
The breaking of the AR Hash Function

Ivan B. Damg�ard and Lars R. Knudsen

Aarhus University, Denmark

Abstract. The AR hash function has been proposed by Algorithmic Re-

search Ltd and is currently being used in practice in the German banking

world. AR hash is based on DES and a variant of the CBC mode. It pro-

duces a 128 bit hash value.

In this paper, we present two attacks on AR hash. The �rst one constructs

in one DES encryption two messages with the same hash value. The

second one �nds, given an arbitrary message M , an M 0 6= M with the

same hash value as M . The attack is split into two parts, the �rst part

needs about 233 DES encryptions and succeeds with probability 63%, the

second part needs at most about 266 DES encryptions and succeeds with

probability about 99% of the possible choices of keys in AR. Moreover,

the 233 respectively 266 encryptions are necessary only in a one-time

preprocessing phase, i.e. having done one of the attacks once with success,

a new message can be attacked at the cost of no encryptions at all.

Since the hash value is 128 bits long, the times for the attacks should be

compared to 264, resp. 2128 DES encryptions for brute force attacks.

For the particular keys chosen in AR hash we implemented the �rst part

of the second attack. In 233 encryptions we found two messages that

breaks AR hash.

1 The AR Hash Function

The AR hash function has been proposed by Algorithmic Research Ltd., it has

been distributed in the ISO community [1] for informational purposes, but has

not been considered a standard. It is currently in use in the German banking

world.

In the following, DESk(y) will denote the DES-encryption of block y using

key k.

The basic structure in AR-hash can be described as a variant of DES in

CBC-mode, where the last 2 ciphertext blocks are added to the current input,

and where the state consists of the last two "ciphertext" blocks computed. To

do the entire function, the message is processed with two keys, yielding a result

of 2 times 128 bits. This is then further compressed to get a result of 128 bits.

To de�ne AR more precisely, we �rst divide the message m to be hashed into

8-byte blocks, denoted by m1;m2; :::;mn (0-padding is used on the last block if

it is incomplete).

We then de�ne a series of 64-bit blocks o
�1; o0; o1; ::by

o
�1 = o0 = 0



and

oi = mi �DESk(mi � oi�1 � oi�2 � �);

where k is an arbitrary DES key, and the constant � is de�ned by

� = 01 23 45 67 89 AB CD EF

in hexadecimal notation. We now let f1(m; k); f2(m; k) denote on�1; on, respec-

tively.

In the actual hash function AR/DFP, two di�erent keys k1 and k2 are used,

speci�ed as

k1 = 00 00 00 00 00 00 00 00; k2 = 2A 41 52 2F 44 46 50 2A

One then �rst computes

c1 = f1(m; k1); c2 = f2(m; k1); c3 = f1(m; k2); c4 = f2(m; k2)

and the hash value is now the concatenation of the two 8 byte blocks

G(G(c1; c2; k1); G(c3; c4; k1); k1) and G(G(c1; c2; k2); G(c3; c4; k2); k2);

where G is the function de�ned by

G(x; y; k) = DESk(x� y) �DESk(x)�DESk(y) � y:

For convenience in the following, we will let DFP (c1; c2; c3; c4; k) denote the

�nal hash result.

2 Properties of f1, f2 and G

In the following, let A and B be messages of length a multiple of 8 bytes, and

let AjB be the concatenation of A and B. Choose a �xed, but arbitrary DES

key k, and let y = f1(A; k), z = f2(A; k). Let m be an arbitrary 8-byte block.

Let C(A;m) be the three-block message

m � � � y � zj DESk(m) � yj DESk(m) � z

Let D(A;m) be the three-block message

m � � � y � zj m � yj m � z

Let E(A;m) be the three-block message

m � � � y � zj m � yj DES2k(m) � z

Then we have the following result, showing that it is very easy to �nd collisions

for the functions f1; f2:



Lemma 1 For arbitrary A;B; k;m as above, we have that

fi(Aj B; k) = fi(Aj C(A;m)j B; k); i = 1; 2

f2(A; k) = f2(Aj E(A;m); k)

If k is a weak DES key, then we also have

fi(Aj B; k) = fi(Aj D(A;m)j B; k); i = 1; 2

Proof: By combining the de�nition of C(A;m) and f1; f2 and by letting f0 be

the hash value produced just before f1 we obtain

f0(Aj C(A;m); k) = m� � � y � z �DESk(m � � � y � z � y � z � �)

f1(Aj C(A;m); k) = DESk(m) � y �DESk(DESk(m) � y �m �

� � y � z �DESk(m) � z � �)

= y

f2(Aj C(A;m); k) = DESk(m) � z �DESk(DESk(m) � z � y �

m � � � y � z �DESk(m) � �)

= z

This proves the �rst statement. The second and third are proved similarly,

using for the third that if k is a weak key, then by de�nition we have that

DESk(DESk(m)) = m for all m. 2

By inspection of the de�nition of G, it is trivial to show the following lemma:

Lemma 2 The functions G;DFP have the following properties for arbitrary
c1; c2; k:

G(c1; c2; k) = G(c1 � c2; c2; k)

G(c1; 0; k) = DESk(0)

DFP (c1; c1; c1; c1; k) = (c1; c1); DFP (c1; 0; c2; 0) = 0

Thus, it is also very easy to �nd collisions for G and DFP .

Although none of these properties imply directly a collision for the hash

function itself, they will be useful in the following.

3 Attacks on AR Hash

3.1 Collision attack

A collision attack �nds two messages m and m0 that hash to the same value.

This �rst attack on AR hash exploits the fact that for a weak key k it is easy

to �nd �xpoints for DES, i.e. to �nd m s.t. DESk(m) = m: There are exactly

232 such �xpoints for a weak key [2] and each �xpoint can be found in half a

DES encryption. Since all round keys for a weak key are equal, a necessary and



su�cient condition for a �xpoint is that the halves of the encrypted value after

8 rounds of encryption are equal.

If A is the empty message in Lemma 1, then y = z = 0. Let X(m) be the

3-block message m � �j DESk2 (m)j DESk2 (m). This means that by Lemma 1

f1(X(m); k2) = 0

f2(X(m); k2) = 0

for any m. Let m be a �xpoint for k1, then

f1(X(m); k1) = DESk2 (m) �DESk1 (DESk2 (m))

f2(X(m); k1) = DESk2 (m) �DESk1 (DESk1 (DESk2 (m))) = 0

since k1 is a weak key. The above four values are also the ci values produced by

hashing X(m). But by Lemma 2, a G-value is invariant in the �rst argument

if the second is 0, so it is clear that for �xpoints (for k1) m 6= m0, X(m) and

X(m0) will be hashed to the same value. Finding two �xpoints for k1 takes in

time one DES encryption, which leads to:

Theorem 1 There exists an algorithm, which �nds in time one DES encryption,
two di�erent messages with the same AR hash value.

The above attack can be extended to attacks that in time n=2 encryptions �nd

n messages that hash to the same value, where n � 232. By contrast, a brute

force attack that �nds two messages that hash to the same value would require

computation of about 264 hash values.

3.2 Preimage attack

A preimage attack takes a given message M as input and tries to �nd a new

message with the same hash value.

AR hash uses two �xed keys. In the following we consider arbitrary keys,

where one key, k1, is a weak key1.

The basic idea in this second attack on AR hash is to try to �nd a message

which takes the initial state back to itself, i.e. leads to a set of all-zero c-values. If

Z is such a message, then clearly AR(M ) = AR(ZjM ) = AR(ZjZjM ) = � � �. It
is also clear that once we have found such a Z, any message M can be attacked

at no further cost.

In more detail, we try, inspired by Lemma 1, with Z of the form Z = m1 �
�jm2jm2. It is now easy to write down the equations that m1;m2 must satisfy

in order for f1(Z; ki) = f2(Z; ki) = 0; i = 1; 2. We get the following:

DESk1 (m1)�m1 = DES�1

k1
(m2) �m2 (1)

DESk2 (m1)�m1 = DES�1

k2
(m2) �m2 (2)

1 The DES has 4 weak keys.



It is di�cult in general to say anything about the number of solutions to these

equations, or how hard it is to �nd them. There is a special case, however, that

is easier:

Let m1 be a �xpoint for k1. Put m2 = DESk2 (m1). Then (2) is always

satis�ed and (1) is true if

DESk1 (DESk2 (m1)) = DESk2 (m1) (3)

which is true if also DESk2 (m1) is a �xpoint for k1. It is reasonable to assume

that the mappingDESk2 (�) distributes �xpoints for k1 uniformly. Therefore the

probability that DESk2 (m1) is a �xpoint for k1 is 2
�32. By running through all

�xpoints for k1 the probability that (3) is satis�ed is

1� (1� 2�32)2
32

' 1� e�1 ' 0:63

Since checking whether a message is a �xpoint for a weak key takes half a DES

encryption, the attack needs a total of 2�232 = 233 DES encryptions. A similar

attack appeared in [3].

To con�rm the validity of the 0.63 probability, we did a computer simulation

on a "scaled-down" version of DES, working with 32-bit blocks, thus making it

easy to run through all �xpoints. The experiments con�rmed the theory. The

test ran through all 216 �xpoints for 100 pairs of keys, where one key was a weak

key in a 32 bit block version of DES. Out of 100 key pairs, the equation (3) had

a solution for 62 pairs.

The above attack is quite feasible, and can be executed in at most a few days,

even hours, using up to date hardware. Later in this section we give the results

of an implementation of the attack on AR hash with the two keys given in [1].

The above probability can be improved to almost 1 on the cost of a squared

complexity. In this case we proceed as follows (where m1 is not necessarily a

�xpoint for k1):

If we put m2 = DESk1(m1), then equation (1) is trivially satis�ed, and (2)

is satis�ed as well, if
DESk1 (m1) = DESk2 (m1) (4)

or
DESk2 (m1)�m1 = DESk1 (m1) �DES�1

k2
(DESk1 (m1)) (5)

Symmetrically, we can put m2 = DESk2 (m1). This means that (2) is now always

satis�ed, and that (1) is true if eitherDESk1 (m1) = DESk2 (m1) (same condition

as (4)) or if

DESk1 (m1)�m1 = DESk2 (m1) �DES�1

k1
(DESk2 (m1)) (6)

Finally, since k1 is a weak key, there is another possibility, namely to put m1 =

m2. Once again, this trivially satis�es (1), and (2) is in this case satis�ed, if

DES2k2 (m1) = m1 (7)

To summarize, if we can �nd a 64-bit block m1 that satis�es (4), (5), (6) or (7)

then we have a 3-block sequence Z that makes the attack successful. Checking



if a block satis�es any of the equations requires at most 5 encryptions, so going

through all possibilities for m1 will require about 5 � 264 ' 266 encryptions.

The remaining question is of course if there are any solutions to the equa-

tions at all. Simply doing the 266 encryptions is not feasible today (although

it probably will become feasible in the not too distant future). Therefore the

best we can do is to see if we can estimate the probability that solutions exist,

assuming that the two keys k1; k2 are randomly chosen, but where k1 is a weak

key.

Each of the 4 equations can be written in the form h(m1) = 0, where h is

some function that depends on the keys, and is built from a number of DES en-

and decryptions. It is a generally accepted assumption that DES in a context

like this one behaves like a random function. This means that the 3 equations

(4),(5) and (7) each have solutions with an independent probability of

1� (1� 2�64)2
64

' 1� e�1 ' 0:63

However since (6) contains (3) as a special case this probability splits into two

depending on whether �xpoints are examined or not, the probability that (6)

has a solution therefore is

1� ((1� 2�64)2
64
�2

32

� (1� 2�32)2
32

) ' 1� e�2

Thus we expect that the probability over the choice of k1; k2 with k1 weak that

solutions do exist is about 1� e�5 ' 0:99.

In summary we have the following:

Theorem 2 There exists two attacks on AR hash that constructs from a given
message M a new one M 0 6= M such that AR(M ) = AR(M 0). The attacks
takes time at most about 233 and about 266 DES encryptions, respectively. Under
reasonable heuristic assumptions, the attacks can be shown to be successful for
respectively about 63% and 99% of the possible choices of keys in AR hash. Both
attacks can be done in a preprocessing phase, after which each message can be
attacked at no further cost.

These attacks are much faster than a brute-force attack, which would require

computation of about 2128 hash values.

For the keys chosen in AR hash we did an exhaustive search through all

�xpoints for the weak key, k1 = 0. We obtained

Theorem 3 For AR hash there exists two 3-block messages Z1 and Z2, s.t. any
message M can be pre�xed with either Z1 or Z2 (or both) any number of times,
yielding unchanged AR hash value, where

Z1 = 7a6199a238bb8643 j 8073d91a57ca1e2a j 8073d91a57ca1e2a
Z2 = 02bb2604aafcbecf j 6421e999f02ddfd6 j 6421e999f02ddfd6



4 Conclusion

The weaknesses we have found in AR hash clearly make it very problematic to

continue using the hash function as it is. The collision and preimage attacks can

be thwarted by adding the message length to the message, however because of

Theorem 3 collisions still can be obtained in constant time, because Z1jM and

Z2jM would hash to the same value.

So the question arises whether one can repair the function so that our attacks

are prevented.

We have of course exploited the fact, that there are 232 �xpoints for a weak

DES key and that they are easy to �nd. However, avoiding weak keys still would

enable a preimage attack, since equations (4), (5) and (6) can be set up inde-

pendently of the nature of the keys. The probability for success for this attack

is expected to be 1� e�3 ' 95%.

To con�rm this we did another computer simulation on a "scaled-down"

version of DES. The test used 16 bit blocks and ran through all 216 possible

messages for 100 pairs of random keys. Out of 100 key pairs, for only 3 key pairs

none of the equations (4), (5) and (6) had solutions thus con�rming the theory.

Furthermore we made essential use of the fact that the initial state is all-zero,

in particular that it consists of 4 blocks that are equal. Trying to prevent attacks

only by changing the initial values is extremely dangerous and it is shown in [3]

how to �nd collisions even in this case.

Section 2 shows a number of problematic properties of f1, f2 and G that are

independent on the initial state and on the chosen keys, we therefore believe

that the basic design of f1, f2 and G should be reconsidered. One can perhaps

guess that AR hash (or rather the f1; f2 functions) was designed starting from

the standard MAC-mode for DES (which uses a secret key), obtaining a hash

function by using a known, �xed key, and adding some extra elements (the feed-

forward, etc.) to compensate for the weaknesses implied by the fact that the key

is now known.

Our attacks can be seen as an illustration that constructing a hash function

in this way from a MAC is not easy, and that it is perhaps a better strategy to

build a hash function mode "from scratch".

5 Acknowledgements

We would like to thank Dr. Bart Preneel for helpful discussions and comments.

References

1. AR �ngerprint function. ISO-IEC/JTC1/SC27/WG2 N179, working document,

1992.

2. D. Coppersmith. The real reason for Rivest's phenomenon. Proceedings of Crypto

85, Springer Verlag LNCS series.



3. B. Preneel. Analysis and Design of Cryptgraphic Hash Functions. Ph.D. Thesis,

Katholieke Universiteit Leuven, January 1993.

This article was processed using the LaTEX macro package with LLNCS style


