

Layout Construction: A Case Study In
Algorithm Engineering∗

Gudmund Skovbjerg Frandsen
Jens Palsberg

Erik Meineche Schmidt
Steen Sjøgaard

August 1993

Abstract

We design a system for generating newspaper layout proposals.
The input to the system consists of editorial information (text, pic-
tures, etc) and style information (non-editorial information that speci-
fies the aesthetic appearance of a layout). We consider the automation
of layout construction to pose two main problems. One problem con-
sists in optimizing the layout with respect to the constraints and pref-
erences specified in the style information. Another problem consists
in finding a representation of the style information that both supports
its use in the combinatorial optimiza tion and supports its modifica-
tion through high level user interaction and automatic inference from
a database of examples.

We propose a solution that combines heuristic search, randomiza-
tion and neural networks. We have implemented a first version based
on the bisection strategy - a page is bisected recursively until the
number of sub divisions matches the number of articles to be placed.

∗This research was supported by CCI-Europe and the ESPRIT II BRA Programme of
the EC under contract # 7141 (ALCOM 11).

1

1 Introduction

Page make up systems of current use in newspaper production has the basic
function of replacing paper paste-up techniques. In addition these systems
provide new tools such as continuous scaling of font sizes, and the systems
automate simple tasks that were once left to the typographer, e.g. the task
of hyphenation. However, major tasks such as the relative positioning of
articles are decided by the typographer.

We expect that more tasks may be automated by future systems. We discuss
one such task in this paper, namely the construction of layout proposals for
a whole page. Such a construction is based on

1. editorial input: Includes the priority of articles and the size of headlines,
text and accompanying pictures.

2. style information: Includes all information that relates to the aesthetic
appearance of a page layout as opposed to the semantic contents of a
page. Style information can be divided in two main categories, feasi-
bility constraints and quality preferences.

A constraint may forbid widows or it may require the text of an article
to fill the assigned page area to within a 5 % allowance. If two distinct
layouts both satisfy the constraints then style information of preferen-
tial type may rank one of them as superior in quality to the other. A
few long text columns may be preferred to many short text columns
and/or a page with a good balance in headlines and pictures may be
preferred to a poorly balanced page.

The editorial input is easily included in the system, but the style in forma-
tion requires some care. We consider the automation of layout construction
to pose two main problems:

1. Optimization: Given editorial input, the system must find a feasible
layout that is optimal or near optimal with respect to a quality measure
provided by the style information.

From an abstract computational point of view, the editorial input is
a vector of numbers x ∈ Rn, and so is a feasible layout proposal y ∈

2

Rm. The style information restricts the feasible layouts to Lx ⊆ Rm,
and the style information also ranks the feasible layouts according to
quality, B : Lx → R, i.e. the quality of a layout is measured on a
linear scale as a real number. In general, we can not find a maximum
quality layout due to combinatorial explosion. It is necessary to make a
time/quality trade-off. The optimization problem consists in finding a
high quality layout in Lx within a specified time limit. In the standard
search terminology, our term quality would be mul tiplied by −1 and
called cost. Hence, we would be looking for a low cost feasible solution
[PaSt82].

2. Handling of style information: The chosen representation of style infor-
mation must support its use as feasibility constraints and quality prefer-
ences for the optimization part. However, the representation must also
support initialization and later modification of the style information
either by explicit user specification and/or by more or less automatic
inference of style information from a database of examples.

The paper is divided into two parts. In the first part, we present an abstract
algorithmic solution to the two main problems. The solution uses ordinary
algorithmic techniques in new combinations, but it uses no specialist layout
knowledge. In the second part of the paper, we describe a concrete im-
plementation of the abstract algorithm. The implementation is based on a
specific strategy, bisection, for dividing a layout problem into sub-problems.
We present various experimental results.

1.1 Abstract Algorithmic Solution

1. Optimization: We describe a kernel algorithm for the optimization. It
is based on a standard heuristic state space search [HAI-1, ?], which we
augment with randomization and time distribution. The randomization
is used as a way of getting nondeterministic behavior, i.e. the layout
proposals generated by the system are independent of idiosyncrasies of
the implementation, and multiple runs may result in several distinct
layout proposals. The time distribution serves to make efficient use of
a specified search time.

3

2. Handling of style infomation: The pruning and ordering of the search
is based on feasibility and quality information. We represent that part
of the style information that is used to specify quality preferences as a
set of functions. The overall quality is defined as a linear combination
of sub-functions, where each sub-function computes some value that
is relevant for the quality. This is a flexible representation of quality
information. The weights of a sub-function may be specified explicitly
by the user or deduced implicitly by linear regression. Similarly, a sub-
function can be specified by an algorithm, or it can be specified by a
neural network that is trained to recognize a specific quality feature.

The use of neural networks offers advantages in some cases. It can be
a difficult and time consuming task for a programmer to understand
and describe formally “holistic” aspects of quality such as the balance
of headlines and pictures on a page. The programmer may be relieved
from this task by letting a learning algorithm train a neural network
to recognize the relevant quality aspects.

1.2 Implementation - the Bisection Strategy

We have implemented the kernel algorithm and made experiments with a
specific strategy for dividing a layout problem into subproblems, bisection.
When a number of articles are to be placed in some page area, we create
two smaller problems by dividing the articles in two subsets and’we divide
the page area in two by making a horizontal or vertical bisection. Clearly,
this division of articles and page area can be done in many ways and the
kernel algorithm controls the structured exploita tion of all possibilities. The
restriction to axis parallel bisections may seem very crude, but it does com-
prise the layout used by a wide range of newspapers including The Guardian
and Financial Times.

We have trained a neural network to recognize a specific “holistic” quality in
layout proposals generated with the bisection strategy. The neural network is
trained to prefer pages where small articles are placed contigously away from
the center, and to dislike pages where small articles are randomly located
throughout the page.

The experimental results are discussed in sections 3.4 - 3.5 and illustrated

4

in Figures 1 - 13. In particular, Figures 4 - 6 show characteristic layouts
generated by the system. The layouts in figures 10 - 13 were classified by the
trained neural network.

2 A Kernel Algorithm

We have devised a template algorithm for layout construction. The template
places a number of articles on the free part of a page by a divide and conquer
strategy. At each step there will be many different possible divisions of the
problem into subproblems involving fewer articles. The template has room for
a search space module that specifies the divisions, which should be considered
(line 1). A good search space module should satisfy the contradictory goals
of making the search space small (only few possible next steps) and provide
no unintended restrictions on the style.

There is also room for a number of heuristic modules that specify pruning
(feasibility constraints, lines 2,5 - quality preferences, lines 4,5) and ordering
(quality preferences, line 3) of the recursive search. The heuristic modules
represent style information. The pruning and ordering of the search takes the
greatest effect, when used early in the search. This leads to a classification
of the style information, which we discuss later.

We have a special time distribution feature for controlling search within a
specified time limit. In a subsection below, we explain how to plan ahead
and spread the available time thinly out over the search space (the condition
“t ≤ Gs(n)” of the while-loop) rather than making a depth-first search that
stops abruptly, when time is out.

In a separate subsection, we describe our use of randomization.

In a final subsection we discuss the advantages and disadvantages of using
neural networks to represent style information.

First we present the kernel algorithm. The notation (A→ f) denotes that
the set of articles A is to be placed on the page part f . In an actual imple-
mentation of the kernel we use dynamic programming to avoid multiple calls
of procedure find layout with identical arguments. For technical simplicity,
we describe the kernel algorithm as outputting only one layout proposal (the

5

best encountered). In practice, it would probably keep a number of the best
proposals encountered and leave it for some kind of post-processing to make
a final selection (see later).

procedure find layout
input:

A, a set of n articles.
f , a free page part.
(By assumption the combined areas of the articles in A
equals the area of f .)

output:

(a1 → f1, . . . , an → fn), a high quality layout proposal.
t, the number of time units used when computing the layout proposal.

method:

t := O;
so far best.quality := −∞;
if | A |= 1 then

so far best := (A→ f);
else (| A |>= 2)

(1) B1 := The set of possible next steps ⊆
{(B → g, C → h) |

1. A is the disjoint union of the nonempty sets B and C.
2. f may be divided in two parts g and h
}
t := t+ | B1 |;

(2) B2 := {b ∈ B1 | b is feasible };
(3) B3 := Priority queue containing the elements of B2

ordered according to quality.
while t ≤ Gs(n) and B3 6= ∅ and

the most promising next step b = (B → g, C → h) from B3

(4) can lead to an improvement of so far best
do

(l1, t1 := find layout(B → g);
(l2, t2 := find layout(C → h);
l := l1l2;
t := t+ t1 + t2;

(5) if l.feasible and l.quality > so far best.quality then

so far best := l;

6

fi;
od;

fi;
return (so far best, t);

2.1 Randomization

If many distinct next steps from a single search state have identical quality
ranks, then idiosyncrasies of the implementation will determine the order in
which the corresponding problem divisions are investigated in detail before
the time limit is reached. We use randomization to avoid this problem and
to ensure a certain variation in the generated layout proposals.

The quality function is a linear combination of sub-functions. We let one
sub-function return a random value independent of its argument. The user
can control the amount of randomization by adjusting the weight of this sub-
function. When the weight is nonzero but very small the quality ordering
of layouts is preserved, and the randomization merely makes the output
independent of the implementation specific search sequence. The system
becomes in this sense nondeterministic. When the weight is moderately
increased, the quality function becomes more random, and multiple runs on
the same input produces a number of distinct layout proposals of the same
flavor.

If we give the random function a relatively large weight in the total quality
function, it may have the side effect that our greedy algorithm avoids a local
optimum and obtain a better overall solution within the time limit. However,
the randomization may just as well have the reverse effect and produce a
worse solution. Simulated annealing offers a theo retical framework for using
randomization when transferring an initially poor solution into a final good
solution [San91]. A future search kernel may use simulated annealing.

2.2 Time Distribution

The time usage during the search is bounded by a search parameter s. To
take a specific example, if s = 3, there will in every incarnation of the

7

procedure be enough time for trying out at least three of the possible next
steps recursively.

If a recursive call ends prematurely or too few next steps are available then
the saved time is used to try more than three next steps in one or several
ancestor incarnations.

The unit for our time measure is the time usage when handling a single
possible next step including all lookahead computations (feasibility, quality).
We assume that the number of immediate next steps M(n) defined by the
search space module depends on n only, where n is the number of articles
to be placed. The total time consumed in one procedure call is the number
of immediate next steps added to the combined time consumption of all
recursive calls (We disregard the time used, when combining two partial
layouts into a single as being negligible, similarly we ignore the time used in
a call that places a single article, i.e. the case n = 1). If we pursue precisely
s possible next steps recursively in every incarnation, we use at most time
Ts(n) to place n articles, where

Ts(n) = M(n) + s ·maxn−1
i=1 (Ts(i) + Ts(n− i))forn ≥ 2

and

Ts(1) = O.

However, Ts(n) is not the time limit that is checked at the beginning of each
iteration (line 5). Before initiating another iteration we must be sure that
there is enough time for the two recursive calls in the body of the while loop.
Hence, we define

Gs(n) = Ts(n)−maxn−1
i=1 (Ts(i) + Ts(n− i))

A calculation gives

Ts(n) =
n−2∑
i=0

siM(n− i)

8

and

Gs(n) = Ts(n)− Ts(n− 1) = sn−2M(2) +
n−3∑
i=0

si(M(n− i)−M(n− 1− i))

for n ≥ 2 and n integral, when assuming that M(n) is increasing in n and
s ≥ 1 is a real number.

By stopping recursive calls when the time count exceeds Gs(n), we try at
least bsc recursive calls (if that many next steps are available), yet we use at
most time Ts(n).

The user may control the time usage by specifying the search parameter
s. The search time is expected to grow exponentially in s until most or all
possible next steps are considered.

2.3 Partial layout vrs. complete layout

The search for a high quality layout runs through 4 phases:

top-down → single-article → bottom-up → full-page.

In the top-down phase a coarse layout is refined recursively. At the bottom
of the recursion a single article is placed on the page. In the bottom-up phase
several detailed layouts are combined into a single lay out. Finally we obtain
the detailed layout for a whole page.

In all phases we discard possibilities and rank the remaining ones by means
of style information. In the top-down phase the style information must relate
to a possible next step problem division rather than to a detailed layout.
Conversely, we may assume knowledge of all details in the bottom-up phase.

This implies that some layout concepts work well for the specification of
style information that are used as search heuristics in one particular phase,
while the same concepts work less well in other phases. However, heuristics
take the greatest effect, when applied in an early phase:

When given a small search parameter s, the system has time to search
only few full page layouts. Style information that relates to the top-down

9

phase therefore dominates the output of the system. Conversely, if the search
parameter is large, we expect to search through many detailed layouts, and
so style information concerning the later phases has some influence on the
output too.

2.4 Pruning vrs. Ordering in the Search

Style information can be used in three ways:

static-feasibility-pruning
→ dynamic-quality-pruning → quality-ordering.

The most efficient search results from choosing a small set of im mediate
next steps. We save lookahead computation by excluding an immediate next
step from consideration, if this next step would later be rejected as non-
feasible.

The static pruning of possible next steps based on feasibility information
takes place before any of the next steps have been pursued recur sively.
In comparison, the dynamic pruning based on quality information can only
occur after the construction of a complete layout, since this type of pruning
consists in ignoring those next steps that cannot possibly im prove an already
found solution. Hence, static feasibility pruning takes effect earlier in the
search than dynamic quality pruning, and feasibility information is thus more
efficient than quality information.

If a partial layout of low rank is extended into a complete layout, it is likely
to lose in the competition with other proposals. This waste of search efforts
is avoided when using early pruning. Hence, it is more efficient to use quality
information for pruning in addition to ordering than for ordering alone.

2.5 Using Neural Networks to Specify Style Informa-
tion

The quality function is a linear combination of sub-functions that are repre-
sented independently. In this section we discuss the use of neural networks
for computing selected sub-functions.

10

One of the major advantages of using neural networks consists of the more
economical use of human resources. A programmer is relieved from the task
of understanding and formally describing the specific function that must be
computed, i.e. he does not have to concentrate on all the specific implemen-
tation details as he does when he is writing a traditional imperative program.
Instead a learning algorithm “teaches” a neural net work to respond properly
on a set of positive and negative examples which exemplifies the function or
task considered. When training is completed, one hopefully possesses a neu-
ral network that generalizes well to exam ples outside the training set, i.e.
the network responds properly to novel or unseen examples as well.

However, since a neural network “learns by examples,” it selects and builds
up by itself its own internal knowledge representation. In this sense a neural
network can be considered as a black box, and this fact is of major importance
to the applicability of neural networks. Suppose e.g. that a minor well-
defined adjustment has to be done to a well-functioning neural network. The
actual network may then be retrained on selected examples in order to add
or build this new “behavior” into the existing network. However, due to
the circumstance mentioned above, this extra “knowledge” will most likely
affect the network’s former knowledge about the problem domain, and thus
unintended side effects of which one has only little control will be introduced.
Therefore, application of neural networks should in general be restricted to
atomic tasks, i.e. tasks for which there is no need to refer to subtasks and
which do not have to be (re)adjusted.

On this background we expect that neural networks may be appro priate for
representing “holistic” aspects of quality such as the balance of headlines and
pictures. Given a set of course grained “pictures” of entire layouts, a neural
network can be trained to identify those layouts that possess certain overall
aesthetic qualities. In section 2.3 we point out that a quality function should
be defined on partial layouts in order to influence the direction of search
significantly. We could increase the usefulness of neural networks if it was
possible to train a neüral network to make a good prophesy of the quality of
a complete layout when input a partial layout only.

This more general application of neural networks is problematic. A neural
network has a fixed number of inputs. In our case these inputs would prob-
ably correspond to a coarse grained image of a complete lay out. A partial
layout would only define some of the inputs. We have to substitute dummy

11

values for undefined values, and we must train the neural network on exam-
ples of both partial and complete layouts. But we can not expect to have
any examples of partial layouts together with their prophesied quality values
at our disposal. Q-learning offers a model for learning behavior from delayed
rewards, which may be appropriate in this case [WaDa92].

3 Bisection, a Restricted Make Up Case

To illustrate the working of the conceptual framework, including the search
kernel that we have described so far, we have chosen a sub-case of page make
up. We use the bisection search strategy. Style information is specified by a
number of simple layout concepts and a single “holistic” concept is defined
by a neural network. The editorial input describes plain text and headlines.
There will probably not be any new problems involved in extending the
system to deal with more information of a se mantic nature such as the
relative priority of articles. Similarly, balance problems connected with the
placing of pictures have an analogue in the placing of headlines.

3.1 Search Space

The search space module allows only one kind of division, bisection. Bisection
consists in dividing a free-area into two parts by a vertical or horizontal
straight line. We consider all possible divisions of the set of articles into
two subsets, each of which is assigned to one of the two sub-free-areas for
recursive calls. Though bisection can not construct all possible layouts, it
is surprisingly general. The bisection search space includes the layout styles
used by The Guardian and Financial Times.

We let the search space module generate all possible bisections as immediate
next steps. Hence M(n) = 2(2n − 2), and the time limit used in the kernel
algorithm is

Gs(n) =

 2n · (s
2

)n−1−1
s
2
−1

for s 6= 2

2n · (n− 1) for s = 2

12

This number grows exponentially fast in n. When dealing with a large
number of articles (n > 10) it is necessary to provide additional heuristics to
reduce the number of immediate next steps considered.

If several consecutive bisections are all vertical (or horizontal) then the same
layout can be produced by permuting the order in which the consecutive
parallel bisections are made. To avoid double work in this way we augment
the search space module with “symmetry-elimination”, which restricts the
set of immediate next steps to enforce such layouts to be sought for only
once.

3.2 Editorial Information

A page consists of a fixed number of columns.’

A Free-area is either the total part of a page, where articles are placed,
or it is a component of a larger free-area. A free-area is wedge shaped, i.e.
it takes the form of a rectangle, where zero, one or both lower corners has
one or more sub-rectangles cut out (the cut out space may be reserved for
commercial ads). We have chosen this class of free-areas because it is closed
under bisection. The consideration of wedge shaped free areas only is not
a severe restriction. In several international newspapers free-areas are in
general wedge shaped.

Each article is characterized by its total area combined with the exact shape
and size of the headline. The system places each article on a wedge shaped
area that must allow room for the headline.

3.3 Style Information

We have based feasibility constraints and quality ranking on the following
four layout concepts:

1. area deviation: The relative deviation of the actual area of an item in
the layout compared to the area specified in the editorial input.

2. text height: The height of a text column (excluding headlines) in the
layout. (minimum constraints on this parameter can be used to avoid

13

widows)

3. article width: The width of an article in the layout compared to the
minimum possible, given that there must be room for the headline.

4. direction variation: The variation between horizontal and vertical bi-
sections.

All the concepts may be used for both feasibility and quality specifications.
In the test, we have carried out, we have used only two of the concepts for
feasibility constraints. This is shown in Table 1 together with information
about which of the four search phases may benefit from the use of heuristics
connected to each concept. Quality ranking is used to order the search, but
we have not implemented dynamic quality pruning.

If a feasibility/quality function is defined in the single-article phase, then
its value in the bottom-up and full-page phases is computed by logical and,
respectively arithmetic sum, from the values on a single article. Of course,
the direction variation is not defined for a single article. Only area deviation
and direction deviation are natural concepts to be used in the top-down
phase.

concept feasibility quality top single bottom full
demands prefers down article up page

area deviation ≤max small X (X) (X) (X)
text height ≥min large X (X) (X)
article width - small X (X) (X)
direction variation - large X (X) (X)

Table 1: The applicability of the various layout concepts for expressing
style information.

A layout is feasible, if it satisfies all feasibility demands. The user may
influence the feasibility constraints by changing min/max values. The quality
function is computed as a weighted sum of all quality sub functions. The user
may adjust the weights. A weight of 0 ignores the sub-function in question
and a negative weight reverses the preference large/small.

14

Our concepts supports an efflcient implementation. They are all ap plied
for heuristics in one of the first two phases (in addition to later phases). We
can simplify the tables used in the dynamic programming part of the kernel
algorithm considerably, because the feasibility/quality of a partial layout
depends on the shape of the related free-area, but it does not depend on the
exact position of this free-area.

On the other hand, we need concepts for expressing more holistic aspects
of full page layout, and we would like to incorporate the use of neural nets
into our prototypical system. We have addressed both needs by defining
(informally) a quality function that prefers pages where small articles are
placed contiguously at the sides of the page near bottom cor ners or near ads,
and to dislike pages where small articles are randolllly located throughout
the page. This function may be difficult to characterize formally and seems
suitable for neural network computation.

3.4 Experimental Results with Kernel Algorithm

We have not integrated the neural network in the kernel algorithm. We
describe the experimental results with neural networks separately at the end
of this section.

We have made various detail optimizations on the kernel algorithm fol-
lowing the specialization to the bisection style. Dynamic programming is
implemented for free-areas of rectangular shape only. The resulting system
is quite efficient. Each sample layout (figures 4 - 6) was generated in less
than one second, using search parameter s = 3.

Figures 1 - 3 show the editorial input symbolically, i.e. 7 articles with head-
lines and a page with a wedge shaped free-area. Figures 4 - 6 show different
layout proposals generated by the system. We have defined three styles, a
“flat” style that dislikes direction variation, a “variation” style that favors di-
rection variation and requires text columns to have a minimum height and a
“tall” style that favors long text columns and narrow articles. For each style
we have chosen a characteristic layout from a set of 6 generated proposals.
The examples illustrate how well one may control the style.

We have included a second example (figures 7 - 13) that illustrates the

15

variation of proposed layouts within a specified style. Figures 10 - 11 and
figures 12 - 13 show show two layouts of “flat” style and two layouts of
“variation” style, respectively. In order to use the same example with the
neural network experiments described below, the free-area (figure 7) has only
6 columns. This gives less freedom. However, by allowing a small deviation
(5%) between the specified area for an article and the area actually assigned
to the article we obtain more possible layouts, and combined with random-
ization, we obtain a satisfactory variation among the proposed layouts within
each style.

3.5 Experimental Results with Neural Networks

The goal of this experiment was to train a neural net to prefer pages where
small articles are placed contiguously at the sides of the page near bottom
corners or near ads, and to dislike pages where small articles are randomly
located throughout the page.

For technical simplicity we decided to focus on pages consisting of just 6
columns of text. However, an arbitrary part of the page could be occupied
by commercial ads, and there was no practical restriction on the number of
articles. The input to the net was a course grained image of the page (5
bits for each of the 5 pairs of adjacent columns) combined with a vector of
real numbers that for each column specified the percent age of the area that
was not occupied by commercial ads. This latter information ensured that
the network had the necessary information to distinguish the ads from the
articles. Each bit in the 5 × 5 binary image corresponded to a rectangular
subfield of the page. The bit was set precisely when more than one article was
visible in the corresponding subfield. This representation is a 2-dimensional
version of the represen tation that Sejnowski and Rosenberg applied in the
NETtalk experiment [SeRo86].

A large series of experiments were conducted which resulted in one hundred
different networks. The training set consisted of 732 layout examples, while
another 208 randomly generated layouts comprised the test set. All the
networks were fully-connected two-layer feed-forward networks with short
cut connections between the input units and the output units.

The generalization ability ranged from 80% for the poorest performing net-

16

work to 94% for the best performing network, which had just 9 hidden units.
This large variation in performance underlines the importance of trying out
the same experiment several times. Due to different initial conditions (the
initial weight values are selected randomly) the trained networks will only
very rarely realize exactly the same function. However, in this case we were
only interested in the best possible network, i.e. the one that was able to
correctly classify 94% of the 208 layouts in the test set.

To illustrate the performance of the best network that we found, we pre-
sented the layouts in Figures 10 - 13 to the network. Recall that these were
generated by the page make up algorithm in order to illustrate the usefulness
of the randomization feature. The network correctly classified the layouts in
Figures 11 and 12 as “good” (the small articles are placed at the bottom
of the page in the outer columns or next to the commercial ads), while it
disliked the layouts in Figures 10 and 13. In these experiments the neural
network has been used as a post-processing module that accepts or discards
the layout proposals generated by the search part of the system. However,
it would be quite possible to inte grate the neural network as a heuristic
module in the search algorithm and include the judgernent of the network
with a weight like any other quality sub-function.

References

[HAI-1] The Handbook of Artificial Intelligence, Vol 1,
editors: A. Barr and E. A. Feigenbaum, Pitman, 1981.

[PaSt82] Papadimitriou, C. H. and Steiglitz, K.,
Algorithms and Complexity,
Prentice Hall, 1982.

[San91] Sangiovanni-Vincentelli, A.,
Editors Foreword (Special issue on Simulated Annealing).
Algorithmica 6 (1991) 295-301.

[SeRo86] Sejnowski, T. J. and Rosenberg, C. R.,
Parallel networks that learn to pronounce English text,
in Complex Systems I (1987) 145-168.

17

[WaDa92] Watkins, C.J.C.H. and Dayan P.,
Q-Learning.
Technical note. Machine Learning 8 (1992) 279-292.

18

Figure 1: A wedge-shaped free-area.

19

Figure 2: Exact shape of headlines and total area for the articled 1-4.

20

Figure 3: Exact shape of headlines and total area for the articles 5-7.

21

Figure 4: A “flat” style layout.

22

Figure 5: A “variation” style layout.

23

Figure 6: A “tall” style layout.

24

Figure 7: A wedge-shaped free-area (6 columns).

25

Figure 8: Exact shape of headlines and total area for the articles 1-4.

26

Figure 9: Exact shape of headlines and total area for the articles 5 and 6.

27

Figure 10: A “flat” style layout. Judged as poor by the neural network.

28

Figure 11: A “flat” style layout. Judged as good by the neural network

29

Figure 12: A “variation” style layout. Judged as good by the neural network.

30

Figure 13: A “variation” style layout. Judged as poor by the neural network.

31

