Finiteness Conditions for Strictness Analysis*

Flemming Nielson, Hanne Riis Nielson
Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark
e-mail:\{fnielson,hrnielson\}@daimi.aau.dk

July 1993

Abstract

We give upper bounds on the number of times the fixed point operator needs to be unfolded for strictness analysis of functional languages with lists. This extends previous work both in the syntax-directed nature of the approach and in the ability to deal with Wadler's method for analysing lists. Limitations of the method are indicated.

1 Introduction

Strictness analysis for functional programs by means of abstract interpretation is a very powerful technique: both in terms of the accuracy of the results produced and in the applicability to various language constructs. The main disadvantage of the method is that the computational cost may be too high for many applications and as a result the method is not usually incorporated in a compiler.

[^0]Rather than resorting to cruder methods, e.g. based on variations of type analysis, we believe that it is possible to identify certain programs where the cost may be analysed in advance and determined not to be excessive. This would allow the compiler to perform the abstract interpretation in those instances where the cost is not prohibitive. The notion of cost we will be taking throughout this paper is the number of iterations needed to reach the fixed point.

In [6] we developed first results along this line. Section 2 contains a brief review of the main results of [6] but with a change of emphasis that is more suited to a structural approach (for functional programs). Section 3 then develops our main results for simple strictness analysis and in Section 4 we add the analysis of lists using Wadler's "inverse cons" method. Finally, Section 5 contains the conclusion and the appendices some of the proofs.

2 Boundedness

The abstract interpretation of a recursive program gives rise to a functional

$$
H:(A \rightarrow B) \rightarrow(A \rightarrow B)
$$

Typically, and as we shall assume throughout, A and B are finite complete lattices: this means that all subsets Y of A (resp. B) have least upper bounds denoted $\sqcup Y$ (or $y_{1} \sqcup \cdots \sqcup y_{n}$ if $Y=\left\{y_{1}, \cdots, y_{n}\right\}$). Furthermore all functions will be monotone: for H this means that if $h_{1} \sqsubseteq h_{2}$ then $H\left(h_{1}\right) \sqsubseteq H\left(h_{2}\right)$ for all $h_{1}, h_{2} \in A \rightarrow B$. The least fixed point of H is given by

$$
\begin{gathered}
\text { FIX } \\
H=\bigsqcup\left\{H^{i} \perp \mid i \geq 0\right\}
\end{gathered}
$$

where \perp is the least element of $A \rightarrow B$. Clearly if $H^{k+1} \perp=H^{k} \perp$ then FIX $H=H^{k} \perp$ because of the monotonicity of H. By the finiteness of A and B there will always be some (perhaps large) k such that this holds.

The notion of k-boundedness is of interest when the functional H is additionally additive: this is the case when $H\left(h_{1} \sqcup h_{2}\right)=H\left(h_{1}\right) \sqcup H\left(H\left(h_{2}\right)\right.$ for all $h_{1}, h_{2} \in A \rightarrow B$. It is helpful to write

$$
H^{[k]} h=\bigsqcup\left\{H^{i} h \mid 0 \geq i<k\right\}
$$

and motivated by [4] we say that H is k-bounded if

$$
H^{k} h \sqsubseteq H^{[k]} h \text { for all } h \in A \rightarrow B
$$

We shall write

$$
H \in \mathcal{A}(k)
$$

to mean that H is additive and k-bounded.
Proposition 2.1 When $H \in \mathcal{A}(k)$, i.e. H is k-bounded and additive, we have FIX $H=H^{[k]} \perp=H^{k-1} \perp=H^{k} \perp$.

Proof: This is a revised version of [6, Lemma 11]; some key facts (necessary for the subsequent proofs) are presented in Appendix A.

3 Strictness Analysis

To motivate the form of the functionals considered we begin with a brief review of strictness analysis. To this end consider a simply typed λ-calculus with constants, a conditional and a fixed point construct. The types are

$$
t::=\text { num } \mid \text { bool }\left|t_{1} \times t_{2}\right| t_{1} \rightarrow t_{2}
$$

Table 1: Strictness Analysis
and the expressions are

$$
\begin{aligned}
e::= & c|x| \text { fst } e \mid \text { snd } e\left|\left(e_{1}, e_{2}\right)\right| \operatorname{lam} x . e\left|e_{1} e_{2}\right| \\
& \text { if } e \text { then } e_{1} \text { else } e_{2} \mid \text { FIX } e
\end{aligned}
$$

The expressions are assumed to be well-typed but it is outside the scope of this paper to present the formal machinery for enforcing this.

The strictness analysis is specified in Table 1. In the type part we write $\mathbf{2}$ for the complete lattice $(\{0,1\}, \sqsubseteq)$ where $0 \sqsubseteq 1$. We write $D_{1} \times D_{2}$ for the cartesian product of D_{1} and D_{2}, and we write $D_{1} \rightarrow D_{2}$ for the complete lattice of monotone functions from D_{1} to D_{2} ordered pointwise.

The expression part of the analysis associates a property \hat{c} with each constant c. To specify the analysis of expressions with free variables we use an environment ρ mapping variables to properties. The analysis of the conditional uses the operator \triangleright defined by

$$
d_{0} \triangleright d= \begin{cases}\perp & \text { if } d_{0}=0 \\ d & \text { if } d_{0}=1\end{cases}
$$

where \perp is the least element of the lattice that d belongs to and where d_{0} belongs to 2 . This is then lifted pointwise to functions

$$
\left(h_{0} \triangleright h\right)=\lambda d .\left(h_{0} d\right) \triangleright(h d) .
$$

A Structural Approach to Boundedness

Given a functional H as might arise from the above strictness analysis the aim now is to find sufficient conditions for H to be additive and k-bounded for some hopefully low value of k. We begin with a simple fact and a brief review of the main results from [6]; then we move on to a more general treatment of the operators \sqcup and \triangleright.
Fact 3.1 $I d=\lambda h . h \in \mathcal{A}(1), \lambda h . g \in \mathcal{A}(2)$ and $\lambda h . \perp \in \mathcal{A}(1)$.
The monotone length $l e n_{m}(h)$ of a function $h \in A \rightarrow B$ is given by

$$
l e n_{m}(h)=\max \left\{l_{m}(h, a) \mid a \in A\right\}
$$

where $l_{m}(h, a)=\min \left\{i \mid h^{i}(a) \in\left\{a, h(a), \ldots, h^{i-1}(a)\right\} \downarrow, i>O\right\}$. Here we write $Y \downarrow$ for the down-closure of Y, i.e. the set $\{d \mid \exists y \in Y: d \sqsubseteq y\}$.
Lemma $\left.3.2 \lambda h . g_{1} \circ h \circ g_{2} \in \mathcal{A}\left(\operatorname{len}_{m}\left(g_{1}\right)\right) \cdot \operatorname{len}_{m}\left(g_{2}\right)\right)$ if g_{1} is additive.
Proof: This is essentially [6, Lemma 25].
Corollary $3.3 \lambda h . h \circ g \in \mathcal{A}\left(l e n_{m}(g)\right)$ and if g is additive then $\lambda h . g \circ h \in$ $\mathcal{A}\left(l e n_{m}(g)\right)$.

Proof: When $i d$ is the identity function we have $l e n_{m}(i d)=1$.
We now extend the development of [6] by considering the least upper bound operator.

Lemma 3.4 $H_{1} \sqcup H_{2} \in \mathcal{A}\left(k_{1}+k_{2}-1\right)$ if $H_{1} \in \mathcal{A}\left(k_{1}\right), H_{2} \in \mathcal{A}\left(k_{2}\right)$ and if H_{1} and H_{2} commute (i.e. $H_{1} \circ H_{2}=H_{2} \circ H_{1}$) and B is not trivial.

Proof: See Appendix B.
Corollary 3.5 $H \sqcup I d \in \mathcal{A}(k)$ if $H \in \mathcal{A}(k)$ and B is not trivial.
Lemma $3.6 H_{1} \sqcup H_{2} \in \mathcal{A}\left(k_{1}+1\right)$ if $H_{1} \in \mathcal{A}(k)$ and $H_{2}=\lambda h . g$ (for some $g \in A \rightarrow B)$.

Proof: See Appendix B.

Remark This shows that if $H=\lambda h . g \sqcup(G h)$ and $G \in \mathcal{A}(k)$ then $H \in$ $\mathcal{A}(k+1)$ so that FIX $H=H^{k} \perp$ (as opposed to $H^{k-1} \perp$). Since functionals of the form H typically arise for iterative programs this explains the naturality of the definition of k-boundedness in the setting of [4]; in our setting it might have been more natural to redefine k-boundedness of H to mean $H^{k+1} \sqsubseteq$ $H^{[k+1]}$.

We next turn to the \triangleright operator.
Fact 3.7 We have the following properties of \triangleright :

- $h_{0} \triangleright\left(h_{1} \sqcup h_{2}\right)=\left(h_{0} \triangleright h_{1}\right) \sqcup\left(h_{0} \triangleright h_{2}\right)$.
- $\left(h_{1} \triangleright h_{2}\right) \circ h_{3}=\left(h_{1} \circ h_{3}\right) \triangleright\left(h_{2} \circ h_{3}\right)$.
- $h_{1} \triangleright\left(h_{2} \triangleright h_{3}\right)=\left(h_{1} \sqcap h_{2}\right) \triangleright h_{3}$.

Lemma $3.8 \lambda h . g \triangleright(H h) \in \mathcal{A}(k)$ and if there exises a (monotone) functional $\delta H \in(A \rightarrow \mathbf{2}) \rightarrow(\mathbf{A} \rightarrow \mathbf{2})$ such that $H\left(h_{1} \triangleright h_{2}\right)=\left(\delta H\left(h_{1}\right)\right) \triangleright H\left(h_{2}\right)$ for $h_{1}, h_{2} \in A \rightarrow B$.

Proof: See Appendix B.
Fact $3.9 \delta\left(\lambda h . h \circ g_{2}\right)$ and if g_{1}, is strict then $\delta\left(\lambda h . g_{1} \circ h \circ g_{2}\right)=\lambda h . h \circ g_{2}$.
Example 3.10 As an example of a tail-recursive program we consider the factorial program with an accumulator. It can be written as

$$
\begin{array}{ll}
\text { FIX }(\operatorname{lam} f a c . \operatorname{lam} x a . & \text { if }(=0)(\text { fst } x a \text { then snd } x a \\
& \text { else } f a c((-1)(\text { fst } x a), * x a))
\end{array}
$$

Here $(=0)$ tests for equality with $0, *$ is the multiplication operator and (-1) subtracts one from its argument. The strictness analysis will therefore give rise to a functional H of the form

$$
H h=g_{0} \triangleright\left(g_{1} \sqcup h \circ g_{2}\right)
$$

which may be rewritten to

$$
H h=\left(g_{0} \triangleright g_{1}\right) \sqcup\left(g_{0} \triangleright\left(h \circ g_{2}\right)\right)
$$

using Fact 3.7. The functions g_{0}, g_{1} and g_{2} are given by

$$
\begin{aligned}
g_{0} & =f_{s t} \\
g_{1} & =\text { snd } \\
g_{2} & =\text { tuple(fst }, \hat{*})
\end{aligned}
$$

where tuple $\left(h_{1}, h_{2}\right) x=\left(h_{1}(x), h_{2}(x)\right)$ and $\hat{*}\left(x_{1}, x_{2}\right)=x_{1} \sqcap x_{2}$. Since g_{2} is reductive (i.e. $g_{2} \sqsubseteq i d$) it follows that $\operatorname{len}_{m}\left(g_{2}\right)=1$. By Corollary 3.3, Lemma 3.8, Fact 3.9, and Lemma 3.6 the functional H is 2-bounded and by Proposition 2.1 the first unfolding will give the fixed point.

Lemma 3.11 Let $H:(A \rightarrow B) \rightarrow(A \rightarrow B)$ be defined by

$$
H h=g \circ \text { tuple }\left(h \circ g_{1}, g_{2}\right)
$$

where $g: B \times B \rightarrow B, g_{1}: A \rightarrow A$ and $g_{2}: A \rightarrow B$. Assume that

- g is associative i.e. $g\left(g\left(b_{1}, b_{2}\right), b_{3}\right)=g\left(b_{1}, g\left(b_{2}, b_{3}\right)\right)$ for all $b_{1}, b_{2}, b_{3} \in B$,
- g is strict and additive in its left argument, i.e. $g(\perp, b)=\perp$ and $g\left(b_{1} \sqcup\right.$ $\left.b_{2}\right)=g\left(b_{1}, b\right) \sqcup g\left(b_{2}, b\right)$ for all $b, b_{1}, b_{2} \in B$, and
- g has a right identity b_{0} i.e. $g\left(b, b_{0}\right)=b$ for all $b \in B$, and
- $k=l e n_{m}\left(\right.$ tuple $\left(g_{1} \circ f s t, g \circ\right.$ tuple $\left(g_{2} \circ f s t\right.$, snd $\left.\left.)\right)\right)$.

Then $H \in \mathcal{A}(k)$ and $\delta H=\lambda h . h \circ g_{1}$.
Proof: See Appendix B. This result was stated but not proved in [6].
One undesirable feature of the above lemma is that we need to take the length of a composite function. However, the lemma suffices for treating a non-accumulator version of factorial.

Example 3.12 The usual factorial program can be written as

$$
\text { FIX }(\operatorname{lam} f a c . \operatorname{lam} x \text {. if }(=0)(x) \text { then } 1 \text { else } *(f a c((-1) x), x))
$$

The strictness analysis will therefore give rise to a functional H of the form

$$
H h=g_{0} \triangleright\left(g_{1} \sqcup g \circ \text { tuple }\left(h \circ g_{2}, g_{3}\right)\right)
$$

which may be rewritten to

$$
H h=\left(g_{0} \triangleright g_{1}\right) \sqcup\left(g_{0} \triangleright g \circ \text { tuple }\left(h \circ g_{2}, g_{3}\right)\right)
$$

using Fact 3.7. The functions are $g_{0}=\lambda x . x, g_{1}=\lambda x .1, g_{2}=\lambda x . x, g_{3}=\lambda x . x$ and $g=\lambda\left(x_{1}, x_{2}\right) \cdot x_{1} \sqcap x_{2}$. The function tuple $\left(g_{2} \circ f s t, g \circ\right.$ tuple $\left(g_{3} \circ f s t\right.$, snd $\left.)\right)$ then amounts to the function called g_{2} in Example 3.10.

4 Strictness Analysis for Lists

We shall now extend the typed λ-calculus with lists:

$$
t::=\cdots \mid t \text { list }
$$

The syntax of expressions is extended with constructs for building lists and for taking them apart:

$$
e::=\cdots \mid \text { nil } \mid \text { cons } e_{1} e_{2} \mid \text { case } e \text { of nil }: e_{1} \| \text { cons } x_{1}, x_{2}: e_{2}
$$

We shall follow [9] and construct the lattice of properties for lists by a double lifting of the lattice of the element type: if D is the lattice of properties for the elements of the list then $\left(D_{\perp}\right)_{\perp}$ will be the lattice of properties of the lists. The least element of $\left(D_{\perp}\right)_{\perp}$ is denoted 0 , the second least element 1 and the remaining elements are denoted $d \epsilon$ where d is an element of D. We write T for the largest element of D. The idea then is that

0 : denotes the undefined list,
1: denotes additionally all infinite lists and all partial lists ending in the undefined list,
$d \epsilon$: denotes additionally all finite lists where the meet of the elements satisfies property d (for d not being $\top)^{1}$, and
$T \epsilon$: denotes all lists.

Table 2: Strictness analysis for lists
The strictness analysis of Table 1 is now extended with the clauses of Table 2. For nil we observe that the only property describing the empty list is T_{ϵ}. For cons $e_{1} e_{2}$ we combine the property of the head with the property of the tail using a greatest lower bound operation. For the case construct we want to "reverse" this construction. To this end we use two auxiliary operations

$$
\begin{gathered}
\text { isnil: }(D \perp) \perp \rightarrow \mathbf{2} \\
\text { split: }(D \perp) \perp \rightarrow \mathcal{P}(D \times(D \perp) \perp
\end{gathered}
$$

Here $\mathcal{P}(D)$ is the lower powerdomain of D. When D is a finite complete lattice one may take $\mathcal{P}(D)$ to have as elements those non-empty subsets Y of D that satisfy $Y=Y \downarrow$ (i.e. Y is downward closed); the partial order is subset inclusion. Then $\mathcal{P}(D)$ will also be a finite complete lattice with least element $\{\perp\}$ and greatest element D. We may now define the functions isnil and split by

$$
\begin{gathered}
\text { isnil }: d= \begin{cases}0 & \text { if } d \neq T_{\epsilon} \\
1 & \text { if } d=T_{\epsilon}\end{cases} \\
\text { split } d=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \epsilon \sqcap d_{2} \sqsubseteq d\right\}
\end{gathered}
$$

Thus isnil d will return 1 if d is a property of the empty list and split d will return (the downward closed set of) all possible pairs of properties that the head und the tail of the list could have had. In the case where $D=\mathbf{2}$ we can tabulate isnil and split as follows:

	0	1	0ϵ	1ϵ
isnil	O	O	O	1
split	$\{(1,0)\} \downarrow$	$\{(1,1)\} \downarrow$	$\{(0,1 \epsilon),(1,0 \epsilon)\} \downarrow$	$\{(1,1 \epsilon)\} \downarrow$

In the definition of $\|$ case e of nil : $e_{1} \mid$ cons $x_{1} x_{2}: e_{2} \| \rho$ we first determine the property of the list $\|e\| \rho$. If it could possibly be a property of the empty list we must have a contribution from $\left\|e_{1}\right\| \rho$; this is expresed using the \triangleright operator. Whether or not this is the case the property of the list is split into a set of properties of the head and the tail and we must have a contribution from $\left\|e_{2}\right\| \rho$ for each of these possibilities. This is expressed using the operator

$$
\mathcal{P}:\left(D_{1} \rightarrow D_{2}\right) \rightarrow\left(\mathcal{P}\left(D_{1}\right) \rightarrow \mathcal{P}\left(D_{2}\right)\right)
$$

which extends its first argument pointwise to operate on elements in the power domain: for $Y \in \mathcal{P}\left(D_{1}\right)$ we have

$$
\mathcal{P}(h)(Y)=\{h(d) \mid d \in Y\} \downarrow
$$

In other words \mathcal{P} is extended to a functor. Finally, all contributions are combined by taking least upper bounds.

Boundedness Results for Lists

To obtain k-boundedness results for functionals arising from the analysis of lists we begin with a characterization of the \mathcal{P} operator. For this it is helpful to write $\{\mid\}=\lambda d .(\{d\} \downarrow)$.

Fact 4.1

- $\sqcup \circ \mathcal{P}\left(h_{1} \sqcup h_{2}\right)=\left(\sqcup \circ \mathcal{P}\left(h_{1}\right)\right) \sqcup\left(\sqcup \circ \mathcal{P}\left(h_{2}\right)\right)$
- $\mathcal{P}(h) \circ\{\mid\}=\{\mid\} \circ h$
- $\sqcup \circ\{\|\}=i d$
- $\mathcal{P}\left(h_{1} \circ h_{2}\right)=\mathcal{P}\left(h_{1}\right) \circ \mathcal{P}\left(h_{2}\right)$
- $\sqcup \circ \mathcal{P}(\sqcup)=\bigsqcup \circ \bigcup$
- $\cup \circ \mathcal{P}(\mathcal{P}(h))=\mathcal{P}(h) \circ \bigcup$
- $\mathcal{P}(\mathcal{P}(h)) \circ \mathcal{P}(\{\mid\})=\mathcal{P}(\{\mid\}) \circ \mathcal{P}(h)$
- $\cup \circ \mathcal{P}(U) \circ \mathcal{P}(\mathcal{P}(h))=\bigcup \circ \mathcal{P}(h) \circ \bigcup$

Proof Most of these results are straightforward. Some of them are treated in greater detail in [2].

Instead of using the measure $l e n_{m}$, of Section 3 we shall be able to obtain better results by following [6] and defining

$$
\operatorname{len}_{s a}(h)=\max \left\{l_{s a}(h, Y) \mid Y \in \mathcal{P}(A)\right\}
$$

where $l_{s a}(h, Y)=\min \left\{i \mid h^{i}(Y) \sqsubseteq \bigsqcup\left\{Y, h(Y), \ldots, h^{i-1}(Y)\right\}, i>0\right\}$.
Fact $4.21 \leq l e n_{s a}(h) \leq l e n_{m}(h)$ for all functions h.
Lemma $4.3 \lambda h . ~ \sqcup \circ \mathcal{P}\left(h \circ g_{1}\right) \circ g_{0} \in \mathcal{A}(k)$ for $k=l e n_{s a}\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)$.

Proof: See Appendix C.
Example 4.4 The length function computing the length of a list can be written as

FIX(lam length. lam $x s$. case $x s$ of nil: $0 \|$ cons y us: $(+1)$ (length ys))

The overall type of this program is $\left(t_{\alpha}\right.$ list $) \rightarrow$ num. In the analysis we shall follow the approach of [1] and interpret the type t_{α}, by the domain 2 .

The strictness analysis gives rise to a functional H of the form

$$
H h=\left(\left(i s n i l \circ g_{0}\right) \triangleright g_{1}\right) \sqcup\left(\sqcup \circ \mathcal{P}\left(h \circ g_{2}\right) \circ \text { split } \circ g_{0}\right)
$$

where

$$
\begin{aligned}
g_{0} & =i d \\
g_{1} & =\lambda x s .1 \\
g_{2} & =\text { snd. }
\end{aligned}
$$

Now consider

$$
k=\operatorname{len}_{s a}\left(g^{\prime}\right) \text { where } g^{\prime}=\mathcal{P}(\text { snd }) \circ \bigcup \circ \mathcal{P}(\text { split }) \circ \mathcal{P}(i d)
$$

One can show that g^{\prime} is idempotent $\left(g^{\prime}=g^{\prime} \circ g^{\prime}\right)$ and this means that $l e n_{s a}\left(g^{\prime}\right)=2$. It follows from Lemmas 4.3 and 3.6 that H is 3 -bounded and hence by Proposition 2.1 only 2 iterations are needed to compute the fixed point. A simple calculation shows that indeed two iterations are needed.

Example 4.5 As an example of a tail recursive program we shall consider the function foldl with type $\left(t_{\alpha} \rightarrow t_{\beta} \rightarrow t_{\alpha}\right) \rightarrow t_{\alpha} \times\left(t_{\beta}\right.$ list $) \rightarrow t_{\alpha}$. It can be written as

```
lam f. FIX(lam fld. lam ax. case snd ax of nil: fst ax |
    cons y ys: fld ((f(fst ax)y),ys))
```

Interpreting the types t_{α} and t_{β} as $\mathbf{2}$ one can show that the strictness analysis gives rise to a functional H_{g} defined by

$$
H_{g} h=\left(\left(i s n i l \circ g_{0}\right) \triangleright g_{1}\right) \sqcup\left(\sqcup \circ \mathcal{P}\left(h \circ g_{2}\right) \circ \text { pack } \circ \text { tuple }\left(g_{1}, \text { split } \circ g_{0}\right)\right)
$$

where

$$
\begin{aligned}
\text { pack } & =\lambda\left(x,\left\{y_{1}, \ldots, y_{n}\right\}\right) \cdot\left\{\left(x, y_{1}\right), \ldots\left(x, y_{n}\right)\right\} \downarrow \\
g_{0} & =\text { snd } \\
g_{1} & =\text { fst } \\
g_{2} & =\operatorname{tuple}(g \circ \text { tuple }(\text { id,fstosnd }), \text { snd } \circ \text { snd }) .
\end{aligned}
$$

and g is the analysis (in uncurried form) of the parameter f. Thus we have to determine

$$
k_{g}=l e n_{s a}\left(g^{\prime}\right) \text { where } g^{\prime}=\mathcal{P}\left(g_{2}\right) \circ \bigcup \circ \mathcal{P}\left(\text { pack } \circ \text { tuple }\left(g_{1}, \text { split } \circ g_{0}\right)\right)
$$

The value obtained for k_{g} will depend on the properties of g but one can show that in all cases $k_{g} \leq 3$. Hence H_{g} is 4 -bounded and at most 3 iterations will be needed.

5 Conclusion

The computation of fixed points plays an important role in abstract interpretation and hence also for strictness analysis by means of abstract interpretation. One major problem is that the number of unfoldings needed for the fixed point operator may be very high. Nothing can be done about this in general, but the results of this paper may be used in a compiler when detecting the situations in which strictness analysis by abstract interpretation will not be prohibitively expensive.

In [3] the concatenation function on lists is defined as foldr append nil and is shown to give a function that is particularly bad to analyse. Our results do not directly improve upon this, but it is instructive to note that the results of Example 4.5 may be of use: if by program transformation we are able to translate the definition using foldr into one that uses foldl then the required number of iterations will be very low. Again one might expect such program transformations to be part of the compiler's repertoire for improving the performance of the program.

As [3] points out the costs involved in tabulating each iteration may also be very high. An idea to overcome this is to note that we need only know the value of FIX H for those arguments that come up in the "recursive calls" for the argument in which we are interested. Thus one might use "minimal function graphs" to keep track of the arguments needed and then it will only be necessary to tabulate the value of $H^{k} \perp$ on arguments in this set ${ }^{2}$. In general this set will not be a singleton as this is only the case for analysis functions that turn out to be additive [5] and this is not so for strictness analysis.

Acknowledgement

This research was partially supported by the DART-project (funded by the Danish Research Councils).

[^1]
References

[1] S.Abramsky: Strictness Analysis and Polymorphic Invariance, Programs as Data Objects, Springer Lecture Notes in Computer Science 217 1-23, 1986.
[2] G.L.Burn, C.Hankin, S.Abramsky: Strictness Analysis for Higher-Order Functions, Science of Computer Programming 7,1986.
[3] S.Hunt, C.Hankin: Fixed Points and Frontiers: a New Perspective, Journal of Functional Programming 1, 1991.
[4] T.J.Marlowe, B.G.Ryder: Properties of Data Flow Frameworks - A Unified Model, Acta Informatica 28,1990.
[5] H.R.Nielson, F.Nielson: Bounded Fixed Point Iteration, Proceedings of the ACM Sympoisium on Principles of Programming Languages, 1992. An expanded version appeared in Journal of Logic and Computation 2 4, 1992.
[6] F.Nielson, H.R.Nielson: Finiteness Conditions for Fixed Point Iteration (Extended Abstract), Proceedings of the ACM Symposium on LISP and Functional Programming, 1992. An extended version appeared as [7].
[7] F.Nielson, H.R.Nielson: Finiteness Conditions for Fixed Point Iteration, Technical Report DAIMI PB-384, Aarhus University, Demnark, 1992. An extended abstract appeared as [6].
[8] F.Nielson, H.R.Nielson: Two-Level Functional Languages, Cambridge Tracts in Theoretical Computer Science 34, Cambridge University Press, 1992.
[9] P.Wadler: Strictness Analysis on Non-Flat Domains (by Abstract Interpretation over Finite Domains), Abstract Interpretation of Declarative Languages, S.Abramsky and C.Hankin (eds.), Ellis Horwood, 1987

A Proofs from Section 2

In order to facilitate the proofs of Appendices B and C we shall review a few insights from [6].
It is helpful to tabulate the first few values of $H^{[n]}$:

	H^{n}	$H^{[n]}$
$n=0$	$I d$	$\lambda h . \perp$
$n=1$	H	$I d$
$n=2$	$H \circ H$	$I d \sqcup H$
$n=3$	$H \circ H \circ H$	$I d \sqcup H \sqcup(H \circ H)$

where $I d=\lambda h . h$ is the identity functional.
Fact A. 1 We have the following results:

- If H is additive then $H^{[n+1]}=(H \sqcup I d)^{n}$.
- $\left(H^{n} \perp\right)_{n}$ and $\left(H^{[n]}\right)_{n}$ are chains but $\left(H^{n}\right)_{n}$ need not be.
- $\lambda H . H^{n}$ and $\lambda H . H^{[n]}$ are monotone (for all n).

Fact A. 2 When H is k-bounded and additive we have the following results:

- $\forall n \geq 0: H^{n} \sqsubseteq H^{[k]}, H^{[n]} \sqsubseteq H^{[k]}$, and $H^{[n+k]}=H^{[k]}$
- $H^{[k]} \circ H \sqsubseteq H^{[k]}, H \circ H^{[k]} \sqsubseteq H^{[k]}$ and $H^{[k]} \circ H^{[k]}=H^{[k]}$.
- H is $(k+1)$-bounded.
- $k>0$ or B is trivial (i.e. a one-point lattice).

Proposition 2.1 then essily follows: FIX $H=\bigsqcup\left\{H^{n} \perp \mid n \geq 0\right\}=H^{[k]} \perp=$ $H^{k-1} \perp$. We refer to [6] for any missing details.

B Proofs from Section 3

Proof of Lemma 3.4: Write $k=k_{1}+k_{2}-1$. We may calculate

$$
\left(H_{1} \sqcup H_{2}\right)^{n}=\bigsqcup_{i_{1} \ldots i_{n}} H_{i_{1}} \circ \cdots \circ H_{i_{n}}=\bigsqcup_{p+q=n} H_{1}^{p} \circ H_{2}^{q}
$$

where $H_{i_{1}} \circ \cdots \circ H_{i_{n}}=I d$ for $n=0$; hence we have

$$
\left(H_{1} \sqcup H_{2}\right)^{[n]}=\bigsqcup_{p+q<n} H_{1}^{p} \circ H_{2}^{q}
$$

Using the facts from Appendix A we have $k_{i}>0$ and $H_{i}^{\left[k_{i}\right]}=\left(H_{i} \sqcup I d\right)^{k_{i}-1}$. We may then calculate'

$$
\begin{aligned}
\left(H_{1} \sqcup H_{2}\right)^{n} & =\bigsqcup_{p+q=n} H_{1}^{p} \circ H_{2}^{q} \\
& \sqsubseteq \bigsqcup_{p+=n} H_{1}^{\left[k_{1}\right]} \circ H_{2}^{\left[k_{2}\right]} \\
& =H_{1}^{\left[k_{1}\right]} \circ H_{2}^{\left[k_{2}\right]} \\
& \left.=\left(H_{1} \sqcup I d\right)^{k_{1}-1} \circ H_{2} \sqcup I d\right)^{k_{2}-1} \\
& \sqsubseteq \bigsqcup_{p<k_{1}, q<k_{2}}^{p} H_{1}^{p} \circ H_{2}^{q} \\
& \sqsubseteq \bigsqcup_{p+q<k} H_{1}^{p} \circ H_{2}^{q} \\
& =\left(H_{1} \sqcup H_{2}\right)^{[k]}
\end{aligned}
$$

and this shows the result (when taking $n=k$).
Proof of Lemma 3.6: We may calculate

$$
\left(H_{1} \sqcup H_{2}\right)^{n}=\bigsqcup_{i_{1} \cdots i_{n}} H_{i_{1}} \circ \cdots \circ H_{i_{n}}=H_{1}^{n} \sqcup\left(\bigsqcup_{p<n} H_{1}^{p}\right) \circ H_{2}
$$

We then have

$$
\begin{aligned}
\left(H_{1} \sqcup H_{2}\right)^{k+1} & \sqsubseteq H_{1}^{[k]} \sqcup\left(H_{1}^{[k]} \circ H_{2}\right) \\
& \sqsubseteq\left(H_{1} \sqcup H_{2}\right)^{[k]} \sqcup\left(\left(H_{1} \sqcup H_{2}\right)^{[k]} \circ\left(H_{1} \sqcup H_{2}\right)\right) \\
& \sqsubseteq\left(H_{1} \sqcup H_{2}\right)^{[k]}
\end{aligned}
$$

and this shows the result.
Proof of lemma 3.8: Write

$$
G=\lambda h . g \triangleright(H h)
$$

By Fact 3.7 G is additive because H is. Next define G_{0} by

$$
G_{0}=\lambda h . g \sqcap \delta H(h)
$$

and note that G_{0} is monotonic and hence $\left(G_{0}^{n}(\lambda x .1)\right)_{n}$ is a decreasing chain.
We show

$$
G^{n}(h)=G_{0}^{n}(\lambda x .1) \triangleright H^{n}(h)=h
$$

by induction on n. For $n=0$ we have $G^{0}(h)=h, G_{0}^{0}(\lambda x .1)=\lambda x .1$, and $H^{0}(h)=h$ and this shows the base case.

For the induction step where $n=m+1$ we have

$$
\begin{aligned}
G^{m+1}(h) & =G\left(G_{0}^{m}(\lambda x .1) \triangleright H^{m}(h)\right) \\
& =g \triangleright H\left(G_{0}^{m}(\lambda x .1) \triangleright H^{m}(h)\right) \\
& =g \triangleright\left(\delta H\left(G_{0}^{m}(\lambda x .1)\right) \triangleright\left(H\left(H^{m}(h)\right)\right)\right) \\
& =\left(g \sqcap \delta H\left(G_{0}^{m}(\lambda x .1)\right)\right) \triangleright\left(H^{m+1}(h)\right) \\
& \left.=G_{0}^{m+1}(\lambda x .1)\right) \triangleright H^{m+1}(h)
\end{aligned}
$$

where we have used Fact 3.7.
To show that G is k-bounded it is sufficient to consider h and x and to show

$$
G^{k} h x \sqsubseteq G^{|k|} h x
$$

and this amounts to

$$
\left(\left(G_{0}^{k}(\lambda x .1) x\right) \triangleright\left(H^{k} h x\right)\right) \sqsubseteq \bigsqcup_{i<k}\left(\left(\left(G_{0}^{i}(\lambda x .1) x\right) \triangleright\left(H^{i} h x\right)\right)\right)
$$

If $G_{0}^{k}(\lambda x .1) x=0$ this is immediate. Otherwise $\left(G_{0}^{i}(\lambda x .1) x\right)=1$ for all $i<k$ (by $\left(G_{0}^{n}(\lambda x .1)\right)_{n}$ being a decreasing chain) and it all amounts to

$$
\left(H^{k} h x\right) \sqsubseteq \bigsqcup_{i<k}\left(H^{i} h x\right)
$$

which follows from the assumption that H is k-bounded.
Proof of Lemma 3.11: This result was stated in [6] but no proof was given and the proof sketched in [7] was somewhat indirect. Hence we give the following direct proof.

Clearly H is additive because of the assumptions on g. Similarly δH is as stated because of the assumptions on g. For the k-boundedness of H we first show that

$$
\begin{equation*}
H^{n}(h)=g \circ \operatorname{tuple}\left(h \circ g_{1}^{n}, H^{n-1}\left(g_{2}\right)\right) \tag{1}
\end{equation*}
$$

for $n>O$. The proof is by induction on n. The base case $n=1$ is trivial so consider the induction step $n=m+1$. We calculate

$$
\begin{aligned}
H^{m+1}(h) & =g \circ \operatorname{tuple}\left(H^{m}(h) \circ g_{1}, g_{2}\right) \\
& =g \circ \operatorname{tuple}\left(g \circ \operatorname{tuple}\left(h \circ g_{1}^{m}, H^{m-1}\left(g_{2}\right)\right) \circ g_{1}, g_{2}\right) \\
& =g \circ \operatorname{tuple}\left(g \circ \text { tuple }\left(h \circ g_{1}^{m} \circ g_{1}, H^{m-1}\left(g_{2}\right) \circ g_{1}\right), g_{2}\right) \\
& =g \circ \operatorname{tuple}\left(h \circ g_{1}^{m+1}, g \circ \operatorname{tuple}\left(H^{m-1}\left(g_{2}\right) \circ g_{1}, g_{2}\right)\right) \\
& =g \circ \operatorname{tuple}\left(h \circ g_{1}^{m+1}, H^{m}\left(g_{2}\right)\right) .
\end{aligned}
$$

Next we define $H^{\prime}:(A \times B \rightarrow A \times B) \rightarrow(A \times B \rightarrow A \times B)$ by

$$
H^{\prime}\left(h^{\prime}\right)=h^{\prime} \circ \text { tuple }\left(g_{1} \circ f s t, g \circ \text { tuple }\left(g_{2} \circ f s t, \text { snd }\right)\right)
$$

and prove that

$$
\begin{equation*}
H^{\prime n}=h^{\prime} \circ \operatorname{tuple}\left(g_{1}^{n} \circ f s t, g \circ \text { tuple }\left(H^{n-1}\left(g_{2}\right) \circ f s t, \text { snd }\right)\right) \tag{2}
\end{equation*}
$$

for $n>O$. The proof is by induction on n. The base case $n=1$ is trivial so consider the induction step $n=m+1$. We calculate

$$
\begin{aligned}
H^{\prime m+1}\left(h^{\prime}\right)= & H^{\prime m}\left(h^{\prime}\right) \circ \text { tuple }\left(g_{1} \circ f s t, g \circ \text { tuple }\left(g_{2} \circ f \text { st }, \text { snd }\right)\right) \\
= & h^{\prime} \circ \text { tuple }\left(g_{1}^{m} \circ f \text { st }, g \circ \text { tuple }\left(H^{m-1}\left(g_{2}\right) \circ f s t, \text { snd }\right)\right) \\
& \circ \text { tuple }\left(g_{1} \circ f s t, g \circ \operatorname{tuple}\left(g_{2} \circ f s t, \text { snd }\right)\right) \\
= & h^{\prime} \circ \operatorname{tuple}\left(g_{1}^{m} \circ g_{1} \circ f s t, g \circ \operatorname{tuple}\left(H^{m-1}\left(g_{2}\right) \circ g_{1} \circ f \text { st }, g \circ \text { tuple }\left(g_{2} \circ f s t, \text { snd }\right)\right)\right) \\
= & h^{\prime} \circ \operatorname{tuple}\left(g_{1}^{m+1} \circ f s t, g \circ \text { tuple }\left(g \circ \operatorname{tuple}\left(H^{m-1}\left(g_{2}\right) \circ g_{1} \circ f s t, g_{2} \circ f_{s t}\right), \text { snd }\right)\right) \\
= & h^{\prime} \circ \operatorname{tuple}\left(g_{1}^{m+1} \circ f s t, g \circ \operatorname{tuple}\left(g \circ \text { tuple }\left(H^{m-1}\left(g_{2}\right) \circ g_{1}, g_{2}\right) \circ f s t, \text { snd }\right)\right) \\
= & h^{\prime} \circ \operatorname{tuple}\left(g_{1}^{m+1} \circ f s t, g \circ \operatorname{tuple}\left(H^{m}\left(g_{2}\right) \circ f s t, \text { snd }\right)\right) .
\end{aligned}
$$

Given $h: A \rightarrow B$ define $h: A \times B \rightarrow A \times B$ by

$$
\hat{h}(a, b)=\left(g(h(a), b), b_{0}\right)
$$

where b_{0} is the rigth identity for g. We shall then show that

$$
\begin{equation*}
\left(H^{n}(h)(a), b_{0}\right)=H^{\prime n}(\hat{h})\left(a, b_{0}\right) \tag{3}
\end{equation*}
$$

for all $a \in A$ and for $n>0$. The base case $n=0$ is trivial and when $n>0$ we use (1) and (2) to calculate

$$
\begin{aligned}
H^{\prime n}(\hat{h})\left(a, b_{0}\right) & =\hat{h}\left(g_{1}^{n}(a), g\left(H^{n-1}\left(g_{2}\right)(a), b_{0}\right)\right) \\
& =\hat{h}\left(g_{1}^{n}(a), H^{n-1}\left(g_{2}\right)(a)\right) \\
& =\left(g\left(h\left(g_{1}^{n}(a), H^{n-1}\left(g_{2}\right)(a)\right), b_{0}\right)\right. \\
& =\left(H^{n}(h)(a), b_{0}\right)
\end{aligned}
$$

To prove that H is k-bounded it is sufficient to prove for all $h \in A \rightarrow B$ that

$$
H^{k} h \sqsubseteq \bigsqcup\left\{H^{n} h \mid 0 \leq n<k\right.
$$

and for this it suffices to prove for all $a \in A$ that

$$
\left(H^{k} h a, b_{0}\right) \sqsubseteq \bigsqcup\left\{H^{n} h a, b_{0} \mid 0 \leq n<k\right\} .
$$

Using (3) this may be refomulated to

$$
H^{\prime k} \hat{h}\left(a, b_{0}\right) \sqsubseteq \bigsqcup\left\{H^{\prime n} \hat{h}\left(a, b_{0}\right) \mid 0 \leq n<k\right\} .
$$

But this follows because the assumptions and Corollary 3.3 show that H^{\prime} is k-bounded.

C Proofs from Section 4

Proof of Lemma 4.3:

It is convenient to abbreviate:

$$
G=\lambda h . \bigsqcup \circ \mathcal{P}\left(h \circ g_{1}\right) \circ g_{0}
$$

To see that G is additive we calculate:

$$
\begin{aligned}
G\left(h_{1} \sqcup h_{2}\right) & =\sqcup \circ \mathcal{P}\left(\left(h_{1} \sqcup h_{2}\right) \circ g_{1}\right) \circ g_{0} \\
& \left.=\bigsqcup \circ \mathcal{P}\left(h_{1} \circ g_{1} \sqcup h_{2}\right) \circ g_{1}\right) \circ g_{0} \\
& =\left(\left(\sqcup \circ \mathcal{P}\left(h_{1} \circ g_{1}\right)\right) \sqcup\left(\sqcup \circ \mathcal{P}\left(h_{2} \circ g_{1}\right)\right)\right) \circ g_{0} \\
& =\left(\sqcup \circ \mathcal{P}\left(h_{1} \circ g_{1}\right) \circ g_{0}\right) \sqcup\left(\sqcup \circ \mathcal{P}\left(h_{2} \circ g_{1}\right) \circ g_{0}\right. \\
& =G h_{1} \sqcup G h_{2}
\end{aligned}
$$

where we have used Fact 4.1.
Next we prove that

$$
\begin{equation*}
G^{i} h=\bigsqcup \circ \mathcal{P}(h) \circ\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{i} \circ\{\|\} \tag{4}
\end{equation*}
$$

for $i \geq 0$. The proof is by induction on i. For $i=O$ we have

$$
\bigsqcup \circ \mathcal{P}(h) \circ\{\mid\}=\bigsqcup \circ\{\mid\} \circ h=h
$$

where we have used Fact 4.1. This proves the base case. For the induction step we calculate

$$
\begin{aligned}
G^{i+1} h & =G\left(\sqcup \circ \mathcal{P}(h) \circ\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \mathcal{P}\left(g_{0}\right)\right)^{i} \circ\{\mid\}\right) \\
& =\sqcup \circ \mathcal{P}\left(\sqcup \circ \mathcal{P}(h) \circ\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{i} \circ\{ \} \circ g_{1}\right) g_{0} \\
& =\sqcup \circ \mathcal{P}(\sqcup) \circ \mathcal{P}(\mathcal{P}(h)) \circ\left(\mathcal{P}\left(\mathcal{P}\left(g_{1}\right)\right) \circ \mathcal{P} \cup \circ \mathcal{P}\left(\mathcal{P}\left(g_{0}\right)\right)\right)^{i} \circ \mathcal{P}\{\mid\} \circ \mathcal{P}\left(g_{1}\right) \circ g_{0} \\
& =\sqcup \circ \bigcup \circ \mathcal{P}(\mathcal{P}(h)) \circ\left(\mathcal{P}\left(\mathcal{P}\left(g_{1}\right)\right) \circ \mathcal{P} \cup \mathcal{P}\left(\mathcal{P}\left(g_{0}\right)\right)\right)^{i} \circ \mathcal{P}\left\{\| \circ \mathcal{P}\left(g_{1}\right) \circ g_{0}\right. \\
& =\sqcup \circ \mathcal{P}(h) \circ \bigcup \circ\left(\mathcal{P}\left(\mathcal{P}\left(g_{1}\right)\right) \circ \mathcal{P} \cup \circ \mathcal{P}\left(\mathcal{P}\left(g_{0}\right)\right)\right)^{i} \circ \mathcal{P}\{\|\} \circ \mathcal{P}\left(g_{1}\right) \circ g_{0} \\
& =\sqcup \circ \mathcal{P}(h) \circ\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{i} \circ \bigcup \circ \mathcal{P}\{\|\} \circ \mathcal{P}\left(g_{1}\right) \circ g_{0} \\
& =\sqcup \circ \mathcal{P}(h) \circ\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{i} \circ \bigcup \circ \mathcal{P}\left(\mathcal{P}\left(g_{1}\right)\right) \circ\{\mid\} \circ g_{0} \\
& =\sqcup \circ \mathcal{P}(h) \circ\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{i} \circ \mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right) \circ\{\|\} \\
& =\sqcup \circ \mathcal{P}(h) \circ\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{i} \circ \mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right) \circ\{ \} \\
& =\sqcup \circ \mathcal{P}(h) \circ\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{i+1} \circ\{\|\}
\end{aligned}
$$

using Fact 4.1.
To prove that G is k-bounded for $k=l e n_{s a}\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)$ we have to show that

$$
G^{k} h \sqsubseteq \bigsqcup\left\{G^{i} h \mid 0 \leq i \leq k\right.
$$

From the definition of $l e n_{s a}$ we have that

$$
\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{k} Y \sqsubseteq \bigcup\left\{\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{i} Y \mid 0 \leq i<k\right\}
$$

for all $Y \in \mathcal{P}(A)$. Thus for $a \in A$ we have

$$
\begin{aligned}
G^{k} h a & =\sqcup\left(\mathcal{P}(h)\left(\left(\mathcal{P}\left(g_{1}\right) \circ \cup \circ \mathcal{P}\left(g_{0}\right)\right)^{k}\{a\}\right)\right) \\
& \sqsubseteq \sqcup\left(\mathcal{P}(h)\left(\cup\left\{\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{i}\{a\} \mid 0 \leq i<k\right\}\right)\right. \\
& =\sqcup\left(\cup\left\{\left(\mathcal{P}(h)\left(\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{i}\{a\}\right) \mid 0 \leq i<k\right\}\right)\right. \\
& =\sqcup\left(\sqcup\left(\mathcal{P}(h)\left(\left(\mathcal{P}\left(g_{1}\right) \circ \bigcup \circ \mathcal{P}\left(g_{0}\right)\right)^{i}\{a\}\right)\right) \mid 0 \leq i<k\right\} \\
& =\sqcup\left\{G^{i} h a \mid 0 \leq i<k\right\}
\end{aligned}
$$

Here we have used that $\mathcal{P}(h)$ is additive for all h.

[^0]: *Excluding the appendices, this is a preprint of a paper to appear in Proceedings of the Workshop on Static Analysis 1993 to be published by Springer Lecture Notes in Computer Science.

[^1]: ${ }^{2}$ Similarly, if we instead test for stabilization then it suffices to test for stabilization for elements in this set.

