

Finiteness Conditions for Strictness Analysis∗

Flemming Nielson, Hanne Riis Nielson
Computer Science Department, Aarhus University

Ny Munkegade, DK-8000 Aarhus C, Denmark
e-mail:{fnielson,hrnielson}@daimi.aau.dk

July 1993

Abstract

We give upper bounds on the number of times the fixed point oper-
ator needs to be unfolded for strictness analysis of functional languages
with lists. This extends previous work both in the syntax-directed na-
ture of the approach and in the ability to deal with Wadler’s method
for analysing lists. Limitations of the method are indicated.

1 Introduction

Strictness analysis for functional programs by means of abstract interpreta-
tion is a very powerful technique: both in terms of the accuracy of the results
produced and in the applicability to various language constructs. The main
disadvantage of the method is that the computational cost may be too high
for many applications and as a result the method is not usually incorporated
in a compiler.

∗Excluding the appendices, this is a preprint of a paper to appear in Proceedings of the
Workshop on Static Analysis 1993 to be published by Springer Lecture Notes in Computer
Science.

1

Rather than resorting to cruder methods, e.g. based on variations of type
analysis, we believe that it is possible to identify certain programs where the
cost may be analysed in advance and determined not to be excessive. This
would allow the compiler to perform the abstract interpretation in those
instances where the cost is not prohibitive. The notion of cost we will be
taking throughout this paper is the number of iterations needed to reach the
fixed point.

In [6] we developed first results along this line. Section 2 contains a brief
review of the main results of [6] but with a change of emphasis that is more
suited to a structural approach (for functional programs). Section 3 then
develops our main results for simple strictness analysis and in Section 4
we add the analysis of lists using Wadler’s “inverse cons” method. Finally,
Section 5 contains the conclusion and the appendices some of the proofs.

2 Boundedness

The abstract interpretation of a recursive program gives rise to a functional

H : (A→ B)→ (A→ B)

Typically, and as we shall assume throughout, A and B are finite complete
lattices: this means that all subsets Y of A (resp. B) have least upper bounds
denoted

⊔
Y (or y1 t · · · t yn if Y = {y1, · · · , yn}). Furthermore all functions

will be monotone: for H this means that if h1 v h2 then H(h1) v H(h2) for
all h1, h2 ∈ A→ B. The least fixed point of H is given by

FIX

H =
⊔
{H i ⊥ | i ≥ 0}

where ⊥ is the least element of A→ B. Clearly if Hk+1 ⊥= Hk ⊥ then FIX
H = Hk ⊥ because of the monotonicity of H. By the finiteness of A and B
there will always be some (perhaps large) k such that this holds.

The notion of k-boundedness is of interest when the functional H is addi-
tionally additive: this is the case when H(h1 t h2) = H(h1) t H(H(h2) for
all h1, h2 ∈ A→ B. It is helpful to write

2

H [k]h =
⊔
{H ih | 0 ≥ i < k}

and motivated by [4] we say that H is k-bounded if

Hkh v H [k]h for all h ∈ A→ B

We shall write

H ∈ A(k)

to mean that H is additive and k-bounded.

Proposition 2.1 When H ∈ A(k), i.e. H is k-bounded and additive, we
have FIX H = H [k] ⊥= Hk−1 ⊥= Hk ⊥.

Proof: This is a revised version of [6, Lemma 11]; some key facts (neces-
sary for the subsequent proofs) are presented in Appendix A. 2

3 Strictness Analysis

To motivate the form of the functionals considered we begin with a brief
review of strictness analysis. To this end consider a simply typed λ-calculus
with constants, a conditional and a fixed point construct. The types are

t ::= num | bool | t1 × t2 | t1 → t2

3

Types: ‖num‖ = 2
‖bool‖ = 2
‖t1 × t2‖ = ‖t1‖ × ‖t2‖
‖t1 → t2‖ = ‖t1‖ → ‖t2‖

Expressions: ‖c‖ρ = ĉ
‖x‖ρ = ρx

‖fst e‖ρ = fst(‖e‖ρ)
‖snd e‖ρ = snd(‖e‖ρ)
‖(e1, e2‖ρ = (‖e1‖ρ, ‖e2‖ρ)
‖lam x.e‖ρ = λa.‖e‖(ρ[x 7→ a])
‖e1e2‖ρ = ‖e1‖ρ(‖e2‖ρ)

‖if e then e2 else e2‖ = ‖e‖ρ . (‖e1‖ρ t ‖e2‖ρ)
‖fix e‖ρ = FIX (‖e‖ρ)

Table 1: Strictness Analysis

and the expressions are

e ::= c | x | fst e | snd e | (e1, e2) | lam x.e | e1 e2 |
if e then e1 else e2 | FIX e

The expressions are assumed to be well-typed but it is outside the scope of
this paper to present the formal machinery for enforcing this.

The strictness analysis is specified in Table 1. In the type part we write 2
for the complete lattice ({0, 1},v) where 0 v 1. We write D1 × D2 for the
cartesian product of D1 and D2, and we write D1 → D2 for the complete
lattice of monotone functions from D1 to D2 ordered pointwise.

The expression part of the analysis associates a property ĉ with each constant
c. To specify the analysis of expressions with free variables we use an envi-
ronment ρ mapping variables to properties. The analysis of the conditional
uses the operator . defined by

d0 . d =

{
⊥ if d0 = 0
d if d0 = 1

where ⊥ is the least element of the lattice that d belongs to and where d0

belongs to 2. This is then lifted pointwise to functions

4

(h0 � h) = λd.(h0 d) . (h d).

A Structural Approach to Boundedness

Given a functional H as might arise from the above strictness analysis the
aim now is to find sufficient conditions for H to be additive and k-bounded
for some hopefully low value of k. We begin with a simple fact and a brief
review of the main results from [6]; then we move on to a more general
treatment of the operators t and �.

Fact 3.1 Id = λh.h ∈ A(1), λh.g ∈ A(2) and λh. ⊥ ∈ A(1).

The monotone length lenm(h) of a function h ∈ A→ B is given by

lenm(h) = max{lm(h, a) | a ∈ A}

where lm(h, a) = min{i | hi(a) ∈ {a, h(a), . . . , hi−1(a)} ↓, i > O}. Here we
write Y ↓ for the down-closure of Y , i.e. the set {d | ∃y ∈ Y : d v y}.
Lemma 3.2 λh. g1 ◦ h ◦ g2 ∈ A(lenm(g1)) · lenm(g2)) if g1 is additive.

Proof: This is essentially [6, Lemma 25]. 2

Corollary 3.3 λh. h ◦ g ∈ A(lenm(g)) and if g is additive then λh. g ◦ h ∈
A(lenm(g)).

Proof: When id is the identity function we have lenm(id) = 1. 2

We now extend the development of [6] by considering the least upper bound
operator.

Lemma 3.4 H1 tH2 ∈ A(k1 + k2 − 1) if H1 ∈ A(k1), H2 ∈ A(k2) and if H1

and H2 commute (i.e. H1 ◦H2 = H2 ◦H1) and B is not trivial.

Proof: See Appendix B. 2

Corollary 3.5 H t Id ∈ A(k) if H ∈ A(k) and B is not trivial.

Lemma 3.6 H1 t H2 ∈ A(k1 + 1) if H1 ∈ A(k) and H2 = λh.g (for some
g ∈ A→ B).

Proof: See Appendix B. 2

5

Remark This shows that if H = λh.g t (G h) and G ∈ A(k) then H ∈
A(k+1) so that FIX H = Hk ⊥ (as opposed to Hk−1 ⊥). Since functionals of
the form H typically arise for iterative programs this explains the naturality
of the definition of k-boundedness in the setting of [4]; in our setting it might
have been more natural to redefine k-boundedness of H to mean Hk+1 v
H [k+1].

We next turn to the � operator.

Fact 3.7 We have the following properties of �:

• h0 � (h1 t h2) = (h0 � h1) t (h0 � h2).

• (h1 � h2) ◦ h3 = (h1 ◦ h3) � (h2 ◦ h3).

• h1 � (h2 � h3) = (h1 u h2) � h3.

Lemma 3.8 λh.g � (H h) ∈ A(k) and if there exises a (monotone) func-
tional δH ∈ (A→ 2)→ (A→ 2) such thatH(h1 � h2) = (δH(h1)) � H(h2)
for h1, h2 ∈ A→ B.

Proof: See Appendix B. 2

Fact 3.9 δ(λh. h ◦ g2) and if g1, is strict then δ(λh. g1 ◦ h ◦ g2) = λh. h ◦ g2.

Example 3.10 As an example of a tail-recursive program we consider the
factorial program with an accumulator. It can be written as

FIX (lam fac. lam xa. if (= 0)(fst xa then snd xa
else fac((−1)(fst xa), ∗ xa))

Here (= 0) tests for equality with 0, ∗ is the multiplication operator and
(−1) subtracts one from its argument. The strictness analysis will therefore
give rise to a functional H of the form

H h = g0 � (g1 t h ◦ g2)

which may be rewritten to

H h = (g0 � g1) t (g0 � (h ◦ g2))

6

using Fact 3.7. The functions g0, g1 and g2 are given by

g0 = fst
g1 = snd
g2 = tuple(fst, ∗̂)

where tuple(h1, h2)x = (h1(x), h2(x)) and ∗̂(x1, x2) = x1 u x2. Since g2 is
reductive (i.e. g2 v id) it follows that lenm(g2) = 1. By Corollary 3.3,
Lemma 3.8, Fact 3.9, and Lemma 3.6 the functional H is 2-bounded and by
Proposition 2.1 the first unfolding will give the fixed point.

Lemma 3.11 Let H : (A→ B)→ (A→ B) be defined by

H h = g ◦ tuple(h ◦ g1, g2)

where g : B ×B → B, g1 : A→ A and g2 : A→ B. Assume that

• g is associative i.e. g(g(b1, b2), b3) = g(b1, g(b2, b3)) for all b1, b2, b3 ∈ B,

• g is strict and additive in its left argument, i.e. g(⊥, b) =⊥ and g(b1 t
b2) = g(b1, b) t g(b2, b) for all b, b1, b2 ∈ B, and

• g has a right identity b0 i.e. g(b, b0) = b for all b ∈ B, and

• k = lenm(tuple(g1◦ fst, g ◦ tuple(g2◦ fst, snd))).

Then H ∈ A(k) and δH = λh. h ◦ g1.

Proof: See Appendix B. This result was stated but not proved in [6]. 2

One undesirable feature of the above lemma is that we need to take the
length of a composite function. However, the lemma suffices for treating a
non-accumulator version of factorial.

Example 3.12 The usual factorial program can be written as

FIX (lam fac. lam x. if (= 0)(x) then 1 else ∗(fac((−1)x), x))

The strictness analysis will therefore give rise to a functional H of the form

7

H h = g0 � (g1 t g ◦ tuple(h ◦ g2, g3))

which may be rewritten to

H h = (g0 � g1) t (g0 � g ◦ tuple(h ◦ g2, g3))

using Fact 3.7. The functions are g0 = λx.x, g1 = λx.1, g2 = λx.x, g3 = λx.x
and g = λ(x1, x2).x1 u x2. The function tuple(g2◦ fst, g ◦ tuple(g3◦ fst, snd))
then amounts to the function called g2 in Example 3.10.

4 Strictness Analysis for Lists

We shall now extend the typed λ-calculus with lists:

t ::= · · · | t list

The syntax of expressions is extended with constructs for building lists and
for taking them apart:

e ::= · · · | nil | cons e1 e2 | case e of nil : e1 ‖ cons x1, x2 : e2

We shall follow [9] and construct the lattice of properties for lists by a double
lifting of the lattice of the element type: if D is the lattice of properties for
the elements of the list then (D⊥)⊥ will be the lattice of properties of the
lists. The least element of (D⊥)⊥ is denoted 0, the second least element 1
and the remaining elements are denoted dε where d is an element of D. We
write > for the largest element of D. The idea then is that

0: denotes the undefined list,
1: denotes additionally all infinite lists and all partial lists ending in

the undefined list,
dε: denotes additionally all finite lists where the meet of the elements

satisfies property d (for d not being >)1, and
>ε : denotes all lists.

8

Types: ‖t list‖ = (‖t‖⊥)⊥
Expressions: ‖nil‖ ρ = >ε

‖cons e1e2‖ρ = (‖e1‖ρ)ε u (‖e2‖ρ)
‖case e of nil : e1|

cons x1x2 : e2‖ρ = (isnil(‖e‖ρ) � ‖e1‖ρ)t⊔
(P(λ(a1, a2).‖e2‖ρ[x1 7→ a1[x2 7→ a2])

(Split(‖e‖ρ)))

Table 2: Strictness analysis for lists

The strictness analysis of Table 1 is now extended with the clauses of Table
2. For nil we observe that the only property describing the empty list is Tε.
For cons e1e2 we combine the property of the head with the property of the
tail using a greatest lower bound operation. For the case construct we want
to “reverse” this construction. To this end we use two auxiliary operations

isnil: (D ⊥) ⊥→ 2
split: (D ⊥) ⊥→ P(D × (D ⊥) ⊥

Here P(D) is the lower powerdomain of D. When D is a finite complete
lattice one may take P(D) to have as elements those non-empty subsets Y
of D that satisfy Y = Y ↓ (i.e. Y is downward closed); the partial order is
subset inclusion. Then P(D) will also be a finite complete lattice with least
element {⊥} and greatest element D. We may now define the functions isnil
and split by

isnil : d =

{
0 if d 6= Tε
1 if d = Tε

split d = {(d1, d2) | d1ε u d2 v d}

Thus isnil d will return 1 if d is a property of the empty list and split d will
return (the downward closed set of) all possible pairs of properties that the
head und the tail of the list could have had. In the case where D = 2 we can
tabulate isnil and split as follows:

9

0 1 0ε 1ε
isnil O O O 1
split {(1, 0)} ↓ {(1, 1)} ↓ {(0, 1ε), (1, 0ε)} ↓ {(1, 1ε)} ↓

In the definition of ‖case e of nil : e1|cons x1x2 : e2‖ρ we first determine
the property of the list ‖e‖ρ. If it could possibly be a property of the empty
list we must have a contribution from ‖e1‖ρ; this is expresed using the �

operator. Whether or not this is the case the property of the list is split into
a set of properties of the head and the tail and we must have a contribution
from ‖e2‖ρ for each of these possibilities. This is expressed using the operator

P : (D1 → D2)→ (P(D1)→ P(D2))

which extends its first argument pointwise to operate on elements in the
power domain: for Y ∈ P(D1) we have

P(h)(Y) = {h(d) | d ∈ Y } ↓

In other words P is extended to a functor. Finally, all contributions are
combined by taking least upper bounds.

Boundedness Results for Lists

To obtain k-boundedness results for functionals arising from the analysis of
lists we begin with a characterization of the P operator. For this it is helpful
to write {||} = λd.({d} ↓).
Fact 4.1

• ⊔ ◦P(h1 t h2) = (
⊔ ◦P(h1)) t (

⊔ ◦P(h2))

• P(h) ◦ {||} = {||} ◦ h

• ⊔ ◦{||} = id

• P(h1 ◦ h2) = P(h1) ◦ P(h2)

• ⊔ ◦P(
⊔

) =
⊔ ◦⋃

10

• ⋃ ◦P(P(h)) = P(h) ◦ ⋃
• P(P(h)) ◦ P({||}) = P({||}) ◦ P(h)

• ⋃ ◦P(
⋃

) ◦ P(P(h)) =
⋃ ◦P(h) ◦ ⋃

Proof Most of these results are straightforward. Some of them are treated
in greater detail in [2]. 2

Instead of using the measure lenm, of Section 3 we shall be able to obtain
better results by following [6] and defining

lensa(h) = max{lsa(h, Y) | Y ∈ P(A)}

where lsa(h, Y) = min{i | hi(Y) v ⊔{Y, h(Y), . . . , hi−1(Y)}, i > 0}.
Fact 4.2 1 ≤ lensa(h) ≤ lenm(h) for all functions h.

Lemma 4.3 λh.
⊔ ◦P(h ◦ g1) ◦ g0 ∈ A(k) for k = lensa(P(g1) ◦

⋃ ◦P(g0)).

Proof: See Appendix C. 2

Example 4.4 The length function computing the length of a list can be
written as

FIX(lam length. lam xs. case xs of nil: 0 || cons y us: (+ 1) (length ys))

The overall type of this program is (tα list)→ num. In the analysis we shall
follow the approach of [1] and interpret the type tα, by the domain 2.

The strictness analysis gives rise to a functional H of the form

H h = ((isnil ◦ g0) � g1) t (
⊔ ◦P(h ◦ g2) ◦ split ◦ g0)

where

g0 = id
g1 = λxs.1
g2 = snd.

11

Now consider

k = lensa(g
′) where g′ = P(snd) ◦ ⋃ ◦P(split) ◦ P(id)

One can show that g′ is idempotent (g′ = g′ ◦ g′) and this means that
lensa(g

′) = 2. It follows from Lemmas 4.3 and 3.6 that H is 3-bounded
and hence by Proposition 2.1 only 2 iterations are needed to compute the
fixed point. A simple calculation shows that indeed two iterations are needed.

Example 4.5 As an example of a tail recursive program we shall consider
the function foldl with type (tα → tβ → tα)→ tα × (tβ list)→ tα. It can
be written as

lam f. FIX(lam fld. lam ax. case snd ax of nil : fst ax ||
cons y ys : fld ((f (fst ax) y), ys))

Interpreting the types tα and tβ as 2 one can show that the strictness analysis
gives rise to a functional Hg defined by

Hg h = ((isnil ◦ g0) � g1) t (
⊔ ◦P(h ◦ g2) ◦ pack ◦ tuple(g1, split ◦ g0))

where

pack = λ(x, {y1, . . . , yn}).{(x, y1), . . . (x, yn)} ↓
g0 = snd
g1 = fst
g2 = tuple(g ◦ tuple(id,fst◦snd), snd ◦ snd).

and g is the analysis (in uncurried form) of the parameter f . Thus we have
to determine

kg = lensa(g
′) where g′ = P(g2) ◦

⋃ ◦P(pack ◦ tuple(g1, split ◦ g0))

The value obtained for kg will depend on the properties of g but one can show
that in all cases kg ≤ 3. Hence Hg is 4-bounded and at most 3 iterations will
be needed.

12

5 Conclusion

The computation of fixed points plays an important role in abstract inter-
pretation and hence also for strictness analysis by means of abstract inter-
pretation. One major problem is that the number of unfoldings needed for
the fixed point operator may be very high. Nothing can be done about this
in general, but the results of this paper may be used in a compiler when de-
tecting the situations in which strictness analysis by abstract interpretation
will not be prohibitively expensive.

In [3] the concatenation function on lists is defined as foldr append nil

and is shown to give a function that is particularly bad to analyse. Our
results do not directly improve upon this, but it is instructive to note that
the results of Example 4.5 may be of use: if by program transformation we
are able to translate the definition using foldr into one that uses foldl

then the required number of iterations will be very low. Again one might
expect such program transformations to be part of the compiler’s repertoire
for improving the performance of the program.

As [3] points out the costs involved in tabulating each iteration may also be
very high. An idea to overcome this is to note that we need only know the
value of FIX H for those arguments that come up in the “recursive calls”
for the argument in which we are interested. Thus one might use “minimal
function graphs” to keep track of the arguments needed and then it will only
be necessary to tabulate the value of Hk ⊥ on arguments in this set2. In
general this set will not be a singleton as this is only the case for analysis
functions that turn out to be additive [5] and this is not so for strictness
analysis.

Acknowledgement

This research was partially supported by the DART-project (funded by the
Danish Research Councils).

2Similarly, if we instead test for stabilization then it suffices to test for stabilization for
elements in this set.

13

References

[1] S.Abramsky: Strictness Analysis and Polymorphic Invariance, Programs
as Data Objects, Springer Lecture Notes in Computer Science 217 1-23,
1986.

[2] G.L.Burn, C.Hankin, S.Abramsky: Strictness Analysis for Higher-Order
Functions, Science of Computer Programming 7,1986.

[3] S.Hunt, C.Hankin: Fixed Points and Frontiers: a New Perspective, Jour-
nal of Functional Programming 1, 1991.

[4] T.J.Marlowe, B.G.Ryder: Properties of Data Flow Frameworks - A Uni-
fied Model, Acta Informatica 28,1990.

[5] H.R.Nielson, F.Nielson: Bounded Fixed Point Iteration, Proceedings of
the ACM Sympoisium on Principles of Programming Languages, 1992.
An expanded version appeared in Journal of Logic and Computation 2
4, 1992.

[6] F.Nielson, H.R.Nielson: Finiteness Conditions for Fixed Point Iteration
(Extended Abstract), Proceedings of the ACM Symposium on LISP and
Functional Programming, 1992. An extended version appeared as [7].

[7] F.Nielson, H.R.Nielson: Finiteness Conditions for Fixed Point Iteration,
Technical Report DAIMI PB-384, Aarhus University, Demnark, 1992.
An extended abstract appeared as [6].

[8] F.Nielson, H.R.Nielson: Two-Level Functional Languages, Cambridge
Tracts in Theoretical Computer Science 34, Cambridge University Press,
1992.

[9] P.Wadler: Strictness Analysis on Non-Flat Domains (by Abstract Inter-
pretation over Finite Domains), Abstract Interpretation of Declarative
Languages, S.Abramsky and C.Hankin (eds.), Ellis Horwood, 1987

14

A Proofs from Section 2

In order to facilitate the proofs of Appendices B and C we shall review a few
insights from [6].

It is helpful to tabulate the first few values of H [n]:

Hn H [n]

n = 0 Id λh. ⊥
n = 1 H Id
n = 2 H ◦H Id tH
n = 3 H ◦H ◦H Id tH t (H ◦H)

where Id = λh.h is the identity functional.

Fact A.1 We have the following results:

• If H is additive then H [n+1] = (H t Id)n.

• (Hn ⊥)n and (H [n])n are chains but (Hn)n need not be.

• λH. Hn and λH. H [n] are monotone (for all n).

Fact A.2 When H is k-bounded and additive we have the following results:

• ∀n ≥ 0 : Hn v H [k], H [n] v H [k], and H [n+k] = H [k]

• H [k] ◦H v H [k], H ◦H [k] v H [k] and H [k] ◦H [k] = H [k].

• H is (k + 1)-bounded.

• k > 0 or B is trivial (i.e. a one-point lattice).

Proposition 2.1 then essily follows: FIX H =
⊔{Hn ⊥ | n ≥ 0} = H [k] ⊥ =

Hk−1 ⊥. We refer to [6] for any missing details.

15

B Proofs from Section 3

Proof of Lemma 3.4: Write k = k1 + k2 − 1. We may calculate

(H1 tH2)
n =

⊔
i1...in

Hi1 ◦ · · · ◦Hin =
⊔

p+q=n

Hp
1 ◦Hq

2

where Hi1 ◦ · · · ◦Hin = Id for n = 0; hence we have

(H1 tH2)
[n] =

⊔
p+q<n

Hp
1 ◦Hq

2

Using the facts from Appendix A we have ki > 0 and H
[ki]
i = (Hi t Id)ki−1 .

We may then calculate’

(H1 tH2)
n =

⊔
p+q=nH

p
1 ◦Hq

2

v ⊔
p+q=nH

[k1]
1 ◦H [k2]

2

= H
[k1]
1 ◦H [k2]

2

= (H1 t Id)k1−1 ◦H2 t Id)k2−1

v ⊔
p<k1,q<k2 H

p
1 ◦Hq

2

v ⊔
p+q<kH

p
1 ◦Hq

2

= (H1 tH2)
[k]

and this shows the result (when taking n = k).

Proof of Lemma 3.6: We may calculate

(H1 tH2)
n =

⊔
i1···in

Hi1 ◦ · · · ◦Hin = Hn
1 t (

⊔
p<n

Hp
1) ◦H2

We then have

(H1 tH2)
k+1 v H

[k]
1 t (H

[k]
1 ◦H2)

v (H1 tH2)
[k] t ((H1 tH2)

[k] ◦ (H1 tH2))
v (H1 tH2)

[k]

16

and this shows the result.

Proof of lemma 3.8: Write

G = λh. g � (H h)

By Fact 3.7 G is additive because H is. Next define G0 by

G0 = λh. g u δH(h)

and note that G0 is monotonic and hence (Gn
0 (λx.1))n is a decreasing chain.

We show

Gn(h) = Gn
0 (λx.1) � Hn(h) = h

by induction on n. For n = 0 we have G0(h) = h, G0
0(λx.1) = λx.1, and

H0(h) = h and this shows the base case.

For the induction step where n = m+ 1 we have

Gm+1(h) = G(Gm
0 (λx.1) � Hm(h))

= g � H(Gm
0 (λx.1) � Hm(h))

= g � (δH(Gm
0 (λx.1)) � (H(Hm(h))))

= (g u δH(Gm
0 (λx.1))) � (Hm+1(h))

= Gm+1
0 (λx.1)) � Hm+1(h)

where we have used Fact 3.7.

To show that G is k-bounded it is sufficient to consider h and x and to show

Gk h x v G|k| h x

and this amounts to

((Gk
0(λx.1) x) � (Hk h x)) v

⊔
i<k

(((Gi
0(λx.1) x) � (H i h x)))

17

If Gk
0(λx.1) x = 0 this is immediate. Otherwise (Gi

0(λx.1) x) = 1 for all
i < k (by (Gn

0 (λx.1))n being a decreasing chain) and it all amounts to

(Hk h x) v
⊔
i<k

(H i h x)

which follows from the assumption that H is k-bounded.

Proof of Lemma 3.11: This result was stated in [6] but no proof was
given and the proof sketched in [7] was somewhat indirect. Hence we give
the following direct proof.

Clearly H is additive because of the assumptions on g. Similarly δH is as
stated because of the assumptions on g. For the k-boundedness of H we first
show that

Hn(h) = g ◦ tuple(h ◦ gn1 , Hn−1(g2)) (1)

for n > O. The proof is by induction on n. The base case n = 1 is trivial so
consider the induction step n = m+ 1. We calculate

Hm+1(h) = g ◦ tuple(Hm(h) ◦ g1, g2)
= g ◦ tuple(g ◦ tuple(h ◦ gm1 , Hm−1(g2)) ◦ g1, g2)
= g ◦ tuple(g ◦ tuple(h ◦ gm1 ◦ g1, H

m−1(g2) ◦ g1), g2)
= g ◦ tuple(h ◦ gm+1

1 , g ◦ tuple(Hm−1(g2) ◦ g1, g2))
= g ◦ tuple(h ◦ gm+1

1 , Hm(g2)).

Next we define H ′ : (A×B → A×B)→ (A×B → A×B) by

H ′(h′) = h′ ◦ tuple(g1◦ fst , g ◦ tuple(g2◦ fst , snd))

and prove that

H ′n = h′ ◦ tuple(gn1 ◦ fst , g ◦ tuple(Hn−1(g2)◦ fst , snd)) (2)

for n > O. The proof is by induction on n. The base case n = 1 is trivial so
consider the induction step n = m+ 1. We calculate

18

H ′m+1(h′) = H ′m(h′) ◦ tuple(g1◦ fst , g ◦ tuple(g2◦ fst , snd))
= h′ ◦ tuple(gm1 ◦ fst , g ◦ tuple(Hm−1(g2)◦ fst , snd))
◦ tuple(g1◦ fst , g ◦ tuple(g2◦ fst , snd))

= h′ ◦ tuple(gm1 ◦ g1◦ fst , g ◦ tuple(Hm−1(g2) ◦ g1 ◦ fst, g ◦ tuple(g2◦ fst , snd)))
= h′ ◦ tuple(gm+1

1 ◦ fst , g ◦ tuple(g ◦ tuple(Hm−1(g2) ◦ g1◦ fst , g2◦ fst), snd))
= h′ ◦ tuple(gm+1

1 ◦ fst , g ◦ tuple(g ◦ tuple(Hm−1(g2) ◦ g1, g2)◦ fst , snd))
= h′ ◦ tuple(gm+1

1 ◦ fst , g ◦ tuple(Hm(g2)◦ fst , snd)).

Given h : A→ B define h : A×B → A×B by

ĥ(a, b) = (g(h(a), b), b0)

where b0 is the rigth identity for g. We shall then show that

(Hn(h)(a), b0) = H ′n(ĥ)(a, b0) (3)

for all a ∈ A and for n > 0. The base case n = 0 is trivial and when n > 0
we use (1) and (2) to calculate

H ′n(ĥ)(a, b0) = ĥ(gn1 (a), g(Hn−1(g2)(a), b0))

= ĥ(gn1 (a), Hn−1(g2)(a))
= (g(h(gn1 (a), Hn−1(g2)(a)), b0)
= (Hn(h)(a), b0).

To prove that H is k-bounded it is sufficient to prove for all h ∈ A→ B that

Hk h v
⊔
{Hn h | 0 ≤ n < k

and for this it suffices to prove for all a ∈ A that

(Hk h a, b0) v
⊔
{Hn h a, b0 | 0 ≤ n < k}.

Using (3) this may be refomulated to

H ′k ĥ (a, b0) v
⊔{H ′n ĥ (a, b0) | 0 ≤ n < k}.

But this follows because the assumptions and Corollary 3.3 show that H ′ is
k-bounded.

19

C Proofs from Section 4

Proof of Lemma 4.3:

It is convenient to abbreviate:

G = λh.
⊔
◦P(h ◦ g1) ◦ g0

To see that G is additive we calculate:

G(h1 t h2) =
⊔ ◦P((h1 t h2) ◦ g1) ◦ g0

=
⊔ ◦P(h1 ◦ g1 t h2) ◦ g1) ◦ g0

= ((
⊔ ◦P(h1 ◦ g1)) t (

⊔ ◦P(h2 ◦ g1))) ◦ g0

= (
⊔ ◦P(h1 ◦ g1) ◦ g0) t (

⊔ ◦P(h2 ◦ g1) ◦ g0

= G h1 tG h2

where we have used Fact 4.1.

Next we prove that

Gih =
⊔
◦P(h) ◦ (P(g1) ◦

⋃
◦P(g0))

i ◦ {||} (4)

for i ≥ 0. The proof is by induction on i. For i = O we have

⊔
◦P(h) ◦ {||} =

⊔
◦{||} ◦ h = h

where we have used Fact 4.1. This proves the base case. For the induction
step we calculate

20

Gi+1h = G(
⊔ ◦P(h) ◦ (P(g1) ◦

⋃P(g0))
i ◦ {||})

=
⊔ ◦P(

⊔ ◦P(h) ◦ (P(g1) ◦
⋃ ◦P(g0))

i ◦ {||} ◦ g1)g0

=
⊔ ◦P(

⊔
) ◦ P(P(h)) ◦ (P(P(g1)) ◦ P

⋃ ◦P(P(g0)))
i ◦ P{||} ◦ P(g1) ◦ g0

=
⊔ ◦⋃ ◦P(P(h)) ◦ (P(P(g1)) ◦ P

⋃ ◦P(P(g0)))
i ◦ P{||} ◦ P(g1) ◦ g0

=
⊔ ◦P(h) ◦ ⋃ ◦(P(P(g1)) ◦ P

⋃ ◦P(P(g0)))
i ◦ P{||} ◦ P(g1) ◦ g0

=
⊔ ◦P(h) ◦ (P(g1) ◦

⋃ ◦P(g0))
i ◦ ⋃ ◦P{||} ◦ P(g1) ◦ g0

=
⊔ ◦P(h) ◦ (P(g1) ◦

⋃ ◦P(g0))
i ◦ ⋃ ◦P(P(g1)) ◦ {||} ◦ g0

=
⊔ ◦P(h) ◦ (P(g1) ◦

⋃ ◦P(g0))
i ◦ P(g1) ◦

⋃ ◦P(g0) ◦ {||}
=

⊔ ◦P(h) ◦ (P(g1) ◦
⋃ ◦P(g0))

i ◦ P(g1) ◦
⋃ ◦P(g0) ◦ {||}

=
⊔ ◦P(h) ◦ (P(g1) ◦

⋃ ◦P(g0))
i+1 ◦ {||}

using Fact 4.1.

To prove that G is k-bounded for k = lensa(P(g1) ◦
⋃ ◦P(g0)) we have to

show that

Gkh v
⊔
{Gih | 0 ≤ i ≤ k

.

From the definition of lensa we have that

(P(g1) ◦
⋃
◦P(g0))

kY v
⋃
{(P(g1) ◦

⋃
◦P(g0))

iY | 0 ≤ i < k}

for all Y ∈ P(A). Thus for a ∈ A we have

Gkha =
⊔

(P(h)((P(g1) ◦
⋃ ◦P(g0))

k{a}))
v ⊔

(P(h)(
⋃{(P(g1) ◦

⋃ ◦P(g0))
i{a} | 0 ≤ i < k})

=
⊔

(
⋃{(P(h)((P(g1) ◦

⋃ ◦P(g0))
i{a}) | 0 ≤ i < k})

=
⊔

(
⊔

(P(h)((P(g1) ◦
⋃ ◦P(g0))

i{a})) | 0 ≤ i < k}
=

⊔{Giha | 0 ≤ i < k}

Here we have used that P(h) is additive for all h.

21

