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Abstract

This report deals with strictness types, a way of recording whether
a function needs its argument(s) or not. We shall present an inference
system for assigning strictness types to expressions and subsequently
we transform this system into an algorithm capable of annotating
expressions with strictness types. We give an example of a transfor-
mation which can be optimized by means of these annotations, and
finally we prove the correctness of the optimized transformation — at
the same time proving the correctness of the annotation.

Everything has been implemented; documentation can be found in
appendix.

1 Introduction

1.1 Strictness Types

Strictness analysis is the task of detecting whether a function needs its ar-
guments. Recent years have seen many approaches to strictness analysis,
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most based on abstract interpretation – the starting point being the work
of Mycroft [Myc80] which was extended to higher order functions by Burn,
Hankin and Abramsky [BHA86]. These analyses have been proved correct
in the following sense: if f# is the abstract denotation of the function f ,
and if f#(0) = 0 (0 denoting the bottom value in the abstract domain), then
f(⊥) = ⊥ (in the concrete domain) – that is, the call of f will not terminate
if its argument does not terminate1.

Kuo and Mishra [KM89] presented a type system where types t are formed
from 0 (denoting non-termination), 1 (denoting non-termination or termina-
tion, i.e. any term) and t1 → t2. Accordingly, if it is possible to assign a
function the type 0 → 0 we know that the function is strict. This system,
however, is strictly weaker than one based on abstract interpretation – on the
other hand, Jensen [Jen91] proves that if conjunction types are added to the
type system one gets a type system with the same power as abstract inter-
pretation. To get an intuitive feeling of what’s going on, consider a function
f with abstract denotation defined by f(0)(1) = 0, f(1)(0) = 0, f(1)(1) = 1
(and by monotonicity hence also f(0)(0) = 0). Such a function needs both
of its arguments, and accordingly it has type 0 → 1 → 0 as well as type
1 → 0 → 0.

Wright has proposed alternative type systems [Wri91] and [Wri92]. The
idea is to annotate the arrows : if a function can be assigned type Int →0 Int
this means that the function is strict, whereas a type Int →1 Int doesn’t tell
anything about strictness properties. It should be clear that this is weaker
than abstract interpretation, as Int →0 Int corresponds to two functions on
the abstract domain: the identity function and the zero function. On the
other hand, in some cases the method is more powerful than the one of
[KM89]: a function which needs both of its arguments (cf. the above) can
be assigned type Int →0 Int →0 Int.

In Sect. 3 we are going to present a type inference system based on
Wright’s idea, and by means of a few examples we shall illustrate the strengths
and weaknesses of the system. A proof of the “semantic correctness” of the
inference system will not appear before Sect. 6 where we shall prove the over-
all correctness of the system and a transformation exploiting the strictness
information.

1This is not exactly equivalent to saying that “f needs its argument”, as f may loop
without ever looking at its argument.
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An ordering on strictness types, monotone in covariant position and anti-
monotone in contravariant position, will be imposed. Thus e.g. (Int →1 Int)
→0 Int ≤ (Int →0 Int) →1 Int. So if t1 ≤ t2 then t1 carries more information
than t2. The inference system will have a “subsumption rule”, stating that
if an expression has a type then it also has any greater type – thus allowing
one to “forget information”.

1.2 An Inference Algorithm

Section 4 is devoted to transforming the type inference system from Sect. 3
into an algorithm. As we want to concentrate upon strictness aspects and
not upon type inference in general, we shall assume that the underlying type
(such as e.g. Int → Int) has been given in advance. The first step is to
“inline” the subsumption rule into the other rules, thus making the system
“syntax-directed”. Next we rewrite the system into one using constraints.
As a result we get a system with the property that for any expression e it
is straight-forward to assign e a typing where the arrows are annotated by
strictness variables (variables which can assume the values 0 and 1), at the
same time generating a set of constraints among these strictness variables.
We are thus left with the problem of solving those constraints.

In type inference one is usually interested in finding a “principal type”
such that all other valid typings can be found as substitution instances of
this type. This is also the approach taken in [Wri91]. In our framework
(which in this respect differs from Wright’s), we would like to find a “least
type” (wrt. the ordering ≤). However, in general no least typing exists as
can be seen from the term twice = λf.λx.f(f(x)) which has type (Int →0 Int)
→0 (Int →0 Int) and type (Int →1 Int) →0 (Int →1 Int) but not type (Int →1

Int) →0 (Int →0 Int). On the other hand, this example suggests that for each
choice of assignments to the arrows occurring in contravariant positions there
exists a least assignment to the arrows occurring in covariant position. This
motivates the definition of a normalized set of constraints, which (loosely

speaking) is a constraint set where each constraint is of form 	b+ ≥ g(	b−)

where 	b+(	b−) are strictness variables occurring in covariant (contravariant)
position, and where g is a monotone function.

We shall see that it is possible to normalize a constraint set “on the
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fly”, i.e. during a traversal from leaves to root in the proof tree. Thus the
conjecture above is true; once the annotations of arrows in contravariant
position is fixed there exists a least annotation of the covariant arrows.

The usual approach to constraint solving is to collect them all and then
solve them – which approach is the best one algorithmically is hard to say;
we shall not address this issue.

The normalization algorithm employs some techniques which we think
might be new – on the other hand, since constraint solving appears in nu-
merous contexts it is quite possible that similar approaches exist in the lit-
erature.

1.3 Tanslating from CBN to CBV

Call-by-name (CBN) evaluation of the λ-calculus (and especially the vari-
ant known as “lazy evaluation”) has been widely praised (e.g. in [Hug89])
because it makes programming a much more convenient task (another ad-
vantage is that referential transparency holds). On the other hand, as most
implementations are call-by-value (CBV) one has to find means for translat-
ing from CBN to CBV. The naive approach (as presented e.g. in [DH92])
is to “thunkify” all arguments to applications, that is we have the following
translation T :

• An abstraction λx.e translates into λx.T (e);

• An application e1e2 translates into T (e1)(λx.T (e2)) (where x is a fresh
variable) – that is, the evaluation of the argument is suspended (“thunk-
ified”);

• A variable x translates into (x d) (where d is a “dummy” argument) –
since x will become bound to a suspension x must be “dethunkified”.

This is clearly suboptimal since if e1 is strict there is no need to thunkify
its argument – this observation being the motivation for e.g. Mycroft’s work
on strictness analysis. Accordingly, in Sect. 5 we shall present a translation
from CBN to CBV which exploits the information present in the strictness
types. This translation is essentially similar to the one given by Danvy and
Hatcliff [DH93].
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1.4 Proving the Tanslation Correct

The optimized translation from CBN to CBV is folklore – but a correctness
proof is certainly not. For instance, the translation presented in [DH93]
is not proved correct, and even though the strictness analysis presented in
[BHA86] is proved correct (in the sense that the abstract semantics actually
abstracts the concrete semantics) the correctness of an optimization based on
this analysis has not been proved. The same remarks apply to e.g. [Wri91]
and reflect a quite general phenomenon, cf. the claims made in [Wan93, p.
137]:

The goal of flow analysis is to annotate a program with certain
propositions about the behavior of that program. One can then
apply optimizations to the program that are justified by those
propositions. However, it has proven remarkably difficult to spec-
ify the semantics of those propositions in a way that justifies the
resulting optimizations.

In [Wan93], Wand proved the correctness of a partial evaluator which ex-
ploits binding time information. In Sect. 6 we follow this trend, within the
context defined in Sect. 5 (i.e. a CBN-to-CBV translator exploiting strict-
ness information). Also something similar can be found in [Lan92] where the
correctness of a code generation exploiting strictness information is proved.

The basic idea in expressing the correctness of the translation from Sect.
5 is to use logical relations (on closed terms): q ∼t q′ should be interpreted
as stating that q′ is a correct translation of q. If t is a base type, q ∼t q′ holds
iff q when evaluated by CBN yields the same result as q′ when evaluated by
CBV (in particular q loops by CBN iff q′ loops by CBV). For a strict function
type t = t1 →0 t2, q ∼t q′ means that whenever q1 ∼t1 q′1; then qq1 ∼t2 q′q′1.
For a non-strict function type t = t1 → t2, q ∼t1 q′ means that whenever
q1 ∼t1 q′1 then qq1 ∼t2 q′(λx.q′1) (x a fresh variable).

The noteworthy point is that the fact that a function actually is strict is
not expressed using some relationship between concrete/abstract domains,
but simply by stating that it is correct not to thunkify its argument! This
corresponds to the claim in [Wan93, p. 137]:

This work suggests that the proposition associated with a flow
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analysis can simply be that “the optimization works”.

The extension of the correctness predicate to open terms is rather straight-
forward – and so is the correctness proof, the only tricky point being how to
cope with recursion.

1.5 An Implementation

The type inference algorithm from Sect. 4 and the translation algorithm
from Sect. 5 has been implemented in Miranda2. The user interface is as
follows:

• the user writes a λ-expression, and provides the underlying type of the
bound variables;

• the user provides the annotation of the contravariant arrows in the
overall type;

• then the system produces the least valid annotation of the remaining
arrows, and translates the original expression into a CBV-equivalent
expression.

The system is documented in Appendix A.
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2 Preliminaries

Expressions

An expression is either a constant c; a variable x; an abstraction λx.e; an
application e1e2; a conditional if e1 e2 e3 or a recursive definition rec f e.

The reason for not making if a constant (thereby making it possible to
dispense with the conditional) is that if is a non-strict constant and hence
requires special treatment.

Types

The set of (underlying) types will be denoted T ; such a type is either a base
type (lnt, Bool, Unit etc.) or a function type t1 → t2. Base will denote some
base type.

An iterated base type is either Base or of form Base → t where t is an
iterated base type. We shall assume that there exists a function Ct which
assigns iterated base types to all constants (we will expect to have Ct(7) =
Int, Ct(+) = Int → int → Int etc.).

Figure 1: An inference system for (underlying) types.
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In Fig. 1 we present a type inference system, where inferences are of form
Γ � e : t. Here Γ is an environment assigning types to (a superset of) the
free variables of e; Γ will be represented as a list of pairs of form (x : t)34.
For closed expressions q it makes sense to say that q is of type t, since if
Γ � q : t then also Γ′ � q : t for any Γ′.

Semantics

We say that an expression is in weak head normal form (WHNF) if it is either
a constant c or of form λx.e. As no constructors are present in the language,
this choice of normal form will be suitable for CBV as well as for CBN.

We define a SOS for call-by-name (Fig. 2) and a SOS for call-by-value
(Fig. 3), with inferences of form q ⇒N q′ resp. q ⇒V q′. Here q and q′ are
closed expressions. We assume the existence of a function Applycon such that
for two constants c1 and c2, Applycon(c1, c2) either yields another constant
c such that if Ct(c1) = Base → t, Ct(c2) = Base then Ct(c) = t or the
expression c1c2 itself (to model errors). For instance, Applycon(+, 4) could
be the constant +4, where Applycon(+4, 3) is the constant 7. To model that
division by zero is illegal we let e.g. Applycon(/7, 0) = (/7, 0).

We have the following (standard) result (which exploits that all constants
are of iterated base type, as otherwise c(λx.e) might be well-typed but stuck).
We need the extra assumption that if Ct(c) = Bool then c = True or c =
False.

Fact 2.1 Suppose (with q closed) Γ � q : t. Then either q is in WHNF,
or there exists unique q′ such that q ⇒N q′ and such that Γ � q′ : t.

Similarly for ⇒V .

We will introduce a “canonical” looping term Ω, defined by Ω = ret f f .
There exists no q in WHNF such that Ω ⇒∗

N q (or Ω ⇒∗
V q), but for all types

t (and all Γ) we have Γ � Ω : t.

3To concatenate e.g. the list l1 with the list l2 we shall write (l1, l2).
4In case of multiple occurrences of some variable x, it is the leftmost occurrence which

“counts” – we are not going to bother further about that.
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Figure 2: A SOS for CBN.

Figure 3: A SOS for CBV.

Thunkification and Dethunkification

We shall use the following notation: if t is a type in T , [t] is a shorthand for
Unit → t.

If e is an expression, let e be a shorthand for λx.e, where x is a fresh
variable.

If e is an expression, let D(e) be a shorthand for e d where d is a dummy
constant of type Unit.

Fact 2.2 If Γ � e : t, then Γ � c : [t]. If Γ � e : [t], then Γ � D(e) : t.
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For all e,D(e) ⇒N e and D(e) ⇒V e.

3 Strictness Types

In this section we shall augment types with strictness information, that is
annotate the arrows. The set of strictness types, Tsa, is defined as follows: a
strictness type t is either a base type Base or a strict function type t1 →0 t2
(denoting that we know that the function is strict) or a general function type
t1 →1 t2 (denoting that we do not know whether the function is strict).

It will be convenient to introduce some notation: if t is a (standard) type

in T , and if 	b+ and 	b− are vectors of 0 or 1’s, then t[	b+,	b−] denotes t where

all covariant arrows are marked (from left to right) as indicated by 	b+ and
where all contravariant arrows are marked (from left to right) as indicated

by 	b−. More formally, we have

• Base[(), ()] = Base;

• (t1 → t2)[(	b
+
1 , b+,	b+

2 ), (	b−1 ,	b−2 )] = t1[	b
−
1 ,	b+

1 ] →b+t2[�b+2 ,�b−2 ]

Example 3.1 With t = ((Int → Int) → Int) → ((Int → Int) → Int), we have

t[(b1, b2, b3), (b4, b5)] = ((Int→b1 Int)→b4 Int) →b2((Int→b5 Int) →b3 Int)

✷

If Γ = ((x1 : t1) . . . (xn : tn)) then

Γ[(	b−1 , . . . ,	b−n ), (	b+
1 , . . . ,	b+

n )] = ((x1 : t1[	b
−
1 ,	b+

1 ]), . . . , (xn : tn[	b−n ,	b+
n ]))

An Ordering Relation

We shall impose an ordering ≤ on strictness types, defined by stipulating
that t1 →b t2 ≤ t′1 →b′ t′2; iff t′1 ≤ t1, b ≤ b′ and t2 ≤ t′2, and by stipulating
that Int ≤ Int etc. t ≤ t′ means that t is more informative than t′; for
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instance it is more informative to know that a function is of type Int →0 Int
than to know that it is of type Int →1 Int. Similarly, it is more informative
to know that a function is of type (Int →1 Int) →0 (Int →0 Int) (it maps
arbitrary functions into strict functions) than to know that is is of type (Int
→0 Int) →0 (Int →0 Int) (it maps strict functions into strict functions).

Fact 3.2 t[	b+
1 ,	b−1 ] ≤ t[	b+

2 ,	b−2 ] iff 	b+
1 ≤ 	b+

2 and 	b−2 ≤ 	b−1 (pointwise).

The Relation Between T and Tsa

We define a mapping E from Tsa into T , which just removes annotations
from arrows – that is, we have E(Base) = Base, E(t1 →0 t2) = E(t1) → E(t2),

E(t1 →1 t2) = E(t1) → E(t2). Clearly, E(t[	b+,	b−]) = t. And if t1 ≤ t2, then
E(t1) = E(t2).

We have to extend Ct into CTsa a mapping from constants into strictness
types, and doing so we shall exploit that all constants are strict (recall that
the non-strict constant if has been given a special status). Accordingly, we
define CTsa(c) = Ct(c)[	0, ()].

The Inference System

In Fig. 4 we present an inference system for strictness types. A judgement
is now of the form Γ �sa e : t, W . Here

• Γ is an environment (represented as a list) assigning strictness types to
variables;

• e is an expression such that if x is a free variable of e (x ∈ FV(e)) then
Γ(x) is defined;

• t is a strictness type;

• W maps the domain of Γ into {0, 1}. It may be helpful to think of W
as follows: if W (x) = 0 then x is needed in order to evaluate e to “head
normal form”.
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Some notation: if Γ = ((x1 : t1) . . . (xn : tn)) and if W (xi) = bi we shall
often write W = (b1 . . . bn). Also, we shall sometimes write W = {xi|bi = 0}
(i.e. identify W with the set of variables on which W assumes the value 0).
In the natural way, E is extended to work on environments.

Now a brief explanation of the inference system: the first inference rule
(the “subsumption rule”) is non-structural and expresses the ability to forget
information: if an expression has type t and needs the variables in W , it also
has a more imprecise type and will also need a subset of W . The application
of this rule might for instance be needed in order to assign the same type to
the two branches in a conditional. The rule for variables expresses (among
other things) that in order to evaluate x it is necessary to evaluate x (!)
but no other variables are needed. The rule for abstractions (among other
things) says that if x is among the variables needed by e then λx.e can be
assigned a strict type (→0), otherwise not. The rule for applications (among
other things) says that the variables needed to evaluate e1 are also needed
to evaluate e1e2; and if e1 is strict then the variables needed to evaluate e2

will also be needed to evaluate e1e2. The rule for conditionals (among other
things) says that if a variable is needed to evaluate the test then it is also
needed to evaluate the whole expression; and also if a variable is needed
in order to evaluate both branches it will be needed to evaluate the whole
expression.

Notice that () �sa Ω : t, () for all strictness types t.

An expression which can be assigned a strictness type can also be as-
signed an underlying type:

Fact 3.3 Suppose Γ �sa e : t, W . Then E(Γ) � e : E(t).

Conversely, an expression which can be assigned an underlying type can
also be assigned at least one strictness type:

Fact 3.4 Suppose Γ � e : t. Then Γ[	1,	1] �sa e : t[	1,	1],	1.

Proof: An easy induction in the proof tree. In the case of a con-
stant c, we have to use the subsumption rule and exploit that CTsa(c) =
Ct(c)[	0, ()] ≤ Ct(c)[	1, ()]. ✷
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Figure 4: An inference system for strictness types.
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Example 3.5 Consider the function f defined by rec fλx.λy.λz.e where
e = if (z = 0) (x + y) (f y x (z − 1)). f is strict in all its arguments, but
this cannot be inferred by the type system from [KM89] due to the lack of
conjunction types. In our system, however, we have

() �sarec f λx.λy.λz.e : Int→0Int→0Int→0 Int,∅

This is because we – with Γ1 = ((f : Int→0Int →0Int→0Int)) – have

Γ1 �sa λx.λy.λz.e : Int→0Int→0Int→0 Int,∅

which again is because we – with Γ2 = ((z : Int), (y : Int), (x : Int),Γ1) –
have

Γ2 �sa if (z = 0) (x + y) (f y x(z − 1)) : Int {x, y, z}

This follows from the fact that Γ2 �sa (z = 0) : Bool {z} and Γ2 �sa (x + y)
: Int, {x, y} and

Γ2 �sa (f y x(z − 1)) : Int {x, y, z}

The latter follows since e.g. Γ2 �sa (f y) : Int→0Int →0Int, {y}. ✷

Example 3.6 Our analysis is not very good at handling recursive defini-
tions with free variables. To see this, consider the function g given

λy.rec f λx.if (x = 0) y (f (x − 1))

Clearly ge1e2 will loop if e1 loops, so the analysis ought to conclude that g has
strictness type Int→0Int→0Int. However, we can do no better than inferring
that g has strictness type Int→1Int →0Int – this is because it is impossible to
deduce . . .�sa(rec f . . . ) : . . . ,{y} which in turn is because it is impossible
to deduce . . .�sa(if (x = 0) y (f (x − 1))) : . . . , {x, y}. The reason for this
is that we cannot record in Γ(f) that f needs y.

In order to repair on that, function arrows should be annotated not only
with 0/1 but also with which free variables are needed – at the cost of com-
plicating the theory significantly. ✷
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4 An Inference Algorithm

In this section we shall work on the inference system from Fig. 4 and trans-
form it into an algorithm. This will be a two-stage process: first the inference
system is transformed into an equivalent one using constraints; then an algo-
rithm is given for solving those constraints. We shall assume that all subex-
pressions are (implicitly) annotated with an “underlying type” (belonging to
T ) such that the expression is well-typed according to the rules in Fig. 1.

Figure 5: The result of inlining the subsumption rule.

4.1 Getting a Constraint-Based Inference System

The first step will be to “inline” the subsumption rule into (some of) the
other rules. The result is depicted in Fig. 5.

Fact 4.1 A judgement is derivable in the system in Fig. 4 iff it is deriv-
able in the system in Fig. 5.
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Proof: The “if”-part is an easy induction in the proof tree. For the
“only if”-part, we need that if Γ �sa e : t, W using Fig. 5 and t ≤ t′, W ≤ W ′

then also Γ �sa e : t′, W ′ using Fig. 5. This follows from a more general fact,
which easily can be proved by induction in the proof tree: if Γsae : t, W us-
ing Fig. 5 and Γ′ ≤ Γ (pointwise), t ≤ t′ and W ≤ W ′ then Γ′ �sa e : t′, W ′

using Fig. 5. ✷

It will be convenient to reformulate the system in Fig. 5, using the t[	b+,	b−]-
notation thus making annotations on arrows more explicit. This is done5 in
Fig. 6; it is immediate to verify that this system is equivalent to the one
in Fig. 5. A remark about covariant/contravariant position: the turnstile �
acts like an →, so if t = Γ(x) then covariant positions in t will be considered
as appearing contravariantly in the judgement, and vice versa. On the other
hand, something appearing in the range of W is considered as being in co-
variant position in the judgement. We shall consistently use the convention
that a superscript + (e.g. as in 	b+

1 ) indicates something which appears on an
arrow in covariant position in the judgement; whereas a superscript – (e.g.

as in 	b−2 ) indicates something which appears on an arrow in contravariant
position in the judgement. It is important to notice that this can be done
consistently, i.e. that polarity is always the same in the premise as in the
conclusion.

We shall now introduce open strictness types: this is similar to strictness
types except that the arrows are annotated not by 0’s and 1’s, but by a
certain kind of variables to be called strictness variables. An open strictness
type t, together with a mapping from the strictness variables in t into {0, 1},
in the natural way determines a strictness type.

Notice that in Fig. 6 the 	b+’s and the 	b−’s really are meta variables,
ranging over 0 and 1. By making them range over strictness variables we shall
obtain a type inference system, depicted in Fig. 7, with judgements of form
Γ �sa e : t, W, C. Here Γ is an environment (represented as a list) mapping
(program) variables into open strictness types; t is an open strictness type;
W is a mapping (represented as a list) from program variables into strictness
variables; and C is a set of constraints among strictness variables.

5For space reasons we shall employ the convention that e.g. “Γ �sa e1 : t1, W1 and
e2 : t2, W2” means “Γ �sa e1 : t1, W1 and Γ �sa e2 : t2, W2”.
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4.2 Solving the Constraints

The inference system in Fig. 7 does in the obvious way give rise to a deter-
ministic algorithm, provided

1. we are able to find the underlying types (i.e. without strictness anno-
tations) of all expressions;

2. we are able to solve the constraints generated.

As already mentioned we shall assume that 1 has been done in advance; so
our aim will be to give an algorithm for solving the constraints generated by
the system. Our approach will be to show how to normalize this system, thus
showing that the solutions have a particular form. First some preliminaries:

Strictness Expressions

Strictness expressions will be built from strictness variables, 0, 1, � and �.
Thus a strictness expression s in the natural way gives rise to a monotone
function g with domain the free variables of s (and all monotone functions
on finite domains can be represented by strictness expressions).

Extended Constraints

The constraints met in Fig. 7 are of form 	b1 ≥ g(	b2) or of form 	b1 = g(	b2),
with g being a monotone function. We introduce a new kind of constraints,
which besides using ≥ and = also use a special symbol �. Intuitively,
b1 � g(b2) “lies between” b1 = g(b2) and b1 ≥ g(b2). More precisely, we have:

Definition 4.2 Let N be an extended constraint system (i.e. possibly con-
taining �). Let φ be a mapping from the strictness variables of N into
{0, 1}. We say that φ is a strong solution to N iff φ is a solution to the
system resulting from replacing all �’s in N by =; and we say that φ is a
weak sohtion to N iff φ is a solution to the system resulting from replacing
all �’s in N by ≥.
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Figure 6: Annotations on arrows made explicit.
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Figure 7: An inference system collecting constraints.
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Let C be a constraint system without �, and let N be a constraint system
possibly containing �. We say that C ∼ N iff all strong solutions to N are
solutions to C, and all solutions to C are weak solutions to N .

Normalizing Constraints

Given an expression e, we by means of the system in Fig. 7 are able to
produce a proof tree for () �sa e : t, (), C. The strictness variables occurring

in C can be divided into two groups: those occurring in t, to be denoted 	b+
1

and 	b−1 , and those which do not occur in t (but further up in the proof tree),

to be denoted 	b0 (we do not distinguish between covariant and contravariant
here). It turns out that we are able to produce an extended constraint system
N with the following property:

• C ∼ N ;

• N is of form {	b+
1 ≥ 	s1;	b0 � 	s0}, with 	s0 and 	s1 being strictness ex-

pressions whose (free) variables belong to 	b−1 .

Thus each choice of the contravariant positions in t gives rise to a least
annotation of the covariant positions (but all greater annotations are also
solutions).

Example 4.3 The expression λf.λx.f(f(x)) will have type

(int→b−1
Int)→b+11

(int→b+12
Int)

with constraint b+
12 ≥ b−1 . So the minimal types of this expression are

(int→0Int)→0(int→0Int) and (int→1Int)→0(int→1Int). ✷

The reason for also being interested in the value of 	b0 is that the strictness
types of the subexpressions may be useful, e.g. to produce the translation in
Sect. 5. We should of course use the least such value.

Example 4.4 Consider the expression e1e2, where e1 = λf.λx.f(f(x)) and
e2 = (λy.y). e1 has type (int→b−01

Int)→b+01
(int→b+1

Int), e2 has type int→b+02
Int
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and e1e2 has type int→b+1
Int), where the constraints look like b+

02 = b−01 and

b+
1 ≥ b−01 This can be normalized into b+

1 ≥ 0, b+
02 � 0 and b−01 � 0. So one

should assign e1 type (int→0Int)→0(int→0Int), that is assume that f has type
int→0Int. ✷

In order to achieve our goal we for each rule in Fig. 7 of form

. . . Γi �sa ei : ti, Wi, Ci . . .
Γ �sa e : t, W, C1 ∪ . . . ∪ Cn ∪ C

must proceed as follows: assume that there for each i exists an extended
constraint system Ni such that

• Ci ∼ Ni;

• Ni is of form {	b+
i1 ≥ 	si1,	bi0 � 	si0} where (	b+

i1,	b
−
i1) are the strictness

variables occurring in Γi, ti or Wi, where	bi0 are the remaining strictness
variables in Ci, and where the free variables of the strictness expressions
	si1 and 	si0 belong to 	b−i1.

Then we must be able to construct N (i.e. do a normalization) such that

• C1 ∪ · · ·Cn ∪ C ∼ N ;

• N is of form {	b+
1 ≥ 	s1,	b0 � 	s0} where (	b+

1 ,	b−1 ) are the strictness

variables occurring in Γ, t or W , where 	b0 are the remaining strictness
variables in C, and where the free variables of the strictness expressions
	s1 and 	s0 belong to 	b−1 .

Before embarking on the normalization process, it will be convenient to de-
scribe some of the tools to be used.

Some Transformation Rules

Let N and N ′ be extended constraint systems. We say that it is correct to
transform N into N ′ if all strong solutions to N ′ also are strong solutions
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to N , and if all weak solutions to N also are weak solutions to N ′. If it is
correct to transform N into N ′, we clearly have that if C ∼ N then also
C ∼ N ′. We now list some correct transformations:

Fact 4.5 Suppose N contains the constraints 	b ≥ 	s1,	b ≥ 	s2. Then these
can be replaced by the constraint 	b ≥ 	s1 � 	s2.

Fact 4.6 Suppose N contains the constraint 	b ≥ 	s or the constraint 	b = 	s.
Then this can be replaced by 	b � 	s.

Fact 4.7 Suppose N contains the constraints 	b1 ≥ g1(	b2) and 	b2 � g2(	b3).

Then the former constraint can be replaced by the constraint 	b1 ≥ g1(g2(	b3)),
yielding a new constraint system N ′.

(In other words, if we have the constraints 	b ≥ 	s and 	bi � 	si it is safe to

replace the former constraint by 	b ≥ 	s[	si/	bi].)

Proof: Let a strong solution to N ′ be given. Wrt. this solution, we
have 	b2 = g2(	b3), 	b1 ≥ g1(g2(	b3)) and hence also 	b1 ≥ g1(	b2) – thus this
solution is also a strong solution to N .

Now let a weak solution to N be given. Wrt. this solution, we have
	b1 ≥ g1(	b2) and 	b2 ≥ g2(	b3). Due to the monotonicity of g1, we also have
	b1 ≥ g1(g2(	b3)) showing that this solution is also a weak solution to N ′. ✷

Fact 4.8 Suppose N contains the constraints 	b1 � g1(	b2) and 	b2 � g2(	b3).

Then the former constraint can be replaced by the constraint	b1 �g1(g2(	b3)),
yielding a new constraint system N ′.

(In other words, if we have the constraints 	b � 	s and 	bi � 	si it is safe to

replace the former constraint by 	b � 	s[	si/	bi].)

Proof: Let a strong solution to N ′ be given. Wrt. this solution, we
have 	b2 = g2(	b3), 	b1 = g1(g2(	b3)) and hence also 	b1 = g1(	b2) – thus this
solution is also a strong solution to N .

Now let a weak solution to N be given. Wrt. this solution, we have
	b1 ≥ g1(	b2) and 	b2 ≥ g2(	b3). Due to the monotonicity of g1, we also have
	b1 ≥ g1(g2(	b3)) showing that this solution is also a weak solution to N ′. ✷
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Fact 4.9 Suppose N contains the constraint 	b1 ≥ g(	b1,	b2). Then this can be

replaced by the constraint 	b1 � g′(	b2) (yieldig N ′), where

g′(	b2) = �kh
k(	0) with h(	b) = g(	b,	b2)

(this just amounts to Tarski’s theorem – notice that it will actually suffice

with |	b1| iterations).

Proof: First suppose that we have a strong solution to N ′, i.e. 	b1 =
g′(	b2). Since 	b1 = �kh

k(	0), standard reasoning on the monotone and hence

(as finite lattices) continuous function h tells us that 	b1 = h(	b1), i.e. 	b1 =

g(	b1,	b2). This shows that we have a strong solution to N .

Now suppose that we have a weak solution to N , i.e. 	b1 ≥ g(	b1,	b2). In
order to show that this also is a weak solution to N ′, we must show that
	b1 ≥ g′(	b2). This can be done by showing that 	b1 ≥ 	b implies 	b1 ≥ h(	b). But

if 	b1 ≥ 	b we have 	b1 ≥ g(	b1,	b2) ≥ g(	b,	b2) = h(	b).

It is easy to see that g′ is monotone. ✷

4.3 The Normalization Process

We shall examine the various constructs: for constants and variables the
normalization process is trivial, as the constraints generated are of the re-
quired form. Neither does the rule for abstractions cause any troubles, since
no new constraints are generated and since a strictness variable appears in
the premise of the rule iff it appears in the conclusion (and with the same
polarity). Now let us focus upon the remaining constructs.

Normalizing the Rule for Application

Recall the rule

Γ[	b−,	b+] �sa e1 t2[	b
−
2 ,	b+

2 ] →b+3
t1[	b

+
4 ,	b−4 ],	b+

5 , C1 and e2 : t2[	b
+
6 ,	b−6 ],	b+

7 , C2

Γ[	b−,	b+] �sa e1e2 : t1[	b
+
4 ,	b−4 ],	b+

8 , C1 ∪ C2 ∪ C
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where C = {	b+
6 = 	b−2 ,	b+

2 = 	b−6 ,	b+
8 ≥ 	b+

5 � (	b+
3 �	b+

7 )}.

Let 	b0 be the “extra” strictness variables of C1 and 	b1 the extra strictness
variables of C2. Then we are entitled to assume that there exist N1, N2 with
C1 ∼ N1, C2 ∼ N2 such that N1 takes the form

	b+ ≥ 	sa
	b+

2 ≥ 	s2 b+
3 ≥ s3

	b+
4 ≥ 	s4

	b+
5 ≥ 	s5

	b0 � 	s0

(where the free variables of the strictness expressions above belong to {	b−,	b−2 ,
	b−4 }) and such that N2 takes the form

	b+ ≥ 	sb
	b+

6 ≥ 	s6
	b+

7 ≥ 	s7
	b1 � 	s1

(where the free variables of the strictness expressions above belong to {	b−,
	b−6 }.)

Clearly C1∪C2∪C ∼ N1∪N2∪C. We shall now manipulate N1∪N2∪C
(by means of correct transformations) with the aim of getting something of
the desired form.

The first step is to use Fact 4.5 to replace the two inequalities for 	b+ by
one, and at the same time exploit that 	b+

2 = 	b−6 and 	b+
6 = 	b−2 . As a result, we

arrive at

	b+ ≥ 	sa � 	sb
	b−6 ≥ 	s2

	b+
3 ≥ s3

	b+
4 ≥ 	s4

	b+
5 ≥ 	s5

	b0 � 	s0
	b−2 ≥ 	s6

	b+
7 ≥ 	s7

	b1 � 	s1
	b+

6 = 	b−2 	b+
2 = 	b−6 	b+

8 ≥ 	b+
5 � (b+

3 �	b+
7 )

We now focus upon the pair of constraints

(	b−6 ,	b+
2 ) ≥ (	s2, 	s6)

According to Fact 4.9, these can be replaced by the constraints

(	b−6 ,	b+
2 ) � (	S2, 	S6)
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where (	S2, 	S6) is given as the “limit” of the chain with elements (	s2n, 	s6n)
given by

(	s20, 	s60) = 	0

(	s2(n+1), 	s6(n+1)) = (	s2, 	s6)[(	s2n, 	s6n)/(	b−6 ,	b−2 )]

This limit can be found as the k’th element, where k = |(	b−2 ,	b−6 )|.

As 	s2 does not contain 	b−6 and 	s6 does not contain 	b−2 , the above can be
simplified into

	s20 = 	0 	s2(n+1) = 	s2[	s6n/	b
−
2 ]

	s20 = 	0 	s6(n+1) = 	s6[	s2n/	b
−
6 ]

Our next step is to substitute in the new constraints for 	b−2 and 	b−6 , using
Fact 4.7 and Fact 4.8. We arrive at (after also having used Fact 4.6)

	b+ ≥ 	sa[	S6/	b
−
2 ] � 	sb[	S2/	b

−
6 ] 	b−6 � 	S2

	b+
3 �s3[	S6/	b

−
2 ]

	b+
4 ≥ 	s4[	S6/	b

−
2 ] 	b+

5 � 	s5[	S6/	b
−
2 ] 	b0 � 	s0[	S6/	b

−
2 ]

	b−2 � 	S6
	b+

7 � 	s7[	S2/	b
−
6 ] 	b1 � 	s1[	S2/	b

−
6 ]

	b+
6 � 	S6

	b+
2 � 	S2

	b+
8 ≥ 	b+

5 � (	b+
3 �	b+

7 )

Finally we use Fact 4.7 on the constraint for 	b+
8 , arriving at

	b+ ≥ 	sa[	S6/	b
−
2 ] � 	sb[	S2/	b

−
6 ] 	b−6 � 	S2 b+

3 �s3[	S6/	b
−
2 ]

b+
4 ≥ 	s4[	S6/	b

−
2 ] 	b+

5 � 	s5[	S6/	b
−
2 ] 	b0 � 	s0[	S6/	b

−
2 ]

	b−2 � 	S6
	b+

7 � 	s7[	S2/	b
−
6 ] 	b1 � 	s1[	S6/	b

−
2 ]

	b−2 � 	S6
	b+

2 � 	S2

	b+
8 ≥ 	s5[	S6/	b

−
2 ] � (s3[	S2/	b

−
6 ] � 	s7[	S6/	b

−
2 ])

This is of the desired form, as it is quite easy to check that the only strict-
ness variables occurring in the expressions on the right hand sides are those
occurring in 	b− and in 	b−4 .

Normalizing the Rule for Conditionals

Recall the rule
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Γ[	b−,	b+] �sa e1 : Bool,	b+
3 , C1 and e2 : t[	b+

4 ,	b−4 ],	b+
5 , C2 and e3 : t[	b−6 ,	b−6 ],	b+

7 , C3

Γ[	b−,	b+] �sa if e1 e2 e3 : t[	b+
8 ,	b−8 ],	b+

9 , C1 ∪ C2 ∪ C3 ∪ C

where C = {	b+
8 ≥ 	b+

4 ,	b+
8 ≥ 	b+

6 ,	b−4 ≥ 	b−8 ,	b−6 ≥ 	b−8 ,	b+
9 ≥ 	b+

3 � (	b+
5 �	b+

7 )}.

Let 	b0 be the “extra” strictness variables of C1, 	b1 the extra strictness
variables of C2 and 	b2 the extra strictness variables of C3. Then we are
entitled to assume that there exist N1, N2, N3 with C1 ∼ N1, C2 ∼ N2, C3 ∼
N3 such that N1 takes the form

	b+ ≥ 	sa
	b+

3 ≥ 	s3
	b0 � 	s0

(where the free variables of the strictness expressions above belong to 	b−)
and such that N2 takes the form

	b+ ≥ 	sb
	b+

4 ≥ 	s4
	b+

5 ≥ 	s5
	b1 � 	s1

(where the free variables of the strictness expressions above belong to (	b−,
	b−4 )) and such that N3 takes the form

	b+ ≥ 	sc
	b+

6 ≥ 	s6
	b+

7 ≥ 	s7
	b2 � 	s2

(where the free variables of the strictness expressions above belong to (	b−,
	b−6 )).

Clearly C1 ∪ C2 ∪ C3 ∪ C ∼ N1 ∪ N2 ∪ N3 ∪ C. we shall now manipulate
N1 ∪ N2 ∪ N3 ∪ C (by means of correct transformations) with the aim of
getting something of the desired form.

The first step is to use Fact 4.6 (i.e. replace ≥ by �) on the inequalities
	b−4 ≥ 	b−8 and 	b−6 ≥ 	b−8 , afterwards use Fact 4.7 and Fact 4.8 to substitute 	b−4
(	b−6 ) by 	b−8 . By also using Fact 4.5 to replace the two inequalities for 	b+

8 by

one and to replace the three inequalities for 	b+ by one, we arrive at
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	b+ ≥ 	sa � 	sb[	b
−
8 /	b−4 ] � 	sc[	b

−
8 /	b−6 ] 	b+

3 ≥ 	s3
	b0 � 	s0

	b+
4 ≥ 	s4[	b

−
8 /	b−4 ] 	b+

5 ≥ 	s5[	b
−
8 /	b−4 ] 	b1 � 	s1[	b

−
8 /	b−4 ]

	b+
6 ≥ 	s6[	b

−
8 /	b−6 ] 	b+

7 ≥ 	s7[	b
−
8 /	b−6 ] 	b2 � 	s2[	b

−
8 /	b−6 ]

	b+
8 ≥ 	b+

4 �	b+
6

	b−4 � 	b−8 	b−6 � 	b−8
	b+

9 ≥ 	b+
3 � (	b+

5 �	b+
7 )

Next we replace some ≥ by � (Fact 4.6), enabling us to use Fact 4.7 on the

constraints for 	b+
8 and 	b+

9 . We arrive at

	b+ ≥ 	sa � 	sb[	b
−
8 /	b−4 ] � 	sc[	b

−
8 /	b−6 ] 	b+

3 � 	s3
	b0 � 	s0

	b+
4 � 	s4[	b

−
8 /	b−4 ] 	b+

5 � 	s5[	b
−
8 /	b−4 ] 	b1 � 	s1[	b

−
8 /	b−4 ]

	b+
6 � 	s6[	b

−
8 /	b−6 ] 	b+

7 � 	s7[	b
−
8 /	b−6 ] 	b2 � 	s2[	b

−
8 /	b−6 ]

	b+
8 ≥ 	s4[	b

−
8 /	b−4 ] � [	b−8 /	b−6 ] 	b−4 � 	b−8 	b−6 � 	b−8

	b+
9 ≥ 	s3 � (	s5[	b

−
8 /	b−4 ] � 	s7[	b

−
8 /	b−6 ])

This is of the desired form, as it is quite easy to check that the only strict-
ness variables occurring in the expressions on the right hand sides are those
occurring in 	b− and in 	b−8 .

Normalizing the Rule for Recursion

Recall the rule

((f : t[	b−1 ,	b+
1 ]), Γ[	b−,	b+]) �sa e : t[	b+

2 ,	b−2 ], (b+
3 ,	b+

4 ), C

Γ[	b−,	b+] �sarec f e : t[	b+
5 ,	b−5 ],	b+

4 , C ∪ C ′

where C ′ = {	b−1 = 	b+
2 , 	b−2 = 	b+

1 , 	b+
5 ≥ 	b+

2 , 	b−2 ≥ 	b−5 }.
Let b0 be the “extra” strictness variables of C. We are entitled to assume

that there exist N with C ∼ N such that N takes the form

	b+ ≥ 	s 	b+
1 ≥ 	s1

	b+
2 ≥ 	s2

	b+
3 ≥ 	s3

	b+
4 ≥ 	s4

	b0 � 	s0

(where the free variables of the strictness expressions above belong to (	b−,	b−1 ,
	b−2 ).)
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Clearly C ∪ C ′ ∼ N ∪ C ′. We shall now manipulate N ∪ C ′ (by means
of correct transformations) with the aim of getting something of the desired
form.

The first step is to exploit that 	b−2 = 	b+
1 and 	b−1 = 	b+

2 , and afterwards
exploit Fact 4.5 to replace the two inequalities for 	b−2 by one. We arrive at

	b+ ≥ 	s 	b−2 ≥ 	s1 �	b−5 	b−1 ≥ 	s2

b+
3 ≥ 	s3

	b+
4 ≥ 	s4

	b0 � 	s0

	b−1 = 	b+
2

	b−2 = 	b+
1

	b+
5 ≥ 	b+

2

We now focus upon the pair of constraints

(	b−2 ,	b−1 ) ≥ (	s1 �	b−5 , 	s2)

According to Fact 4.9, these can be replaced by the constraints

(	b−2 ,	b−1 ) � (	S1, 	S2)

where (	S1, 	S2) is given as the “limit” of the chain with elements (	s1n, 	s2n)
given by

(	s10, 	s20) = 	0

(	s1(n+1), 	s2(n+1)) = (	s2 �	b−5 , 	s2)[(	s1n, 	s2n)/(	b−2 ,	b−1 )]

This limit can be found as the k’th element, where k = |(	b−1 ,	b−2 )|.

Our next step is to substitute in the new constraints for 	b−1 and 	b−2 , using
Fact 4.7 and Fact 4.8. We arrive at (after also having used Fact 4.6 to replace
= by �)

	b+ ≥ 	s[(	S1, 	S2)/(	b
−
2 ,	b−1 )] 	b−2 � 	S1

	b−1 � 	S2

	b+
3 ≥ 	s3[(	S1, 	S2)/(	b

−
2 ,	b−1 )] 	b+

4 ≥ 	s4[(	S1, 	S2)/(	b
−
2 ,	b−1 )] 	b0 � 	s0[(	S1, 	S2)/(	b

−
2 ,	b−1 )]

	b+
2 � 	b−1 	b+

1 � 	b−2 	b+
5 ≥ 	b+

2

Finally we use Fact 4.8 on the inequalities for 	b+
2 and 	b+

1 , and subsequently
use Fact 4.7 on the inequality for 	b+

5 . At the same time we replace some ≥
by �, and arrive at
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	b+ ≥ 	s[(	S1, 	S2)/(	b
−
2 ,	b−1 )] 	b−2 � 	S1

	b−1 � 	S2

	b+
3 � 	s3[(	S1, 	S2)/(	b

−
2 ,	b−1 )] 	b+

4 ≥ 	s4[(	S1, 	S2)/(	b
−
2 ,	b−1 )] 	b0 � 	s0[(	S1, 	S2)/(	b

−
2 ,	b−1 )]

	b+
2 � 	S2

	b+
1 � 	S1

	b+
5 ≥ 	S2

This is of the desired form, as it is quite easy to check that the only
strictness variables occurring in the expressions on the right hand sides are
those occurring in 	b− and in 	b−5 .

4.4 Complexity Issues

One would of course like to estimate the complexity of the algorithm just
developed. Before doing so, however, several issues have to be clarified, e.g.

• what should the input size parameter be? Natural choices could be
the size of the expression, the size of its type, the maximal size of a
subexpressions type, etc;

• how do we represent strictness expressions, and how do we perform the
various manipulations on strictness expressions?

To give an in-depth treatment of these matters is beyond the scope of this
paper, and hence we refrain from giving a complexity analysis. . .

5 Tanslating from CBN to CBV

In this section we give an example of the use of strictness annotations. We
shall consider the following problem: given a λ-expression e annotated with
strictness types, find a λ-expression e′ such that e when evaluated using CBN
yields the same result as e′ when evaluated using CBV. The development of
the translation algorithm will proceed in a number of steps.
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The Mapping Z from Tsa into T

If e can be assigned strictness type t, it (cf. Fact 3.3) has underlying type
E(t). We cannot expect e′, the translation of e into CBV, to have underlying
type E(t) - rather e′ should have type Z(t), where Z besides removing anno-
tations from arrows also thunkifies arguments to non-strict functions. That
is, we have Z(Base) = Base, Z(t1 →0 t2) = Z(t1) → Z(t2), Z(t1 →1 t2) =
[Z(t1)] → Z(t2).

The Mapping Ct′
t

To cope with the subsumption rule we need a function Ct′
t , parametrized by

strictness types t and t′ such that t ≤ t′, with the following intended prop-
erty: if e′ has type Z(t), then Ct′

t (e′) is an expression of type Z(t′).

Example 5.1 Suppose t = Int→0Int and t′ = Int→1Int, and suppose e′

has type Int→Int. Ct′
t (e′) then has to be something of type [Int]→Int – it is

easily seen that λx.e′ D(x) (with x fresh) will do the job. ✷

Ct′
t is defined as follows (inductively in the “size” of t and t′):

1. If t = t′, then Ct′
t (e) = e.

2. If t = t1 →0 t2 and t′ = t′1 →0 t′2 (with t′1 ≤ t1, t2 ≤ t′2), then (where x
is a “fresh” variable)

Ct′
t (e) = λx.C

t′2
t2 (e Ct1

t′1
(x))

3. If t = t1 →1 t2 and t′ = t′1 →1 t′2 (with t′1 ≤ t1, t2 ≤ t′2), then (where x
is a “fresh” variable)

Ct′
t (e) = λx.C

t′2
t2 (e Ct1

t′1
(D(x)))

4. If t = t1 →0 t2 and t′ = t′1 →1 t′2 (with t′1 ≤ t1, t2 ≤ t′2), then (where x
is a “fresh” variable)

Ct′
t (e) = λx.C

t′2
t2 (e Ct1

t′1
(D(x)))
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A Modified Inference System

It will be convenient to elaborate slightly on the inference system presented
in Fig. 4. The resulting system is depicted in Fig. 8. The changes performed
are:

• An extra entity T is introduced, such that judgements take the form
Γ′, T �sa e : t, W . Here T is a subset of the domain of Γ; the purpose
of T is to record which variables have been bound by non-strict λ’s.

• The two rules for abstraction and for application have been split into
one for strict functions and one for non-strict.

The Translation Algorithm

Given an expression e, and a proof of Γ, T �sa e : t, W using the rules in Fig.
8. We now present an algorithm for transforming e into an expression e′, with
the aim that the “CBV-semantics” of e′ should equal the “CBN-semantics”
of e.

The translation is defined inductively in the proof tree – several cases:

• Suppose Γ, T �sa e : t′, W ′ because Γ, T �sa e : t, W and t ≤ t′, W ≤
W ′. Suppose e (by the latter proof tree) transforms into e′. Then e (by
the former proof tree) transforms into Ct′

t (e′).

• Suppose e = c. Then we let e′ = c.

• Suppose e = x. Two cases:

– If x ∈ T , we let e′ = D(x) (as x will be bound to a thunkified
argument).

– If x /∈ T , we let e′ = x.

• Suppose e = λx.e1, and suppose e1 (using the relevant proof tree)
translates into e′1. Then e translates into λx.e′1.

• Suppose e = e1e2, and suppose e1 and e2 (using the relevant proof
trees) translate into e′1 resp. e′2 Two cases:
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Figure 8: An inference system for strictness types.
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– If e1 is of type t2 →0 t1, e translates into e′1e
′
2.

– If e1 is of type t2 →1 t1, e translates into e′1e
′
2.

• Suppose e = if e1 e2 e3, and suppose e1, e2 and e3 (using the relevant
proof trees) translate into e′1, e′2 resp. e′3. Then e translates into if
e′1 e′2 e′3

• Suppose e = rec f e1, and suppose e1 (using the relevant proof tree)
translates into e′1. Then e translates into rec f e′1.

We see that if all arrows are annotated 1 (and correspondingly all λ-bound
variables belong to T ), we get the same code as produced by the “naive ap-
proach” (cf. Sect. 1.3). But if we are able to annotate some arrows 0, better
code (i.e. fewer thunkifications/dethunkifications) will be obtained.

Example 5.2 Consider the expression twice = λf.λx.f(fx). twice has
strictness type

(Int→1Int)→0(Int→1Int) because
((f : Int→1Int)), ∅ �sa λx. f(fx) : (Int→1Int), {f} and
((x : Int),(f := Int→1Int)),{x} �sa f(fx) : Int, {f} etc.

Accordingly, twice translates into the term

λf.λx.ffD(x)

of type ([Int]→Int)→([Int]→Int). We see that there is room for some (peep-
hole) optimization here, as D(x) could be replaced by x.

Notice that twice also has strictness type (Int→0Int)→0(Int→0Int). Using
the corresponding proof tree, twice just translates into itself. ✷

6 Proving the Translation Correct

Before proving the translation correct, one of course has to define what cor-
rectness means – this will be the topic of the next section.
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6.1 Correctness Predicates

Initially we shall consider closed expressions only. We will define a predicate
∼t, indexed over strictness types, such that q ∼t q′ is defined whenever q is
a closed expression of type E(t), and q′ is a closed expression of type Z(t).
∼t is defined inductively on t:

• q ∼Base q′ holds iff for all constants c we have q ⇒∗
N c iff q′ ⇒∗

V c (in
particular, q loops by CBN iff q′ loops by CBV).

• q ∼t1→0t2 q′1 holds iff for all q2q
′
2 such that q2 ∼t1 q′2 we have q1q2 ∼t1

q′1q
′
2.

• q ∼t1→1t2 q′1 holds iff for all q2q
′
2 such that q2 ∼t1 q′2 we have q1q2 ∼t1

q′1q
′
2.

This very much resembles a logical relation, but notice the difference between
∼t1→0t2 and ∼t1→1t2 .

Now we are ready to consider arbitrary (non-closed) expressions. The
main correctness predicate takes the form e COR(t, W, Γ, T ) e′, where e and
e′ are expressions and where Γ, T �sa e : t, W . We shall need an aux-
iliary function ZT , mapping from Tsa-environments into T -environments:
ZT (Γ)(x) = Z(Γ(x)) for x /∈ T ; and ZT (Γ)(x) = [Z(Γ(x))] for x ∈ T .

Definition 6.1 e COR(t, W, Γ, T ) e′ holds iff (with {x1 . . . xn} being the
domain of Γ)

1. ZT (Γ)t � e′ : Z(t).

2. FV(e) = FV(e′).

3. Let in the following closed terms qi, q
′
i (i ∈ {1 . . . n}) be such that

qi ∼Γ(xi) q′i. Then it must hold that

e[{q1 . . . qn}/{x1 . . . xn}] ∼t e′[{Q′
1 . . . Q′

n}/{x1 . . . xn}]

where Q′
i is defined as follows: if xi ∈ T then Q′

i = q′i else Q′
i = q′i.

Suppose now that for some i we have that W (xi) = 0 and qi ∼Γ(i) Ω.
Then
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e[{q1 . . . qn}/{x1 . . . xn}] ∼t Ω

The first part of 3 resembles the standard way of extending relations from
closed terms to open terms; the second part of 3 expresses that the variables
which by W are mapped into 0 in fact are “needed”.

6.2 Introducing Bounded Recursion

For technical reasons we shall introduce bounded recursion. That is, we add
constructs of form recn f e (with n ≥ 0) to the language (the old construct
rec f e is now termed unbounded recursion). This device is motivated by
the SOS-rule rec f e ⇒N e[(rec f e)/f ], where we want to (inductively) use
properties of the latter rec to prove properties of the former rec.

Wrt. typing properties, recn behaves exactly as rec. Wrt. translation,
recn f e translates into recn f e′ (where e′ is the translation of e). Wrt.
semantics, we have the SOS-rules

rec0 f e ⇒N rec0 f e
recn+1 f e ⇒N e[rec0 f e]/f ]

and similarly for ⇒∗
V .

6.3 Correctness theorems

The main effort will be to prove the following theorem:

Theorem 6.2 Suppose Γ, T �sa e : t, W , suppose e contains no unbounded
recursion (i.e. only recn’s and no rec’s) and suppose e (by means of the cor-
responding proof tree) translates into e′. Then e COR(t, W, Γ, T ) e′.

As the user certainly will like to use unbounded recursion, Theorem 6.2 may
seem to be of limited use. However, it actually enables us to prove what we
are really looking for:
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Theorem 6.3 Suppose q is a closed expression (which may contain un-
bounded recursion) such that (), ∅ �sa q : Base, (). Let q′ be the translation
of q, using the algorithm in Section 5. Now for all constants (of base type)
c, q ⇒∗

N c iff c, q′ ⇒∗
V c.

Proof: First some notation: given n, let qn be the result of substi-
tuting recn for all occurrences of rec. It is easy to see that qn translates into
q′n.

First (the “only if” part) suppose q ⇒∗
N c. It is easy to see that there

exists n such that qn ⇒∗
N c. Since qn and q′n does not contain unbounded

recursion, Theorem 6.2 tells us that qn COR(Base, (), (), ∅) q′n. This implies
that qn ∼Base q′n so q′n ⇒∗

V c. But then it is immediate that q′ ⇒∗
V c.

The “if” part is analogous. ✷

We now embark on proving Theorem 6.2. The proof proceeds roughly
speaking as follows:

1. In Sect. 6.4, a number of properties of ∼t are proved (by induction on
t). For instance, we have that if q ⇒N q1 and q ∼t q′ then also q1 ∼t q′.

2. In Sect. 6.5, some properties of Ct′
t are formulated and proved – for

instance that if q ∼t q′ then q ∼t′ Ct′
t (q′).

3. Finally, in Sect. 6.6 we are able to prove Theorem 6.2 by induction in
the proof tree.

6.4 Some Lemmas concerning ∼t

Lemma 6.4 Let q ∼t q′, let q1 be of type E(t) and let q′1 be of type Z(t).

1. If q′ and q′1 both loop by ⇒V , q ∼t q′1.

2. If q and q1 both loop by ⇒N , q1 ∼t q′.

Proof: We only consider 1 (2 is analogous). We use induction in t;
first consider when t is a base type. Then we can infer that q loops by ⇒N ,
implying that q ∼t q′1.
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Next assume t = t2 →0 t1 (The case t = t2 →1 t1 is analogous). Then we
must show that if q2 ∼t2 q′2 then qq2 ∼t1 q′1q

′
2 But we know that qq2 ∼t1 q′q′2.

As q′q′2 and q′1q
′
2 both loop by ⇒V , the induction hypothesis applied to t1

gives the claim. ✷

Lemma 6.5 Let q be of type E(t) and let q′ be of type Z(t). If q loops
by ⇒N and q′ loops by ⇒V we have q ∼t q′.

Proof: Induction in t. If t is a base type, it is obvious. Now assume
t = t2 →0 t1 (the case t = t2 →1 t1 is analogous). Then we have to show
that qq2 ∼t1 q′q′2, whenever q2 ∼t2 q′2. But qq2 loops by ⇒N and q′q′2 loops
by ⇒V , so this follows from the induction hypothesis applied to t1. ✷

Lemma 6.6 Suppose q ⇒N q1. Then q ∼t q′ iff q1 ∼t q′. Suppose q′ ⇒V q′1.
Then q ∼t q′ iff q1 ∼t q′1.

Proof: We only show the first part – by induction in t: For base types,
it is obvious as ⇒N is deterministic. So assume that t = t2 →0 t1 (the case
t = t2 →1 t1 is analogous). It is enough if we can show that if q2 ∼t2 q′2 then
qq2 ∼t1 q′q′2 iff q1q2 ∼t1 q′q′2. But as qq2 ⇒N q1q2, the induction hypothesis
yields the desired result. ✷

Lemma 6.7 For all constants c, c ∼CTsa(c)
c.

Proof: Induction in t = CTsa(c). If it is a base type, it is trivial.
Otherwise, our requirements to constants tell us that t = Base→0 t2. So
assume that q ∼Base q′ then we must show that cq ∼t2 cq′. Two possibilities:

• There exists a constant w such that q ⇒∗
N w. Then also q′ ⇒∗

V w.
By Lemma 6.6 it will be enough to show that cw ∼t2 cw, and again
by applying Lemma 6.6 we see that it is enough to show that Ap-
plycon(c, w) ∼t2Applycon(c, w). If Applycon(c, w) yields a constant this
follows from the induction hypothesis applied to t2 – if Applycon(c, w) =
c w then use Lemma 6.5.

• q loops by ⇒N . Then also q′ loops by ⇒V . This implies that c q loops
by ⇒N and that c q′ loops by ⇒V , so we can apply Lemma 65. ✷
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Lemma 6.8 Suppose that it holds that q ∼t q′ implies that e[q/f ] ∼t e′[q′/f ]
(the latter being closed terms). Then for all n, recn f e ∼t recn f e′.

Proof: Induction in n. If n = 0, both sides loop so we can apply
Lemma 6.5. In the induction case, it by Lemma 6.6 is enough to show that

e[recn−1 f e/f ] ∼t e′[recn−1 f e′/f ]

But this follows from the assumptions and the induction hypothesis. ✷

Lemma 6.9 Suppose it for all q such that there exists q′ with q ∼t q′ holds
that e[q/f ] ∼t Ω (where FV(e) ⊆ {x}.) Then for all n, recn f e ∼t Ω.

Proof: Induction in n. If n = 0, recn f e loops and the claim fol-
lows from Lemma 6.5. If n > 0, it by Lemma 6.6 is enough to show that
e[recn−1 f e/f ] ∼t Ω. But this follows from the assumption of the lemma
and the induction hypothesis. ✷

6.5 Correctness of Ct′
t

Lemma 6.10 For all strictness types t and t′ with t ≤ t′, Ct′
t satisfies the

following properties:

1. FV(e) = FV(Ct′
t (e)).

2. With symbols having appropriate types,

Ct′
t (e)[{q1 . . . qn}/{x1 . . . xn}] = Ct′

t (e[{q1 . . . qn}/{x1 . . . xn}])

3. If Γ �e : Z(t), then Γ � Ct′
t (e) : Z(t′).

4. Suppose q ∼t Ω. Then also q ∼t′ Ω. (here Ct′
t is not involved, but this

is needed for technical purposes).

5. Suppose q ∼t q′. Then also q ∼t′ Ct′
t (q′).
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Proof: Induction in t (in the “number of arrows”). That property 1
and 2 hold is easy to see. Now consider property 3. Three cases:

• t = t1 →0 t2, t′ = t′1 →0 t′2. We know that Γ � e : Z(t1) →Z(t2) and
must show that

Γ � λx.C
t′2
t2 (e Ct1

t′1
)) : Z(t′1) → Z(t′2)

But this will easily follow from the induction hypothesis.

• t = t1 →1 t2, t′ = t′1 →1 t′2. We know that Γ � e : [Z(t1)] → Z(t2),
and must show that

Γ � λx.C
t′2
t2 (e Ct1

t′1
(D(x))) : [Z(t′1)] → Z(t′2)

Also this follows easily from the induction hypothesis.

• t = t1 →0 t2, t′ = t′1 →1 t′2. We know that Γ � e : Z(t1) → Z(t2) and
must show that

Γ � λx.C
t′2
t2 (e Ct1

t′1
(D(x))) : [Z(t′1)] → Z(t′2)

which follows easily from the induction hypothesis.

Next for property 4, where we can assume that t = t1 →0 t2 and t′ = t′1 →1 t′2
with t′1 ≤ t1, t2 ≤ t′2 (the other cases are similar). We know that q ∼t Ω.
In order to verify that q ∼t′ Ω, assume that q1 ∼t′1

q′1 – then we must show
that q q1 ∼t′2

Ωq′1. Inductively we can assume that property 5 holds for t′1,

so q1 ∼t1 Ct1
t′1

. Then q q1 ∼t2 ΩCt1
t′1

(q′1) i.e. (by Lemma 6.4) that q q1 ∼t2 Ω.

Inductively we can assume that property 4 holds for t2, so q q1 ∼t′2
Ω – which

by Lemma 6.4 is the desired result.

Finally, we have to check that property 5 holds. 3 cases:

• t = t1 →0 t2, t′ = t′1 →1 t′2. Since q ∼t q′ we know that

q1 ∼t1 q′1 implies that qq1 ∼t2 q′q′1 (1)

Assuming that q1 ∼t′1
q′1, our task is to show that

qq1 ∼t′2
(λxC

t′2
t2 (q′ Ct1

t′1
(x))) q′1 (2)

Now two possibilities:

39



– q′1 loops by ⇒V . By Lemma 6.4, q1 ∼t′1
Ω. Inductively we can

assume that property 4 holds for t′1, so q1 ∼t1 Ω. By (1), this
implies that qq1 ∼t2 q′Ω. By Lemma 6.4, this (as q′Ω loops by
⇒V ) amounts to qq1 ∼t2 Ω. But by Lemma 6.4, this is just (2).

– There exists a w′
1 in WHNF such that q′1 ⇒∗

V w′
1. By repeated

application of Lemma 6.6, it in order to show (2) is enough to

show that qq1 ∼t′2
Ct2

t2 (q′ C
t′1
t′1

(x))[w′
1/x] which (as we can as-

sume that property 2 holds) amounts to showing that qq1 ∼t′2

Ct2
t2 (q′ C

t′1
t′1

(w′
1)). By the induction hypothesis applied to t2, this

can be done by showing that qq1 ∼t′2
q′ C

t′1
t′1

(w′
1). As (1) holds,

it is enough to show that q1 ∼t1 Ct1
t′1

(w′
1) which by the induction

hypothesis applied to t′1 can be done by showing q1 ∼t′1
w′

1 But
this follows (from q1 ∼t′1

q′1) by repeated application of Lemma
6.6.

• t = t1 →1 t2, t′ = t′1 →1 t′2. Since q ∼t q′ we know that

q1 ∼t1 q′1 implies that qq1 ∼t2 q′q′1 (3)

Assuming that q1 ∼t′1
q′1, our task is to show that

qq1 ∼t′2
(λx.C

t′2
t2 (q′ Ct1

t′1
(D(x)))) q′1.

Lemma 6.6 says (as q′1 is in WHNF) that is sufficient to show that

qq1 ∼t′2
C

t′2
t2 (q′ Ct1

t′1
(D(x))))[q′1/x] which (as we can assume that property

2 holds) amounts to showing that qq1 ∼t′2
C

t′2
t2 (q′ Ct1

t′1
(D(q′1)))). By

the induction hypothesis applied to t2, this can be done by showing
that qq1 ∼t2 q′ Ct1

t′1
(D(q′1)). As (3) holds, it is enough to show that

q1 ∼t1 Ct1
t′1

(D(q′1)) which by the induction hypothesis applied to t′1 can

be done by showing q1 ∼t′1
D(q′1). But this follows (from q1 ∼t′1

q′1) by
Lemma 6.6 and Fact 2.2.

• t = t1 →0 t2, t′ = t′1 →1 t′2. Since q ∼t q′ we know that

q1 ∼t1 q′1 implies that qq1 ∼t2 q′q′1 (4)

Assuming that q1 ∼t′1
q′1 our task is to show that
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qq1 ∼t′2
(λ.xC

t′2
t2 (q′ Ct1

t′1
(D(x))))q′1.

Lemma 6.6 says (as q′1 is in WHNF) that is sufficient to show that

qq1 ∼t′2
C

t′2
t2 (q′ Ct1

t′1
(D(x)))[q′1/x] which (as we can assume that property

2 holds) amounts to showing that qq1 ∼t′2
C

t′2
t2 (q′ Ct1

t′1
(D(q′1))). By the

induction hypothesis applied to t2, this can be done by showing that
qq1 ∼t′2

q′ Ct1
t′1

(D(q′1)). As (4) holds, it is enough to show that q1 ∼t1

Ct1
t′1

(D(q′1)) which by the induction hypothesis applied to t′1 can be done

by showing q1 ∼t′1
D(q′1). But this follows (from q1 ∼t′1

q′1) by Lemma
6.6 and Fact 2.2.

✷

6.6 Proof of Theorem 6.2

We will proceed by induction in the proof tree for

Γ, T �sa e : t, W

(using the inference system in Fig. 8). The non-trivial parts will be to show
that

• ZT (Γ) � e′ : Z(t).

• If qi ∼Γ(xi) q′i then

e[{q1 . . . qn}/{x1 . . . xn}] ∼t e′[{Q′
1 . . . Q′

n}/{x1 . . . xn}]

where Q′
i = q′i if xi ∈ T ; Q′

i = q′i otherwise. Moreover, if W (xi) = 0
and qi ∼Γ(xi) Ω then

e[{q1 . . . qn}/{x1 . . . xn}] ∼t Ω

We split into several cases:
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• Suppose Γ, T �sa e : t′, W ′ because Γ, T �sa e : t, W, t ≤ t′, W ′ ≥ W .
We must show that

ZT (Γ) � Ct′
t (e′) : Z(t′)

but by Lemma 6.10 this follows from the induction hypothesis.

Next we must show that if qi ∼Γ(xi) q′i, then

e[{q1 . . . qn}/{x1 . . . xn}] ∼t′ Ct′
t (e′)[{Q′

1 . . . Q′
n}/{x1 . . . xn}]

But again this follows from the induction hypothesis and Lemma 6.10.

Finally we must show that if W ′(xi) = 0 and qi ∼Γ(xi) Ω then
e[{q1 . . . qn}/{x1 . . . xn}] ∼t′ Ω. But this follows from the induction
hypothesis and Lemma 6.10, as W ′ ≥ W so also W (xi) = 0.

• Suppose Γ, T �sa c : t,	1 with t = CTsa(c). c translates into c. We
must show that Zt(Γ) � c : Z(t) but this is obvious as t = Ct(c)[	0, ()]
so Z(t) = Ct(c).

Next we must show that c ∼t c but this is the content of Lemma 6.7

• Suppose Γ, T �sa x : t, W with Γ = (Γ1, (x : t), Γ2), W = (	1, 0,	1)
Let i0 be such that x = xi0. Two cases:

– x /∈ T : then x translates into x. We must show that ZT (Γ) � x :
Z(t) but this is obvious as x /∈ T .

Next we must show that if qi ∼Γ(xi) q′i then

x[{q1 . . . qn}/{x1 . . . xn}] ∼t x[{Q′
1 . . . Q′

n}/{x1 . . . xn}]
which amounts to showing that qi0 ∼t q′i0 which follows trivially
from the assumptions.

Finally, we must show that if qi0 ∼Γ(x) Ω then also
x[{q1 . . . qn}/{x1 . . . xn}] ∼t Ω – but this is trivial.

– x ∈ T : then x translates into D(x). We must show that ZT (Γ) �
D(x) : Z(t) but this is obvious since ZT (Γ)(x) = [ZT (Γ(x))].

Next we must show that if qi ∼Γ(xi) q′i then

x[{q1 . . . qn}/{x1 . . . xn}] ∼t D(x)[{Q′
1 . . . Q′

n}/{x1 . . . xn}]
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which amounts to showing that qi0 ∼t D(q′i0) which follows from
Lemma 6.6 and Fact 2.2.

Finally, we must show that if qi ∼Γ(x) Ω then also
x[{q1 . . . qn}/{x1 . . . xn}] ∼t Ω – but this is trivial.

• Suppose Γ, T �sa λx.e : t1 →0 t, W because ((x : t1), Γ), T �sa e :
t, (0, W ). Here λx.e translates into λx.e′, where e translates into e′.

Our first task is to show that ZT (Γ) � λx.e′ : Z(t1 →0 t). This
can be done by showing that ((x : Z(t1)), ZT (Γ)) � e′ : Z(t) but as
((x : Z(t1), ZT (Γ)) = ZT ((x : t1), Γ) this follows from e COR(t, , , ) e′.

Now suppose qi ∼Γ(xi) q′i. We have to show that

λx.(e[{q1 . . . qn}/{x1 . . . xn}]) ∼t1→0t λx.(e′[{Q′
1 . . . Q′

n}/{x1 . . . xn}])

Assuming that q ∼t1 q′, this amounts to showing

λx.(e[{q1 . . . qn}/{x1 . . . xn}])q ∼t λx.(e′[{Q′
1 . . . Q′

n}/{x1 . . . xn}])q′

Now we split into two cases:

– Suppose q′ loops by CBV. Then q ∼t Ω. Since e COR(t, (0, W ), , )
e′, we can conclude that

e[{q, q1 . . . qn}/{x, x1 . . . xn}]) ∼t Ω

By Lemma 6.6, we can conclude that

λx.(e[{q1 . . . qn}/{x1 . . . xn}])q ∼t Ω

and by Lemma 6.4 this yields the desired.

– Suppose q′ ⇒∗
V w′, with w′ in WHNF. Then our task (by Lemma

6.6) amounts to showing that

e[{q, q1 . . . qn}/{x, x1 . . . xn}]) ∼t e′[{w′, Q′
1 . . . Q′

n}/{x, x1 . . . xn}]
But since (by Lemma 6.6) q ∼t1 w′, this follows from e COR(t, , , T )
e′ (with x /∈ T ).

Finally, we have to show that if W (xi) = 0, qi ∼Γ(xi) Ω then

λx.e[{q1 . . . qn}/{x1 . . . xn}] ∼t1→0t Ω

43



So assuming that q ∼t q′, we have to show that

λx.e[{q1 . . . qn}/{x1 . . . xn}])q ∼t Ωq′

which by Lemma 6.6 and Lemma 6.4 amounts to showing that

e[{q, q1 . . . qn}/{x, x1 . . . xn}]) ∼t Ω

But this follows from e COR(t, (0, W ), , )e′.

• Suppose Γ, T �sa λx.e : t1 →1 t, W because ((x : t1), Γ), T ∪ {x} �sa

e : t, (1, W ). Here λx.e translates into λx.e′, where e translates into
e′.

Our first task is to show that ZT (Γ) � λx.e′ : Z(t1 →1 t). This
can be done by showing that ((x : [Z(t1)]), ZT (Γ)) � e′ : Z(t) but
as ((x : [Z(t1)]), ZT (Γ)) = ZT∪{x}((x : t1), Γ) this follows from e
COR(t, , , ) e′.

Now suppose qi ∼Γ(xi) q′i. We have to show that

λx.(e[{q1 . . . qn}/{x1 . . . xn}]) ∼t1→0t λx.(e′[{Q′
1 . . . Q′

n}/{x1 . . . xn}])

Assuming that q ∼t1 q′, this amounts to showing

λx.(e[{q1 . . . qn}/{x1 . . . xn}])q ∼t λx.(e′[{Q′
1 . . . Q′

n}/{x1 . . . xn}])q′

which (by Lemma 6.6) amounts to showing that

e[{q, q1 . . . qn}/{x, x1 . . . xn}] ∼t e′[{q′, Q′
1 . . . Q′

n}/{x, x1 . . . xn}])

But this follows from e COR(t, , , T ∪ {x})e′.
Finally, we have to show that if W (xi) = 0, qi ∼Γ(xi) Ω then

λx.e[{q1 . . . qn}/{x1 . . . xn}]) ∼t1→01t Ω

So assuming that q ∼t q′, we have to show that

λx.e[{q1 . . . qn}/{x1 . . . xn}])q ∼t Ωq′
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which by Lemma 6.6 and Lemma 6.4 amounts to showing that

e[{q, q1 . . . qn}/{x1 . . . xn}]) ∼t Ω

But this follows from e COR(t, W, , ) e′.

• Suppose Γ, T �sa e1e2 : t1, W because Γ, T �sa e1 : t2 →0 t1, W1 and
Γ, T �sa e2 : t2, W2 with W (x) = 0 iff W1(x) = 0 or W2 = 0. Here
e1e2 translates into e′1e

′
2, where e1 translates into e′1 and e2 translates

into e′2.

Our first task is to show that ZT (Γ) � e′1e
′
2 : Z(t1). But as e′1 and

e′2 are correct translations, we have ZT (Γ) � e′1 : Z(t2 →0 t1) and
ZT (Γ) � e′2 : Z(t2) enabling us to conclude the desired.

Next we must show that if qi ∼Γ(xi) q′i then

(e1e2)[{q1 . . . qn}/{x1 . . . xn}]) ∼t1 (e′1e
′
2)[{Q′

1 . . . Q′
n}/{x1 . . . xn}]

But this follows from e1 and e2 being correct translations, since

e1[{q1 . . . qn}/{x1 . . . xn}]) ∼t2→0t1 e′1[{Q′
1 . . . Q′

n}/{x1 . . . xn}] and
e2[{q1 . . . qn}/{x1 . . . xn}]) ∼t2 e′2[{Q′

1 . . . Q′
n}/{x1 . . . xn}]

Finally we must show that if W (xi) = 0, qi ∼Γ(i) Ω then
e1e2[{q1 . . . qn}/{x1 . . . xn}] ∼t1 Ω. We distinguish between two cases:

– if W1(xi) = 0, then (as e1 COR( , W1, , )e′1) it holds that
e1[{q1 . . . qn}/{x1 . . . xn}] ∼t2→0t1 Ω. As e2 COR( , , , ) e′2, we
can conclude

e1[{q1 . . . qn}/{x1 . . . xn}]e2[{q1 . . . qn}/{x1 . . . xn}] ∼t1

Ωe2[{q1 . . . qn}/{x1 . . . xn}]
which (by Lemma 6.4) gives the desired.

– if W2(xi) = 0, then (as e2 COR( , W2, , )e′2) it holds that
e2[{q1 . . . qn}/{x1 . . . xn}] ∼t2 Ω and hence (as e1 COR( , , , ) e′1)

e1[{q1 . . . qn}/{x1 . . . xn}]e2[{q1 . . . qn}/{x1 . . . xn}] ∼t1

e′1[{Q′
1 . . . Q′

n}/{x1 . . . xn}]Ω
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As e′1[{Q′
1 . . . Q′

n}/{x1 . . . xn}]Ω loops by ⇒V , Lemma 6.4 gives
the desired result.

• Suppose Γ, T �sa e1e2 : t1, W1 because Γ, T �sa e1 : t2 →1 t1, W1

and Γ, T �sa e2 : t2, W2. Here e1e2 translates into e′1e
′
2, where e1

translates into e′1 and e2 translates into e′2. Inductively, we can assume
that
e1 COR(t2→1t1, W1, Γ, T )e′1 and e2 COR(t2, W2, Γ, T )e′2.

Our first task is to show that ZT (Γ) � e′1e
′
2 : Z(t1). But as e′1 and

e′2 are correct translations, we have ZT (Γ) � e′1 : Z(t2 →0 t1) =
[Z(t2)] → Z(t1) and ZT (Γ) � e′2 : Z(t2) enabling us to conclude the
desired.

Next we must show that if qi ∼Γ(xi) qi then

(e1e2)[{q1 . . . qn}/{x1 . . . xn}] ∼t1 (e′1e
′
2)[{Q′

1 . . . Q′
n}/{x1 . . . xn}]

But this follows easily from e′1 and e′2 being correct translations.

Finally we must show that if W1(xi) = 0, qi ∼Γ(i) Ω then

e1e2[{q1 . . . qn}/{x1 . . . xn}] ∼t1 Ω

As e1 COR( , W1, , ) e′1 we have e1[{q1 . . . qn}/{x1 . . . xn} ∼t2→1t1 Ω.

As e2 COR( , , , ) e′2, we can conclude

e1[{q1 . . . qn}/{x1 . . . xn}]e2[{q1 . . . qn}/{x1 . . . xn}] ∼t1

Ωe′2[{Q′
1 . . . Q′

n}/{x1 . . . xn}]

which (by Lemma 6.4) gives the desired.

• Suppose Γ, T �saif e1 e2 e3 : t, W because Γ, T �sa e1 Bool, W1, Γ, T �sa

e2 : t, W2, Γ, T �sa e3 : t, W3 and W (x) = W1(x) � (W2(x) � W3(x)).
Now if e1 e2 e3 translates into if e′1 e′2 e′3, where ei translates into e′i.

Our first task is to show that ZT (Γ) � if e′1 e′2 e′3 : Z(t). But this is
immediate, since the correctness of the e′i’s tells us that

ZT (Γ) � e′1 : Z(Bool) = Bool and ZT (Γ) � e′2 : Z(t) and ZT (Γ) �
e′1 : Z(t)

Next assume that qi ∼Γ(xi) q′i, then we must show that
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if e1[{q1 . . . qn}/{x1 . . . xn}] e2[{q1 . . . qn}/{x1 . . . xn}]
e3[{q1 . . . qn}/{x1 . . . xn}]

∼t if e′1[{Q′
1 . . . Q′

n}/{x1 . . . xn}] e′2[{Q′
1 . . . Q′

n}/{x1 . . . xn}]
e′3[{Q′

1 . . . Q′
n}/{x1 . . . xn}]

We distinguish between three cases:

– e1[{q1 . . . qn}/{x1 . . . xn}] loops (by ⇒N). Then (as e′1 is a correct
translation of e1) also e′1[{Q′

1 . . . Q′
n}/{x1 . . . xn}] loops (by ⇒V ).

Now apply Lemma 6.5.

– e1[{q1 . . . qn}/{x1 . . . xn}] ⇒∗
N True. Then also

e′1[{Q′
1 . . . Q′

n}/{x1 . . . xn}] ⇒∗
V True. By repeated application of

Lemma 6.6, it is enough to show that

e2[{q1 . . . qn}/{x1 . . . xn}] ∼t e′2[{Q′
1 . . . Q′

n}/{x1 . . . xn}]
but this follows from e′2 being a correct translation.

– e1[{q1 . . . qn}/{x1 . . . xn}] ⇒∗
N False. This is analogous to the pre-

vious case.

Finally, we have to check that if W (xi) = 0 and qi ∼Γ(xi) Ω then

if e1[{q1 . . . qn}/{x1 . . . xn}] e2[{q1 . . . qn}/{x1 . . . xn}]
e3[{q1 . . . qn}/{x1 . . . xn}] ∼t Ω

We split between two cases:

– W1(xi) = 0. Then (as e1 COR(Bool, W1, , ) e′1) it holds that
e1[{q1 . . . qn}/{x1 . . . xn}] ∼Bool Ω which amounts to saying that
e1[{q1 . . . qn}/{x1 . . . xn}] loops – hence the claim.

– W2(xi) = 0 and W3(xi) = 0. Then (as e2 COR(t, W2, , ) e′2 and
e3 COR(t, W3, , ) )

e2[{q1 . . . qn}/{x1 . . . xn}] ∼t Ω and e3[{q1 . . . qn}/{x1 . . . xn}] ∼t Ω

If e1[{q1 . . . qn}/{x1 . . . xn}] ⇒∗
N True, the claim follows from the

above and Lemma 6.6. Similarly in the False-case.

If e1[{q1 . . . qn}/{x1 . . . xn}] loops, the claim is trivial.
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• Suppose Γ, T �sa recn f e : t, W because ((f : t), Γ), T �sa e :
t, (b, W ). Now recn f e translates into recn f e′, where e′ is the trans-
lation of e.

First we have to check that ZT (Γ) � recn f e′ : Z(t) but this is
immediate since the correctness of e′ tells us that ((f : Z(t)), ZT (Γ)) �
e′ : Z(t).

Next assume that qi ∼Γ(xi) q′i, then we have to show that

recn f e[{q1 . . . qn}/{x1 . . . xn}] ∼t recn f e′[{Q′
1 . . . Q′

n}/{x1 . . . xn}]

This follows from Lemma 6.8, provided we can show that

q ∼t q′ implies that
e[{q, q1 . . . qn}/{f, x1 . . . xn}] ∼t e′[{q′, Q′

1 . . . Q′
n} {f, x1 . . . xn}]

But this follows from e′ being a correct translation of e.

Finally, we have to show that if W (xi) = 0 and qi ∼Γ(xi) Ω then

recn f e[{q1 . . . qn}/{x1 . . . xn}] ∼t Ω

This follows from Lemma 6.9, provided we can show that if q ∼t q′

then

e[{q, q1 . . . qn}/{f, x1 . . . xn}] ∼t Ω

But this follows from e′ being a correct translation of e.

This concludes the proof of Theorem 6.2.

7 Concluding Remarks

We believe the main contributions of this paper to be:

• one more (the second, the first being [Wan93]) application has been
given of the paradigm: an analysis and a transformation exploiting
this analysis should be proved correct simultaneously;
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• a (we think) novel approach to constraint solving, based on normalizing
constraints while distinguishing between co/contravariant polarity, has
been presented.

ln order to give a more precise analysis one may consider annotating the
function arrows with the free variables needed by the function, cf. Example
3.6.

And to avoid the kind of superfluous dethunkification/thunkification we
encountered in Example 5.2, one may consider keeping track of context –
somewhat similar to what is done in [NN90].

References

[BHA86] Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strictness
analysis for higher-order functions. Science of Computer Programming,
7:249-278, 1986.

[DH92] Olivier Danvy and John Hatcliff. Thunks (continued). In M. Billaud
et al., editor, Analyse statique, Bordeaux 92 (WSA ’92), pages 3-11,
September 1992.

[DH93] Olivier Danvy and John Hatcliff. CPS transformation after strictness
analysis. ACM Letters on Programming Languages and Systems, 1(3),
1993.

[Hug89] John Hughes. Why functional programming matters. Computer
Journal, 32(2):98-107, 1989.

[Jen91] Thomas P. Jensen. Strictness analysis in logical form. In John
Hughes, editor, International Conference on Functional Programming
Languages and Computer Architecture, pages 352-366. Springer Verlag,
LNCS 523, August 1991.

[KM89] Tsung-Min Kuo and Prateek Mishra. Strictness analysis: A new per-
spective based on type inference. In International Conference on Func-
tional Programming Languages and Computer Architecture, pages 260-
272. ACM Press, September 1989.

49



[Lan92] Torben Poort Lange. The correctness of an optimized code genera-
tion. Technical Report PB-427, DAIMI, University of Aarhus, Denmark,
November 1992. Also in the proceedings of PEPM ’93, Copenhagen,
ACM press.

[Myc80] Alan Mycroft. The theory of transforming call-by-need to call-by-
value. In B. Robinet, editor, International Symposium on Programming,
Paris, pages 269-281. Springer Verlag, LNCS 83, April 1980.

[NN90] Hanne Riis Nielson and Flemming Nielson. Context information for
lazy code generation. In ACM Conference on Lisp and Functional Pro-
gramming, pages 251-263. ACM Press, June 1990.

[Wan93] Mitchell Wand. Specifying the correctness of binding-time analysis.
In ACM Symposium on Principles of Programming Languages, pages
137-143. ACM Press, January 1993.

[Wri91] David A. Wright. A new technique for strictness analysis. In TAP-
SOFT 91, pages 235-258. Springer Verlag, LNCS 494, April 1991.

[Wri92] David A. Wright. An intensional type discipline. Australian Com-
puter Science Communications, 14, January 1992.

A An Implementation

Below we list the commented source code of a system implementing the type
inference algorithm from Sect. 4 and the translation algorithm from Sect. 5.
At the end we show some examples of the use of the system, including the
examples given in the main text.

The author is not to be kept responsible for possible errors in the sys-
tem. . .
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|| This file contains an implementation of

|| the inference algorithm and the translation algorithm

|| described in DAIMI PB-448 by Torben Amtoft:

|| "Strictness Types: an Inference Algorithm and an Application"

|| Main structure of the system:

|| 0) the user supplies an expression where bound variables

|| are annotated with their underlying types.

|| Such an expression is represented as

|| something of type "exptree"?

|| 1) by means of the function "annotate" this expression

|| is transformed into something of type "exptree_ta",

|| i.e. an expression where all subexpressions are

|| annotated with their types.

|| This function is quite trivial.

|| 2) by means of the function "infersolve" this expression

|| is transformed into something of type "result_sa",

|| i.e. an expression where all subexpressions are

|| annotated with open strictness types,

|| together with a list of normalized constraints

|| among the strictness variables.

|| This function implements the heart of the

|| type inference algorithm in Section 4.

|| 3) the user supplies the values of the strictness variables

|| occurring in contravariant position in the overall type.

|| Then the function "miniann" transforms the expression

|| from 2) into something of type "exptree\_sta",

|| i.e. an expression where all subexpressions are

|| annotated with strictness types (and the minimal such).

|| This function is rather trivial.

|| 4) by means of the function "translate" this expression

|| is transformed into an expression of type "exptree", such

|| that the CBV-semantics of this expression equals

|| the CBN-semantics of the expression from 0.

|| This function implements the translation algorithm

|| from Section 5.

|| 5) by means of the functions "cbneval" and "cbveval"

|| expressions of type "exptree" can be evaluated
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|| by CBN resp. CBV.

|| ============ DATA STRUCTURES ======================

|| ---- TYPES ----

typ ::= Boolt |

Intt |

Unitt |

Arrow typ typ

int2int = Arrow Intt Intt

|| ---- STRICTNESS TYPES ----

styp ::= Ints |

Bools |

Arrow0 styp styp |

Arrow1 styp styp

|| ---- STRICTNESS VARIABLES ----

strictvar == num

|| ---- STRICTNESS EXPRESSIONS ----

|| We shall represent strictness expressions

|| as conjunctive normal form, that is as

|| a list without duplicates

|| (with implicit conjunction, i.e. glb)

|| of sorted lists

|| (with implicit disjunction, i.e. lub)

|| of strictness variables.

|| If [] occurs in the list,

|| the list is the singleton [[]].

|| Hence 0 has the unique representation [[]]

|| and 1 has the unique representation [].

strictexp == [[strictvar]]
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one = []

zero = [[]]

|| ---- EXPRESSIONS ----

exptree ::=

Con contype |

Var [char] |

Abs ([char],typ) exptree |

App exptree exptree |

If exptree exptree exptree |

Ret ([char],typ) exptree

|| constants are assumed to have one of the following types

contype ::=

Unitc |

Intc num |

Int1c (num -> num) |

Int2c (num -> num -> num) |

Boolc bool |

Bool1c (num -> bool) |

Bool2c (num -> num -> bool)

|| ---- EXPRESSIONS ANNOTATED WITH TYPE INFORMATION ----

typeinfo == ([[char]], [typ],typ)

exptree_ta ::=

Cona Typeinfo contype |

Vara typeinfo [char] |

Absa typeinfo [char] exptree_ta |

Appa typeinfo exptree_ta exptree_ta |

Ifa typeinfo exptree_ta exptree_ta exptree_ta |

Reca typeinfo [char] exptree_ta

|| typeinfo records the free variables of the expression,
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|| their types and the type of the expression.

|| ---- EXPRESSIONS ANNOTATED WITH OPEN STRICTNESS TYPES

|| TOGETHER WITH CONSTRAINTS ----

exptree_sa ::=

Cons stritypeinfo contype |

Vars stritypeinfo [char] |

Abss stritypeinfo [char] exptree_sa |

Apps stritypeinfo exptree_sa exptree_sa |

Ifs stritypeinfo exptree_sa exptree_sa exptree_sa |

Recs stritypeinfo ([char],[strictvar],[strictvar]) exptree_sa

stritypeinfo == (typ, [strictvar], [strictvar], [strictvar])

|| the type of the expression,

|| the strictness variables corresponding to the

|| covariant/contravariant arrows of the type,

|| and the strictness variables corresponding to W.

result_sa == (exptree_sa,typ,[strictvar],[strictvar],[strictexp])

|| besides the tree also the type of the expression,

|| the strictness variables corresponding to the

|| contravariant arrows of this type,

|| the left sides of the constraints

|| and the right sides of these constraints.

|| ---- EXPRESSIONS ANNOTATED WITH STRICTNESS TYPES ----

exptree_sta ::=

Consa styp contype |

Varsa styp [char] |

Abssa styp ([char],styp) exptree_sta |

Appsa styp exptree_sta exptree_sta |

Ifsa styp exptree_sta exptree_sta exptree_sta |

Recsa styp ([char],styp) exptree_sta

|| ================== AUXILIARY FUNCTIONS ====================
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|| ---- GENERAL FUNCTIONS ----

quicksort [] = []

quicksort (a:x) =

(quicksort (filter (< a) x)) ++ [a] ++ (quicksort (filter (> a) x))

map3 g [] [] [] = []

map3 g (x:xs) (y:ys) (z:zs) =

((g x y z) : (map3 g xs ys zs))

takedrop n xs = (take n xs, drop n xs)}

|| ---- HANDLING UNIQUE VARIABLES ----

makenew k nf = (take k (iterate (+ 1) nf),nf + k)

uniquevar nf = ("x" ++ (show nf), (nf + 1))

|| ---- HANDLING STRICTNESS EXPRESSIONS

interexp == [[strictexp]]

|| An interexp is

|| a list (with implicit conjunction)

|| of lists (with implicit disjunction)

|| of lists (with implicit conjunction)

|| of lists (with implicit disjunction)

|| of strictness variables

normalize :: interexp -> strictexp

normalize = mkunique . mkflat

mkflat :: interexp -> strictexp

|| "flattens" an expression,

|| employing among others the distributive law

mkflat =

cdd2cd . ccdd2cdd . cdcd2ccdd
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where

cdcd2ccdd = map dcd2cdd

dcd2cdd [] = [[]]

dcd2cdd (cl : cs) =

[(c:d) | c <- c1; d <- ds]

where ds = dcd2cdd cs

ccdd2cdd = concat

cdd2cd = map concat

mkunique :: strictexp -> strictexp

|| ensures that the "uniqueness" requirements

|| to strictexp are indeed fulfilled.

mkunique =

testzero . mk_cs_unique . mk_ds_unique

cdd2cd . ccdd2cdd . cdcd2ccdd

where

mk_ds_unique = map quicksort

mk_cs_unique = mkset

testzero se = [[]], if (or (map (= []) se))

testzero se = se, otherwise

sv2se :: strictvar -> strictexp

sv2se b = [[b]]

substv :: [strictvar] -> [strictvar] -> strictexp -> strictexp

substv news olds se =

mkunique ((map (map (sbst news olds))) se)

where

sbst [] [] b = b

sbst (bn : bns) (bo : bos) b = bn, if b = bo

sbst (bn : bns) (bo : bos) b = sbst bns bos b, otherwise

substs :: [strictexp] -> [strictvar] -> strictexp -> interexp

substs news olds se =
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(map (map (sbst news olds))) se

where

sbst [] [] b = sv2se b

sbst (bn : bns) (bo : bos) b = bn, if b = bo

sbst (bn : bns) (bo : bos) b = sbst bns bos b, otherwise

|| ---- HANDLING TYPES

noofcov :: typ -> num

noofcov Boolt = 0

noofcov Intt = 0

noofcov (Arrow t1 t2) = 1 + (noofcov t2) + (noofctr t1)

noofctr :: typ -> num

noofctr Boolt = 0

noofctr Intt = 0

noofctr (Arrow t1 t2) = (noofctr t2) + (noofcov t1)

thunk :: typ -> typ

thunk t = Arrow Unitt t

mkthunk :: exptree -> num -> (exptree,num)

mkthunk ex nf =

(Abs (newx,Unitt) ex,nf’)

where

(newx,nf’) = uniquevar nf

dethunk :: exptree -> exptree

dethunk ex = (App ex (Con (Unitc)))

erase :: styp -> typ

erase Ints = Intt
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erase Bools = Boolt

erase (Arrow0 t1 t2) = (Arrow (erase t1) (erase t2))

erase (Arrow1 t1 t2) = (Arrow (erase t1) (erase t2))

zerase :: styp -> typ

zerase Ints = Intt

zerase Bools = Boolt

zerase (Arrow0 t1 t2) = (Arrow (zerase t1) (zerase t2))

zerase (Arrow1 t1 t2) = (Arrow (thunk (zerase t1)) (zerase t2))

annotype :: typ -> [strictexp] -> [strictexp] -> styp

|| in annotate t sp sm, sp and sm are assumed to be zero or one.

annotype Intt sp sm = Ints

annotype Boolt sp sm = Bools

annotype (Arrow t1 t2) sp sm =

t’

where

tp1 = noofcov t1

tm1 = noofctr t1

(sp1,(sparrow:sp2)) = takedrop tm1 sp

(sm1,sm2) = takedrop tp1 sm

t1’ = annotype t1 sm1 sp1

t2’ = annotype t2 sp2 sm2

t’ = Arrow0 t1’ t2’, if sparrow = zero

t’ = Arrow1 t1’ t2, if sparrow = one

|| ===================== PHASE 1: ANNOTATE ====================

annotate :: exptree -> exptree_ta
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annotate ex =

e’

where

(e’,t) = annot ex [] []

annot (Con c) fvs ts =

((Cona (fvs,ts,t) c),t)

where

t = ctype c

ctype (Unite) = Unitt

ctype (Intc n) = Intt

ctype (Int1c f) = Arrow Intt Intt

ctype (Int2c f) = Arrow Intt (Arrow Intt Intt)

ctype (Boolc b) = Boolt

ctype (Bool1c f) = Arrow Intt Boo1t

ctype (Bool2c f) = Arrow Intt (Arrow Intt Boolt)

annot (Var x) fvs ts =

((Vara (fvs,ts,t) x),t)

where

t = ts!k

k = #(takewhile ((~) . (= x)) fvs)

annot (Abs (x,t) e1) fvs ts =

((Absa (fvs,ts,t’) x e1’),t’)

where

(e1’,t1) = annot e1 (x:fvs) (t:ts)

t’ = Arrow t t1

annot (App e1 e2) fvs ts =

((Appa (fvs,ts,t) e1’ e2’),t),

if (isarrow t1) & ((source t1) = t2)

where

(e1’,t1) = annot e1 fvs ts

(e2’,t2) = annot e2 fvs ts

t = target t1

isarrow (Arrow ta tb) = True

isarrow ta = False, otherwise
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source (Arrow ta tb) = ta

target (Arrow ta tb) = tb

annot (App e1 e2) fvs ts =

error "type mismatch in application", otherwise

annot (If e1 e2 e3) fvs ts =

((Ifa (fvs,ts,t2) e1’ e2’ e3’),t2), if (t1 = Boolt) & (t2 = t3)

where

(e1’,t1) = annot e1 fvs ts

(e2’,t2) = annot e2 fvs ts

(e3’,t3) = annot e3 fvs ts

annot (If e1 e2 e3) fvs ts =

error "type mismatch in conditional", otherwise

annot (Rec (f,t) e1) fvs ts =

((Reca (fvs,ts,t) f e1’),t), if t1 = t

where

(e1’,t1) = annot e1 (f:fvs) (t:ts)

annot (Ret (f,t) e1) fvs ts =

error "type mismatch in recursion", otherwise

|| ===================== PHASE 2: INFERSOLVE ====================

infersolve :: exptree_ta -> result_sa

infersolve e1 =

(e1’,t,b1m,cl,cr)

where

(e1’,t,b1p,b1m,b2p,nf’,cl,cr) = infsol e1 [] [] 2

infsol :: exptree_ta -> [strictvar] -> [strictvar] -> num ->

(exptree_sa,typ,[strictvar],[strictvar],[strictvar],

num, [strictvar], [strictexp])

|| suppose Gamma[bm,bp] |- e: t[b1p,b1m], b2p.
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|| Then infsol e bp bm nf = (e’,t,b1p,b1m,b2p,nf’,cl,cr)

|| where nf records the next unused strictness variable,

|| where cl is a list of strictness variables

|| starting with bp + b1p + b2p,

|| where cr is the corresponding list of strictness expressions

|| (so for the first ">=" is implicit

|| and for the remaining ">>" is implicit).

infsol (Cona (fvs,ts,t) c) bp bm nf =

((Cons (t,b1p,[],b2p) c), t,b1p, [],b2p,nf’’,cl,cr)

where

tp = noofcov t

(b1pnf’) = makenew tp nf

(b2p,nf’’) = makenew (#fvs) nf’

cl = bp ++ b1p ++ b2p

cr = (rep (#bp) zero) ++

(rep (#b1p) zero) ++

(rep (#b2p) one)

infsol (Vara (fvs,ts,t) x) bp bm nf =

((Vars (t,b4p,b4m,b567p) x),t,b4p,b4m,b567p,nf’’’,cl,cr)

where

fv1 = takewhile ((~) . (= x)) fvs

t1p = sum (map noofcov (take (#fv1) ts))

t1m = sum (map noofctr (take (#fv1) ts))

t2P = noofcov (ts!(#fv1))

t2m = noofctr (ts!(#fv1))

b1p = take t1m bp

(b2p,b3p) = takedrop t2m (drop t1m bp)

b2m = take t2p (drop t1p bm)

(b4pnf’) = makenew t2p nf

(b4m,nf’’) = makenew t2m nf’

(b567p,nf’’’) = makenew (#fvs) nf’’

(b5p,(b6p:b7p)) = takedrop (#fv1) b567p

cl = b1p ++ b2p ++ b3p ++ b4p ++ b5p ++ [b6p] ++ b7p

cr = (rep (#b1p) zero) ++

(map sv2se b4m) ++

(rep (#b3p) zero) ++
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(map sv2se b2m) ++

(rep (#b5p) one) ++

[zero] ++

(rep (#b7p) one)

infsol (Absa (fvs,ts,(Arrow t1 t)) x e1) bp bm nf =

((Abss ((Arrow t1 t),b1p ++ [b3p] ++ b2p,b1m ++ b2m,b4p) x e1’),

(Arrow t1 t),b1p ++ [b3p] ++ b2p,b1m ++ b2m,b4p,nf1,cl,cr)

where

t1p = noofcov t1

t1m = noofctr t1

(b1p,nf’) = makenew t1m nf

(b1m,nf’’) = makenew t1p nf’

(e1’,t,b2p,b2m,(b3p:b4p),nf1,cl1,cr1) =

infsol e1 (b1p ++ bp) (b1m ++ bm) nf’’

b0 = drop (#b1p + (#bp) + (#b2p) + 1 + (#b4p)) cl1

(s1,cr1’) = takedrop (#b1p) cr1

(s,cr1’’) = takedrop (#bp) cr1’

(s2,cr1’’’) = takedrop (#b2p) cr1’’

((s3:s4),sO) = takedrop (1 + (#b4p)) cr1’’’

cl = bp ++ b1p ++ [b3p] ++ b2p ++ b4p ++ b0

cr = s ++ s1 ++ [s3] ++ s2 ++ s4 ++ s0

infsol (Appa (fvs,ts,t1) e1 e2) bp bm nf =

((Apps (t1,b4p,b4m,b8p) e1’ e2’),t1,b4p,b4m,b8p,nf’,cl,cr)

where

(e1’,(Arrow t2a t1),b234p,b24m,b5p,nf1,cl1,cr1) =

infsol e1 bp bm nf

(e2’,t2,b6p,b6m,b7p,nf2,cl2,cr2) = infsol e2 bp bm nf1

t2p = noofcov t2

t2m = noofctr t2

(b2p, (b3p : b4p)) = takedrop t2m b234p

(b2m,b4m) = takedrop t2p b24m

b0 = drop (#bp + (#b234p) + (#fvs)) cl1

(sa,cr1’) = takedrop (#bp) cr1

(s2,cr1’’) = takedrop (#b2p) cr1’

(s3:s4,cr1’’’) = takedrop ((#b4p) + 1) cr1’’

(s5,s0) = takedrop (#fvs) cr1’’’
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b1 = drop (#bp + (#b6p) + (#fvs)) cl2

(sb,cr2’) = takedrop (#bp) cr2

(s6,cr2’’) = takedrop (#b6p) cr2’

(s7,s1) = takedrop (#fvs) cr2’’

(b8p,nf’) = makenew (#fvs) nf2

cl = bp ++ b4p ++ b8p ++ b2p ++ b2m ++ [b3p] ++ b5p ++

b6p ++ b6m ++ b7p ++ b0 ++ bl

cr = (map2 g sa sb) ++

(map (normalize . (substs s’6 b2m)) s4) ++

(map2 g8 s5 s7) ++

s’2 ++

s’6 ++

[normalize (substs s’6 b2m s3)] ++

(map (normalize . (substs s’6 b2m)) s5) ++

s’6 ++

s’2 ++

(map (normalize . (substs s’2 b6m)) s7) ++

(map (normalize . (substs s’6 b2m)) s0) ++

(map (normalize . (substs s’2 b6m)) s1)

g sa_ sb_ = normalize [[normalize (substs s’6 b2m sa_),

normalize (substs s’2 b6m sb_)]]

g8 s5_ s7_ = normalize [[normalize (substs s’6 b2m s5_)],

[normalize (substs s’6 b2m s3),

normalize (substs s’2 b6m s7_)]]

(s’2,s’6) =

takedrop (#b6m) ((iterate h (rep (t2p + t2m) zero))!(t2p + t2m))

h s2ns6n =

map (normalize . (substs s2ns6n (b6m ++ b2m))) (s2 ++ s6)

infsol (Ifa (fvs,ts,t) e1 e2 e3) bp bm nf =

((Ifs (t,b8p,b8m,b9p) e1’ e2’ e3’),t,b8p,b8m,b9p,nf’’’,cl,cr)

where

(e1’,Boolt,[], [],b3p,nf1,cl1,cr1) = infsol e1 bp bm nf

(e2’,t,b4p,b4m,b5p,nf2,cl2,cr2) = infsol e2 bp bm nf1

(e3’,tb,b6p,b6m,b7p,nf3,cl3,cr3) = infsol e3 bp bm nf2

b0 = drop (#bp + (#fvs)) cl1

(sa,cr1’) = takedrop (#bp) cr1

(s3,s0) = takedrop (#fvs) cr1’
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b1 = drop (#bp + (#b4p) + (#fvs)) cl2

(sb,cr2’) = takedrop (#bp) cr2

(s4,cr2’’) = takedrop (#b4p) cr2’

(s5,s1) = takedrop (#fvs) cr2’’

b2 = drop (#bp + (#b6p) + (#fvs)) cl3

(sc,cr3’) = takedrop (#bp) cr3

(s6,cr3’’) = takedrop (#b6p) cr3’

(s7,s2) = takedrop (#fvs) cr3’’

(b8p,nf’) = makenew (#b6p) nf3

(b8m,nf’’) = makenew (#b6m) nf’

(b9p,nf’’’) = makenew (#b7p) nf’’

cl = bp ++ b8p ++ b9p ++ b3p ++ b4p ++ b4m ++ b5p ++

b6p ++ b6m ++ b7p ++ b0 ++ b1 ++ b2

cr = (map3 g sa sb sc) ++

(map2 g8 s4 s6) ++

(map3 g9 s3 s5 s7) ++

s3 ++

(map (substv b8m b4m) s4) ++

(map sv2se b8m) ++

(map (substv b8m b4m) s5) ++

(map (substv b8m b6m) s6) ++

(map sv2se b8m) ++

(map (substv b8m b6m) s7) ++

s0 ++

(map (substv b8m b4m) s1) ++

(map (substv b8m b6m) s2)

g sa_ sb_ sc_ =

normalize [[sa_,substv b8m b4m sb_,substv b8m b6m sc_]]

g8 s4_ s6_ =

normalize [[substv b8m b4m s4_,substv b8m b6m s6_]]

g9 s3_ s5_ s7_ =

normalize [[s3_],[substv b8m b4m s5_,substv b8m b6m s7_]]

infsol (Reca (fvs,ts,t) f e1) bp bm nf =

((Recs (t,b5p,b5m,b4p) (f,b1p,b1m) e1’),t,b5p,b5m,b4p,nf1’’,cl,cr)

where

tp = noofcov t

tm = noofctr t
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(b1m,nf’) = makenew tp nf

(b1p,nf’’) = makenew tm nf’

(e1’,t,b2p,b2m,(b3p:b4p),nf1,cl1,cr1) =

infsol e1 (b1p ++ bp) (b1m ++ bm) nf’’

b0 = drop (tm + (#bp) + tp + (#fvs + 1)) cl1

(s1,cr1’) = takedrop tm cr1

(s,cr1’’) = takedrop (#bp) cr1’

(s2,cr1’’’) = takedrop tp cr1’’

((s3:s4),s0) = takedrop (#fvs + 1) cr1’’’

(b5p,nf1’) = makenew tp nf1

(b5m,nf1’’) = makenew tm nf1’

cl = bp ++ b5p ++ b4p ++ b1p ++ b1m ++ b2p ++ b2m ++ [b3p] ++ b0

cr = (map (normalize . (substs (s’1 ++ s’2) (b2m ++ b1m))) s) ++

s’2 ++

(map (normalize . (substs (s’1 ++ s’2) (b2m ++ b1m))) s4) ++

s’1 ++

s’2 ++

s’2 ++

s’1 ++

[(normalize (substs (s’1 ++ s’2) (b2m ++ b1m) s3))] ++

(map (normalize . (substs (s’1 ++ s’2) (b2m ++ b1m))) s0)

(s’1,s’2) =

takedrop (#b2m) ((iterate h (rep (tp + tm) zero))! (tp + tm))

h s1ns2n = map (normalize .

(substs s1ns2n (b2m ++ b1m)))

((map2 lubb5m s1 b5m) ++ s2)

where lubb5m s1_ b5m_ = normalize [[s1_,sv2se b5m_]]

|| ===================== PHASE 3 : MINIANN ====================

miniann :: result_sa -> [strictexp] -> exptree_sta

miniann (e1,t,bm,cl,cr) vm =

minan e1 lkup

where

cl’ = bm ++ cl

cr’ = vm ++ (map (normalize . (substs vm bm)) cr)

lkup b = g cl’ cr’ b
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where g (b1:bs) (c1:cs) b = c1, if b = b1

g (b1:bs) (c1:cs) b = g bs cs b, otherwise

minan :: exptree_sa -> (strictvar -> strictexp) -> exptree_sta

minan (Cons (t,bp,[],bw) c) lkup =

Consa (annotype t sp []) c

where

sp = map lkup bp

minan (Vars (t,bp,bm,bw) x) lkup =

Varsa (annotype t sp sm) x

where

sp = map lkup bp

sm = map lkup bm

minan (Abss (t,bp,bm,bw) x e1) lkup =

Abssa (annotype t sp sm) (x,annotype t1 sm1 sp1) e1’

where

e1’ = minan e1 lkup

sp = map lkup bp

sm = map lkup bm

(Arrow t1 t2) = t

tp1 = noofcov t1

tm1 = noofctr t1

sp1 = take tm1 sp

sm1 = take tp1 sm

minan (Apps (t,bp,bm,bw) e1 e2) lkup =

Appsa (annotype t sp sm) e1’ e2’

where

sp = map lkup bp

sm = map lkup bm

e1’ = minan e1 lkup

e2’ = minan e2 lkup

minan (Ifs (t,bp,bm,bw) e1 e2 e3) lkup =

Ifsa (annotype t sp sm) e1’ e2’ e3’
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where

sp = map lkup bp

sm = map lkup bm

e1’ = minan e1 lkup

e2’ = minan e2 lkup

e3’ = minan e3 lkup

minan (Recs (t,bp,bm,bw) (f,bp1,bm1) e1) lkup =

Recsa (annotype t sp sm) (f,annotype t sm1 sp1) e1’

where

sp = map lkup bp

sm = map lkup bm

sp1 = map lkup bp1

sm1 = map lkup bm1

e1’ = minan e1 lkup

|| ===================== PHASE 4 : TRANSLATE ====================

cvex :: styp -> styp -> exptree -> num -> (exptree,num)

cvex t t’ ex nf = (ex,nf), if t = t’

cvex (Arrow0 t1 t2) (Arrow0 t1’ t2’) ex nf =

(Abs (newx,(zerase t1’)) ex’, nf2)

where

(newx,nf’) = uniquevar nf

(ct1x,nf1) = cvex t1’ t1 (Var newx) nf’

(ex’,nf2) = cvex t2 t2’ (App ex ct1x) nf1

cvex (Arrow1 t1 t2) (Arrow1 t1’ t2’) ex nf =

(Abs (newx,thunk (zerase t1’)) ex’, nf2)

where

(newx,nf’) = uniquevar nf

(ct1x,nf1) = cvex t1’ t1 (dethunk (Var newx)) nf’

(ct1x’ ,nf1’) = mkthunk ct1x nf1

(ex’,nf2) = cvex t2 t2’ (App ex ct1x’) nf1’

cvex (Arrow0 t1 t2) (Arrow1 t1’ t2’) ex nf =
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(Abs (newx,thunk (zerase t1’)) ex’, nf2)

where

(newx,nf’) = uniquevar nf

(ct1x,nf1) = cvex t1’ t1 (dethunk (Var newx)) nf’

(ex’,nf2) = cvex t2 t2’ (App ex ct1x) nf1

translate :: exptree sta -> exptree

|| implements the translation from section 5,

|| with the modification that

|| the subsumption rule is inlined in all rules

|| except the abstraction rule and the application rule.

|| That is, we use the inference system from Fig. 5.

translate e1 =

e1’

where

(e1’,t,nf) = trans e1 [] [] [] 2

trans :: exptree_sta -> [[char]] -> [styp] -> [[char]] -> num

-> (exptree,styp,num)

|| Suppose ((x1:t1)...(xn:tn)),T |- e: t, W and

|| suppose e translates into e’.

|| Then trans e (x1..xn) (t1..tn) T nf = (e’,t,nf’).

trans (Consa t c) fvs ts tv nf =

(e’,t,nf’)

where

(e’,nf’) = cvex t’ t (Con c) nf

te = erase t

tp = noofcov te

t’ = annotype te (rep tp zero) []

trans (Varsa t x) fvs ts tv nf =

(e’,t,nf’)

where

(e’,nf’) = cvex t’ t varx nf

fv1 = takewhile ((~) . (= x)) fvs

t’ = ts!(#fv1)
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varx = dethunk (Var x), if member tv x

varx = (Var x), otherwise

trans (Abssa (Arrow0 t1a t) (x,t1) e1) fvs ts tv nf =

((Abs (x,zerase t1) e1’),(Arrow0 t1a t),nf’)

where

(e1’,ta,nf’) = trans e1 (x:fvs) (t1:ts) tv nf

trans (Abssa (Arrow1 t1a t) (x,t1) e1) fvs ts tv nf =

((Abs (x,thunk (zerase t1)) e1’),(Arrow1 t1a t),nf’)

where

(e1’,ta,nf’) = trans e1 (x:fvs) (t1:ts) (x:tv) nf

trans (Appsa t e1 e2) fvs ts tv nf =

(App e1’ e2’’’,t,nf2’)

where

(e1’,t1,nf1) = trans e1 fvs ts tv nf

(e2’,t2,nf2) = trans e2 fvs ts tv nf1

(e2’’,nf2’) = mkthunk e2’ nf2

e2’’’ = e2’, if iszero t1

e2’’’ = e2’’, otherwise

iszero (Arrow0 ta tb) = True

iszero (Arrow1 ta tb) = False

trans (Ifsa t e1 e2 e3) fvs ts tv nf =

(If e1’ e2’’ e3’’,t,nf3’)

where

(e1’,Bools,nf1) = trans e1 fvs ts tv nf

(e2’,t2,nf2) = trans e2 fvs ts tv nf1

(e2’’,nf2’) = cvex t2 t e2’ nf2

(e3’,t3,nf3) = trans e3 fvs ts tv nf2’

(e3’’,nf3’) = cvex t3 t e3’, nf3

trans (Recsa t’ (f,t) e1) fvs ts tv nf =

(Rec (f,zerase t) e1’’,t’,nf’)

where

(e1’,ta,nf1) = trans e1 (f:fvs) (t:ts) tv nf

(e1’’,nf’) = cvex t t’ e1’ nf1
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|| ===================== PHASE 5: CBNEVAL and CBVEVAL ==================

whnf : exptree -> bool

whnf (Con c) = True

whnf Abs (x,t) e1) = True

whnf e1 = False, otherwise

subst :: exptree -> exptree -> [char] -> exptree

subst (Var x) e’ y = e’, if x = y

= (var x), otherwise

subst (Con c) e’ y = (Con c)

subst (Abs (x,t) e1) e’, y

= (Abs (x,t) e1), if x = y

= (Abs (x,t) (subst e1 e’ y)), otherwise

subst (App e1 e2) e’ y =

(App e1, e2’)

where

e1’ = subst e1 e’ y

e2’ = subst e2 e’ y

subst (If e1 e2 e3) e’ y =

(If e1’ e2’ e3’)

where

e1’ = subst e1 e’ y

e2’ = subst e2 e’ y

e3’ = subst e3 e’ y

subst (Rec (f,t) e1) e’ y

= (Rec (f,t) e1), if f = y

= (Rec (f,t) (subst e1 e’ y)), otherwise
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consteval (Int2c f) (Intc n) = (Int1c (f n))

consteval (Int1c f) (Intc n) = (Intc (f n))

consteval (Bool2c f) (Intc n) = (Bool1c (f n))

consteval (Bool1c f) (Intc n) = (Boolc (f n))

cbneval :: exptree -> exptree

cbneval e1 = e1, if whnf e1

cbneval e1 = cbneval (cbn e1), otherwise

cbn (App (Abs (x,t) e1) e2) = subst e1 e2 x

cbn (App (Con c1) (Con c2)) = (Con (consteval c1 c2))

cbn (App (Con c1) e2) = (App (Con c1) (cbn e2))

cbn (App e1 e2) = (App (cbn e1) e2)

cbn (If (Con (Boolc True)) e2 e3) = e2

cbn (If (Con (Boolc False)) e2 e3) = e3

cbn (If e1 e2 e3) = (If (cbn e1) e2 e3), otherwise

cbn (Rec (f,t) e1) = subst e1 (Rec (f,t) e1) f

cbveval :: exptree -> exptree

cbveval e1 = e1, if whnf e1

cbveval e1 = cbveval (cbv e1), otherwise

cbv (App (Abs (x,t) e1) e2) = subst e1 e2 x, if whnf e2
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cbv (App (Con c1) (Con c2)) = (Con (consteval c1 c2))

cbv (App e1 e2) = (App e1 (cbv e2)), if whnf e1

cbv (App e1 e2) = (App (cbv e1) e2), otherwise

cbv (If (Con (Boolc True)) e2 e3) = e2

cbv (If (Con (Boolc False)) e2 e3) = e3

cbv (If e1 e2 e3) = (If (cbv e1) e2 e3) , otherwise

cbv (Rec (f,t) e1) = subst e1 (Rec (f,t) e1) f

|| ===================== OVERALL SYSTEM ====================

cbn2cbv :: exptree -> [strictexp] -> exptree

cbn2cbv e1 bm = translate (miniann (infersolve (annotate e1)) bm)

|| ===================== TEST SETS WITH COMMENTS ===========

|| test = ((Lam x. Lam y. x) 7) omega

omega = Rec ("f" ,Intt) (Var "f")

test = App (App (Abs ("x",Intt)

(Abs ("y",Intt)

(Var "x")))

(Con (Intc (7) )))

omega

testt = cbn2cbv test []

|| Value of testt:

||

|| App (App (Abs ("x",Intt)
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|| (Abs ("y",Arrow Unitt Intt)

|| (Var "x" ) ) )

|| (Con (Intc 7)))

|| (Abs ("x3",Unitt)

|| (Rec ("f" ,Intt) (Var "f")))

||

|| we see that "y" is thunkified but "x" is not.

testcbn = cbneval test

|| Value of testcbv:

|| Con (Intc 7)

testcbv = cbveval testt

|| Value of testcbv:

|| Con (Intc 7)

|| twice = Lam f. Lam x. f( f( x))

twice = Abs ("f",int2int)

(Abs ("x",Intt)

(App (Var "f")

(App (Var "f")

(Var "x"))))

twices = infersolve (annotate twice)

|| Value of twices:

||

|| (Abss (Arrow (Arrow Intt Intt) (Arrow Intt Intt),[14,13],[2],[])

|| "f"

|| (Abss (Arrow Intt Intt,[13],[],[14])

|| "x"

|| (Apps (Intt, [], [],[13,14])

|| (Vars (Arrow Intt Intt,[3],[], [4,5]) "f")

|| (Apps (Intt, [], [], [11,12])

|| (Vars (Arrow Intt Intt,[6], [], [7,8]) "f")
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|| (Vars Untt, [], [], [9,10]) "x")))),

|| Arrow (Arrow Intt Intt) (Arrow Intt Intt),

|| [2],

|| [14,13,3,4,5,11,12,6,7,8,9,10],

|| [[[]],[[2]],[[2]],[],[[]],[[2]],[[]],[[2]],[],[[]],[[]],[]])

||

|| Compare with Example 4.3.

|| Here the strictness variable numbered 2 plays the role of b1-,

|| the strictness variable numbered 14 plays the role of b11+

|| and the strictness variable numbered 13 plays the role of b12+.

|| It was predicted that there would be a constraint b12+ >= b1-,

|| that is a constraint "13 >= 2". And so there is, as can be

|| seen from the fact that "13" occurs second in the list of

|| left sides and "[[2]]" occurs second in the list of right sides.

twice0 = miniann twices [zero]

|| Value of twice0:

|| (the first line shows that given a strict function,

|| twice returns a strict function)

|| Abssa (Arrow0 (Arrow0 Ints Ints) (Arrow0 Ints Ints))

|| ("f",Arrow0 Ints Ints)

|| (Abssa (Arrow0 Ints Ints)

|| ("x", Ints)

|| (Appsa Ints

|| (Varsa (Arrow0 Ints Ints) "f")

|| (Appsa Ints

|| (Varsa (Arrow0 Ints Ints) "f")

|| (Varsa Ints "x"))))

twice1 = miniann twices [one]

|| Value of twice1:

|| (the first line shows that given a non-strict function,

|| twice returns a non-strict function)

|| Abssa (Arrow0 (Arrow1 Ints Ints) (Arrow1 Ints Ints))

|| ("f",Arrow1 Ints Ints)

|| (Abssa (Arrow1 Ints Ints)
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|| ("x", Ints)

|| (Appsa Ints

|| (Varsa (Arrow1 Ints Ints) "f")

|| (Appsa Ints

|| (Varsa (Arrow1 Ints Ints) "f")

|| (Varsa Ints "x"))))

twice0t = translate twice0

|| Value of twice0t:

||

|| Abs ("f" ,Arrow Intt Intt)

|| (Abs ("x",Intt)

|| (App (Var "f")

|| (App (Var "f")

|| (Var "x"))))

||

|| Compare with Example 5.2.

|| As predicted, twice translates into itself.

twice1t = translate twice1

|| Value of twice1t:

||

|| Abs ("f" ,Arrow (Arrow Unitt Intt) Intt)

|| (Abs ("x",Arrow Unitt Intt)

|| (App (Var "f")

|| (Abs ("x3",Unitt)

|| (App (Var "f")

|| (Abs ("x2",Unitt)

|| (App (Var "x")

|| (Con Unitc)))))))

||

|| Compare with Example 5.3 -- the translation is as predicted.

|| twiceid = twice (Lam x. x)
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twiceid = App twice

(Abs ("x",Intt)

(Var "x"))

twiceids = infersolve (annotate twiceid)

|| Value of twiceids:

||

|| (Apps

|| (Arrow Intt Intt,[13],[],[])

|| (Abss

|| (Arrow (Arrow Intt Intt) (Arrow Intt Intt),

|| [14,13,[2],[])

|| "f"

|| (Abss (Arrow Intt Intt, [13],[],[14])

|| "x"

|| (Apps (Intt, [],[],[13,14])

|| (Vars (Arrow Intt Intt,[3],[],[4,5]) "f")

|| (Apps (Intt, [], [],[11,12])

|| (Vars (Arrow Intt Intt,[6],[],[7,8]) "f")

|| (Vars (Arrow Intt Intt,[],[],[9,10]) "x")

||

|| (Abss

|| (Arrow Intt Intt,[15],[],[])

|| "x"

|| (Vars Untt, [],[],[15]) "x")),

|| Arrow Intt Intt,

|| [],

|| [13,2,14,15,3,4,5,11,12,6,7,8,9,10],

|| [[[]],[[]],[[]],[[]],[[]],[],[[]],

|| [[]],[[]],[[]],[],[[]],[[]],[]])

||

|| Compare with Example 4.4.

|| Here the strictness variable numbered 2 plays the role of b01-,

|| the strictness variable numbered 14 plays the role of b01+,

|| the strictness variable numbered 13 plays the role of b1+ and

|| the strictness variable numbered 15 plays the role of b02+.

|| It was predicted that the constraints could be normalized to

76



|| include "b1+ >= 0, b02+ >> 0", that is "13 >= 0" and "15 >> 0".

|| And so there is, as can be seen from the fact that "13" ("15")

|| occurs first (fourth) in the list of left sides and

|| "[[]]" occurs first (fourth) in the list of right sides.

twiceidst = miniann twiceids []

|| Value of twiceidst:

|| Appsa (Arrow0 Ints Ints)

|| (Abssa (Arrow0 (Arrow0 Ints Ints) (Arrow0 Ints Ints))

|| ("f",Arrow0 Ints Ints)

|| (Abssa (Arrow0 Ints Ints)

|| ("x" Ints)

|| (Appsa Ints

|| (Varsa (Arrow0 Ints Ints) "f")

|| (Appsa Ints

|| (Varsa (Arrow0 Ints Ints) "f")

|| (Varsa Ints "x")))))

|| (Abssa (Arrow0 Ints Ints)

|| ("x", Ints)

|| (Varsa Ints "x"))

twiceidt = translate twiceidst

|| Value of twiceidt:

|| App (Abs ("f" ,Arrow Intt Intt)

|| (Abs ("x",Intt)

|| (App (Var "f")

|| (App (Var "f")

|| (Var "x")))))

|| (Abs ("x",Intt)

|| (Var "x"))

|| Example 3.5.

ex3_5 = Rec ("f", (Arrow Intt (Arrow Intt (Arrow Intt Intt))))

(Abs ("x",Intt)
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(Abs ("y", Intt)

(Abs ("z",Intt)

(If (App (App (Con (Bool2c (=)))

(Var "z"))

(Con (Intc (0))))

(App (App (Con (Int2c (+)))

(Var "x"))

(Var "y"))

(App (App (App (Var "f")

(Var "y"))

(Var "x"))

(App (App (Con (Int2c (-)))

(Var "z"))

(Con (Intc (1)))))))))

ex3_5st = miniann (infersolve (annotate ex3_5)) []

|| Value of ex3_5st:

||

|| (the first line shows that our system,

|| as predicted, is able to deduce that

|| the function is strict in all arguments)

||

|| Recsa (Arrow0 Ints (Arrow0 Ints (Arrow0 Ints Ints)))

|| ("f",Arrow0 Ints (Arrow0 Ints (Arrow0 Ints Ints)))

|| (Abssa (Arrow0 Ints (Arrow0 Ints (Arrow0 Ints Ints)))

|| ("x",Ints)

|| (Abssa (Arrow0 Ints (Arrow0 Ints Ints))

|| ("y",Ints)

|| (Abssa (Arrow0 Ints Ints)

|| ("z",Ints)

|| (Ifsa Ints

|| (Appsa Bools

|| (Appsa (Arrow0 Ints Bools)

|| (Consa (Arrow0 Ints (Arrow0 Ints Bools))

|| (Bool2c <function>))

|| (Varsa Ints "z"))

|| (Consa Ints (Intc 0)))
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|| (Appsa Ints

|| (Appsa (Arrow0 Ints Ins)

|| (Consa (Arrow0 Ints (Arrow0 Ints Ints))

|| (Int2c <function>))

|| (Varsa Ints "x"))

|| (Varsa Ints "y"))

|| (Appsa Ints

|| (Appsa (Arrow0 Ints Ints)

|| (Appsa (Arrow0 Ints (Arrow0 Ints Ints))

|| (Varsa

|| (Arrow0 Ints

|| (Arrow0 Ints

|| (Arrow0 Ints Ints)))

|| "f")

|| (Varsa Ints "y"))

|| (Varsa Ints "x"))

|| (Appsa Ints

|| (Appsa (Arrow0 Ints Ints)

|| (Consa (Arrow0 Ints (Arrow0 Ints Ints))

|| (Int2c <function>))

|| (Varsa Ints "z"))

|| (Consa Ints (Intc 1))))))))

|| Example 3.6.

ex3_6 = Abs ("y",Intt)

(Rec ("f",Arrow Intt Intt)

(Abs ("x",Intt)

(If (App (App (Con (Bool2c (=)))

(Var "x"))

(Con (Intc (0))))

(Var "y")

(App (Var "f")

(App (App (Con (Int2c (-)))

(Var "x"))

(Con (Intc (1))))))))

ex3_6st = miniann (infersolve (annotate ex3_6)) []
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|| Value of ex3_6st:

||

|| (the first line shows that our system,

|| as predicted, is unable to deduce that

|| the function is strict in its first argument)

||

|| Abssa (Arrow1 Ints (Arrow0 Ints Ints))

|| ("y",Ints)

|| (Recsa (Arrow0 Ints Ints)

|| ("f",Arrow0 Ints Ints)

|| (Abssa (Arrow0 Ints Ints)

|| ("x" ,Ints)

|| (Ifsa Ints

|| (Appsa Bools

|| (Appsa (Arrow0 Ints Bools)

|| (Consa (Arrow0 Ints (Arrow0 Ints Bools))

|| (Bool2c <function>))

|| (Varsa Ints "x"))

|| (Consa Ints (Intc 0)))

|| (Varsa Ints "y")

|| (Appsa Ints

|| (Varsa (Arrow0 Ints Ints) "f")

|| (Appsa Ints

|| (Appsa (Arrow0 Ints Ints)

|| (Consa

|| (Arrow0 Ints

|| (Arrow0 Ints Ints))

|| (Int2c <function>))

|| (Varsa Ints "x"))

|| (Consa Ints (Intc 1)))))))
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