s) = d′ : data ⇒
stepped ([[“give” Y :Yielder]], d:data, b:bindings, l:local-info, s:shared-info) =

(“completed”, d′, empty-map, l, s, uncommitted) .
(2) evaluated (Y , d, b, l, s) ≥ d′: data ⇒

stepped ([[“choose” Y :Yielder]], d:data, b:bindings, l:local-info, s:shared-info)
≥ (“completed”, d′, empty-map, l, s, uncommitted) .

A.3.3.1.3 Declarative

38

(1) evaluated (Y1, d, b, l, s) = t : token;
evaluated (Y2, d, b, l, s) = v bindable ⇒
stepped ([[“bind” Y1:Yielder “to” Y2:Yielder]], d:data, b:bindings, x!) =

(“completed”, (), map t to v, x, uncommitted) .
(2) evaluated (Y , d, b, l, s) = b′: bindings ⇒

stepped ([[“produce” Y :Yielder]], d:data, b:bindings, l:local-info,
s :shared-info) =

(“completed”, (), b′, l, s, uncommitted) .
(3) evaluated (Y , d, b, l, s) = t: token ⇒

stepped ([[“unbind” Y :Yielder]], d:data, b:bindings, l:local-info,
(“completed”, (), map t to unknown, l, s, uncommitted) .

A.3.3.1.4 Imperative

A change of storage still causes a commitment, but the cells involved are
now important, in order to determine the shared storage when several agents
make changes at once.

(1) evaluated (Y1, d, b, l, s) = v : storable;
evaluated (Y2, d, b, l, s) = c : cell;
s = (m:storage, a:set[agent]);
s′ = (overlay(map c to v, m), a) ⇒
stepped([[“store” Y1:Yielder “in” Y2:Yielder]], d:data, b:bindings, l:local-info, s) =

if c is in mapped-set of m
then (“completed”, (), empty-map, l, s′, commitment of set(c))
else (“failed”, l, s, uncommitted) .

(2) evaluated (Y , d, b, l, s) = c : cell;
s = (m:storage, a:set[agent]);
s’ = (overlay(map c to uninitialized, m), a) ⇒
stepped ([[“unstore” Y:Yielder]], d:data, b:bindings, l:local-info, s:shared-info) =

if c is in mapped-set of m
then (“completed”, (), empty-map, l, s′, commitment of set(c))
else (“failed”, l, s, uncommitted) .

(3) evaluated (Y , d, b, l, s) = c : cell;
s = (m:storage, a:set[agent]);
s’ = (disjoint-union(map c to uninitialized, m), a) ⇒
stepped ([[“reserve” Y :Yielder]], d:data, b:bindings, l:local-info, s:shared-info) =

if not (c is in mapped-set of m)

39

then (“completed”, (), empty-map, l, s′, commitment of set(c))
else (“failed”, l, s, uncommitted) .

(4) evaluated (Y , d, b, l, s) = c : cell;
s = (m:storage, a:set[agent]);
s = ((m omitting set of c), a) ⇒
stepped ([[“unreserve” Y :Yielder]], d:data, b:bindings, l:local-info, s:shared-info) =

if c is in mapped-set of m
then (“completed”, (), empty-map, l, s′, commitment of set(c))
else (“failed”, l, s, uncommitted) .

A.3.3.1.5 Reflective

(1) evaluated (Y , d, b, l, s) = [[“abstraction of” A:Acting]] ⇒
evaluated (stepped ([[“enact” Y :Yielder]], d:data, b:bindings, I:local-info,
s:shared-info) = (given (received (A,empty-map), ()), l, s, uncommitted) .

A.3.3.1.6 Communicative

The only important modification to this section is the addition of the last
equation of the section, dealing with establishing the commitment corre-
sponding to shared contracts. The added equation does not differ in essence
from the original one for non-sharing contracts.

(1) evaluated (Y , d, b, l, s) = m: message; m [from a1] [at n] = m’: message;
l = (r:redirections, n:natural, q:buffer, a1:agent, a2:agent);
l’ = (r, successor n, q, a1, a2) ⇒
stepped([[“send” Y :Yielder]], d:data, b:bindings, l:local-info, s:shared-info) =

(“completed”, (), empty-map, l’, s, commitment of m’) .
(2) evaluated (Y , d, b, l, s) = m : message;

l = (r:redirections, n:natural, q:buffer, a1:agent, a2:agent);
l’ = (r, q omitting set of m, a1, a2) ⇒
stepped([[“remove” Y :Yielder]], d:data, b:bindings, I:local-info, s:shared-info) =

if m is in set of items of q
then (“completed”, (), empty-map, l’, s, committed)
else (“failed”, l, s, uncommitted) .

(3) evaluated (Y , d, b, l, s) = c ≤ contract; c [from a1][at n] = c’: contract;

40

l = (r:redirections, n:natural, q:buffer, a1:agent, a2:agent);
l’ = (r, successor n, q, a1, a2) ⇒
stepped([[“offer” Y :Yielder]], d:data, b:bindings, l:local-info, s:shared-info) =

(“completed”, (), empty-map, l’, s, commitment of c’) .
(4) evaluated (Y , d, b, l, s) = c ≤ shared contract; c [from a1][at n] = c’:

shared contract;
l = (r:redirections, n:natural, q:buffer, a1:agent, a2:agent);
I’ = (r, successor n, q, a1, a2) ⇒
stepped([[“offer” Y :Yielder]], d:data, b:bindings, l:local-info, s:shared-info) =

(“completed”, (), empty-map, l’, s, commitment of c’) .

A.3.3.1.7 Directive

(1) evaluated (Y1:Yielder, d, b, l, s) = t: token;
evaluated (Y2:Yielder, d, b, l, s) = v: bindable ||| unknown;
i: indirection [not in mapped-set r];
l = (r:redirections, x!); l’ = (overlay(map i to v, r), x) ⇒
stepped([[“indirectly bind” Y1 “to” Y2]], d:data, b:bindings, l:local-info,
s:shared-info) =

(“completed”, (), map, t to i, l’, s, committed) .
(2) evaluated (Y1:Yielder, d, b, l, s) = t: token;

evaluated (Y2:Yielder, d, b, l, s) = v: bindable ||| unknown;
i = (b at t): indirection; l = (r:redirections, x!); l’ = (overlay(map i to v, r),

x) ⇒
stepped([[“indirectly bind” Y1 “to” Y2]], d:data, b:bindings, l:local-info,

s:shared-info) =
(“completed”, (), map, t to i, l’, s, committed) .

(3) evaluated (Y , d, b, l, s) = t: token;
i = (b at t): indirection; l = (r:redirections, x!); l’ = (r omitting set of i, x)⇒
stepped([[“indirectly bind” Y :Yielder]], d:data, b:bindings, I:local-info,

s:shared-info) =
(“completed”, (), empty-map, l’, s, committed) .

(4) evaluated (Y , d, b, l, s) = r’: redirections;
l:local-info = (r:redirections, x!); I’ = (overlay(r’, r), x) ⇒
stepped([[“indirectly produce” Y :Yielder]], d:data, b:bindings, l:local-info,

s:shared-info) =
(“completed”, (), empty-map, l’, s, committed) .

41

(5) l = (r:redirections, x!); l’ = (overlay(r’, r), x) ⇒
stepped (“redirect”, r’:redirections, d:data, b:bindings, l:local-info,

s:shared-info) =
(“completed”, (), empty-map, l’, s, committed) .

A.3.3.2 Compound

In what follows, the modifications to the stepped equations amount only
to considering the new location of the storage, and the related information
added with the shared-info. The equations corresponding to simplified, un-
folded, given and received are not changed at all (except to correct some
minor bugs in the original specification; a full list of corrigenda is available
from Peter D. Mosses).

introduces: simplified , unfolded , given , received .

• simplified :: Acting → Acting .

• unfolded :: (Action, Action) → Action .

• given :: (Acting, data) → Acting .

• received :: (Acting, bindings) → Acting .

A.3.3.2.1 Stepping

(1) stepped([[“unfolding” A:Action]], d:data, b:bindings, l:local-info, s:shared
-info) = (given (received (unfolded (A, [[“unfolding” A]], b), d), l’, s,
uncommitted;

(2) stepped([[“indivisibly” A:Acting]], I:local-info, s:shared-info) = run (A, l, s) .
(3) run (A, l) ≥ (“failed”, l’:local-info, s’:shared-info, c’:commitment) ⇒

stepped ([[“patiently” A:Acting]], l:local-info, s:shared-info) ≥
([[“patiently” A]], l’, s’, c’) .

(4) run (A, l) ≥ (A’:(Completed ||| Escaped), l’:local-info, s’:shared-info,
c’:commitment) .

stepped ([[“patiently” A:Acting]], l:local-info, s:shared-info) ≥ (A’, l’, s’, c’) .

42

(5) stepped (A1, l, s) ≥ (A1’:Acting, l’:local-info, s’:shared-info,
c’:commitment);

[[A1 O A2]]: [[Intermediate Sequencing Intermediate]] |||
[[Intermediate Interleaving (Intermediate ||| Completed)]] ⇒

stepped ([[A1 O A2]], l:local-info, s:shared-info) ≥ simplified([[A′1 O A2]],
l’, s’, c’).

(6) stepped (A2, l, s) ≥ (A2’:Acting, l’:local-info, s’:shared-info,
c’:commitment);

[[A1 O A2]]: [[(Intermediate ||| Completed) Interleaving (Intermediate)]!] ⇒
stepped ([[A1 O A2]], l:local-info, s:shared-info) ≥ simplified([[A1 O A′2]],

l’, s’, c’).
(7) stepped (A1, l, s) ≥ (A1’:Acting, l’:local-info, s’:shared-info,

uncommitment);
[[A1 O A2]]: [[Intermediate “or” Interleaving]!] ⇒
stepped ([[A1 O A2]], l:local-info, s:shared-info) ≥ simplified([[A′1 O A2]],

l’, s’,uncommitment); .
(8) stepped (A2, l, s) ≥ (A2’:Acting, l’:local-info, s’:shared-info,

uncommitment);
[[A1 O A2]]: [[Intermediate “or” Intermediate]!] ⇒
stepped ([[A1 O A2]], l:local-info, s:shared-info) ≥ simplified([[A1 O A′2]],

l’, s’,uncommitment); .
(9) stepped (A1, l, s) ≥ (A1’:Acting, l’:local-info, s’:shared-info,

c’:uncommitment);
[[A1 O A2]]: [[Intermediate “or” Intermediate]!] ⇒
stepped ([[A1 O A2]], l:local-info, s:shared-info) ≥ (A′1, l’, s’, c’) .

(10) stepped (A2, l, s) ≥ (A2’:Acting, l’:local-info, s’:shared-info,
c’:uncommitment);

[[A1 O A2]]: [[Intermediate “or” Intermediate]!] ⇒
stepped ([[A1 O A2]], l:local-info, s:shared-info) ≥ (A′2, l’, s’, c’) .

A.3.3.3 Simplifying
No changes here.

(1) [[A′1 O A2]] : [[Failed Sequencing Intermediate |||
[[(Failed ||| Escaped) Interleaving (Intermediate ||| Completed)]] |||
[[Escaped Normal Intermediate]] |||
Completed “trap” Intermediate |||

43

[[(Completed ||| Escaped) “or” Intermediate]] ⇒
simplified [[A′1 O A2]] = A′1.

(2) [[A′1 O A2]] : [[(Intermediate ||| Completed) Interleaving (Failed ||| Escaped)]] |||
[[Intermediate “or” (Completed ||| Escaped)]] ⇒
simplified [[A′1 O A2]] = A′2.

(3) [[A′1 O A2]] : [[(Intermediate ||| Completed) Interleaving (Failed ||| Escaped)]] |||
[[Intermediate Action-infix Intermediate]] |||
Intermediate “or” (Completed ||| Escaped)]] ⇒
simplified [[A′1 O A′2]] = [[A′1 O A′2]] .

(4) simplified [[“failed” “or” A2:Intermediate]] = A2 .
(5) simplified [[A1:Intermediate “or” “failed”]] = A1 .
(6) [[“completed” d1:data b1:bindings “and” “completed” d2:data b2:bindings]]

= 〈“completed” (d1, d2) (disjoint-union (b1, b2))〉 .
(7) simplified [[A1:Completed “and then”A2:Intermediate]] = [[A1 “and” A2]] .
(8) simplified [[“completed” d1:data b1:bindings “then” A2:Intermediate]] =

[[“completed” () b1 “and” (given (A2, d1))]] .
(9) simplified [[A1:Completed “and then”A2:Intermediate]] = given (A2, d1) .
(10) simplified [[“completed” d1:data b1:bindings “moreover” “completed” d2:data

b2:bindings]] =
〈“completed” (d1, d2) (overlay (b1, b2))〉 .

(11) simplified [[A1:Completed “and then moreover”A2:Intermediate]] = [[A1

“moreover” A2]] .
(12) simplified [[“completed” d1:data b1:bindings “then moreover” A2:Intermediate]]

= [[“completed” () b1 “moreover” (given (A2, d1))]] .
(13) simplified [[“completed” d1:data b1:bindings “hence” A2:Intermediate]] =

[[“completed” d1 empty-map “and” (received (A2, b1))]] .
(14) simplified [[“completed” d1:data b1:bindings “thence” A2:Intermediate]] =

given (received (A2, b1) d1) .
(15) simplified [[“completed” d1:data b1:bindings “before” A2:Intermediate b:bindings]]

= [[“completed” d1 b1 “moreover” (received (A2, overlay (b1 , b)))]] .
(16) simplified [[“completed” d1:data b1:bindings “then before” A2:Intermediate

b:bindings]] =
[[“completed” () b1 “moreover” (given (received (A2, overlay (b1 , b)), d1))]] .

A.3.3.4 Unfolding
No changes here.

44

(1) (A1:Simple-Action, A0:Action) = if A1 is “unfold” then A0 else A1 .
(2) unfolded (O:Action-Prefix A1:Action]], A0:action) =

if O is “unfolding” then [[O A1]] else [[O (unfolded (A1, A0))
(3) unfolded ([[A1:Action O:Action-Infix A2:Action]], A0:action) =

[[(unfolded (A1, A0)) O (unfolded (A2, A0))]] .

A.3.3.5 Giving
No changes here.

(1) given (A:Terminated, d:data) = A .
(2) A: Simple-Action ||| [[“unfolding” Action]] ||| [[“redirect” redirections]] ⇒

given (A, d:data) = (A, d);
given (A, b:bindings, d:data) = (A, d, b) .

(3) O: “indivisibly” ||| “patiently” ⇒
given ([[O A:Acting]], d:data) = [[O (given (A, d))]] .

(4) O: “or” ||| “and” ||| “moreover” ||| “and then moreover” |||“hence” ||| “before”
⇒ given ([[A1:Acting O A2:Acting]], d:data) =
[[(given (A1, d)) O (given (A2, d))]]

(5) O: “then” ||| “trap” ||| “then moreover” ||| “thence” ||| “then before” ⇒
given ([[A1:Acting O A2:Acting]], d:data) = [[(given (A1, d)) O A2]] .

A.3.3.6 Receiving
No changes here.

(1) received (A:Terminated, b:bindings) = A .
(2) A: Simple-Action ||| [[“unfolding” Action]] ||| [[“redirect” redirections]] ⇒

received (A, b:bindings) = (A, b);
received (A, b:bindings, d:data) = (A, d, b) .

(3) O: “indivisibly” ||| “patiently” ⇒
received ([[O A:Acting]], b:bindings) = [[O (received (A, b))]] .

(4) O: “or” ||| “and” ||| “and then” ||| “then” |||“trap”
||| “moreover” ||| “and then moreover”
||| “then moreover” ⇒
received ([[A1:Acting O A2:Acting]], b:bindings) = [[(received (A1, b))
O (received (A2, b))]]

(5) O: “hence” ||| “thence” ⇒

45

received ([[A1:Acting O A2:Acting]], b:bindings) = [[(received (A1, b)) O A2]] .
(6) O: “before” ||| “then before” ⇒

received ([[A1:Acting O A2:Acting]], b:bindings) = [[(received (A1, b)) O A2 b]] .

A.3.4 Processes

The concluded equations were modified, in order to take a configuration as
argument, and not simply a processing1.

introduces: conclusion , concluded , advanced .

(1) conclusion = “completed” ||| “escaped” ||| “failed” .
• concluded :: configuration → conclusion .

(2) s = (c: conclusion, x!, user-agent, user-agent) ⇒
concluded(s:shared-info+, undelayed s:state, p:processing) ≥ c .

(3) advanced p ≥ p′:configuration;
concluded p′ ≥ c:conclusion ⇒
concluded p:configuration ≥ c .

The core of our modifications appear in the equations corresponding to the
advanced semantic functions. In the original operational semantics of action
notation, each processing semantic entity is advanced by performing all the
undelayed communications first, followed by the stepping of each agent, when
no more undelayed communications are present.

Our modification consists mainly of the introduction of an intermediate
step, after advancing the undelayed communications and before stepping
each agent. The purpose of this step is to update the global shared storages
before advancing each agent.

• advanced :: configuration → configuration .

The order of events is not relevant.

(4) s: shared-info+; p1, p2: processing; e1, e2: (event delayed time) ⇒
advanced(s, p1, e1, e2, p2) = advanced(s, p1, e2, e1, p2)

1Recall that a configuration is formed by shared information together with a processing
entity.

46

Advancing delayed communications.

(5) p = (c:communication delayed t:positive-integer, p′:processing);
s, s′: shared-info+;
(s′, p′′:processing) ≤ advanced(s, p′) ⇒
advanced(s, p) ≥ (s′, c delayed predecessor t, p′′) .

Delivering undelayed messages.

(6) m: message[to a1];
e = (x!, q:buffer, a1:agent, a2:agent); e’ = (x, list of(items q, m),
a1:agent, a2:agent); ⇒
advanced(s:shared-info+, undelayed m, e:state delayed t:time,
p:processing) =
advanced(s, e′ delayed t, p) .

(7) m:message [to agent[not in set of agents of s]] ⇒
advanced(s:shared-info+, undelayed m, p:processing) = advanced(s, p)

Initiating the execution of contracts.

(8) c:contract [to a ≤ agent][from a2:agent][containing [[“abstraction of” A:Acting]]];
s: shared-info+;
a1: a[not in agents of s];
s’ = (s, empty-map, set of a1);
e = (given (received(A, empty-map), ()), empty-map, 0, empty-list, a1, a2);
advanced(s, undelayed c, p:processing) ≥ (advanced(s′, p), undelayed e) .

(9) c:sharing contract [to a ≤ agent][from a2:agent]
[containing [[“abstraction of” A:Acting]]];

s = (s1:shared-info∗, (m:storage, a′:set[agent]), s2:shared-info∗);
a2 is in a′ = true;
a1: a[not in agents of s];
e = (given (received(A, empty-map), ()), empty-map, 0, empty-list, a1, a2);

47

s′ = (s1, m, union(a′, set of a1), s2) ⇒
advanced(s, undelayed c, p) ≥ (advanced(s′, p:processing), undelayed e) .

(10) s: shared-info+;
c: contract[to a ≤ agent]
a [not in agents of s] = nothing ⇒
advanced(s, undelayed c, p:processing) ≥ (advanced(s, p), undelayed c) .

(11) s: shared-info+;
c: sharing contract[to a ≤ agent]
a [not in agents of s] = nothing ⇒
advanced(s, undelayed c, p:processing) ≥ (advanced(s, p), undelayed c) .

Updating storages.

(12) sort-union p & undelayed communication = nothing;
s = (s1: shared-info∗, (m:storage, a:set[agent],) s2:shared-info∗);
a1 is in a = true;
m2 = disjoint-union (m omitting u, m1 restricted to u); ⇒
advanced (s:shared-info+, update of (m1:storage, u:set[cell], a1:agent),
p:processing) =

advanced (s1, m2, a, s2, p)

Advancing delayed states.

(13) sort-union p & undelayed (communication ||| update) = nothing;
s: shared-info∗; ⇒
advanced(s, e:state delayed t:time, p:processing) ≥

advanced (s, p), e delayed predecessor t
(14) sort-union p & undelayed (communication ||| update) = nothing;

s: shared-info+; ⇒
advanced(s, e:state delayed forever, p:processing) ≥ (advanced(s, p),
e delayed forever) .

Advancing to intermediate states.

48

(15) sort-union p & undelayed (communication ||| update) = nothing;
s = (s1:shared-info∗, (m:storage, a:set[agent]), s2:shared-info∗);
a1 is in a = true;
e = (x!, a1:agent, a2:agent);
stepped (e, m, a) ≥ (e’:(Intermediate, local-info), m’:storage,
a’:set [of agent], c:commitment)
⇒
advanced(s, undelayed e:state, p:processing) ≥

(advanced(s, undelayed update of (m’, changed cells of c, a1),
items of c delayed natural, p),
e’ delayed natural) .

Advancing to terminating states.

(16) sort-union p & undelayed (communication ||| update) = nothing;
s = (s1:shared-info∗, (m:storage, a:set[agent]), s2:shared-info∗);
a1 is in a = true;
e = (x!, a1:agent, a2:agent);
stepped (e, m, a) ≥ (e’:(Tntermediate, local-info), m’:storage,

a’:set [of agent], c:commitment)
⇒
advanced(s, undelayed e:state, p:processing) ≥

(advanced(s, undelayed update of (m’, changed cells of c, a1),
items ofc delayed natural, p),
e’ delayed forever) .

49

Contents

1 Communicative Action Notation 4

1.1 Actions . 4

1.2 Yielders . 5

1.3 Data . 6

1.4 Facets/Outcomes . 7

1.5 Facets/Incomes . 7

2 Examples 7

2.1 Serial RPC . 8

2.1.1 Actions . 8

2.1.2 Yielders . 11

2.1.3 Data . 11

2.2 Concurrent RPC . 11

2.2.1 Actions . 12

2.2.2 Data . 16

2.2.3 Yielders . 16

2.3 Semaphores . 16

2.3.1 Actions . 17

2.3.2 Data . 18

2.4 Monitors . 20

2.4.1 Data . 27

A Operational Semantics 30

A.1 Abstract Syntax . 30

A.1.1 Actions . 30

A.1.2 Yielders . 30

A.1.3 Data . 31

A.2 Semantic Entities . 31

A.2.1 Acting . 32

A.2.2 Sort Unions . 32

A.2.3 States . 33

50

A.2.4 Commitments . 33

A.2.5 Processing . 34

A.3 Semantic Functions . 35

A.3.1 Data . 35

A.3.2 Yielders . 36

A.3.3 Actions . 37

A.3.4 Processes . 46

51

