
Verification of Temporal Properties
of

Concurrent Systems

Henrik Reif Andersen

Ph.D. thesis

Department of Computer Science
Aarhus University

Denmark

June 1993

2

Dansk Sammenfatning

Denne afhandling behandler metoder og algoritmer til verifikation af paral-
lelle systemer. Verifikationen af et system foretages ud fra en givet speci-
fikation, der udtaler sig om visse ønskelige aspekter, og en, muligvis ufuld-
stændig, beskrivelse af det parallelle system.

Specifikationer vil blive angivet i en kraftig modallogik - den modale
µ-kalkule - og parallelle systemer beskrives som processer fra en procesalge-
bra, der følger traditionen fra Milner’s CCS og Hoare’s CSP. Afhandlingen
tager udgangspunkt i en kompositionel metode, der, givet en specifikation
til en sammensat proces, dekomponerer denne til speficikationer om delpro-
cesser, s̊aledes at den oprindelige proces vi1 tilfredsstille sin specifikation, hvis
og kun hvis, delprocesserne tilfredsstiller deres delspecifikationer. En s̊adan
kompositionel metode bidrager til at kunne h̊andtere den store kompleksitet
som parallelle systemer ofte besidder.

Selvom den modale µ-kalkule er meget udtryksfuld, har den fra et prag-
matisk synspunkt nogle mangler, som vi vi1 forsøge at udbedre ved intro-
duktionen af en udvidet µ-kalkule, der, udover nogle yderligere logiske kon-
struktioner, som tillader nemmere formulering af egenskaber i logikken, ogs̊a
har en mulighed for kompakt repræsentation af specifikationer ved deling af
deludtryk gennem simultane fikspunkter. Fra en mindre observation i den
kompositionelle metode udnyttes denne mulighed for kompakte repræsenta-
tioner til at give effektive globale og lokale algoritmer til automatisk afgørelse
af om en endelig proces tilfredsstiller sin specifikation – et problem der
benævnes model-check. Den modale µ-kalkule f̊ar sin udtrykskraft fra til-
stedeværelsen af minimale og maksimale fikspunkter; effektiv beregning af
fikspunkter indg̊ar s̊aledes som en vigtig del af algoritmerne til modelcheck.

De centrale ideer med deling af værdier og opfølgning af ændringer brugt
i disse algoritmer er af en generel natur – en observation, der bliver brugt
til at give en algoritme for beregning af fikspunkter i endelige fuldstændige
partielle ordninger og gitre.

For uendelige tilstandssystemer er modelcheckproblemet generelt uafgør-
ligt, s̊a vi er nødt til betragte semi-automatiske eller brugerassisterede syste-
mer. Vi præsenterer en metode baseret p̊a angivelse af passende vel-funderede
ordninger for de minimale fikspunkter. Metoden er en slags målorienteret be-
vissystem: Startende med målet, en proces og en specifikation som processen
skal vises at tilfredsstille, konstrueres nye delmål ud fra et sæt af regler. Dette

3

kan gentages indtil alle delmål er trivielle. Metoden bevises at være sund og
fuldstændig.

Endelig præsesenteres en ny måde at angribe det åbne problem for µ-
kalkulen, der best̊ar i at finde en endelig aksiomatisering. Vi karakteriserer en
klasse af kategoriske modeller for en intuitionistisk version af kalkulen og re-
formulerer problemet som et problem om hvordan disse kategoriske modeller
kan skæres ned til mere traditionelle Kripke-agtige modeller.

I det konkluderende kapitel diskuteres kort kompleksiteten af automatisk
modelcheck og det vises at for selv en simpel klasse af processer er problemet
h̊ardt (‘PSPACE-hard’).

4

Abstract

This thesis is concerned with the verification of concurrent systems. It pro-
vides methods and techniques for reasoning about temporal properties as de-
scribed by assertions from an expressive modal logic – the modal µ-calculus.
It describes a compositional approach to verifying whether processes satisfy
assertions from the logic where processes are drawn from a process language
encompassing CCS, CSP and related process languages. This compositional
approach is based on the notion of a reduction which transforms a satis-
faction problem for a composite process into satisfaction problems for the
subcomponents.

Although the modal µ-calculus is very expressive from a theoretical point
of view, it leaves much to be desired in practical applications. Hence, we
introduce an extended version of the modal µ-calculus which is more conve-
nient for expressing properties. Among other things it allows for a compact
representation of assertions by simultaneous fixed-points. As a side-effect
it provides, using the compositional method, a means for constructing effi-
cient local and global model checkers for automatically deciding satisfaction
for finite-state processes. The central ideas of sharing values and tracing
dependencies that are used in these algorithms are of a general nature; an
observation which is exploited in giving a general fixed-point finding algo-
rithm for finite cpo’s and lattices.

For infinite-state systems a method based on supplying well-founded
orders for the minimum fixed-points is presented. The method has the char-
acter of a goal-oriented proof system: Starting with the goal of interest new
subgoals are produced by a set of rules. The method is proven sound and
complete.

Finally, we begin a new attack on the fundamental problem of finding a
finite axiomatization of the modal µ-calculus by giving categorical models of
an intuitionistic version of the calculus.

In the concluding chapter we briefly discuss the complexity of model
checking and prove the negative result that even for a simple class of finite
concurrent processes the problem is intractable, in the sense that the problem
is PSPACE-hard.

5

Acknowledgements

First of all I thank my supervisor Glynn Winskel who introduced me to
the subject and provided many inspiring discussions. Many other people
at DAIMI have influenced my work and I have had useful discussions with
numerous people, in paxticular Uffe Engberg. In Cambridge I would like to
thank Andrew Pitts for his efforts in teaching me about categorical logic; and
thanks also to all the other regular guests at the coffee mornings: Christine
Ernoult, Valeria de Paiva, Brian Graham, Monica Nesi, and others. At DIKU
I wish to thank Neil Jones, Fritz Henglein, Lars Ole Andersen and everybody
else in the TOPPS group for their kind hospitality.

Also thanks to all my office-mates: Søren Christensen, who also took
good care of me during my two Edinburgh visits, Torben Amtoft, Mike
Warner, Carsten Gomard, and Karoline Malmkjær.

Finally, thanks to Karen and Andrea for their support and for bearing
with my occasional frustrations.

This is a slightly revised version of the thesis as submitted. It takes
into account the changes suggested to me by the examiners, Mogens Nielsen,
Glynn Winskel and Colin Stirling. Special thanks are due to Colin for his
detailed comments and clarifying remarks on the history of the modal µ-
calculus which helped me improve chapter 4.

I have been financially supported by the Danish Natural Science Re-
search Council and by a travel grant from the Danish Research Academy.

6

Contents

1 Introduction 3

1.1 Verification of Concurrent Systems 3

1.2 Organization of the Thesis . 6

2 Logic and Models 9

2.1 Labelled Transition Systems 9

2.2 A Process Algebra . 10

2.2.1 CCS and OPA . 17

2.2.2 Static Processes . 20

2.3 The Modal µ-Calculus . 22

2.3.1 The Standard Calculus 24

2.3.2 The Extended Calculus 26

2.4 Simple Properties of the Logics and Models 32

2.4.1 Types of Actions . 32

2.4.2 Satisfaction . 34

2.5 Example: Deadlock . 35

2.6 Alternation Depth . 37

2.6.1 The Standard Calculus 38

2.6.2 The Extended Calculus 41

2.7 Relating the Standard and the Extended Caculus 42

2.8 Bibliographic Notes . 45

3 Compositional Checking of Satisfaction 49

3.1 Introduction . 50

8 CONTENTS

3.2 Reductions . 54

3.2.1 Prefix . 57

3.2.2 Nil . 59

3.2.3 Sum . 59

3.2.4 Relabelling . 60

3.2.5 Restriction . 61

3.2.6 Recursion . 61

3.3 Reduction for Product . 64

3.4 Example: A Researcher and a Coffee Vending Machine 66

3.5 Reductions for the Extended Calculus 69

3.6 Example: A Message Handling System 74

3.7 Algorithmic Aspects . 78

3.8 Bibliographic Notes . 82

4 Expressing Properties in the Logic 85

4.1 Motivation . 86

4.2 Basic Operators . 87

4.3 Equivalences and Preorders 91

4.4 General Temporal properties 96

4.4.1 A Linear Time Logic 96

4.4.2 Beyond CTL• . 104

4.5 Bibliographic Notes . 108

5 Model Checking in Finite-State Systems 111

5.1 Tansforming Satisfaction to Boolean Expressions 112

5.2 Relation to Other Model-Checking Algorithms 117

5.3 A Global Algorithm . 121

5.4 A Global Algorithm for Alternating Fixed-Points 124

5.5 Other Global Algorithms . 126

5.6 A Local Algorithm . 132

5.7 A Local Algorithm for Alternating Fixed-Points 138

5.7.1 A Mu-Component . 138

5.7.2 Connecting Two Components 142

CONTENTS 9

5.7.3 Extensions . 148

5.8 Implementational Aspects . 151

5.9 Model Checking the Extended Calculus 152

5.10 Some Applications: Equivalences and
Preorders Revisited . 156

5.11 Bibliographic Notes . 158

6 Computing Fixed-Points in Finite Cpo’s and Lattices 161

6.1 Summary . 161

6.2 Introduction . 162

6.3 Algorithm . 164

6.3.1 ‘Unknown’ Values . 165

6.3.2 The Local Algorithm 167

6.4 Example: Strictness Analysis 174

6.5 Example: Model Checking . 178

6.6 Example: Constraint Systems 181

6.7 Bibliographic Notes and Related Work 184

6.8 Further Work . 185

6.9 Acknowledgements . 186

7 Model Checking in Infinite-State Systems 187

7.1 Introduction . 187

7.2 Fixed-Points . 189

7.3 Logic . 191

7.4 The Model Checking Method 192

7.5 Examples . 195

7.6 Relation to the Tableau Method of Bradfield and Stirling . . . 200

7.7 Proofs of Soundness and Completeness 202

7.7.1 Soundness . 202

7.7.2 Completeness . 203

7.8 Conclusion . 206

8 Categorical Models for an Intuitionistic Modal µ-Calculus 209

CONTENTS 1

8.1 Introduction . 209

8.2 Logic . 210

8.3 Proofs . 217

8.3.1 Soundness . 217

8.3.2 Completeness . 218

8.4 Monotone Transition Systems 222

8.5 Adding Implication . 227

8.6 Conclusion . 228

9 Conclusion and Further Work 229

9.1 Compositionality . 229

9.2 Model-Checking Algorithms 231

9.3 Other Issues . 234

A Proofs of Theorems of Chapter 3 247

A.1 Proof of Rooting Lemma . 247

A.2 Proof of Reduction Lemma . 249

A.3 Proof of Reduction for Prefix 251

A.4 Proof of Reduction for Restriction 254

A.5 Proof of Reduction for Recursion 256

A.6 Proof of Reduction for Product 260

B Proofs of Theorems of Chapter 4 265

B.1 Adequacy for ω-Regular Expressions 265

B.2 Correctness of Embedding of CTL• 268

2 CONTENTS

Chapter 1

Introduction

In contrast to many other sciences, computer science has the advantage that
many aspects of programming and design of systems have such a formal
character that in principle it should be possible to prove – contrary to ex-
perimentally testing – that the design is correct. Hence, one of the major
challenges of computer science today is to find methods and techniques for
performing this formal reasoning. This thesis is a contribution in that field.
More precisely, it describes methods aimed at the verification of concurrent
systems.

1.1 Verification of Concurrent Systems

Concurrent systems have properties that are quite different from ordinary
sequential programs. Whereas aspects as input-output behaviour and ter-
mination is important properties of sequential programs, the emphasis in
concurrent systems is more on the communication patterns and interactions
between otherwise independent components. Termination is not necessarily
an essential feature; many concurrent systems are supposed to run indefi-
nitely as in for instance embedded systems, and it is their behaviour and
responses to various actions from their environment that is of interest. To
emphasize this point such systems are often referred to as reactive systems
(a term introduced by Pnueli).

We consider reactive systems as being described by terms in a process
language, which we shall refer to as WPA, designed in the spirit of CCS and

4 Introduction

CSP; in fact, CCS, CSP and other process algebras appear as sublanguages
of WPA. Labelled transition systems capturing the idea that a system has
state which changes by performing actions, are used as the basic model of
concurrent systems and used in giving an operational semantics of WPA.

The general idea to verification will be that only some aspects of the
implementation will be specified and reasoned about. Hence, we do not
consider the idea of giving a complete specification capturing all aspects of
interest and from this derive an implementation. What we present are various
techniques for partial verification, i.e. we can verify as many aspects as we
wish, but we do not require specifications to capture the implementation up
to equivalence.1

Reactive systems often have a very complex structure which make them
difficult to design and analyze. It is easy to make mistakes and it can be quite
hard to ensure that the design is free for undesired properties, like deadlocks
and in turn possess the desired properties. For sequential systems, Hoare
logic for instance offers a structured, compositional way of verifying a pro-
gram: Given a specification for the program to fulfill, it is possible to prove
this fact in a structured, compositional way by proving certain derived facts
about parts of the program. Hence, whereas compositional methods are con-
venient tools for sequential programs they seem to be essential for providing
structured ways of attacking the complexity of reactive systems. However,
no such successful method has yet been found. Recent years have shown
a growing interest in this problem and various approaches have emerged;
many with the idea of supplying heuristics, i.e. criterions that work in some
– not always well-characterized – situations, and fail in others. Instead of
contributing with yet another heuristic, we supply a general method based
on the notion of reductions that work for a well-defined subset of our process
language, and which besides being used in formal reasoning about concurrent
systems, will provide algorithms for constructing characteristic formulae for
behavioural relations and even efficient model-checking algorithms.

We present two specification languages: The modal µ-calculus as intro-
duced by Kozen (building on earlier work by Pratt) which we shall refer to as
the standard calculus and an enriched extended calculus. The standard calcu-
lus has the big advantage of being extremely simple in terms of the number of

1Although the specification language will turn out to be strong enough to express
equivalences and preorders and hence allow complete verification, this is merely a benefit
of the generality of the specification language, not a motivating goal.

1.1 Verification of Concurrent Systems 5

logical connectives; thereby making it well-suited to theoretical investigations
into issues as logical expressiveness, decidability, axiomatizations and so on.
We will use the standard calculus as the core of the compositional method,
the algorithms, and the proof system for infinite-state systems for precisely
these reasons of economy. The central points of all the techniques will be
illustrated from the basic constructions of the standard calculus, without
much emphasize on the – from a modal logic point of view – rather trivial
extensions present in the extended calculus.

However, when we turn to the practical applications of the results to
even small examples the standard calculus has some shortcomings, especially
as concerns the treatment of actions, the basic computational steps of our
systems, which are simply viewed as ‘simple-minded constants’ which has
no other properties than their different identities. To remedy this, from
a pragmatic point of view, unfortunate situation we extend the standard
calculus with a first-order predicate logic on actions and allow simultaneous
fixed-points. The extension of the compositional method to this full, richer
logic will be given without the same level of details in the proofs as for the
standard calculus; this sloppiness being justified by arguments showing why
such extensions to a large degree are rather immediate.

Moreover, for properly well-behaved sub-logics of the extended calculus
the model checking algorithms from the standard calculus will be adapted,
yielding algorithms for automatically verifying a very large class of properties
of concurrent systems including equivalences and even rather exotic preorders
with quite a reasonable level of efficiency.

The extended calculus is getting very close to what one reasonably could
call a realistic specification language. An analogy with the functional pro-
gramming community viewing the standard calculus as the lambda calculus
and the extended calculus as a full functional programming language with
built-in operators and basic constants is tempting; the lambda calculus has
all the expressive power one needs still being an extremely small language
making it well-suited for theoretical investigations, whereas for practical pro-
gramming it leaves much to be desired. Similarly, the standard calculus
is suitable for theoretical considerations, but for practical purposes the ex-
tended calculus offers a more convenient language.

The modal µ-calculus gets its expressiveness from the presence of min-
imum and maximum fixed-points. Besides the important implications for
expressiveness the combination of modal operators and fixed-points poses a

6 Introduction

lot of interesting theoretical questions, which have received much attention
during the last decade. The logic has been shown to be decidable and it has
the finite model property, but it is still open whether a finite axiomatization
exists and whether the hierarchy one gets from the nesting of minimum and
maximum fixed-points is strict.

Even more effort has been put into the more pragmatic aspects of decid-
ing satisfiability – called model checking – due to its immediate application
as giving a means for determining that processes satisfy their specifications.
This thesis is mostly concerned with the pragmatic aspects relating to the
model checking problem, but we also take a little detour into the more the-
oretical problems.

In fact, the distinction between theoretical and pragmatic aspects is
somewhat misleading. Actually, all the classical questions asked for a logic
has an immediate application to program verification: Decidability of the
logic corresponds to the ability to determine implications between specifica-
tions and the ability to detect trivial (always true) and inconsistent (always
false) specifications. Deciding satisfiability corresponds to verifying that pro-
cesses meet their specifications. The finite model property means that sat-
isfiable assertions always have a finite implementation. An axiomatization
gives a calculus for reasoning about specifications, and so on.

1.2 Organization of the Thesis

Chapter 2 introduces the process language and the logics. It provides back-
ground material for the rest of the thesis.

The first method we consider is a compositional method in chapter 3.
It describes how properties of a compound process can be showed valid by
considering derived properties of subprocesses. The method is applied on a
couple of examples and partially generalized to the extended calculus.

Chapter 4 provides a useful collection of derived assertions, called ‘macros’,
and shows how the extended calculus can be used for expressing preorders
and equivalences, facilitating through the compositional method the imme-
diate generation of characteristic formulae.

Based on an idea from the compositional method we will describe vari-
ous algorithms in chapter 5 for automatically determining whether a process
with a finite number of states satisfy a specification; some of these algorithms

1.2 Organization of the Thesis 7

will turn out to be more efficient than previous algorithms. Central to these
algorithms are efficient ways of computing fixed-points, and one of the algo-
rithms is in chapter 6 generalized to solve fixed-point problems in arbitrary
finite cpo’s and lattices.

This will be followed up by a technique for reasoning about infinite-state
systems in chapter 7. In general model checking is undecidable for infinite-
state systems, so we have to resort to semi-automatic methods. We provide
a complete proof system presented as set of rewrite rules.

In chapter 8 we approach the open problem of finding a finite axiom-
atization for the modal µ-calculus by supplying categorical models for an
intuitionistic version of the logic. These models offer another way of at-
tacking the problem: They can easily be shown to be complete for the given
axiomatization. Hence, finding a proper way of extracting Kripke-like models
from the categorical models would then solve the original problem.

Finally, in chapter 9 we draw some conclusions and point to future work.
We discuss briefly the complexity of model checking and show that it is prov-
ably intractable in general.

Chapter 3 is joint work with Glynn Winskel, chapter 8 is joint work with
Andrew Pitts, and the complexity analysis in chapter 9 have been inspired
by discussions with Neil Jones. Various parts of the thesis have appeared
elsewhere: An earlier version of chapter 3 appeared as Andersen and Winskel
[7] (and an extended abstract as Andersen and Winskel [8]). Chapter 5 is a
major revision of [6] and [4]. Chapter 6 is based on [5].

8 Introduction

Chapter 2

Logic and Models

In this chapter we introduce the modal µ-calculus as the language of specifica-
tions and labelled transition systems as the underlying models of concurrent
systems. We describe a language of processes, the process algebra WPA (for
Winskel’s Process Algebra, see Winskel [91]), which through an operational
semantics gives rise to the models of the logic: labelled transition systems.
The process language WPA has operators for constructing and combining
processes familiar from the work on CCS and CSP and the parallel compo-
sitions from both of these languages will appear as derived forms of a more
general product construction.

The modal µ-calculus will be extended in several ways for pragmatic and
technical reasons allowing for easier and more concise formulations of prop-
erties. One such important extension is the ability to express simultaneous
fixed-points allowing for sharing of subassertions and thereby more compact
representations of assertions, a feature that will play a crucial role for the
efficiency of the model-checking algorithms.

2.1 Labelled Transition Systems

Labelled transition systems are formally defined as follows.

Definition 2.1 A labelled transition system T is a triple (S, L,→), where

S is a set of states,
L is a set of labels, and

10 Logic and Models

→⊆ S × L × S is a transition relation.

We normally write s
a→ s′ for (s, a, s′) ∈→, and

a→ for the relation {(s, s′) |
s

a→ s′}.
The set Rp of reachable states from p of a labelled transition system

T = (S, L,→) is the least subset of S containing p and closed under →.
Whenever confusion might arise we use superscript T as in RT

p to indicate the

transition system under consideration. We will write s
a→ as an abbreviation

for the predicate ∃s′. s
a→ s′ and s

/a→ as an abbreviation for ¬(s
a→).

A pointed transition system T is a quadruple (S, i, L,→) where (S, L,→)
is a labelled transition system, i ∈ S is a distinguished initial state, and all
states of S are reachable from i, i.e. Ri = S.

The size of a finite transition system T = (S, L,→) is defined by |T | =
|S|+ | → | where |S| is the number of states in S and | → | is the number of
transitions in →. ✷

Sometimes we will be a bit sloppy in our use of the notions and refer to
pointed transition systems as labelled transition systems, merely using the
term “pointed” when needed for emphasizing the presence of an initial state.
If s

a→ s′ we refer to s′ as a (direct) a-successor of s and to s as a (direct)
a-predecessor of s′.

When using labelled transition systems in the description of concurrent
systems the labels are interpreted as actions which can take place in the
system, and the system is considered as being in one particular state at any
given time, changing states by performing actions in accordance with the
transition relation. Notice, that the transition relation can be completely
arbitrary, hence in general it will be non-deterministic (states can have more
than one a-successor for some label a), cyclic, and partial (not every state
has an a-successor for all labels a).

The non-deterministic features are crucial since in concurrent systems
parallelism is in a certain – precise – sense reduced to non-deterministic
interleaving of actions, as we shall see in the next section.

2.2 A Process Algebra

The language of processes we are just about to introduce is in spirit very
close to Milner’s CCS [59, 58] and Hoare’s CSP [42], but the operators will be

2.2 A Process Algebra 11

slightly refined such that parallel composition as known from these languages
will be derived from a product, a restriction, and a relabelling operation much
like Winskel’s synchronization algebras [88] – a general scheme for defining
parallel compositions. The reason for refining the operators is purely techni-
cal1; it makes some of the results about the compositional method easier to
state and prove and it makes the results very general as many of the parallel
operators considered in the process algebraic literature will be covered (actu-
ally, all that can be described by a synchronization algebra). Moreover, the
product will turn out to be very useful in chapter 4 for stating some, perhaps
surprising applications of the compositional method and the model-checking
algorithms.

Assume we have given a set of basic actions Act which play the role of
being the primitive (atomic) actions that a process can perform. Moreover,
we assume that we have given a set of state identifiers (or state names) Nam.
The process terms t of WPA are constructed from the following grammar:

t ::= nil | a.t | t0 + t1 | t0 × t1 | t � Λ | t{Ξ} | rec P.t | P (WPA)

where P ranges over Nam.

Nil is the inactive process , and a.t is the prefix operator, where a is a
basic action. We often leave out nil and write e.g. a.nil + b.nil as a + b.
The term t0 + t1 is the non-deterministic choice operation (also called sum)
known from CCS. The product term t0 × t1 denotes a very general kind of
parallel composition which allows the components t0 and t1 to proceed both
synchronously and asynchronously. It is neither commutative nor associative.
The precise semantics will be defined below.

A state identifier P in the body of rec P.t works as a recursion point,
and in effect will behave as the normal recursion in CCS: A term rec P.t has
the same behaviour as the unfolded term t[rec P.t/P], where by t[rec P.t/P]
we denote the result of substituting rec P.t for all free occurrences of P in
t - we are applying the usual notion of free and bound occurrences to state
identifiers, so that P will be bound in rec P.t but free in P + nil.2

From the basic actions Act we define a set of composite actions Act∗ as
follows. Let ∗ be a distinguished symbol not contained in Act. The symbol ∗

1In fact the operators have a categorical justification, see e.g. Winskel [91].
2Substitution is defined by renaming bound variables – α-conversion in lambda-calculus

terms – such that unintended binding of free variables of t is avoided.

12 Logic and Models

Figure 2.1: Operational rules.

is called the idling action and interpreted as ‘no action’. Define Act∗ to be the
least set including Act∪ {∗} and such that α, β ∈ Act∗ implies α× β ∈ Act∗
taking ∗ × ∗ = ∗. Processes constructed from the product operator will
perform such composite actions.

In the restriction t � Λ, Λ is a subset of Act∗ restricting the actions of t
to those in Λ. In the relabelling t{Ξ}, Ξ : Act∗ ⇀ Act∗ is a partial function,
such that ∗ is not in the domain of Ξ. A relabelling map is extended to a
total function on Act∗ by taking it to be the identity outside the domain of
definition, and when referring to Ξ in for instance operational rules we are
always referring to this total extension of Ξ.

The semantics of processes will be given in an operational fashion as
a labelled transition system T = (ProcWPA, Act∗,→) where ProcWPA is
the set of process terms of WPA and → is defined inductively as the least
relation satisfying the rules of figure 2.1. There are no rules for nil and the
state identifiers since they cannot perform any actions.

Note in particular the rule for product. One of the components in the
product may idle by means of the idling action ∗ allowing the other compo-
nent to proceed independently, as in the transition

p × q
a×∗→ p′ × q

where the left component p performs an a-action and the right component
idles.

The operational rules for the operators of restriction, relabelling, and

2.2 A Process Algebra 13

product all have the same property of keeping the operators in the term
after an action takes place and we use the CCS terminology of calling these
static operators. Contrary to this the operators of prefix, sum, and recursion
are removed (or for recursion also added) when an action takes place and
they are called dynamic operators. We consider nil to be a dynamic operator
(it is an ‘empty sum’) but we could just as well have classified it as being
static (it is not removed by actions being performed).

The rather huge transition system T which we will refer to as the univer-
sal transition system describes the behaviour of all processes of our language:
For a particular process p the operational behaviour is found by viewing p
as a state of T and look at the transitions from p to other processes and
so on. This suggests another way of associating a transition system to a
process: Restrict attention to the states reachable from p. We will refer to
this sub-system of T , consisting of the states RTp and the relevant part of
the transition relation, as the transition system induced by p and hence it is
pointed by p. When we are going to verify properties of processes, it is this
more local view of the semantics that is going to be important.

Remark 2.1 Care should be taken not to confuse the state identifiers P
with process variables as used in e.g. CCS, where the states of the transition
system giving the operational semantics is taken to be the closed process
terms only and not all terms as done here for WPA . In many respects the
state identifiers do work as process variables, but we prefer to view them
as named states, since in the compositional method we will need to refer to
these states by assertions P̂ true only at the particular state P , which seems
more natural for state identifiers than for variables. ✷

To avoid extensive use of parentheses we assume that the operators bind
with decreasing strength as follows: restriction, relabelling, prefix, product,
sum, and recursion. I.e. restriction binds tightest and rec reaches ‘as far to
the right as possible.’ E.g.

rec P.a.P + b.Q � Λ × P = rec P.((a.P) + ((b.(Q � Λ)) × P)).

For later reference we define:

Definition 2.2 A state identifier P is guarded in t if all occurrences of P are
within the scope of a prefix, P is strongly guarded in t if P in all occurrences
appears immediately under a prefix. A term t is (strongly) guarded if all

14 Logic and Models

state identifiers are (strongly) guarded in t. ✷

The process language just defined is very powerful computationally; in
fact it has the full strength of a Turing machine. The easiest way to see this,
is by using the embedding of CCS into the process language given in the next
section, and refer to the proof of Turing strength of CCS outlined by Milner
[59, sec. 6.1]. Milner’s result is based on the ability to express unbound-
edly evolving structures, i.e. systems which can get arbitrarily large, storing
unbounded amounts of information. Technically, this is achieved through
applying recursion across parallel composition, exemplified by the process

p = rec P.b.nil ||| a.P

where
q ||| r = (q × r) � Λ{Ξ}

Λ = {a × ∗, ∗ × a | a ∈ Act}

Ξ(x) =

{
a if x ≡ a × ∗ or x ≡ ∗ × a
undefined otherwise

with the infinite transition system of figure 2.2. Notice, that we always leave
out the idling actions from our diagrams. The process p mimics a simple
stack; a being “push” and b being “pop.”

Figure 2.2: An infinite transition system.

Sometimes we will be concerned with restricting attention to processes
with an associated finite labelled transition system. Determining precisely
when a process gives rise to a finite state system is undecidable, so approxi-
mate criteria are needed.3 Various syntactically or semantically based criteria

3Using the Turing power of the language it is not hard to code up some of the undecid-
able problems of Turing machines as questions of finiteness of transition systems induced
by process terms. In fact we claim that the encoding can be chosen in such a way that
termination of a Turing machine on the empty tape will directly correspond to finiteness
of the transition system of the encoding. Alternatively, Taubner [83] could be consulted
for a proof of the fact. See also the discussion in chapter 9.

2.2 A Process Algebra 15

could be put forward (see e.g. Taubner [83]), we, however, stick to the fol-
lowing simple syntactic criterion.

Definition 2.3 A process term t is said to be finitary if

(i) No subexpression p × q, p{Ξ}, or p � Λ of t contains a free state identifier.
(ii) All state identifiers of t are strongly guarded.

✷

We can now state the following proposition:

Proposition 2.1 Any finitary process term t induces a finite transition sys-
tem.

In order to prove the proposition we need a little lemma about guarded
recursion:

Lemma 2.1 If P is guarded in the process term q, then

q[rec P.t/P]
a→ r implies ∃r′.q

a→ r′ & r′[rec P.t/P] ≡ r

Proof: Structural induction on q. ✷

Proof (Proposition 2.1): For all terms t define the set of terms Dt in-
ductively as follows:

Dnil = {nil} Da.t = {a.t} ∪ Dt

Dt0+t1 = {t0 + t1} ∪ Dt0 ∪ Dt1 Dt0×t1 = Dt0 × Dt1

Dt Λ = Dt � Λ Dt{Ξ} = Dt{Ξ}
Drec P.t = {rec P.t} ∪ Dt[rec P.t/P] DP = {P}

where the operators of the process algebra when applied on the right-hand
side denote their pointwise extensions to sets, and Dt[rec P.t/P] is the result
of substituting rec P.t for P in all terms in Dt.

It is obvious that Dt is finite for any t. It can now be shown by structural
induction on t that for any t satisfying (i) and (ii) of definition 2.3,

Rt ⊆ Dt (2.1)

16 Logic and Models

i.e. the set of states reachable from t is contained in Dt and hence finite.

The difficult case is the recursion operator, where the following obser-
vation is needed: Assume t ≡ rec P.q. If P /∈ Rq then it is not hard to see
from the induction hypothesis that Rrec P.q ⊆ Rq ∪ {rec P.q} ⊆ Dq ∪ {rec
P.q} = Drec P.q. If P ∈ Rq then we prove ∀n ∈ ω.Q(n) by mathematical
induction on n, where

Q(n) ⇔def ∀a1, . . . , an.t
a1→ a2→ . . .

an→ t′ ⇒
∃q′.t′ ≡ q′[rec P.q/P] & q′ ∈ Rq. (2.2)

This means, in words, that any state reachable from t must be constructed
by simply substituting rec P.q for P in a state q′ reachable from the subterm
q. The motivation of conditions (i) and (ii) of definition 2.3 are precisely to
make this true.

The base case, Q(0) is immediate since t ≡ rec P.q; simply take q′ ≡ P .
For the inductive step, assume Q(n) and suppose

t′
a→ t′′,

where t′ ≡ q′[rec P.q/P] and q′ ∈ Rq. If P is guarded in q′ then Q(n + 1)
follows by lemma 2.1. If P is unguarded in q′ then we will argue that q′ ≡ P ,
from which we conclude the following steps:

t′ ≡ P [rec P.q/P] ≡ rec P.q & t′
a→ t′′

⇒ q[rec P.q/P]
a→ t′′

as the only rule for rec is the unfolding rule

⇒ ∃t′′′.q
a→ t′′′ & t′′′[rec P.q/P] ≡ t′′

by lemma 2.1 as P is guarded in q

Now, why is q′ ≡ P if P is unguarded in q′? We will not give a formal
proof but argue intuitively. As we assume that P is strongly guarded in q,
P cannot appear as P + r or rec Q.P in q′, in fact the only way P could be
unguided in a successor to q without being P is if P appeared inside one of
the static operators (×, �, {}) and it should then have appeared inside this
operator in q (or have entered there by some recursion) which is excluded by
condition (i) of definition 2.3. ✷

A very simple example which does not satisfy the criteria of the propo-
sition is

2.2 A Process Algebra 17

P =def rec P.a.P{Ξ},

where Ξ(a) = b. The process p induces an infinite transition system, although
it should be obvious that p is semantically identical to the transition system
pointed by q (figure 2.3). This example would benefit greatly from using some
simple equivalences between states to generate an equivalent finite-state rep-
resentation (by allowing composition of relabellings), but as already noted we
will not get involved with this ingenious task of finding finite representations
of essentially finite but syntactically infinite transition systems. Taubner [83]
and Francesco and Inverardi [40] should be consulted for a discussion of this.

Figure 2.3: An infinite transition system with a simple finite representation.

Presently the actions that can be ‘observed’ from a process through the
induced transition system has a certain inhomogeneous nature: They can be
composite actions in all kinds of variations, e.g. a, a×∗, (a×b)×∗. Later, we
will bring more “order” into this by enforcing a simple type discipline, which
will make all actions from one particular process be of the same homogeneous
type, i.e. either only basic actions, or only products of basic actions, or
products of products of basic actions etc. The next section will show two
notable examples of sublanguages possessing such homogeneous types: CCS
and a process algebra used by Winskel [95] which is very much like CCS
except that synchronizations are visible. For ease of reference we call it OPA
for ‘Observable synchronizations Process Algebra.’

2.2.1 CCS and OPA

In this section we will show how two familiar process algebras can be embed-
ded into our process algebra; no attempt is made to explain the intuitions
behind the various operators that are given, for such arguments the inter-
ested reader is referred to Milner [59]. Instead we simply describe how the
operators of these process algebras can be found as derived operators inside

18 Logic and Models

our process algebra, making all the results in the thesis applicable for at least
any one of these algebras.

CCS

For CCS we assume that the set of basic actions is divided into a set of names
A, a set of co-names A, and a silent action τ not in A or A (τ is not to be
confused with ∗, τ is an action without identity, ∗ is ‘no action’). Elements
of A play the role of input actions and elements of A play the role of output
actions . We assume that there is a bijection ¯ : A → A the inverse of which
we also denote by ,̄ hence a = a.

Now, CCS with finite summation is embedded into WPA by defining
the CCS-operations of restriction p\L, relabelling p[f], and parallel compo-
sition | as in figure 2.4 and taking as process terms ProcCCS the set of terms
which are generated from the subset of WPA given by excluding restriction,
relabelling, and product, and including the derived CCS-operations of re-
striction, relabelling, and parallel composition. I.e. ProcCCS is the set of
terms constructed from the grammar:

Figure 2.4: CCS with finite summation embedded into WPA.

2.2 A Process Algebra 19

t ::= nil | a.t | t0 + t1 | t0 | t1 | t\L | t[f] | rec P.t | P (CCS)

The semantics of CCS terms is given as the subset TCCS of the universal
transition system T induced by the process terms ProcCCS.

OPA

To encode OPA we assume that the set of basic actions is partitioned into
a set of neutral actions A, a set of input actions {a? | a ∈ A}, and a set
of output actions {a! | a ∈ A}. The neutral actions is to be considered
as names of channels along which communication takes place. Contrary to
CCS the communication taking place will be visible since synchronization
on a channel a will give rise to the neutral action a being observed. The
set of processes ProcOPA of OPA is constructed from our process algebra
by excluding product and including the derived OPA parallel composition
‖ and restricting the restricting sets to subsets of Act and the relabelling
functions to partial functions on Act. I.e. OPA processes are generated from
the grammar:

t ::= nil | a.t | t0 + t1 | t0 ‖ t1 | t � Λ | t{Ξ} | rec P.t | P (OPA)

The constructions are summarized in figure 2.5.

Now, CCS and OPA have the property that all actions taking place will
be basic actions, hence no composite actions can be observed from such a
process.

Proposition 2.2 Let p be a process term in ProcCCS (or ProcOPA). Then
Rp ⊆ ProcCCS (or Rp ⊆ ProcOPA) and for all p′ ∈ Rp,

p′
a→ ⇒ a ∈ Act ∪ {∗}.

Proof: Prove p
a→ p′ ⇒ p′ ∈ ProcCCS & a ∈ Act ∪ {∗} for all p ∈ ProcCCS

by a simple induction on derivations of transition steps. Similarly for OPA.
✷

As CCS and OPA are embedded into WPA by simply providing abbrevi-
ations for the operators, we can freely mix operators from the two languages
with operators from WPA without any semantic confusion. We will make
use of this in the examples, although we mainly use just OPA.

20 Logic and Models

Figure 2.5: OPA embedded into our process algebra.

2.2.2 Static Processes

When considering finite-state processes, i.e. processes which induces finite
transition systems, a certain canonical form which we will call static processes
are often used:

Definition 2.4 A regular process is a process constructed entirely from the
dynamic operators, i.e. from

nil, a.t, t0 + t1, rec P.t, and P ,

such that P is always strongly guarded. Hence, excluded are the static
operators of restriction, relabelling, and product. A static process p of order
n is a process

p ≡ op(p1, p2, . . . , pn)

where for 1 ≤ i ≤ n, pi is a regular process, and op is any ‘parallel’ operator
generated from the static operators. ✷

2.2 A Process Algebra 21

Figure 2.6: The process S = ((a!rec P.b!c?d?P) ‖ (a?rec Q.b?Q) ‖ c!(d!+d!rec
R.b?R)) � A. A state of the static process S corresponds to a state of each of
the three subprocesses. An example is indicated by the small arrow heads.

The parallel operators of CCS and OPA provide examples of operators yield-
ing static processes, for example for CCS:

(p1|p2| . . . |pn) � Λ

We use the term static because of the role of the static operators and
because the number of parallel processes in such a system is fixed to n.
Moreover, a static process is always finite-state as can be seen by applying
proposition 2.1. From a pragmatic point of view static processes have a
number of nice properties that make them interesting:

• The size of the transition system induced by a static process can be
exponentially bigger than the description as a process term making
them well-suited for showing lower bound complexity results. We will
later in chapter 9 see an example of this.

• They have a simple graphical representation resembling flow graphs,
see figure 2.6.

• They provide simple, generic examples of parallel systems. Any method
or algorithm hoping to perform well on all terms of the process algebra,
should at least perform well on static processes, so they provide test
examples.

Actually, many of the finite-state examples used in the literature fall into the
category of static processes.

22 Logic and Models

Remark 2.2 (Simultaneously defined processes.) Instead of the recursion
operator we are using, it is common to define recursive processes by a set of
simultaneous equations

P1 = t1

Σ :
...

Pn = tn

where the free process identifiers on the right-hand side are among {P1, . . . , Pn}.
Now, given such a system Σ, the following operational rule is added, allowing
state identifiers to be unfolded

t
a→Σ t′

P
a→Σ t′

(P = t) ∈ Σ

The same effect can be achieved with the recursion operator by constructing
a process term PΣ for each P only involving the recursion operator. This
can be done as follows:

PΣ =

{
rec P.(tΣ\(P=t)) if (P = t) ∈ Σ
P otherwise

(a.t)Σ = a.(tΣ) (t0 + t1)
Σ = tΣ0 + tΣ1

(t0 × t1)
Σ = tΣ0 × tΣ1 (t � Λ)Σ = (tΣ) � Λ

(t{Ξ})Σ = (tΣ){Ξ}

Now, it is not hard to see that any term t interpreted with respect to Σ will
have the same behaviour as the translation tΣ, although the names of the
states will be different and the translated term can generate bigger transition
systems. (See e.g. Milner [59, sec. 2.9].) In view of this close relationship we
often use the equational formulation in examples, but base our theoretical
considerations on the recursion operator. ✷

2.3 The Modal µ-Calculus

As mentioned in the introduction Kozen’s (propositional) modal µ-calculus,
often referred to as µK, has expressive power subsuming many modal and

2.3 The Modal µ-Calculus 23

temporal logics when expressiveness is measured as the ability to express
subsets of states of transition systems. To be more precise, when considering
logics over labelled transition systems, we will say that a logic L is more
expressive than a logic M if for every assertion A of L there exists an assertion
AM of M such that for all labelled transition systems T ,

[[A]]LT = [[AM]]MT

where [[A]]LT is the set of states of T satisfying A and similarly for [[AM]]MT .
With this definition of expressiveness it has been shown that µK is more
expressive than for instance propositional dynamic logic PDL, computation
tree logic CTL, and the extensions of CTL called CTL∗ and ECTL.

However, the proofs of these results will in general require very big as-
sertions in µK and says nothing about the ability to concisely – in terms
of size – express properties. Actually, it seems that for certain properties,
CTL∗ for instance provides much smaller assertions than µK – on the other
hand some assertions of µK are not even expressible in CTL∗! (We consider
the relationship between CTL∗ and µK in more detail in section 4.4.1.)

For automatic verification methods using model checking as described in
chapter 5, efficiency is a central issue and as the size of the assertions under
consideration gives a significant contribution to the overall complexities of
the model checking algorithms, it is of main concern to keep assertions small.
We will also be faced with these problems in chapter 3 since the compositional
method based on reductions has a tendency to generate large assertions.

For these reasons we define, after the description of Kozen’s calculus
which we will refer to as the standard calculus , an extended calculus which
provides compact assertions by two means:

• by allowing simultaneous fixed-points, and

• by having a first-order predicate logic on actions.

The quantification present in the first-order predicate logic on actions adds
to the expressiveness in a very convenient way: We can express infinite dis-
junctions over all basic actions as a finite assertion. But first we look at the
standard calculus.

24 Logic and Models

2.3.1 The Standard Calculus

Assertions A in the standard calculus referred to as µK, is generated from
the grammar

A ::= F | ¬A | A0 ∨ A1 | 〈a〉A | X | µX.A

where a is an action in Act. The variable X ranges over a set of assertion
variables AssnVar, and the usual notion of free and bound variables will
be used with µX.A as a binding occurrence of X. The minimum fixed-
point assertions µX.A are formed subject to the well-formedness criterion of
syntactic monotonicity , that is, any free occurrence of X in A is under an
even number of negations. Using the negation we can dualize every operator
to get some very common abbreviations:

T = ¬F A0 ∧ A1 = ¬(¬A0 ∨ ¬A1)
[a]A = ¬〈a〉¬A νX.A = ¬µX.¬A[¬X/X],

where A in νX.A must be syntactic monotone in X, and A[B/X] denotes
substitution. Notice, that requiring syntactic monotonicity of A also en-
sures syntactic monotonicity of ¬A[¬X/X]. The modalities 〈a〉 and [a] (pro-
nounced diamond-a respectively box-a) gives the logic its ability to express
progress, 〈a〉A will hold at states which has an a-successor satisfying A and
[a]A will hold at states with the property that all a-successors satisfy A.

The semantics will be given relative to a transition system T as a map
[[]]T taking each assertion to a set of states of T , i.e. to an element of the
powerset P(S) where S is the states of T .

However, due to the possibility of free variables the interpretation of
assertions will be given relative to an environment ρ assigning a subset of S
to each variable of AssnVar. We will use ρ[U/X] to denote the environment
which is like ρ except that X is mapped to U . The interpretation of A
denoted [[A]]T ρ is defined inductively on the structure of A as follows (we
leave out subscript T for brevity):

[[F]]ρ = ∅
[[A0 ∨ A1]]ρ = [[A0]]ρ ∪ [[A1]]ρ

[[〈a〉A]]ρ = {s ∈ S | ∃s′ ∈ S. s
a→ s′ & s′ ∈ [[A]]ρ}

[[X]]ρ = ρ(X)

[[µX.A]]ρ = µψ where ψ : U �→ [[A]]ρ[U/X]

2.3 The Modal µ-Calculus 25

The semantics of minimum fixed points is based on Tarski’s theorem:

Theorem 2.1 (Tarski [82]) Let (D,≤) be a complete lattice and ψ :
D → D a monotonic function on D. Then ψ has a minimum fixed-point µψ
given by

µψ =
∧

{x ∈ D | ψ(x) ≤ x}

and a maximum fixed-point νψ given by

νψ =
∨

{x ∈ D | x ≤ ψ(x)}

Often an element x with the property ψ(x) ≤ x is called a pre-fixed point of
ψ. Since in particular a fixed-point like µψ is a pre-fixed point, µψ is the
least pre-fixed point of ψ. Similarly, an element x with x ≤ ψ(x) is called a
post-fixed point of ψ and νψ is the largest post-fixed point of ψ.4

Now, due to the syntactic monotonicity condition it is not hard to see
that the map ψ used in the semantic clause for µX.A is monotonic on
(P(S),⊆) and Tarski’s theorem can be applied to give a minimum fixed-
point µψ.

Figure 2.7: Derived semantic clauses.

For convenience of reference we give the derived semantic clauses for the dual
operators in figure 2.7. In section 2.5 we will try to provide a little intuition
about what can be expressed with the fixed-points by giving some simple
examples, but first we turn to the extended calculus.

4There is no consensus in the literature to whether this is the right way around to define
pre- and post-fixed points. Many authors including Milner [59, p. 104] and authors from
the area of abstract interpretation use the opposite meaning of pre- and post-fixed points.
Here we are following Plotkin [71], Gunter [41], and Winskel [95]. Curiously enough, in the
algorithmics community, completely different notions are used; ψ is said to be inflationary
(respectively deflationary) on x if x is a post-fixed point (respectively pre-fixed point) of
ψ, cf. Cai and Paige [20, p. 202].

26 Logic and Models

2.3.2 The Extended Calculus

In the extended calculus, referred to as µKext, we allow action variables taken
from an infinite set ActVar and ranged over by α, β, Using basic actions
and action variables composite action expressions can now be generated from
the grammar

γ ::= ∗ | a | α | γ0 × γ1

where a ranges over basic actions Act. Given an action variable environment

φ : ActV ar → Act ∪ {∗}

any composite action expression can now be taken to denote a composite
action in Act∗ by substituting φ(α) for action variable α. Let [[γ]]φ denote
the result of performing this substitution on γ.

Assertions in the extended calculus is generated from the following gram-
mar:

A ::= Q | ¬A | A0 ∨ A1 | 〈γ〉A | ∃α.A | ψ(γ) | X | -P 1

where
→n

P is an n-ary product of assertions, possibly with where-clauses,

→n

P ::=
→n

A | →n

A whereµ

→m

X =
→m

P,

where we have used the notation
→n

A as an abbreviation for the n-tuple

(A1, . . . , An) and
→m

X for the m-tuple (X1, . . . , Xm). When obvious from

context or irrelevant we often leave out the arity and simply write -A and

-X. We again require that in a whereµ-clause
→m

P is syntactic monotone in

→m

X .

To avoid too extensive use of parentheses we assume that the operators
bind with decreasing strength as follows: ¬, 〈γ〉,∨,∃α, whereµ.

Several new constructions have been added.

2.3 The Modal µ-Calculus 27

Constants. The assertion Q is a constant assertion (sometimes called basic
or atomic assertion) ranging over a set of constants Const. These con-
stants are supposed to denote simple properties that are not definable
directly in the µ-calculus. In order to give semantics of constants, we
must assume that we have given a valuation V : Const → P(S) rela-
tive to the set of states S of the transition system under consideration.
In particular we will assume the presence of a universal valuation V of
T .

Quantification on actions and action predicates. The assertion ∃α.A
is an existential quantification over all basic actions and the idling ac-
tion. The action predicates ψ will include action tests α = a and mem-
bership tests α ∈ Λ for finite sets Λ, but we will a priori not restrict
attention to any particular language of predicates. The action quanti-
fiers and the action predicates together with negation and disjunctions
forms a first-order predicate logic on actions.

The dual of the existential quantifier is the universal quantifier ∀ defined
as

∀α.A =def ¬∃α.¬A.

For the technics reasons we have chosen to include the idling action in
the range of quantification. It will, however, sometimes be useful to
exclude it from the quantification and we introduce the abbreviations
∃̃ and ∀̃ for this purpose. They are defined as

∃̃α.A =def ∃α.(α = ∗) ∧ A ∀̃α.A =def ∀α.(α = ∗) → A.

Simultaneous fixed-points. The construction adding simultaneous fixed-

points is inspired by Park [69]. An assertion B whereµ

→n

X =
→n

A
is going to denote the same as the assertion B when considered in an

environment where
→n

X is the simultaneous, minimum solution to the

equation
→n

X =
→n

A or analogously
→n

X is the minimum fixed-point

of the function of
→n

X described by
→n

A . The dual of whereµ denoted
by whereν is defined as the following abbreviation:

28 Logic and Models

(
→n

A whereν

→m

X =
→m

P) = (
→n

A [¬ →m

X /
→m

X) whereµ

→m

X =

¬ →m

P [¬ →m

X /
→m

X])

where negation of a product and substitution on a product is coordi-
natewise. The presence of simultaneous fixed-points that can be nested
makes it possible to write down very complicated – and unreadable ex-
pressions. Luckily in most examples, simple, unary fixed-points will
suffice; the more complicated simultaneous fixed-points will only ap-
pear as the result of various transformations on assertions.

Figure 2.8: Semantics of µKext relative to a labelled transition system T =
(S, L,→) with valuation V .

To give the formal semantics we must assume given a labelled transition
system T , a valuation for the constants V , an environment for assertion
variables ρ, and finally an environment for action variables φ. Now, any
assertion A of the extended calculus denotes an element [[A]]T,V ρφ ⊆ S, where
S is the states of T . The semantics is defined inductively on A in figure 2.8.

In the extended calculus the scope of the binding of a variable in a where-
clause has become slightly more complicated, so we give the full definition
of the function FV giving the free assertion variables of an assertion. It is

2.3 The Modal µ-Calculus 29

defined inductively as follows:

FV (¬A) = FV (〈γ〉A) = FV (∃α.A) = FV (A)

FV (A0 ∨ A1) = FV (A0) ∪ FV (A1)

FV (ψ(γ)) = FV (Q) = ∅
FV (X) = {X}

FV
→n

(A) =
⋃

1≤i≤n

FV (Ai)

FV (
→n

A whereµ

→m

X =
→m

P) =

(
⋃

1≤i≤n FV (Ai) ∪ FV (
→m

P)) \ {X1, . . . , Xm}
As an example we have

FV (X ∨ Y whereµ Y = (X whereν X = X ∨ Y)) = {X}

and

FV ((X ∨ Y whereµ Y = X) whereν X = X ∨ Y) = {Y }

where in the last example the first Y is bound by the whereµ-clause and the
Y appearing in the whereν-clause is free.

By considering µX.A from the standard calculus as merely an abbrevi-
ation

µX.A ≡def (X whereµ X = A)

it is justified to call the extended calculus an extension of the standard cal-
culus. For the other way around, if we consider the fragment of the ex-
tended calculus arising from adding to the standard calculus only the where-
construction, i.e. the standard calculus with simultaneous fixed-points which
we refer to as µKwhere, nothing has been gained in logical expressive power.
This is an easy consequence of Bekič’s theorem which transforms simultane-
ous fixed-points to simple, unary fixed-points.

Theorem 2.2 (Bekič’s theorem [12])
Let D and E be complete lattices, and f : D×E → D and g : D×E → E
monotonic functions, then

µ(x, y).(f(x, y), g(x, y)) = (µx.f(x, µy.g(x, y)), µy.g(µx.f(x, y), y)).

30 Logic and Models

In the n-ary version it is slightly more complicated to state:

Theorem 2.3 (Bekič’s theorem for n-ary fixed-points) Let D1, . . . , Dn

be complete lattices and let fi : D1× . . .×Dn → Di, 1 ≤ i ≤ n be monotonic
maps. Then

µ(x1, . . . , xn).(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) = (E∅1 , . . . , E∅n)

where

EJ
i =

{
xi if i ∈ J

µxi.fi(E
J∪{i}
1 , . . . , E

J∪{i}
n) otherwise

The idea of E∅j is roughly: “on any path from the top-expression E∅j every
occurrence of a variable xi must be within an expression µxi.fi(. . .)”. Hence,
J collects the set of variables that have already been bound by a µ.

Proof (Theorem 2.3): We prove by induction on m that for all m ∈
n = {1, 2, . . . , n}, Q(m) holds, where Q(m) ⇔def

∀{i1, . . . , im} ⊆ n. µ(xi1 , . . . , xim).(fi1(-x), . . . , fim(-x)) = (EJ
i1
, . . . , EJ

im)
where J = n \ {i1, . . . , im}.

For the base case, Q(1) we must argue

∀i ∈ n. µxi.fi(-x) = E
n\i
i

but by definition of EJ
i we have

E
n\i
i = µxi.fi(x1, . . . , En

i , . . . , xn)
= µxi.fi(x1, . . . , xi, . . . , xn)

as i ∈ n.

For the inductive step assume Q(m) holds for m < n, and assume given a
set of indices {i1, . . . , im+1} ⊆ n. By Bekič’s theorem for binary fixed-points
we get

µ(xi1 , . . . , xim+1).(fi1(-x), . . . , fim+1(-x)) (2.3)

2.3 The Modal µ-Calculus 31

= (µxi1 .fi1(-e), µ(xi2 , . . . , xim+1).(fi2(-x
′), . . . , fim+1(-x

′)))

where
-x′ = (x1, . . . , µxi1 .fi1(-x), . . . , xn)

ei =

πj(µ(xi2 , . . . , xim+1).(fi2(-x), . . . , fim(-x)) if i ∈ {i2, . . . , im+1}
and i has j′th posi-
tion in xi2 , . . . , xim+1

xi otherwise

By the induction hypothesis we have that if i ∈ {i2, . . . , im+1}, then

ei = E
J∪{i1}
i

where J = n\{i1, . . . , im+1}. Moreover, for i /∈ {i1, . . . , im+1} i.e. i ∈
J ∪ {i1}, then ei = xi = E

J∪{i1}
i , hence the first component of (2.3) equals

µxi1 .fi1(E
J∪{i1}
1 , . . . , E

J∪{i1}
n) = EJ

i1

by definition of EJ
i1
. By symmetry, similar arguments hold for the other com-

ponents, thereby proving Q(m + 1). ✷

Corollary 2.1 For any ussertion A in µKwhere there exists a logical equiva-
lent assertion A′ in µK.

Proof: (Sketch) Use Bekič’s theorem to transform any where-clause into
unary fixed-points (A whereµ X = B) and replace this by A[µX.B/X]. ✷

However, the resulting assertion in µK can be exponentially bigger than
the original assertion in µKwhere due to the use of Bekič’s theorem and the
elimination of the sharing provided by the where-clauses, so this result is
mainly of theoretical interest. When it comes to actually writing down and
working with assertions the simultaneous fixed-points provide “exponentially
more compact” representations.

As concerns the other extensions, the constants add to the expressive
power in a rather trivial – but useful – way parameterized by the valuations;
but the quantification on actions adds expressiveness in a significant way.
They allow for infinite disjunctions indexed by actions, something that can-
not be expressed in the standard calculus. In the rather pathological case

32 Logic and Models

where Act is chosen to be finite, quantification on actions can be replaced by
a finite disjunction in the standard calculus and at least for closed assertions
the action predicates can be resolved and removed altogether. We will in
general assume that Act is infinite, hence the quantification on actions does
add to the expressiveness. We return to this issue in section 2.7.

Figure 2.9 summarizes a set of simple abbreviations used throughout the
text.

For future reference we define:

Figure 2.9: Some simple abbreviations in µKext.

Definition 2.5 The size of an assertion A denoted |A| is the number of
operators, variables and constants in A, i.e.

∗	=	a	=	α	= 1	γ0 × γ1	= 1 +	γ0	+	γ1
Q	=	X	= 1	¬A	= 1 +	A				
A0 ∨ A1	= 1 +	A0	+	A1		〈γ〉A	= 1 +	γ	+	A

|∃α.A| = 2 + |A| |ψ(γ)| = 1 + |γ|
| →n

A whereµ

→m

X =
→m

P | = 1 + m + | →n

A | + | →m

P | | →n

A | =
∑n

i=1 |Ai|
✷

2.4 Simple Properties of the Logics and Mod-

els

2.4.1 Types of Actions

The set of composite actions Act∗ consists of actions of all kinds of products
of basic and idling actions. We will classify these actions according to a very

2.4 Simple Properties of the Logics and Models 33

simple notion of types.

Definition 2.6 Let Types be the free ·, ×-algebra, i.e. the least set con-
taining · and closed under the rule that if σ, σ′ ∈ Types then σ×σ′ ∈ Types.
Define the type of action of an action a as follows:

type(a) = · if a ∈ Act ∪ {∗}
type(a) = type(b) × type(c) if a ≡ b × c

✷

Hence type determines the “tree-structure of actions.” For example type(∗×
(a × b)) = · × (· × ·) if a and b are basic actions. This definition is trivi-
ally extended to action expressions by taking the of action variables to be
·. Now, the type of an assertion A is the set of types of modalities appear-
ing inside A, i.e. type(A) ⊆ Types. We will say that an assertion A is of
monotype if there exists a σ ∈ Types s.t. type(A) ⊆ {σ}, and has empty type
if type(A) = ∅. The notion of types can also be extended to type of processes:

Definition 2.7 Let the sort sort(p) of a process p be defined as the set
of actions a = ∗, s.t. there exists p′ ∈ Rp with p′

a→ . We will say that a
process p has monotype σ if

type(sort(p)) ⊆ {σ}

✷

Not all processes of WPA are monotyped, for example

type(sort(a + b × c)) = type({a, b × c}) = {·, · × ·}.

However, proposition 2.2 can be now be restated as all processes of CCS and
OPA have monotype ·.

An assertion of type ·×·. will, when interpreted over processes p×q really
denote a relation between the states Rp and Rq of the transition systems
pointed by p and q. This observation will be used in chapter 4 to express
relations like equivalences and preorders familiar from the work on especially
CCS and other process algebras as assertions in the modal µ-calculus.

34 Logic and Models

2.4.2 Satisfaction

It is time to introduce notation for expressing that a process satisfies an as-
sertion.

Definition 2.8 A correctness assertion (p : A) is well-formed if p and A
are both monotypable with the same type. We define satisfaction of well-
formed correctness assertions as follows:

|=T,V,ρ,φ p : A ⇔def p ∈ [[A]]T,V ρ φ
|=T,V p : A ⇔def |=T,V,ρ,φ p : A for all environments ρ and φ
|=T p : A ⇔def |=T,V p : A for all valuations V on T
|= p : A ⇔def |=T ,V p : A
|=ρ p : A ⇔def |=T ,V,ρ,φ p : A for all φ

✷

We have defined the semantics of the two calculi relative to a particular
transition system. One choice of transition system is the universal transition
system T , representing the global operational behaviour of WPA, hence,
given a universal valuation V : Const → P(ProcWPA) then for a closed as-
sertion A of µKext and arbitrary ρ and φ, [[A]]T ,V ρ φ is the set of all processes
satisfying A. This is certainly a big set and for verification purposes a more
local view considering only ‘small’ transition systems pointed by processes is
more relevant. The soundness of viewing things locally in this way is ensured
by the following lemma and a corollary.

Lemma 2.2 (Locality lemma) Let T = (S, L,→) be a transition sys-
tem. Given an assertion A, an assertion variable environment ρ, an action
variable environment φ, a valuation V, and a subset U of S. Suppose U is
closed under →. Let

TU = (U, L,→ ∩(U × L × U)).

Then the following equality holds

[[A]]TU ,VU
ρU φ = ([[A]]T,V ρ φ) ∩ U ,

where VU(Q) = V (Q) ∩ U and ρU(X) = ρ(X) ∩ U .

2.5 Example: Deadlock 35

Proof: Straightforward using structural induction on A (for the fixed-points
something relating fixed-points in different lattices, like the reduction lemma
to be introduced in chapter 3, is needed). ✷

Corollary 2.2 Let p be a process term, and A a closed assertion. Define
Vp(Q) = V(Q) ∩ Rp for all constants Q. Then

|=T ,V p : A ⇔ |=Tp,Vp p : A

Proof: Take U = Rp in locality lemma. ✷

Hence corollary 2.2 ensures that the local and global views give the same
notion of satisfaction.

Figure 2.10: Well-terminated processes in WPA.

2.5 Example: Deadlock

Having spent some time on defining the logic and our language of processes
we now turn to some simple examples. The classical example is that of
the absence of deadlock in a concurrent system. Assume we have given a
constant WellTerm with denotation the set of well-terminated states of a
given transition system, for WPA it could be defined as in figure 2.10. Then
a deadlock is characterized as a state which cannot perform any actions, yet
not being well-terminated. This is expressed by the assertion

DeadLock =def [.]F ∧ ¬WellTerm

36 Logic and Models

and absence of deadlock is expressed by

DeadLockFree =def Never(DeadLock)

where

Never(X) = ¬EEven(X)

and EEven abbreviating eventually (the prefix E will be explained later) is
defined as

EEven(X) = µY.X ∨ 〈.〉Y .

Notice, that an alternative definition of Never(X) could be as AAlways(¬X)
(again just ignore the prefix A for the moment) using the maximum fixed-
point assertion

AAlways(X) = νY.X ∧ [.]Y

which is easily shown to be equivalent to the above definition (by ‘pushing
the negation inwards’). Deadlock-freeness is often referred to as a safety
property because it has the flavour of ‘something bad never happens’.

Example 2.1 (A simple message handling system in OPA.) Consider a very
simple system consisting of a sender S which sends messages and awaits ac-
knowledgements, a receiver R which receives messages and awaits acknowl-
edgements, and a medium M through which messages and acknowledgements
are sent. The three processes could be defined by

S = send!ack s?S
M = send?rec!M + ack r?ack s!M
R = rec?ack r!R

and the complete system is

Sys = (S ‖M ‖R) � {send, rec, ackr, acks}

We use the restriction to prevent the system from communicating with the
environment – the only observable actions outside the system are the neutral
actions arising from communication. Let us also consider a slightly different
system with a faulty medium that sometimes breaks down. This is modelled
by the silent action τ from CCS as follows:

2.6 Alternation Depth 37

M ′ = send?(rec!M ′ + τ) + ackr?acks!M
′

Hence, after having received a message, M ′ can decide to break down. The
system is now

Sys′ = (S ‖M ′ ‖R) � A

where for convenience we simple restrict the visible behaviour to the neutral
actions A. Now, alternatively we could assume that the medium could get
into a state where instead of breaking down it will be occupied with internal
“chatter” and prevent itself from ever delivering the message. This could be
modelled by the medium M ′′:

M ′′ = send?(rec!M ′′ + τL) + ackr?acks!M
′′

L = τL

and the system

Sys′′ = (S ‖ M ′′ ‖ R) � A

Are these systems deadlock-free? Or formulated as correctness asser-
tions, do we have Sys : DeadLockFree, Sys ′ : DeadLockFree, Sys ′′ : Dead-
LockFree where V(WellTerm) = {p | W (p)} from figure 2.10? We leave it
to the reader to verify that the transition systems for Sys (which has four
states) and for Sys ′ and Sys ′′ (which has five states) are as shown in figure
2.11, and compute [[DeadLockFree]], for Sys, Sys ′ and Sys ′′, to find out that
indeed

|= Sys : DeadLockFree, |= Sys ′′ : DeadLockFree

but

 |= Sys ′ : DeadLockFree.

✷

2.6 Alternation Depth

Crucial for the expressive power of the modal µ-calculus is the ability to nest
minimum and maximum fixed-points in a non-trivial manner, where by non-
trivial we mean for instance a situation where if the outermost fixed-point

38 Logic and Models

Figure 2.11: Transition systems pointed by Sys, Sys ’, and Sys”.

operator is µ and some inner ν-fixed-point assertions contain free variables
bound by the µ. The level of non-trivial nesting in an assertion is a somewhat
tricky notion to capture and we have chosen to give the definition of this
measure of alternation depth in an ‘operational’ fashion since the original
motivation of defining it was to capture the complexity of a model-checking
algorithm and the operational flavour fits well with our later complexity
analyses.

But before applying the measure we assume that the assertions are
transformed into positive normal form by pushing negations ‘inwards’ such
that the assertion is built entirely from F, T,∧,∨, 〈a〉, [a], X, µ, and ν (and
Q,¬Q,∃α,∀α, 〈γ〉, [γ], whereµ, and whereν for the alternation depth):

Proposition 2.3 Any assertion A in the standard (respectively extended)
calculus has a logical equivalent A′ in the standard (respectively extended)
calculus which is in positive normal form.

Proof: Easy. ✷

We first define the notion of alternation depth for the alternation depth
for the standard calculus.

2.6.1 The Standard Calculus

We call an assertion with top-most operator µ (respectively ν) a µ-assertion
(respectively a ν-assertion).

Definition 2.9 For a closed assertion A, let cps(A) be the set of closed,

2.6 Alternation Depth 39

proper, µ- and ν-subassertions of A. Let mcps(A) ⊆ cps(A) be the set of
maximal such assertions, i.e. assertions in cps(A) that are not subassertions
of other assertions in cps(A). Moreover, let the top-level µ-subassertions,
tlµ(A), of a closed assertions A, be defined by structure induction as follows:

tlµ(F) = tlµ(T) = ∅
tlµ(A0 ∧ A1) = tlµ(A0 ∨ A1) = tlµ(A0) ∪ tlµ(A1)

tlµ(〈a〉A) = tlµ([a]A) = tlµ(A)
tlµ(µX.A) = {µX.A}
tlµ(νX.A) = tlµ(A[F/X]).

The function tlν is defined dually. ✷

We have chosen to replace, somewhat arbitrarily, F for X in the body of
the maximum fixed-point to keep assertions closed.

Definition 2.10 The alternation depth ad(A) of a closed assertion A, is
defined by induction on A as follows (we take max ∅ = 0):

if mcps(A) = {B1, . . . , Bk} = ∅ then
ad(A) = max{ad(A[F/B1, . . . , F/Bk]), ad(B1), . . . , ad(Bk)}

if mcps(A) = ∅ then

ad(A) =

0 if A ≡ F, A ≡ T
max{ad(A0, ad(A1)} if A ≡ A0 ∨ A1, A ≡ A0 ∧ A1

ad(A′) if A ≡ 〈a〉A′, A ≡ [a]A′

1 + max{ad(B) | B ∈ tlν(A
′)} if A ≡ µX.A′

1 + max{ad(B) | B ∈ tlµ(A′)} if A ≡ νX.A′

✷

The purpose of the measure ad is to capture to what extent minimum
and maximum fixed-points are nested in an essential way. Hence, closed as-
sertions appearing inside µ- and ν-assertions do not increase the alternation
depth, nor does sequences of fixed-points of the same kind, only when for
instance a ν-assertion appears inside some µ-assertion with a free variable
bound by the µ-assertion, will the alternation depth increase.

Example 2.2 Some simple examples:

40 Logic and Models

ad(〈a〉T ∨ [b]F) = 0
ad(µX.νY.X ∧ 〈a〉Y) = 2
ad(µX.X ∧ νY.〈a〉Y) = 1
ad(νX.µY.νZ.[a]X ∧ (Y ∨ Z)) = 3
ad(µY.(νZ.[a]F ∨ 〈b〉Z) ∨ [c]Y) = 1
ad(νX.µY.(νZ.[a]X ∨ 〈b〉Z) ∨ [c]Y) = 2

✷

Remark 2.3 The notion of alternation depth was introduced by Emerson
and Lei [35]. However, their definition contains a minor error, and our no-
tion is slightly stronger in the sense that we attach a lower measure to some
assertions.

Consider for a moment the assertion µX.νY.X ∧ Y with

ad(µX.νY.X ∧ Y) = 2.

Although the examples of Emerson and Lei correctly suggests that their
measure yields two in this particular case their definition wrongly yields
one, because they require ‘top-level formulae’ to be proper subexpressions
of the bodies of fixed-points [35, p.270] hence they consider only proper ν-
subformulae of νY.X ∧ Y in case AD9 [35, p.271] of which there are none -
it is a minor error: eliminating the word ‘proper’ corrects it.

There is a more subtle difference in the case of higher alternation depths.
An example is

µX.A(X, νZ.B(Z, µU.C(U, νY.D(Y, X)))) (2.4)

where A, B, C, and D contain no fixed-points, and the notation A(X, νZ. . . .)
indicates that the only free variables of A are X and the free variables of
νZ. The Emerson and Lei measure yields 4, whereas the measure intro-
duced here yields 2. The reason is that in our measure we consider X to be
a constant inside the body of the outermost minimum fixed-point, hence the
alternation depth is one plus the alternation depth of

νZ.B(Z, µU.C(U, νY.D(Y, F))). (2.5)

Now, νY.D(Y, F) is a constant expression and so is µU.C(U, νY.D(Y, F))
hence the alternation depth of (2.5) is one, and the alternation depth of (2.4)
is two.

2.6 Alternation Depth 41

We believe that this was the definition originally intended by Emerson
and Lei since it correctly captures the complexity of their algorithm, which
is not the case with their definition – it is too pessimistic. In this last respect
our definition also differs from that of Bradfield’s [15, p.23].

We return to the relationship between complexities of model checking
algorithms and alternation depth in chapter 5. ✷

2.6.2 The Extended Calculus

In order to generalize the definition of alternation depth to the extended
calculus we must generalize mcps and tlµ. First, the notion of a µ-assertion
is extended to µKext in the obvious way by considering an assertion with top-
most operator whereµ to be a µ-assertion and dually for a ν-assertion. Now,
mcps(A) is again the set of maximal, closed, proper µ- and ν-subassertions
of A. The function tlµ (and dually tlν) is extended by

tlµ(Q) = tlµ(¬Q) = ∅
tlµ(ψ(γ)) = tlµ(¬ψ(γ)) = ∅

tlµ(∃α.A) = tlµ(A)
tlµ((A1, . . . , An)) =

⋃
1≤i≤n tlµ(Ai)

tlµ(
→n

A whereµ

→ m

X =
→m

P) = { →n

A whereµ

→m

X =
→m

P }

tlµ(
→n

A whereν

→m

X =
→m

P) = tlµ(
→n

A [F/X1, . . . , F/Xm])∪

tlµ(
→m

P [F/X1, . . . , F/Xm])

If mcps(A) = ∅ then the defining clauses for ad is extended to products by:

ad((A1, . . . , An)) = max{ad(A1), . . . , ad(An)}

and to where-clauses by:

ad(A) =

max{ad(
→n

A [F/X1, . . . , F/Xm], 1 + max{ad(B) | B ∈ tlν(
→m

P)}}

if A ≡ →n

A whereµ

→m

X =
→m

P

max{ad(
→n

A [F/X1, . . . , F/Xm], 1 + max{ad(B) | B ∈ tlµ(
→m

P)}}

if A ≡ →n

A whereν

→m

X =
→m

P

42 Logic and Models

and for the constants, action predicates and quantifiers the extension is triv-
ial.

2.7 Relating the Standard and the Extended

Caculus

An interesting question about the extended calculus is under which circum-
stances the predicate action-logic adds to the expressive power in an essential
manner, i.e. when the existential quantifier and the action predicates is more
than just a compact way of representing assertions in the standard calculus.
If we have an infinite number of basic actions and our predicates are pow-
erful enough, it is not hard to see that for the pure predicate action-logic
fragment – that is, even ignoring modalities and fixed-points – satisfaction
can be undecidable.

Example 2.3 Assume we have given an isomorphism ι : ω ∼= Act, i.e. we
have a countable set of basic actions. Moreover, assume we have predicates
equals, less, mult and sum expressing equality, multiplication and addition,
i.e. they satisfy for all n, m, and l:

equals(ι(n) × ι(m)) ⇔ n = m
less(ι(n) × ι(m)) ⇔ n < m

mult(ι(n) × (ι(m) × ι(l))) ⇔ n = ml
add(ι(n) × (ι(m) × ι(l))) ⇔ n = m + l

.

Then the predicate action-logic given by (∃̃,¬,∨, ι(0), ι(1), equals, less, mult,
add) is a version of Number Theory, for which the validity problem according
to Gödel’s incompleteness theorem is undecidable. ✷

To get some interesting results we first restrict attention to the situation
where the only allowed predicates are

α = a

for an action a. We call predicates like this action tests (see p. 27). This
will also include membership tests for finite sets α ∈ Λ as this can be seen as
an abbreviation for the finite disjunction

∨
a∈Λ(α = a). For these restricted

2.7 Relating the Standard and the Extended Caculus 43

set of predicates, we can show that the extended calculus is no more expres-
sive than the standad calculus in logical terms, but only provides compact
representations of otherwise equivalent formulas.

First, however, a simple lemma which is based on the notion of basic
label-set.

Definition 2.11 The basic label-set of a labelled transition system T with
label-set L is the set of basic actions appearing in actions of L. I.e. the image
of the function bls : Act∗ → P(Act ∪ {∗}) on L where bls is defined by

bls(a × b) = bls(a) ∪ bls(b)
bls(a) = {a} if a ∈ Act ∪ {∗}.

✷

Lemma 2.3 Let T be a labelled transition system with finite basic label-set
L and let V be a valuation. Assume A is an assertion which only contains
predicates that are action tests involving basic actions from the finite set M.
Assume # is a symbol not in L or M. Then for all basic actions a,

a /∈ L ∪ M ⇒ ∀ρ, φ. [[A]]T,V ρ φ[a/α] = [[A]]T,V ρ φ[#/α]

Proof: Simple structural induction on A. The non-trivial steps are:

A ≡ 〈γ〉A′. If α appears in γ, then as a /∈ L,

[[〈γ〉A′]]ρ φ[a/α] = ∅ = [[〈γ〉A′]]ρ φ[#/α]

as also # /∈ L. If α does not appear in γ then the result follows from the
induction hypothesis.

A ≡ (α = b). As a /∈ M then a = b and as # /∈ M we have [[α = b]]ρ φ[a/α] =
∅ = [α = b]]ρ φ[#/α].

✷

Using this lemma we can, not surprisingly, remove all action quantifiers:

Lemma 2.4 Let T be a labelled transition system with finite basic label-set
L and let V be a valuation. Assume A is an action-variable closed assertion

44 Logic and Models

which only contains predicates that are action tests. Then there exists an
assertion A′ without action quantifiers and predicates such that

|=T,V A ↔ A′

Proof: Replace each subexpression ∃α.B of A by the finite disjunction∨
a∈L∪M∪{#}

B[a/α]

where M is the set of constants appearing in matches and # is an action
not in L or M . Call this new assertion C. As A is action-variable closed,
C contains no action variables and all the predicates can be replaced with
truth-values, yielding the assertion A′. Proving that |=T,V A ↔ C from
which the result follows, is by straightforward structural induction, where
the only non-trivial case is as follows:

[[∃α.B]]T,V ρ φ =
⋃

a∈Act∪{∗}
[[B]]T,V ρ φ[a/α]

=
⋃

a∈L∪M∪{#}
[[B]]T,V ρ φ[a/α]

by lemma 2.3

= [[
∨

a∈L∪M∪{#}
B[a/α]]]T,V ρ φ

✷

Although this lemma implies that we can always find quantifier-free
representations of assertions, this depends on the label set of the transition
system under consideration and a general translation giving a generic asser-
tion that work in all contexts is not possible. In other words, we want to keep
the quantifiers in order to construct general assertions, but when it comes to
verify satisfaction if needed the quantifiers can be removed.

Returning to the translation we can actually do much better if just all
predicates appear below modalities containing their variables. First, we for-
mally define:

Definition 2.12 A modality 〈γ〉A binds the variable α in A if α is a subex-
pression of γ. A predicate ψ is guarded in A with respect to α if in all

2.8 Bibliographic Notes 45

occurrences of the predicate applied to an expression γ′ containing α, α is
bound by a modality. An assertion A is guarded if all predicates in A are
guarded with respect to all variables. ✷

Lemma 2.5 Let A be a guarded, closed assertion and assume that T is a
transition system with finite basic label-set L. Then there exists an assertion
A′ without action quantifiers or predicates, such that

|=T A ↔ A′

If the predicates appearing in A are decidable, then A′ is computable from A.

Proof: For assertions guarded with respect to α, lemma 2.3 can easily be
strengthened to

a /∈ L ⇒ ∀ρ, φ. [[A]]T,V ρ φ[a/α] = [[A]]T,V ρ φ[#/α]

for all basic actions a.

As in lemma 2.4 now each subexpression ∃α.B can be replaced by∨
a∈L∪{#}

B[a/α].

If the predicates are computable, all predicates now being applied to variable-
free action expressions can be algorithmically replaced by truth-values, mak-
ing A′ computable from A. ✷

Example 2.4 Many apparently unguarded assertions can be transformed to
guarded assertions. Consider for instance the unguarded assertion ∃α.(a ∈
Λ) ∧ 〈α〉A abbreviating 〈Λ〉A for any (possibly infinite) set of actions Λ. It
is equivalent to the guarded assertion ∃α.〈α〉((α ∈ Λ) ∧ A). Hence, assum-
ing that Λ is a computable set, 〈Λ〉A always has a quantifier-free version on
transition systems with finite basic label-set by lemma 2.5. ✷

2.8 Bibliographic Notes

The generic process algebra WPA introduced here appears in work of Winskel
[91]. Discussions about the applicability of process algebras as models of con-
current systems and intuitions behind the various operators can be found in

46 Logic and Models

various textbooks like Milner’s book [59] and Hoare’s book [42]. The process
algebra OPA which only differs from CCS in the respect that synchronized
actions are visible seems to have the benefit of making it possible to verify
even closed systems (i.e. without external synchronization being allowed)
using the µ-calculus because it is possible to investigate the behaviour of
synchronized actions – which is impossible for CCS where any closed system
is (weakly) equivalent to nil ! Hence OPA offers a solution to the “probe
problem” reported by Walker in [87].

In the modal logic community labelled transition systems are often called
Kripke models and are defined slightly differently but the differences are
inessential. They are also sometimes – especially when only one action is
present – called “possible world semantics” indicating the more philosophical
approach to modal logics as explained in Hughes and Cresswell [44].

The modal µ-calculus – here called the standard calculus – is due to
Kozen [49] based upon earlier work by Park [68], Hitchcock, Scott, de Bakker,
de Roever, and Pratt. Kozen, who refers to the logic as the propositional µ-
calculus, has proven a range of results about the logic which we will return
to in chapter 9. The term ‘modal µ-calculus’ and the name µK is due to
Stirling – who observed that the logic is really the minimal modal logic K
extended with fixed-points (see for example [79]).

The idea of extending the µ-calculus with simultaneous fixed-points has
been recognized by other authors as being important. This is the case in
for instance the work of Larsen and Xinxin [57], Arnold and Crubille [9],
and Cleaveland and Steffen [27]. However, even though Larsen and Xinxin
introduces a notation for simultaneous fixed-points they do not allow for
nested fixed-points to ‘share across products’ (i.e. the ability for several
components of a simultaneous fixed-point to refer to variables of another
simultaneous fixed-point without duplicating it), which is going to be a key
step in making the reductions for the compositional method and the model-
checking algorithms efficient. A similar construction achieving the effect of
‘sharing across products’ is implicitly present in Cleaveland, Dreimüller and
Steffen [24].

Bekič’s theorem dates back to the late sixties and appears in unpublished
manuscripts by Scott and de Bakker, Park, and Bekič. The earliest publically
available version the present author has been able to find is in a collection
of Hans Bekič’s papers [12] from 1984, where it appears in a paper dated 8.
December 1969. The theorem is there called the ‘bisection lemma.’

2.8 Bibliographic Notes 47

Thanks are due to Dirk Taubner for a useful discussion on the subtleties
in generating finite-state systems from CCS terms and for drawing my at-
tention to his thesis [83].

48 Logic and Models

Chapter 3

Compositional Checking of
Satisfaction

In the modal logic approach to verification the central problem of verifying
that systems meet their specifications correspond to determining satisfaction,
i.e. deciding whether a given model satisfies a given assertion. In this chapter
we present a compositional method for deciding satisfaction, centered around
the standard calculus but also with generalizations to the extended calculus.

The method is compositional in the structure of the processes and works
purely on the syntax of processes. It consists of applying a sequence of re-
ductions, each of which only take into account the top-level operator of the
process (except the reduction for product which inspects one of the compo-
nents). Such a reduction transforms a satisfaction problem for a composite
process into equivalent satisfaction problems for the immediate subcompo-
nents - without inspecting the internal structure of these.

Using process variables, systems with undefined subcomponents can be
defined, and given an overall requirement to the system, necessary and su-
ficient conditions on these subcomponents can be found. Hence the process
variables make it possible to specify and reason about what are often referred
to as contexts, environments, and partial implementations.

Compositionality is important for at least the following reasons. Firstly,
it makes the verification modular, so that when changing a part of a sys-
tem only the verification concerning that particular part must be redone.
Secondly, when designing a system or synthesizing a process the composi-
tionality makes it possible to have undefined parts of a process and still be

50 Compositional Checking of Satisfaction

able to reason about it. For instance, it might be possible to reveal incon-
sistencies in the specification or prove that with the choices already taken in
the design no component supplied for the missing parts will ever be able to
make the overall system satisfy the original specification. Thirdly, it makes
it possible to decompose the verification task into potentially simpler tasks.
Finally, it can make possible the reuse of verified components; their previ-
ous verification can be used to show that they meet the requirements on the
components of a larger system.

We first describe the reductions for the standard calculus then look at
some examples and finally discuss how to generalize the reductions to the
extended calculus.

3.1 Introduction

In the process of deriving the reductions we will temporarily have to internal-
ize the correctness assertions (t : A) into the logic which is then an extension
of the standard calculus which we will refer to as µK(:). It has the following
syntax:

A ::= F | ¬A | A0 ∨ A1 | 〈a〉A | X | µX.A | (t : A)

We still require the correctness assertions (t : A) to be well-formed, i.e. t must
be mono-typed and type(A) ⊆ type(t). We will say that an assertion A is pure
if it does not contain any correctness assertions, hence a pure assertion in
µK(:) is really an assertion in the standard calculus. A correctness assertion
(t : A) is pure if A is pure, and we shall later show that all correctness
assertions can be made pure.

A correctness assertion (t : A) is to denote true or false depending on
whether t satisfies A or not. This suggests the following simple extension of
the semantics using superscript (:) to indicate that assertions are from µK(:):

[[(t : A)]]
(:)
T ρ =

{
ST if t ∈ [[A]]

(:)
T ρ

∅ otherwise

Instead of using t ∈ [[A]]
(:)
T ρ we could just as well, according to the locality

lemma, take t ∈ [[A]]
(:)
T φ. However, there is a small problem with the envi-

ronment ρ. On the left-hand side ρ is a map AssnV ar → P(ST) but on the

3.1 Introduction 51

right-hand side we need an environment ρ : AssnV ar → P(ProcWPA) or
ρ : AssnV ar → P(Rt) depending on whether we use the global or local view.
If A is closed we could take any environment ρ′ of the right kind and get a
well-defined semantics. Unfortunately, during the reductions assertions con-
taining correctness assertions over various different terms with free variables
will appear, and therefore the environment used in the semantics must map
these variables to subsets of states of the corresponding transition systems.
Sticking to a global semantics using the universal transition system T and
only consider environments mapping all variables to subsets of ProcWPA is
not a useful solution because the reductions will require a local view.

The solution we take is to give the semantics of assertions in µK(:) with
respect to environments ρ which respect the ‘types’ of the free assertion vari-
ables. We annotate variables with types (i.e. transition systems) according
to the following rules: Let T be a transition system. Then AT is the type-
annotated assertion constructed from A by annotating all variables X not
within correctness assertions as XT . If X appears inside a correctness asser-
tion we annotate X with the process term of the nearest enclosing correctness
assertion. For example (X ∨ (t : Y ∨ (t′ : Z)))T = XT ∨ (t : Y t ∨ (t′ : Zt′)).

An environment ρ : AssnV ar → P(ProcWPA) respects the types of the
assertion AT if for all free variables XT ′ ,

ρ(XT ′) ⊆ ST ′ ⊆ ProcWPA (3.1)

This is trivially fulfilled by a closed assertion and the open assertions appear-
ing during[-5mm] the construction of the reductions will turn out to satisfy
(3.1).

Given an environment ρ satisfying (3.1) for all free variables of AT we

now define [[AT]]
(:)
T ρ by structural induction on A.

[[F]]
(:)
T ρ = ∅

[[¬A]]
(:)
T ρ = ST \ [[A]]

(:)
T

[[A0 ∨ A1]]
(:)
T ρ = [[A0]]

(:)
T ρ ∪ [[A1]]

(:)
T ρ

[[〈a〉A]]
(:)
T ρ = {s ∈ S | ∃s′ ∈ S. s

a→ s′ & s′ ∈ [[A]]
(:)
T ρ}

[[XT]]
(:)

T ρ = ρ(XT)

[[µXT .A]]
(:)

T ρ = µψ where ψ : U ⊆ ST �→ [[A]]
(:)
T ρ[U/XT]

[[(t : A)]]
(:)
T ρ =

{
ST if t ∈ [[A]]

(:)
T ρ

∅ otherwise

52 Compositional Checking of Satisfaction

Notice, that if A is pure then if ρ maps all free variables to P(ST), then
ρ respects the types of AT and for any environment AssnV ar → P(ST)

we have [[AT]]
(:)
T ρ = [[A]]T ρ, hence for pure assertions we could just use the

standard semantics.

The technical difficulties we have just experienced will not be fully re-
warded until the reduction for product, which is the only reduction where
correctness assertions will have to be nested.

The correctness assertions (t : A) will also be atoms in a propositional
logic L which will be used to express the reductions.1 A grammar for the
logic L is:

L ::= T | ¬L | L0 ∨ L1 | (t : A)

where A is an assertion in µK(:). Satisfaction in L of a formula L is de-
fined, relative to an environment ρ which respects the type of the correctness
assertions of L, as follows:

|=ρ T always
|=ρ ¬L iff not |=ρ L
|=ρ L0 ∨ L1 iff |=ρ L0 or L1

|=ρ t : A iff t ∈ [[At]]
(:)
t ρ

Furthermore we define the derived predicate |= as:

|= L iff for all ρ |=ρ L.

Taking • to be the trivial transition system with one state (denoted •) and
no transitions, we observe that the set of assertions built from correctness
assertions, negations, and conjunctions when interpreted over • is essentially
a copy of the logic L, i.e. for such an assertion A we have [[A]]•ρ = {•} if and
only if |=ρ A where A is interpreted as a formula in the propositional logic.

In L we are able to express complex relationships between properties of
different processes. For example

(p + q : 〈a〉A) ↔ (p : 〈a〉A) ∨ (q : 〈a〉A),

1This propositional logic is of course a sublogic of the above defined µ-calculus, but it
will be beneficial to keep the two levels separate. The correctness assertions appearing in
the assertions only have a temporary existence and will ultimately be removed whereas the
correctness assertions in the propositional logic are crucial for expressing the reductions.

3.1 Introduction 53

expresses a very simple example of a reduction. It states that the process
p + q can perform an a-action and get into a state that satisfies A if and
only if p or q can do an a-action and get into a state that satisfies A. It is
a reduction because the formula is valid for all p’s and q’s, and the validity
of (p + q : 〈a〉A) is reduced to validity of correctness assertions over the
subterms p and q. Although this reduction is almost trivial, in general, it
might be quite difficult to get reductions. Consider for example the problem
of choosing a B such that

(rec P.t : µX.A) ↔ (t : B)

holds. The aim of this chapter is to describe a method for generating such a
B and analogous assertions for all the other operators.

In constructing these reductions we will be involved with the rooting of
transition systems which is defined as follows.

Definition 3.1 Given a pointed transition system T = (S, i, L,→) the
rooting of T is a pointed transition system T = (S ∪ {i}, i, L,→′) where
i is a new state assumed not to be in S, and the transition relation →′⊆
(S ∪ {i}) × L × (S ∪ {i}) is defined by:

→′ = → ∪{(i, a, q) | i
a→ q}.

✷

Figure 3.1: The rooting of a transition system. Notice, that no transitions
enter i.

54 Compositional Checking of Satisfaction

Pictorially the rooting of a pointed transition system is constructed by ad-
joining a new initial state with the same out-going transitions as the old
initial state (see figure 3.1). The rooting of a transition system T is “just as
good as T” with respect to satisfaction in our logic. A claim made precise
by the rooting lemma below.

Lemma 3.1 (Rooting lemma.)
Given a pointed transition system, T = (ST , i, L,→T), where ST is countable
and with the rooting T . Let r : P(ST) → P(ST ∪ {i}) be the map on prop-
erties that take the initial state of T to the two copies of it in T and take
all other states to their obvious counterparts. Assume A is a pure assertion.
Let ρ : AssnV ar → P(ST) be an environment of assertions which since A is
pure, respects the types of A. Then

r([[A]]T ρ) = [[A]]T (r ◦ ρ).

Proof: See appendix A.1. ✷

The connection given by the rooting lemma between pointed transition
systems T and their rootings T could be summarized as: The set of states
satisfying an assertion will be the same in both interpretations up to applica-
tion of the map r. In particular the initial state of T will satisfy A if and only
if the initial state of T satisfies A; an observation central to our development
of reductions in section 3.2.

3.2 Reductions

Our method for compositional checking of satisfaction is based on the notion
of a reduction, which we explain in terms of the prefix operator.

Given a pure and closed assertion A and a prefix at we would like to
find a propositional expression B over atoms (t : Bi) such that the following
holds:

|= (at : A) ↔ B

Having found such a B the validity of (at : A) has been reduced to validity of
a propositional expression containing only atoms on the subterm t. In other
words: B is a necessary and sufficient condition on the subterm t ensuring

3.2 Reductions 55

that at satisfies A. By the word reduction we will henceforth understand a
description of how to find B given A and at.

It is not obvious that such a B exists. Although we can easily express
the set of processes that will make the correctness assertion valid as

{t ∈ S | |= at : A},

it is not necessarily the case that this set can be expressed within the logic
L as an assertion B over atoms (t : Bi) such that

{t ∈ S | |= B} = {t ∈ S | |= at : A}.

In general, the ability to do so, will depend on the expressive power of the
logic, and the kind of operation for which we are trying to find a reduction.
We will show that for our modal logic and all operators of our process algebra,
such a B does indeed exist, and furthermore we give for each operator an
algorithm that computes one particular choice of B.

In providing this B the most difficult part concerns – not surprisingly
– the fixed-points and the single most important property of fixed-points
around which all the reductions are centered, is expressed by the reduction
lemma. Recall that a map on a complete join semilattice is ω-continuous if
it preserves joins of all increasing ω-chains.

Lemma 3.2 (Reduction lemma)
Suppose D and E are powersets over countable sets, and in : D → E an ω-
continuous function with in (⊥D) = ⊥E. Suppose ψ : E → E and θ : D → D
are both monotonic and have the property

ψ ◦ in = in ◦ θ

We can then conclude that

µψ = in(µθ)

Proof: See appendix A.2. ✷

To understand the role of the reduction lemma, take E to be the lattice
of properties of a compound process and D to be a lattice built from proper-
ties of immediate subprocesses. The lemma allows us to express a fixed-point

56 Compositional Checking of Satisfaction

property of the original compound process in terms of fixed-points of func-
tions over properties of its immediate subcomponents via the transformation
in.

For example, the properties of a process at can be identified with certain
subsets of the states Rat in the rooting of the transition system pointed by at,
and the properties of t with subsets of the states Rt of the transition system
pointed by t. Now we take the transformation to be

in : P(Rt) × P({•}) → P(Rat)

where

in(V0, V1) = V0 ∪ {at | • ∈ V1}

The role of the extra product component is to record whether or not the
property holds at the initial state at of Rat. (The rooting is required to
ensure that the initial state at is not confused with later occurrences .)2

An assertion with a free variable occurring positively essentially denotes
a monotonic function ψ : P(Rat) → P(Rat). The definition of the reduction is
given by structural induction on assertions ensuring that assertions denoting
such functions ψ, and their reductions denoting monotonic functions θ :
P(Rt)×P({•}) → P(Rt)×P({•}) are related by in in the manner demanded
by the reduction lemma. The lemma then allows the reduction to proceed for
fixed-points. As this case of prefixing makes clear, reductions of fixed-points
can be simultaneous fixed-points. Bekič’s theorem (theorem 2.2) could be
used to replace the simultaneous fixed-points by fixed-points in the individual
components to get assertions in µK(:) but we keep the simultaneous fixed-
points in order to keep assertions small. We later discuss how the reductions
are extended to apply on assertions which themselves contain simultaneous
fixed-points.

In the course of this definition by structural induction we will be faced
with the problem of giving a reduction for assertion variables. One solution
to this problem can be found by introducing a syntactic counterpart of in
called IN and define a change of variables σ to be a map taking all variables
X of type a.t to IN (X0, X1) where the types of X0 and X1 are t respectively

2Because of the isomorphism P(A0) × · · · × P(An) × · · · ∼= P(A0 + · · · + An + · · ·) we
can still meet the conditions of the reduction lemma when D is a countable product of
powersets of countable sets.

3.2 Reductions 57

•. An application of such a substitution σ to an assertion A has to satisfy
certain technical requirements: It should be fresh i.e. for an assertion A
when

(i) for all variables X the free variables in σ(X) are disjoint from those
in A, and

(ii) for distinct variables X and X ′, the free variables in σ(X) and σ(X ′)
are disjoint.

We will use the notation A[σ] to denote the assertion resulting from perform-
ing the substitution σ and we use σ\X to denote the substitution which is like
σ except that X is left unchanged. The meaning of IN can be summarized
by the equation

[[IN (X0, X1)]]at ρ = in(ρ(X0), ρ(X1)),

justifying that IN is the “syntactic counterpart of in.” It is emphasized that
while the syntactic counterparts IN of the transformations play the impor-
tant part in expressing relationships between variables and in showing the
correctness of reductions, they do not appear in the reductions themselves.

Reductions for all operators can be established along the lines sketched.
Each operator involves a judicious choice of in, which IN is to denote. In the
following sections we present this choice and the accompanying reductions.

3.2.1 Prefix

The reduction for prefix is defined inductively on the structure of assertions
and shown in figure 3.2. Note that red0(at : A; σ) just renames the variables
of A from X to X0 when σ(X) = IN (X0, X1). The transformation in was
explained in the previous section.3

The reduction is constructed in such a way that the two components are
related to A through in by

[[Aat[σ]]]
(:)
at ρ = in([[red0(at : A; σ)t]]

(:)
t ρ, [[red1(at : A; σ)•]](:)• ρ), (3.2)

3For this and the following reductions we have that red(at : 〈∗〉A;σ) = red(at : A;σ)
and henceforth we omit this trivial case from the presentation.

58 Compositional Checking of Satisfaction

Figure 3.2: Reduction for prefix defined inductively on the structure of as-
sertions.

where σ is a change of variables for A and ρ is an environment respecting
the types of A. From now on we leave out the type annotations - they are
easily reconstructed.

From the rooting lemma we know that

at ∈ [[A]]at ρ iff at ∈ [[A]]at(r ◦ ρ)

where r is the map from Rat to Rat, and from the definition of in and (3.2)
we get

at ∈ [[A]]at ρ iff • ∈ [[red1(at : A; σ]]• ρ.

As red1(at : A; σ) consists of correctness assertions, negations, and conjunc-
tions only, we can consider it to be a formula in our propositional logic,
yielding our reduction

|= (at : A) ↔ red1(at : A; σ).

Theorem 3.1 (Reduction for prefix) Given a closed, pure assertion A,
a change of variables σ which is fresh for A, and an arbitray process term t,
then

3.2 Reductions 59

|= (at : A) ↔ red1(at : A; σ).

Proof: See appendix A.3. ✷

3.2.2 Nil

The reduction for nil is defined inductively on the structure of assertions and
shown in figure 3.3. The transformation in : P({•}) → P({nil}) is just the
direct image of the obvious isomorphism between {•} and {nil}. Note that
the reduction for nil is quite trivial and just gives true (T) or false (F).

Figure 3.3: Reduction for nil.

Theorem 3.2 (Reduction for nil) Given a closed, pure assertion A and a
change of variables σ which is fresh for A, then |= (nil : A) ↔ red(nil : A; σ).

Proof: Like the previous, see appendix A.3. ✷

3.2.3 Sum

The reduction for sum is presented in figure 3.4.

To understand the transformation first note that we have a map j :
Rt0 + Rt1 → Rt0+t1 taking the initial states of t0 and t1 to the state t0 + t1 in
Rt0+t1 and taking all other states to their obvious counterparts.

We take the transformation to be

in : P(Rt0 + Rt1) × P({•}) → P(Rt0+t1)

where in(V0, V1) = {j(s) | s ∈ V0} ∪ {t0 + t1 | • ∈ V1}.

60 Compositional Checking of Satisfaction

Figure 3.4: Reduction for sum.

Theorem 3.3 (Reduction for sum) Given a closed, pure assertion A,
a change of variables σ which is fresh for A, and arbitrary process terms t0
and t1, then

|= (t0 + t1 : A) ↔ red1(t0 + t1 : A; σ).

Proof: Very similar to the proof of correctness for the reduction of prefix,
see appendix A.3. ✷

3.2.4 Relabelling

For relabelling we take the transformation to be in : P(Rt) → P(Rt{Ξ})
where in(V) = {p{Ξ} | p ∈ V }.

Theorem 3.4 (Reduction for relabelling) Let Ξ : η → η′ be a rela-
belling map which has finite preimages, i.e. for all a ∈ Act, Ξ−1(a) is finite.
Assume A is closed and pure, σ a change of variables which is fresh for A,
and t any process term, then

|= (t{Ξ} : A) ↔ (t : red{Ξ}(A; σ)).

Proof: Like the proof for restriction, see appendix A.4. ✷

3.2 Reductions 61

Figure 3.5: Reduction for relabelling.

3.2.5 Restriction

For restriction we take the transformation to be in : P(Rt) → P(Rt Λ) where
in(V) = {p � Λ | p ∈ V } ∩ Rt Λ.

Figure 3.6: Reduction for restriction.

Theorem 3.5 (Reduction for restriction) Assume A closed and pure,
a change of variables σ which is fresh for A, and an arbitrary process term
t, then

|= (t � Λ : A) ↔ (t : red Λ(A; σ)).

Proof: See appendix A.4. ✷

3.2.6 Recursion

In order to define the reduction for recursion, we will need to extend our
assertion language with an assertion P̂ to identify recursion points. The
semantics of P̂ is simply:4

4The general semantics should be [[P̂]]T ρ = {P, P} ∩ RT , but due to our requirement
of guardedness, we will never be involved with rooting a state identifier, so the stated

62 Compositional Checking of Satisfaction

[[P̂]]T ρ = {P} ∩ RT

We can consider P̂ to be a constant with the universal valuation V(P̂) = {P}.
It can be verified that the locality and the rooting lemma still hold.

All the reductions mentioned in the previous sections should be extended to
take care of the assertions P̂ and this is easily done – they should all give F .
Furthermore, we add a reduction for P , which is like the one for nil, except
that it gives T on P̂ .

For the first time we will need to put in extra correctness assertions
in our reductions, which furthermore might contain free assertion variables.
These correctness assertions can however be closed by a closure lemma and
then ‘pulled out’ by a purifying lemma yielding an expression in L which only
has correctness assertion containing pure assertions, hence being applicable
for further reductions.

Lemma 3.3 (Closure lemma, Winskel [94]) Let C [Y] be an assertion in
which Y occurs free and positively. Let B be any assertion in µK(:). Assume
that for all environments ρ respecting the types of an assertion B with respect
to T, [[B]]T ρ = ST or [[B]]T ρ = ∅, then

[[µX.C[B]]](:)ρ = [[µX.C[B[µX.C[F]/X]]]](:)ρ.

Notice, that if the only occurrence of X is within B, then we can remove the
fixed-point altogether:

[[µX.C[B]]](:)ρ = [[C[B[C[F]/X]]]](:)ρ.

Lemma 3.4 (Purifying lemma)
Let A be an assertion with all correctness assertions closed and let t be a
process term. Then there exists an expression B over unnested correctness
assertions such that

|= (t : A) ↔ B.

The proof also gives a simple algorithm for computing such a B:

semantics is sufficient.

3.2 Reductions 63

Proof: For an assertion A let s(A) denote the number of correctness as-
sertions appearing in A. We show by mathematical induction that for all n,
the theorem holds for all assertions A with s(A) = n.

For n = 0: Trivial, take B ≡ (t : A). For n > 0: Assume A is a closed
assertion in which all correctness assertions are closed. Pick a correctness
assertion (e.g. the leftmost) in A, (t′ : A′) say, writing A[(t′ : A′)] to identify
the occurrence. Define

C ≡ ((t′ : A′) ∧ A[T]) ∨ (¬(t′ : A′) ∧ A[F]),

where A[T] denotes the resulting of replacing T for (t′ : A′) in A, and similar
for A[F]. Obviously |= (t : A) ↔ (t : C). Now, as s(A[T]) < n and
s(A[F]) < n we have by the induction hypothesis that there exists B0 and
B1 with no nested correctness assertions, such that

|= (t : A[T]) ↔ B0 and |= (t : A[F]) ↔ B1,

and as

|= (t : C) ↔ ((t′ : A′) ∧ (t : A[T])) ∨ (¬(t′ : A′) ∧ (t : A[F])),

we get

|= (t : C) ↔ ((t′ : A′) ∧ B0) ∨ (¬(t′ : A′) ∧ B1),

which proves the result by taking B ≡ ((t′ : A′) ∧ B0) ∨ (¬(t′ : A′) ∧ B1). ✷

Take j : Rt → Rrec P.t to be the map that takes t to rec P.t and all other
states s to s[rec P.t/P]. The transformation for recursion in : P(Rt) →
P(Rrec P.t) is defined to be the direct image of j.

Theorem 3.6 (Reduction for recursion) Given a closed, pure assertion
A, a change of variables σ which is fresh for A, and a regular process term t
in which P is strongly guarded then

|= (rec P.t : A) ↔ (t : red(rec P.t : A; σ)).

Proof: See appendix A.5. ✷

64 Compositional Checking of Satisfaction

Figure 3.7: Reduction for recursion.

3.3 Reduction for Product

A reduction for a product q× p should be an assertion B over atoms (q : Bi)
and (p : Cj) such that

|= q × p : A iff |= B.

Unfortunately, if we insist on finding such a B without inspecting either p
or q, we can get a very complex expression which, in the case of fixed-points
will even become infinite unless assumptions on the possible sizes of p and
q are made (cf. the remarks at the end of Winskel [94]). In Winskel [94]
it is shown how a reasonable sized B can be found, when the assertion lan-
guage is restricted rather severely, excluding disjunctions, negations, minimal
fixed-points, and general box formulas, but still having maximal fixed-points,
diamond formulas, a strong version of box formulas, and conjunctions.

Figure 3.8: Graphical view of the reduction for product.

Here we present another approach. We give a reduction when p is a
process term without restrictions and relabellings, i.e. we find a B (depending
on p) s.t.

3.3 Reduction for Product 65

Figure 3.9: Reduction for product. Syntactic version. We use A/p as short-
hand for red×p(A; σ).

Figure 3.10: Reduction for product. Operational version.

|= q × p : A iff |= q : B.

Let Rp = {p1, . . . , pn} be the finite set of reachable states of p in some fixed
enumeration. We define the map in : P(Rq × . . . × P(Rq)︸ ︷︷ ︸

n

→ P(Rq×p) as

in(Up1 , . . . , Upn) = (Up1 × p1) ∪ . . . ∪ (Upn × pn),

where U × p = {u × p | u ∈ U}. As usual we have a change of variables σ
with σ(X) = IN (Xp1 , . . . , Xpn). We construct red×pi

(A; σ) such that for a
change of variables σ respecting the types of A[σ], we have

66 Compositional Checking of Satisfaction

[[A[σ]]]
(:)
q×pρ = in([[red×p1(A; σ)]]

(:)
q ρ, . . . , [[red×pn(A; σ)]]

(:)
q ρ).

As a notational convenience we write A/p for red×p(A; σ) omitting the
σ which is always assumed to map an X into Xp1 , . . . , Xpn . The reduction is
shown in figure 3.9 in a syntactic version, and in a more operational version
in figure 3.10. Figure 3.8 gives a graphical interpretation of A/p.

Theorem 3.7 (Reduction for product)
Assume given a pure and closed assertion A of type η1×η2, a change of vari-
ables σ, and a finitary term p of type η2 with no restrictions and relabellings.
We then have for an arbitrary term q of type η1:

|= (q × p : A) ↔ (q : red×p(A; σ)).

Proof: See appendix A.6. ✷

Notice that termination is ensured by the well-founded order consisting
of the number of products in the process term combined lexicographically
with the structure of assertions again combined lexicographically with the
maximal depth to a prefix in the process term.

The minimum fixed-point gives rise to an assertion with a where-clause
which could be removed using Bekič’s theorem (theorem 2.3) at the expense
of potentially increasing the assertion size exponentially. In the next section
we consider an example in which the application of Bekič’s theorem causes
no problems, whereas in the later example in section 3.6 applying Bekič’s
theorem would yield a rather unpleasant assertion, pointing out precisely
why we decided to enrich the calculus with simultaneous fixed-points: To
keep assertions small.

The reduction for product is a very powerful construction, which has
some striking applications we will consider in great detail in chapter 4. But
first a simple example.

3.4 Example: A Researcher and a Coffee Vend-

ing Machine

It is an important property of all our reductions (except product) that they
only depend on the top-most operator of the process term, hence we can leave

3.4 Example: A Researcher and a Coffee Vending Machine 67

part of a process unspecified and still apply the reductions. Technically this
can be done by adding process variables to our language of processes. Given
an assertion and a process with variables, we can then compute a propo-
sitional expression with correctness assertions over the variables, expressing
what relationship there should be between them in order to make the process
satisfy the assertion. In this way the reductions compute what corresponds
to weakest preconditions in Hoare logic.

As pointed out in the previous section, the reductions for product has
the potential of becoming rather complex if applying Bekič’s theorem. In
this section we show two examples for which this is not the case.

First we define a binary parallel operator ‖K,L which allows its left and
right components to independently perform the actions indicated by the sets
K and L, except that they are required to synchronize on common actions
of K and L. The precise definition is

p ‖K,L q
def
= (p × q) � Λ{Ξ}

where Λ = {a × a | a ∈ K ∩ L} ∪ {a × ∗ | a ∈ K \ L} ∪ {∗ × a | a ∈ L \ K}
and

Ξ(a × a) = a, for all a ∈ K ∩ L
Ξ(a × ∗) = a, for all a ∈ K \ L
Ξ(∗ × a) = a, for all a ∈ L \ K
Ξ(a) undefined otherwise.

Now assume that we want to construct a small system consisting of a coffee
vending machine and a researcher. The coffee machine should be able to
accept money and then supply a cup of coffee. The researcher should be
able to pay out money, drink coffee, and publish papers. Suppose we know
how the researcher behaves, specified by a process term r, but would like
to find out what kind of coffee machine x to put into the system, such that
eventually the researcher has no other choice than to publish a paper.

In general a property of the form ‘eventually only the action a can hap-
pen’ can be expressed by the assertion

µX.〈.〉T ∧ [−a]X.

Our problem can now be restated.

68 Compositional Checking of Satisfaction

Assume the actions to be p for publish, c for taking/giving coffee,
m for taking/giving money, and define K = {m, c}, L = {m, c, p}.
Which values of x make the following correctness assertion valid

x ‖K,L r : µX.〈.〉T ∧ [−p]X?

Suppose the researcher r behaves as rec P.m.c.(m.c.P + p.P). Then
expanding the definition of ‖K,L and applying the reduction for restriction
and relabelling, we get the equivalent correctness assertion

x × r : µX.〈m × m, c × c, ∗ × p〉T ∧ [m × m, c × c]X

and then, by applying the reduction for product, the equivalent

x : µX.〈m〉T ∧ [m](〈c〉T ∧ [c][m](〈c〉T ∧ [c]X)), (3.3)

which using the abbreviation [a]′A = [a]A ∧ 〈a〉T gives the more compact

x : µX.[m]′[c]′[m][c]′X, (3.4)

where only the third box-modality is “strong.” One can now use (3.4) to
verify different proposals for coffee machines, without redoing the first two
steps. This might be done by the compositional method applying reduc-
tions repeatedly until simple correctness assertions involving only nil and
state identifiers are met and the overall satisfaction problem will reduce to
true or false, or for closed terms by other model checking algorithms as the
algorithms to be presented in chapter 5.

An interesting point to note about the assertion in (3.4) is that, although
the researcher r had four reachable states, and then potentially four fixed-
points could appear, only one fixed-point appears in the resulting assertion.

Returning to the example, we can verify that a successful choice of x
is m.c.nil i.e. a coffee vending machine that accepts money and give coffee
once, and then breaks down, whereas rec P.m.c.P is an unsuccessful choice.
Reading the assertion in (3.4) carefully, we can express the requirement to
the machine as ‘after having offered a finite and odd number of m’s followed
by c’s, no m should be offered.’

Changing the behaviour of the researcher slightly and taking r = rec
P.m.c.P +m.c.p.P and performing the reductions for restriction, relabelling,
and product, we arrive at the correctness assertion x : F , i.e. there are no
coffee vending machines that will make the system fulfill the requirement.

3.5 Reductions for the Extended Calculus 69

Figure 3.11: Reduction for product in the extended calculus. The missing
cases are as for the standard calculus (see figure 3.9). Again A/pi abbreviates

red×pi
(A; σ) and A/

→
p

n

abbreviates red×
→
p

n(A; σ)

3.5 Reductions for the Extended Calculus

In generalizing the reductions to the extended calculus, we only consider the
static operators. We consider each new construction in µKext in turn. The
reductions for the three operators are given in figures 3.11, 3.12 and 3.13.

Simultaneous fixed-points. The reduction for product already gave rise
to simultaneous fixed-points and it is not difficult to extend the reduc-
tions to work on assertions that already contain simultaneous fixed-
points. For restriction and relabelling this is straightforward. For the
product we define a reduction red×

→
p

n(A; σ) with Rp = {p1, . . . , pn}
giving an assertion of arity n with the property

[[A[σ]]]q×pρ φ = in([[red×→s
n(A; σ)]]q)

where as before in : P(Rq)
n → P(Rq×p) is defined by

in(U1, . . . , Un) = (U1 × p1) ∪ . . . ∪ (Un × pn).

70 Compositional Checking of Satisfaction

For keeping the size of the resulting assertions small in reducing the
simultaneous fixed-points, it is important that we define the reduc-
tion red×

→
p

n(A; σ) directly instead of taking it to be the n-tuple of

reduced assertions (red×p1(A; σ), . . . , red×pn(A; σ)). This point is dis-
cussed later.

Constants. For the constants we must for each reduction assume the pres-
ence of other constants which in the universal valuation is related
through the respective in-maps. For instance for the reduction for re-
striction red Λ we assume for each constant Q the presence of another
constant Qred

Λ
with the property that5

V(Qred
Λ
� Λ = V(Q)

and therefore

|= (t � Λ : Q) ↔ (t : Qred
Λ
).

Action quantifiers and action predicates. For restriction and product
the existential action-quantifier is easily handled, intuitively because it
is an (infinite) disjunction and the reductions commutes with disjunc-
tion. Similarly, the action predicates cause no problems for restriction
and product.

For relabelling a little extra is needed. To see why, assume that the
relabelling map ‘has type η → ·’ for some type η. I.e. Ξ has domain
a subset of [[η]] and image a subset of [[·]]. Then a modality 〈α〉A
should now, inspired by the reductions for the standard calculus, be
replaced by a modality 〈γ〉A′ of type η such that “when applying Ξ to
γ we get α”. This suggests that we must extend the notion of change of
variables to action variables. Hence we say that σ is an extended change
of variables for the assertion A and the relabelling Ξ, if it is a change
of assertion variables for A as before, and if it maps action variables α
to an expression Ξ(η(β1, . . . , βk)) where Ξ plays a role similar to that
of IN and η(β1, . . . , βk) is constructed from the type η by filling in the
variables β1, . . . , βk for the ‘holes’ of η indicated by ·. The semantics
of Ξ(η(β1, . . . , βk)) is simply

5Recall that for a set U ⊆ ProcWPA the set U � Λ is the result of syntactically operating
by restriction on each element of U.

3.5 Reductions for the Extended Calculus 71

[[Ξ(η(β1, . . . , βk))]]φ = Ξ(η(φ(β1), . . . , φ(βk)))

where η(φ(β1), . . . , φ(βk)) is now the composite action constructed by
filling in φ(β1), . . . , φ(βk) for the ‘holes’ of η.

We also require that σ is fresh with respect to the action variables, i.e.
for two variables α0 and α1, the free variables of σ(α0) and σ(α1) are
disjoint, and also disjoint from any other variables of A.

Hence the variables βi are also variables ranging over [[·]] = Act ∪
{∗}, and a quantification ∃α will be replaced by the quantification
∃β1 . . .∃βk when σ(α) = η(β1, . . . , βk).

Theorem 3.8 (Reduction for product in µKext) Assume given a closed
assertion A in µKext of type η1 × η2, a change of variables σ, and a term p
of type η2. We then have for an arbitrary term q of type η1:

|= (q × p : A) ↔ (q : red×p(a; σ))

Proof: A straightforward extension of the case of the standard calculus as
given in appendix A.6. ✷

Figure 3.12: Reduction for restriction in the extended calculus. An assertion
〈a〉A for a ∈ Act ∪ {∗} is considered an abbreviation for ∃α.(α = a) ∧ 〈α〉A
for some α ∈/ fv(A).

Theorem 3.9 (Reduction for restriction in µKext) Let η be a type and
Λ ⊆ [[η]] a restriction set. Assume A is a closed assertion in µKext of type η,
and t is any process term, then

|= (t{Ξ} : A) ↔ (t : red{Ξ}(A; σ))

72 Compositional Checking of Satisfaction

Figure 3.13: Reduction for relabelling in the extended calculus. Like in figure
3.12 an assertion 〈a〉A for a ∈ Act ∪ {∗} is considered an abbreviation for
∃α.(α = a) ∧ 〈α〉A for some α ∈/ fv(A).

for a change of variables σ which is fresh for A.

Proof: Also a straightforward extension of the case of the standard cal-
culus as given in appendix A.4, the only non-trivial, yet simple case being
the modality. ✷

Theorem 3.10 (Reduction for relabelling in µKext) Let η be a type
and Ξ be relabelling map with domain a subset of [[η]] and image the whole
of Act ⊆ [[·]]. Assume A is a closed assertion in µKext, and t is any process
term, then

|= (t{Ξ} : A) ↔ (t : red{Ξ}(A; σ))

for an extended change of variables σ which is fresh for A.

Proof: We sketch the proof for three cases of the existential quantifier,
the action predicate and the diamond modality, the others are simple. We
use the induction hypothesis:
For all ρ, φ

[[A[σ]]]:t{Ξ} ρ φ = ([[red Ξ(A; σ)]]
(:)
t ρ φ){Ξ}. (3.5)

For the existential quantifier, we proceed as follows:

[[(∃α.A)[σ]]]
(:)
t{Ξ} ρ φ

3.5 Reductions for the Extended Calculus 73

= {s ∈ Rt{Ξ} | ∃a ∈ Act ∪ {∗}. s ∈ [[A[σ\α]]]
(:)
t{Ξ} ρ φ[a/α]}

= {s ∈ Rt | ∃a ∈ Act ∪ {∗}. s{Ξ} ∈ [[A[σ\α]]]
(:)
t{Ξ} ρ φ[a/α]}{Ξ}

= {s ∈ Rt | ∃b1, . . . , bk ∈ Act ∪ {∗}.
Ξ(η(b1, . . . , bk)) = a & s{Ξ} ∈ [[A[σ\α]]]

(:)
t{Ξ} ρ φ[a/α]}{Ξ}

as Ξ is surjective
= {s ∈ Rt | ∃b1, . . . , bk ∈ Act ∪ {∗}. s{Ξ} ∈

[[A[σ]]]:t{Ξ} ρ φ[b1/β1, . . . , bk/βk]}{Ξ}
assuming σ(α) = η(β1, . . . , βk)

= {s ∈ Rt | ∃b1, . . . , bk ∈ Act ∪ {∗}. s ∈
[[red{Ξ}(A; σ)]]

(:)
t{Ξ} ρ φ[b1/β1, . . . , bk/βk]}{Ξ}

by the induction hypothesis

= ([[∃β1, . . . , βk. red{Ξ}(A; σ)]]
(:)
t ρ φ){Ξ}

For the action predicate:

[[ψ(α)[σ]]]
(:)
t{Ξ} ρ φ = [[ψ(α)[σ]]]

(:)
t{Ξ} ρ φ

by definition of substitution

= [[ψ(α)[σ]]]
(:)
t ρ φ

as the predicate denotes true or false independently
of the transition system

= [[ψ ◦ Ξ(η(β1 . . . , βk)]]
(:)
t ρ φ

where ψ ◦ Ξ is the predicate with ψ ◦ Ξ(a) = ψ(Ξ(a)).

For the modality:

[[(〈α〉A)[σ]]]
(:)
t{Ξ} ρ φ

= {s ∈ Rt{Ξ} | ∃s′ ∈ Rt{Ξ}. s
[[σ(α)]]φ→ s′ & s′ ∈ [[A[σ]]]

(:)
t{Ξ} ρ φ}

= {s ∈ Rt{Ξ} | ∃s′ ∈ Rt{Ξ}. s
Ξ([[η(β1...βk)]]φ)→ s′ & s′ ∈ [[A[σ]]]

(:)
t{Ξ} ρ φ}

where σ(α) = η(β1, . . . , βk)

= {s ∈ Rt | ∃s′ ∈ Rt. s{Ξ} Ξ([[η(β1...βk)]]φ)→ s′{Ξ} & s′{Ξ} ∈
[[A[σ]]]

(:)
t{Ξ} ρ φ}{Ξ}
since Rt{Ξ} = (Rt){Ξ}

= {s ∈ Rt | ∃s′ ∈ Rt. s{Ξ} Ξ([[η(β1...βk)]]φ)→ s′{Ξ} & s′{Ξ} ∈
[[red{Ξ}(A; σ)]]

(:)
t{Ξ} ρ φ}{Ξ}

by the induction hypothesis

74 Compositional Checking of Satisfaction

= {s ∈ Rt | ∃s′ ∈ Rt. s
[[η(β1...βk)]]φ→ s′ & s′ ∈

[[red{Ξ}(A; σ)]]
(:)
t ρ φ}{Ξ}

by the operational rule for relabelling

= ([[〈η(β1 . . . βk)〉red{Ξ}(A; σ)]]
(:)
t{Ξ}){Ξ}

✷

It can be useful to derive reductions for some abbreviations. For in-
stance, if we consider the assertion 〈∆〉A for a set ∆ ⊆ Act abbreviating
∃α.(α ∈ ∆) ∧ 〈α〉A we find the following derived reductions:

red Λ(〈∆〉A) = 〈∆ ∪ Λ〉red Λ(A) (3.6)

red{Ξ}(〈∆〉A) = 〈Ξ−1(∆)〉red{Ξ}(A) (3.7)

red×p(〈∆〉A) =
∨

a,p′;p
a→p′

〈∆′〉red×p′(A) (3.8)

where in (3.8) ∆′ = {b | b × a ∈ ∆}.

3.6 Example: A Message Handling System

In the sequel we re-examine the message handling system of example 2.1.
Recall that the system consists of a sender S, a receiver R, and a medium M
communicating on the channels send, rec, ackr, and acks. To illustrate the
compositional approach we assume that S and R are known to be defined as

S = send!acks?S
R = rec?ackr!R

and M is yet unknown. Furthermore let us assume that we do not want
to put any restriction on the visible actions of the system, although we do
forbid external communication. Hence the system we are constructing has
the form

Sys = (S ‖ M ‖ R) � A

where ‖ is the parallel composition of OPA and A are the neutral actions of
OPA. Suppose we are interested in deducing an assertion for M to satisfy in
order for the complete system to be deadlock-free, i.e. Sys should satisfy the
formula DeadLockFree defined in section 2.5 by

3.6 Example: A Message Handling System 75

DeadLockFree = Never(DeadLock)

where

DeadLock = [.]F ∧ ¬WellTerm

and

Never(X) = νY.[.]Y ∧ ¬X.

But before proceeding with this example let us derive a reduction for ‖ from
the definition of ‖:

p ‖ q =def (p × q) � ΛOPA{ΞOPA}
where

ΛOPA = (Act × {∗}) ∪ ({∗} × Act)
∪{c? × c!, c! × c? | c ∈ A}

ΞOPA(x) =

a if x ≡ a × ∗ or x ≡ ∗ × a, a ∈ Act
c if x ≡ c? × c! or x ≡ c! × c?, c ∈ A
undefined otherwise

First, assume we have given a closed assertion A and change of variables σ
and σ′ for the reductions of � ΛOPA and {ΞOPA}. Let us compute red ΛOPA

(red{ΞOPA}(A; σ); σ′), i.e. the combined effect of performing first the reduc-
tion for relabelling and then the reduction for restriction. Notice, that the
relabelling with ΞOPA changes the type of the assertion from · to · × ·.
Now, omitting for brevity the change of variables σ which we assume has
σ(α) = Ξ(β1 × β2) we rewrite as follows:

red ΛOPA
(red{ΞOPA}(∃α.A)) = red ΛOPA

(∃β1, β2.A
′))

where A′ = red{ΞOPA}(A)
= ∃β1, β2.A

′

where A′ = red ΛOPA
(red{ΞOPA}(A))

red ΛOPA
(red{ΞOPA}(α ∈ Λ))= red ΛOPA

(α ∈ Ξ−1(Λ))
= α ∈ Ξ−1(Λ)

red ΛOPA
(red{ΞOPA}(〈α〉A)) = (β1 × β2 ∈ ΛOPA) ∧ 〈β1 × β2〉A′

where A′ = red ΛOPA
(red{ΞOPA}(A))

red ΛOPA
(red{ΞOPA}(〈∆〉A)) = red ΛOPA

(〈Ξ−1
OPA(∆)〉A′)

where A′ = red{ΞOPA}(A)) using(3.7)
= 〈Ξ−1

OPA(∆) ∩ ΛOPA〉A′
where A′ = red ΛOPA

(red{ΞOPA}(A)) using (3.6)

76 Compositional Checking of Satisfaction

Using these, we can compute the reductions for red‖P (A) (see figure 3.14).
We also get the derived reduction:

red‖p(〈∆〉A) =
∨

a,p′;p
a→p′

〈∆′〉red‖p′(A) (3.9)

where ∆′ = {b | b × a ∈ Ξ−1
OPA(∆) ∩ ΛOPA}

Figure 3.14: Reductions for the parallel operator ‖ of OPA. We have abbre-
viated red‖P (A; σ) by A//p.

Example 3.1 Let us now compute in detail the assertion expressing the
requirement to M in Sys = (M ‖ S ‖ R) � A when we want Sys to satisfy
DeadLockFree.

red‖S (red‖Rred A(νY.[.]Y ∧ (〈.〉T ∨ WellTerm))))
= red‖S(red‖R(νY.[A]Y ∧ (〈A〉T ∨ WellTerm)))

3.6 Example: A Message Handling System 77

using (3.6)

= red‖S(YR whereν

(
YR

YR′

)
=

(
red‖R(A)
red‖R′(A)

)
)

where A = [A]Y ∧ (〈A〉T ∨ WellTerm)
and R′ = ackr!R

For red‖R(A) we use figure 3.14 to get

red‖R(WellTerm) = F

red‖R(〈A〉T) = 〈∆′〉red‖R(T) ∨ 〈∆′′〉red‖R′(T)
where ∆′ = {b | b × ∗ ∈ Ξ−1

OPA(A) ∪ ΛOPA}
and ∆′′ = {b | b × rec? ∈ Ξ−1

OPA(A) ∪ ΛOPA}
by (3.9)

= 〈∆′〉T ∨ 〈∆′′〉T
where ∆′ = A
and ∆′′ = {rec!}

= 〈A〉T ∨ 〈rec!〉T

red‖R([A]Y) = [A]YR ∧ [rec!]YR′

with steps like above

This yields

red‖R(A) = [rec!]YR′ ∧ [A]YR ∧ (〈rec!〉T ∨ 〈A〉T).

The reduction red‖R′(A) proceeds in an analogous way resulting in

red‖R′(A) = [ackr?]YR ∧ [A]Yr′′ ∧ (〈ackr?〉T ∨ 〈A〉T).

Using the convention that [∆]′A = [∆]A ∧ 〈∆〉T an re-arranging the two
assertions above, we end up with

B = YR whereν

(
YR

YR′

)
=

(
[rec!]′YR′ ∨ [A]′YR

[ackr?]
′YR ∨ [A]′YR′

)
Proceeding in the same way we get that red‖S(B) reduces to:

C = YRS whereν

YRS

YR′S

YRS′

YR′S′

 =

[rec!]′YR′S ∨ [send?]′YRS′ ∨ [A]′YRS

[ackr?]
′YRS ∨ [send?]′YR′S′ ∨ [A]′YR′S

[rec!]′YR′S′ ∨ [acks!]
′YRS ∨ [A]′YRS′

[ackr?]
′YRS′ ∨ [acks!]

′YR′S ∨ [A]′YR′S′

78 Compositional Checking of Satisfaction

Now, any medium M must satisfy C to ensure that Sys is free of deadlock,
i.e. we have shown

|= ((M ‖ S) ‖ R) � A : DeadLockFree ⇔ |= M : C.

In particular, the medium called M in example 2.1 satisfy C, whereas M ′

in the same example does not. However, also some rather bizarre processes,
behaving far from how we intended the overall system to work, satisfy C.
Two distinct examples are

M1 = τ.M1.
M2 = send.M2.

The problem with M1 is that it all by itself keeps on being busy doing
some irrelevant actions and therefore the complete system cannot go into
a deadlock. We could avoid this by changing the restricting set from A to
{send, rec, ackr, acks} thereby excluding any irrelevant actions from provid-
ing deadlock-freeness. However, this would not rule out M2 which is simply
autonomously performing neutral send -actions; M2 could be ruled out by
requiring the medium to only perform input and output on the channels
{send, rec, ackr, acks} forbidding neutral actions to occur as anything else
than the result of a communication (eg. by disallowing neutral prefixes).

On the other hand, these problems could be expected as we are only
defining requirements to our system, that is a partial specification saying
that no deadlock must be possible. Surely there are other important prop-
erties of the system we are interested in! These could be captured by other
formulas, and through the reductions we could deduce other requirements for
the missing medium. This could for instance be fairness properties like an
assertion expressing that infinitely often a message could be send, captured
by the assertion

νX.[.]′X ∧ (µY.〈.〉Y ∨ 〈send〉T).

(In chapter 4 we describe a way of constructing such assertions.) ✷

3.7 Algorithmic Aspects

The reductions presented in this chapter have a clear algorithmic flavour.
Given an assertion A and a term t = op(t1, . . . , tk) we can compute an
expression B in L over correctness assertions involving t1, . . . , tk such that

3.7 Algorithmic Aspects 79

|= (t : A) ↔ B.

As a very pragmatic question we might ask, how big can B get? For nil,
prefix, restriction and relabelling it is not hard to see that B cannot be
essentially bigger than A, i.e. O(|A|) and for restriction and relabelling this
even holds in the extended calculus. For sum we have

|red0(t0 + t1 : A; σ)| = |A|

as red0 only renames variables, but for red1(t0 + t1 : A; σ) the situation is
different. The clause for a fixed-point is

red1(t0+t1 : µX.A; σ) = red1(t0+t1 : A; σ)[red0(t0+t1 : µX.A; σ)/X0][F/X1]

and there is nothing that prevents the resulting assertion from being “expo-
nentially bigger” than A. An example indicating how this can take place is
provided by A ≡ νY.µX.〈a〉(Y ∧ X) which reduces to

((t0 : 〈a〉(Y0 ∧ X0)) ∨ (t1 : 〈a〉(Y0 ∧ X0)))
[µX0.〈a〉(Y0 ∧ X0)/X0][νY0.µX0.〈a〉(Y0 ∧ X0)/Y0]

which after performing the substitutions contains four ν’s and six µ’s, instead
of the original one of each!

For product the simultaneous fixed-points actually allow us to get quite
compact reduced assertions, especially for assertions in µKwhere,Q that are on
a simple form.

Definition 3.2 A simultaneous fixed-point assertion (
→m

A whereµ

→n

X =

→n

B) in positive, normal form is said to be simple if each of the compo-
nents Bi and each of the Ai is simple, i.e. contains at most one operator
corresponding to one of the forms

Q,¬Q, F, T, X ∨ X ′, X ∧ X ′, 〈a〉X, [a]X, X

A whereµ

→m

X =
→m

B, whereν

→m

X =
→m

B.

An assertion A in positive, normal form is simple if all subassertions of A
are simple. ✷

80 Compositional Checking of Satisfaction

Now, any assertion can be transformed to an equivalent simple assertion.

Lemma 3.5 Let A be any assertion in µKwhere,Q in positive, normal form.
Then there exists a simple assertion A′ satisfying

(i) |= A ↔ A′

(ii) A′ has at most |A| variables,
(iii) A′ has size O(|A|),
(iv) A′ can be computed in time O(|A′|), and
(v) ad(A′) = max{1, ad(A)}.

Proof: (Sketch) If the top-level operator of A is a where-clause; take A0 ≡ A,
otherwise for an arbitrary X, take

A0 ≡ (X whereµ X = A).

This initial transformation at most increases the size with three, and possibly
increases the alternation depth from zero to one, otherwise it stays the same.

For each where-clause (-B′ whereµ
-X = -B) in A0 with a -B′ that is not

a tuple of variables, replace it with the assertion (-Y whereµ
-Y -X = -B′ -B)

renaming variables such that no name-clashes occur. This does not increase
the alternation depth, and all in all at most increases the size of the assertion
with a factor of three. Call the resulting assertion A1.

Now, suppose A1 contains an assertion B1 ≡ (B′ whereµ X = B) where
B does not contain any where-assertions. To each subassertion of B we
associate a variable. This gives n = |B| variables {X1, . . . , Xn}. Define a
new n-ary fixed-point assertion

B2 ≡ (B′[X1/X] whereµ

→n

X =
→n

C).

with

the expression associated with Xi where all proper
Ci = subexpressions are replaced by their associated va-

riables and X is replaced by X1,

assuming that X1 is the variable associated with B. By Bekič’s theorem B2

is equivalent to the original assertion B1 and we replace B1 by B2 in A1.

3.7 Algorithmic Aspects 81

Notice, that the introduction of the new |B| variables at most doubles the
size of the assertion and does not change the alternation depth.

This is easily generalized to the case where the fixed-point has arity
higher than one.

Repeat the above transformation on all where-clauses in A1 and call the
resulting assertion A′. This does not increase the alternation depth and at
most increases the size of the assertion with a factor of two.

These simple steps can easily be performed in linear time, and the result-
ing assertion is semantically equivalent with A since each step is semantics
preserving and has ad(A′) = max{1, ad(A)}, size O(|A|), and a number of
variables which is at most |A|. ✷

As an example the assertion (X ∧ 〈a〉X whereµ X = [a]X ∧ T) will give
rise to the simple assertion

X1 whereµ

X1

X2

X3

X4

X5

 =

X2 ∧ X3

〈a〉X3

X4 ∧ X5

[a]X3

T

Lemma 3.6 If A is a simple closed assertion in the standard calculus then
for any state s of a transition system T, and any change of variables σ, the
alternation depth of red×s(A; σ) is at most ad(A) and the size of red×s(A; σ)
is O(|A||T |).

Proof: By inspecting figure 3.9 it is easily observed that the alternation
depth is not increased, but might be decreased as dependencies between
fixed-points can disappear as a result of dividing out a modality. Moreover,
since A is simple, all of A is inside where-clauses, with simple assertions
and equation systems. The total size of dividing a simple form with each
state of a transition system is bounded by |T | as is easily seen from the fol-
lowing calculations. Assume that σ is a change of variables with σ(X) =
IN (X1, . . . , Xn).

|red×,s(〈b × a〉X)| = |(〈b〉
∨

s′;s1
a→s′

Xs′ , . . . , 〈b〉
∨

s′;sn
a→s′

Xs′)|

82 Compositional Checking of Satisfaction

=
n∑

i=1

(1 + max{1, |si
a→ |})

≤ 2 + | → | ≤ 2 + |T |

Hence, as there are at most O(|A|) variables, each of which gives rise to |S|
new variables with a total size of the right-hand sides bounded by 2|T |, we
get the bound O(|A||T |). ✷

If the assertion is not simple before the division takes place the above
bound does not hold. To see why, consider the assertion µX.〈b × a〉[b ×
a] . . . 〈b×a〉[b×a]X (l modalities), and assume that T is a transition system
with n states, which all have a-transitions to all other states including them-
selves. Then the size of a single right-hand side of the resulting assertion will
be:

|〈b × a〉[b × a] . . . 〈b × a〉[b × a]X/sj| = |〈b〉
∨
i1

[b]
∧
i2

. . . 〈b〉
∨
il−1

[b]
∧
il

Xi−l|

= nl,

where all indices range over all states. The significance of making the fixed-
points simple is precisely that values of subexpressions are shared across
the disjunctions and conjunctions avoiding unnecessary repetitions. In this
example, we will get a resulting assertion of size ln2 (n2 transitions) – instead
of the above nl.

3.8 Bibliographic Notes

As mentioned in the introductory chapter the search for compositional verifi-
cation methods is one of the major challenges to the verification community.
We have in this chapter presented a method which can be characterized as
de-compositional in the sense that the task of verifying an assertion for a
composite process is decomposed into verification tasks for the subprocesses.
The method described is based on previous work by Winskel [89, 93, 94]; the
main difference is in the presence of the propositional language L allowing for
much more compact reductions, the treatment of fixed-points (which is along

3.8 Bibliographic Notes 83

the lines of Winskel [94]) and the reductions for recursion and product which
are new. We shall in later chapters see some applications of the reductions.

Larsen and Xinxin [57] describe a method which is compositional by
using an ‘operational semantics of contexts’. Whereas their method depends
on the operational semantics, ours is driven by the syntax of the processes.
Incidentally their ‘decompositional rule’ for the product turns out to be very
similar to the operational reduction for product, although they lack the abil-
ity to get compact assertions as offered by the ‘sharing across products’ made
possible by the where-construction.

Another approach to compositionality can be found in the compositional
proof systems of Stirling [77, 76]. In the context of CTL∗ several heuristic
methods have been described. For instance, Clarke, Long and McMillan [22]
suggest using a notion of ‘interface processes’ that model the environment
of a process in a concurrent composition. These interface processes, often
simpler than the full environment, can be composed with the process and
properties of the global system can be shown by reasoning locally about the
process composed with its interface process. It would be interesting to find
out to what extent this idea could be combined with the ideas of reductions;
there seems to be no immediate conflict, but the benefits of combining the
two approaches are not clear.

84 Compositional Checking of Satisfaction

Chapter 4

Expressing Properties in the
Logic

The idea of considering process algebras as models of concurrent systems has
been well-studied in the last 10 years and by now numerous process algebras
based on different intuitions on communication and concurrency primitives
exist. There are well-developed equational theories, many results on decid-
ability and undecidability of equivalences between processes and algorithms
for determining equivalences. The relationship between the process algebraic
models of concurrent computations and other models have been studied in
great detail, and by now it is fair to say that the process algebraic approach
has been quite successful in achieving results of a profound and universal
character.

However, until recently the practical side of applying process algebras to
concrete problems has received very little attention. Although the literature
is full of examples they mostly have the flavour of being toy-examples to
illustrate specific points of the method or theory being discussed – this thesis
being no exception. The growing number of tools for performing various of
the verification tasks either by means of algorithms performing the verifica-
tion tasks automatically or as verification assistants, makes the promise of
larger, realistic examples being performed.

When using the process algebraic approach in building concrete models
of concurrent systems much help can be found in the increasing number of
textbooks covering the area, but when it comes to writing specifications in
the modal µ-calculus considerably less can be found. We give a small guide

86 Expressing Properties in the Logic

on how to express a rather generic set of properties which seems to be of
general applicability by providing a set of ‘macros ’, i.e. some abbreviations
of modal µ-calculus formulas that can be combined and actually viewed as
forming a little, perhaps more comprehensible, language on its own.

This guide is by no means exhaustive and should not be taken as a
complete survey of the known results on translating other temporal logics
into the modal µ-calculus. For such results the reader is referred to Emerson
and Clarke [34], Kozen [49], Emerson and Lei [35], Dam [31], and Stirling [79].
In fact, many of the results given in this section are well-known. However,
the use of the extended calculus for expressing behavioural relations, allowing
for the compositional method and the algorithms to be applied, is new.

4.1 Motivation

As the reader may have realized by now it can be difficult to express prop-
erties in the modal µ-calculus, i.e. to write down an assertion in the logic
expressing the property of interest. The expressiveness results giving trans-
lations from various perhaps more easily accessible temporal logics offer one
way of attack on this problem: Express the property in your favorite tem-
poral logic and use the translation at hand. This appealing approach has,
however, some disadvantages. First, the assertions tend to be extremely com-
plicated, because of the blow-up in size caused by the translation. Second,
these ‘automatically generated’ assertions are often quite unreadable which
makes further verification difficult and small adjustments almost impossi-
ble. Third, they do not offer much insight into the modal µ-calculus and
do not necessarily exploit the full capabilities of the logic. Finally, we have
introduced some extensions to the logic which will only be fully exploited by
working in the logic itself.

We first review in section 4.2 some results from the work on propositional
dynamic logic (see for example Fischer and Ladner [38] and Emerson and Lei
[35]) on how commonly used basic temporal constructions can be written as
‘macros’ that can be combined and used for expressing rather complicated
properties, and then in section 4.3 take the unconventional view of using
the logic as a meta-language for expressing equivalences and preorders, fa-
cilitating, through our reduction for product, the immediate construction
of characteristic formulae characterizing equivalence classes and down- and

4.2 Basic Operators 87

upwards-closed subsets of preorders. We then in section 4.4.1 investigate in
more general terms the more traditional problem of expressing linear and
branching time temporal properties and give a collection of macros derived
from a subset of the logic CTL∗.

4.2 Basic Operators

We start with some very simple and useful operators allowing regular expres-
sions of actions to be specified. First, however, we must introduce a little
notation for sequences.

Definition 4.1 Let ε denote the empty sequence, and for a set ∆ let FinSeq(∆)
be the set of finite sequences over ∆, i.e. the set

{d1d2 . . . dn | n ∈ ω, di ∈ ∆}

where we simply enumerate a sequence by juxtapositioning the elements.
The length |δ| of a sequence δ is the number of elements in the sequence,
i.e. |d1d2 . . . dn| = n. For two sequences δ1 = d1

1 . . . d1
n, δ2 = d2

1 . . . d2
m in

FinSeq(∆) we denote their concatenation by juxtapositioning, i.e.

δ1δ2 = d1
1 . . . d1

nd
2
1 . . . d2

m.

Let InfSeq(∆) be the set of infinite sequences over ∆, i.e. the set

{d1d2 . . . di . . . | di ∈ ∆}

The length of an infinite sequence δ is ω. For 1 ≤ i ≤ |δ| let δi be the i’th
element of δ and define for 0 ≤ i ≤ |δ| the i’th suffix δi of δ by

δ0 = δ

(dδ)k+1 = δk

Let Seq(∆) = FinSeq(∆)∪ InfSeq(∆) be the set of all sequences over ∆.
We extend concatenation to all sequences by taking δ1δ2 = δ1, if |δ1| = ω. ✷

Example 4.1 (Regular expressions)
Regular expressions of sequences of actions R are formed from the following
grammar:

88 Expressing Properties in the Logic

R ::= ∗ | a | R0R1 | R0 ∪ R1 | R∗

Here the idling action ∗ takes the role of the empty sequence of actions. We
let a range over composite actions Act∗. A regular expression R denotes a set
of sequences in FinSeq(∆) defined by structural induction on R as follows:

‖ ∗ ‖ = {ε}
‖a‖ = {a}

‖R0R1‖ = {δ0δ1 | δ0 ∈ ‖R0‖, δ1 ∈ ‖R1‖}
‖R0 ∪ R1‖ = ‖R0‖ ∪ ‖R1‖

‖R∗‖ = {δ0 . . . δn | n ∈ ω, δi ∈ ‖R‖}

We now extend the diamond modality 〈 〉 to regular expressions as follows:

〈∗〉A = 〈∗〉A
〈a〉A = 〈a〉A

〈R0R1〉A = 〈R0〉(〈R1〉A)

〈R0 ∪ R1〉A = 〈R0〉A ∨ 〈R − 1〉A
〈R∗〉A = µX.〈R〉X ∨ A, for some X /∈ FV (A)

✷

Given a transition relation →, we can now extend it to sequences δ = a1 . . . an

by taking

p
δ→ p′ ⇔def ∃p0, . . . , pn.p = p0

a1→ p1 . . . pn−1
an→ pn = p′

and to regular expressions R by

p
R→ p′ ⇔def ∃δ ∈ ‖R‖ . p

δ→ p′

This means for instance, that using the convention that . abbreviates Act and
allowing this as a regular expression with the obvious semantics, we could
redefine the set of states reachable from p of monotype · as

Rp = {p′ | p
·∗→ p′}.

4.2 Basic Operators 89

In examples we will actually use any set of actions as regular expression with
the obvious semantics.

Now, for the extension of the transition relation to regular expressions
we can show:

Lemma 4.1 (Adequacy for
R→) Assume A is a closed assertion and T

a transition system with states S. For all s ∈ S,

s |= 〈R〉A if and only if ∃s′. s
R→ s′ & s′ |= A.

Proof: By structural induction on R. The interesting case is R ≡ R′∗, which
amounts to showing that µX.〈R′〉X∨A actually denotes a set of states which
in a finite number of steps of transitions from R′ ends up in a state satisfying
A. To show this define f : P(S) → P(S) by

f(U) = [[〈R′〉X ∨ A]]T ρ[U/X]φ

for some ρ and φ, and let M = {s ∈ S | ∃s′. s
R′∗→ s′ & s′ ∈ [[A]]T ρ φ}. We

will argue that µf = M . First, notice that by definition of
R′∗→ we have

M = {s | ∃n.∃s0, . . . , sn.s = s0
R′→ s1

R′→ s2 . . . (4.1)

. . . sn−1
R′→ sn & sn ∈ [[A]]T ρ φ},

hence

f(M) = [[〈R′〉X ∨ A]]T ρ[M/X] φ

= {p | ∃p′.p
R′→ p′ & p′ ∈ M} ∪ [[A]]ρ[M/X] φ

by definition

⊆ M

by (4.1)

Therefore as µf is the least post-fixed point of f , we have µf ⊆ M . For the

other direction we argue by induction on n ∈ ω that if ∃s0, . . . , sn.s0
R′→ s1

R′→
s2 . . . sn−1

R′→ sn & sn ∈ [[A]]T ρ φ then s0 ∈ fn+1(∅) ⊆ µf . For n = 0 this
follows from f(∅) = [[A]]T ρ[∅/X] φ which equals [[A]]T ρ φ as X /∈ FV (A) = ∅.
The inductive step is just as simple. ✷

90 Expressing Properties in the Logic

This is called an adequacy result because it shows that the logic is ade-

quate for expressing the operational behaviour given by
R→. Notice, that the

same result for
a→ follows directly from the semantics of the assertion 〈a〉A.1

Example 4.2 (ω-regular expressions) (Park [69]) We can extend the
above mentioned regular expressions to ω-regular expressions by allowing
the regular expressions Rω and extending the semantics to infinite sequences,
defining

[[Rω]] = {s1 . . . si . . . | ∀i ∈ ω. si ∈ [[R]]},

where concatenating an infinite s with an arbitrary s′ is simply ss′ = s. For
the extended diamond modality we take

〈Rω〉A = νX.〈R〉X

which is independent of A as A was intended to hold for a state reached
after a performing a sequence of actions in R, and such a state will never
be reached. An extension of the adequacy lemma also holds for ω-regular
expressions implying that for an ω-free expression R we have

s |= 〈Rω〉A iff ∃s0, . . . , si, . . . ∀i ∈ ω. si
R→ si+1.

✷

Theorem 4.1 (Adequacy for ω-regular expressions) Assume A is a
closed assertion of type τ , T a transition system with states S and R an
ω-regular expression of type τ . For all s ∈ S,

s |= 〈R〉A
iff

∃δ ∈ FinSeq([[τ]]) ∩ ‖R‖, s′ ∈ S. s
δ→ s′ & s′ |= A

or
∃δ ∈ InfSeq([[τ]]) ∩ ‖R‖.s δ→

Proof: See appendix B.1. ✷

1A stronger property one might imagine is if the logic is capable of expressing p′ as an
assertion Ap′ s.t. p

R→ p′ iff p |= 〈R〉Ap′ . We will later see how to do that for finite-state
processes – at least up to strong bisimulation equivalence.

4.3 Equivalences and Preorders 91

4.3 Equivalences and Preorders

This section will describe a rather novel use of the modal µ-calculus as a
meta-language for describing equivalences and preorders. The advantage
of this approach is that having expressed an equivalence or a preorder as a
formula in the logic, all the techniques and algorithms developed for the logic
become directly applicable for that equivalence or preorder. We will see how
familiar techniques of showing processes equivalent can be re-discovered as
special cases of general techniques for the µ-calculus, and how new techniques
emerges.

But first we consider some very familiar equivalences due to Milner [59].

Example 4.3 (Strong bisimilarity) (Milner [59, p.88ff]) Recall that two
processes p and q are strongly bisimilar written p ∼ q, if and only if, (p, q)
belongs to the maximum fixed-point of the function F on P(Sp ×Sq) defined
by (p, q) ∈ F (R) ⇔def ∀a ∈ Act.

(i) ∀p′. p
a→ p′ ⇒ ∃q′. q

a→ q′ & (p′, q′) ∈ R

(ii) ∀q′. q
a→ q′ ⇒ ∃p′. p

a→ p′ & (p′, q′) ∈ R

Now, notice that F (R) can be expressed quite directly as

∀̃α.[α × ∗]〈∗ × α〉R ∧ [∗ × α]〈α × ∗〉R

hence the µ-calculus version of ∼ becomes

B =def νR.∀̃α.[α × ∗]〈∗ × α〉R ∧ [∗ × α]〈α × ∗〉R

Notice, that ad(B) = 1. ✷

It is now straightforward to prove:

Proposition 4.1 For processes p and q of type ·, p ∼ q, if and only if,
p × q |= B.

Example 4.4 (Weak bisimilarity and observation congruence)
For weak bisimulation (also called observation equivalence Milner [59, p.108ff])
we need to introduce the notion of weak transitions capturing essentially what
is ‘visible’ ignoring the ‘invisible/internal’ action τ . Following our previous
discussion on regular expressions in example 4.1, we can simply define

92 Expressing Properties in the Logic

a⇒ =
τ∗aτ∗→ , if a = τ

τ⇒ =
τ∗→

Two processes p and q are weakly bisimilar written p ≈ q, if and only if,
(p, q) belongs to the maximum fixed-point of the function F on P(Sp × Sq)
defined by (p, q) ∈ F (R) ⇔def ∀a ∈ Act.

(i) ∀p′ · p
a→ p′ ⇒ ∃q′ · q

a⇒ q′ & (p′, q′) ∈ R

(ii) ∀q′ · q
a→ q′ ⇒ ∃p′ · p

a⇒ p′ & (p′, q′) ∈ R

Now, to express this as an assertion we need to introduce weak modalities of
type · × ·, two versions allowing the left respectively the right component to
make a weak transition while the other idles. Following the lines of example
4.1, we first define two more general constructions allowing the left and right
component to perform transitions of arbitrary regular expressions. Define for
an assertion A of type · × ·, and R of type ·, 〈R〉lA inductively as follows:

〈α〉lA = 〈α × ∗〉A
〈R0R1〉lA = 〈R0〉l(〈R1〉lA)

〈R0 ∪ R1〉lA = 〈R0〉lA ∨ 〈R1〉lA
〈R∗〉lA = µX.〈R〉lX ∨ A, for some X /∈ FV (A)

and analogously for 〈R〉rA with the first clause changed to

〈α〉rA = 〈∗ × α〉A.

We can now define a weak diamond left and weak diamond right modality:

〈〈α〉〉lA = 〈τ ∗ατ ∗〉lA ∨ (α = τ ∧ A)
〈〈α〉〉rA = 〈τ ∗ατ ∗〉rA ∨ (α = τ ∧ A).

The first assertion is satisfied by a product p× q if p
α⇒ p′ and p′× q satisfies

A. Using this we can express ≈ as the assertion

W =def νR.∀̃α.[α × ∗]〈〈α〉〉rR ∧ [∗ × α]〈〈α〉〉lR

For observation congruence (written ‘=’ Milner [59, p.153]) we take

C =def ∀̃α.[α × ∗]〈τ ∗ατ ∗〉rW ∧ [∗ × α]〈τ ∗ατ ∗〉lW

4.3 Equivalences and Preorders 93

Notice, that ad(W) = ad(C) = 2. ✷

It is again straightforward to show:

Proposition 4.2 For processes p and q, p ≈ q, if and only if, p × q |= W ,
and p = q, if and only if p × q |= C.

Example 4.5 (Ready simulation) (Bloom [13], Bloom and Paige [14])
A state p is said to ready simulate a state q if (p, q) belongs to the maximal
fixed-point of the function F on Sp × Sq defined by (p, q) ∈ F (R) ⇔def

(i) ∀a ∈ Act. ∀p′. p
a→ p′ ⇒ ∃q′. q

a→ q′ & (p′, q′) ∈ R

(ii) ∀a ∈ Act. p
a→ ⇔ q

a→.

This is captured by the assertion

R = νR.∀α.[α × ∗]〈∗ × α〉R ∧ (〈α × ∗〉T ↔ 〈∗ × α〉T).

Ready bisimulation (also called 2/3-bisimulation) is simply the conjunction
of R and its reverse R−1 defined by transforming α × ∗ (respectively ∗ × α)
to ∗ × α (respectively α × ∗) in the definition of R. Hence RB = R∧R−1.

Notice that ad(RB) = ad(R) = 1. ✷

Example 4.6 (Simulation preorder)
As an example of a preorder we consider the simulation relation ≺ defined by
Milner [59, p.208], as the maximum fixed-point of the function F on P(S×S ′)
defined by (p, q) ∈ F (R) ⇔def

∀a ∈ Act. ∀p′. p
a⇒ p′ ⇒ ∃q′. q

a⇒ q′ & (p′, q′) ∈ R

Take

S =def νR.∀̃α[[α]]l〈〈α〉〉rR.

Once again we can easily show p ≺ q if and only if p × q |= S and observe
that ad(S) = 2. ✷

Example 4.7 (Prebisimulation)
To take proper care of the possible divergent behaviour of processes coming

94 Expressing Properties in the Logic

from for instance infinite ‘internal chatter’ manifesting itself as an infinite
sequence of silent actions, transition systems with a divergence predicate has
been studied, and a preorder called prebisimulation defined. This can also
be expressed within the modal µ-calculus as an assertion. First, a transition
system with divergence is a tuple (S, i, L,→, ↑) where (S, i, L,→) is a normal
transition system and ↑⊆ S is a subset of divergent states. The divergence
set ↑ is often thought of as a predicate using s ↑ for s ∈↑. We denote the
complement of ↑ by ↓, i.e. ↓= S\ ↑.

To express this in the logic we assume the presence of a constant Conv
with valuation V (Conv) =↓, and constants Conv × T and T ×Conv of type
· × · with valuations V (Conv × T) =↓ ×S and V (T × Conv) = S× ↓. Now,
the prebisimulation preorder 1 is the greatest fixed-point of the function F
on P(S × S) defined by (p, q) ∈ F (R) ⇔def ∀a ∈ Act.

(i) ∀p′. p
a→ p′ ⇒ ∃q′. q

a→ q′ & (p′, q′) ∈ R

(ii) p ↓⇒ q ↓ & (∀q′. q
a→ q′ ⇔ ∃p′. p

a→ p′ & (p′, q′) ∈ R).

(Note that if ↓= S then this definition degenerates to the usual definition of
bisimulation.) In the logic this becomes

νR.∀̃α.[α × ∗]〈∗ × α〉R ∧ ((Conv × T) → ((T × Conv) ∧ [∗ × α]〈α × ∗〉R))

with ad = 1. Again it is very easy to construct a weak version of this with
ad = 2.2 ✷

Example 4.8 (Characteristic formulae)
Through the product reduction, we can achieve characteristic formulae with
respect to any equivalence, or preorder described as a µ-calculus formula. As
an example, we consider the simple buffer

defined by

2The divergence predicate is sometimes chosen to be the set of states that might perform
an infinite sequence of τ ’s. This could be expressed internally in the logic as 〈τω〉T =
νX.〈τ〉X.

4.3 Equivalences and Preorders 95

P = in?P ′

P ′ = out!P

and find a formula which is satisfied precisely by processes which are strongly
bisimilar to the buffer:

red×P (B)

= (RP whereν

(
RP

RP ′

)
=

(
∀̃α.[α](α = in? ∧ RP ′) ∧ (α = in? → 〈α〉RP ′)

∀̃α.[α](α = out! ∧ RP) ∧ (α = out! → 〈α〉RP)

)
)

= (RP whereν

(
RP

RP ′

)
=

(
(∀̃α.[α](α = in? ∧ RP ′)) ∧ 〈in?〉RP ′

(∀̃α.[α](α = out! ∧ RP)) ∧ 〈out!〉RP

)
)

by distributing ∀̃ over the conjunctions.

For weak bisimulation we first observe that for all s

(〈〈α〉〉lA/s = 〈〈α〉〉(A/s),

where

〈〈α〉〉A = 〈τ ∗ατ ∗〉A ∨ (α = τ ∧ A),

and dually for [[α]]l:

([[α]]lA)/s = [[α]](A/s),

where

[[α]]A = [τ ∗ατ ∗]A ∧ (α = τ → A).

(As a sideremark we notice that 〈〈a〉〉 has the following property:

|= s : 〈〈a〉〉A ⇔ ∃s′. s
a⇒ s′ & |= s′ : A.

Hence the logic is also adequate for
a⇒.)

Returning to our example we observe that

(〈〈α〉〉rA)/P = (α = in?) ∧ (A/P ′),

and

96 Expressing Properties in the Logic

(〈〈α〉〉rA)/P ′ = (α = out!) ∧ (A/P).

Hence,

W/p = (RP whereν

(
RP

RP ′

)
=

(
∀̃α.[α](α = in? ∧ RP ′)) ∧ 〈〈in?〉〉RP ′

(∀̃α.[α](α = out! ∧ RP)) ∧ 〈〈out!〉〉RP

)
)

✷

4.4 General Temporal properties

Temporal properties - and temporal logics - are normally classified as relat-
ing to linear time or branching time dependent upon whether they express
properties about paths of transitions (often also called runs) or trees of tran-
sitions. Arguments exists for and against both views, as well as arguments
for coexistence of the views (see f.ex. Lamport [52] and Emerson and Halpern
[36]). We take the rather pragmatic approach that both classes are useful,
and show how some of each class are expressible within the logic. At first
sight, the modal µ-calculus is very much a branching time logic. The seman-
tics is in terms of transition systems, which can be thought of as compact
representations of trees of transitions, and the modalities 〈α〉 and [α] exploits
the branching structure of the underlying models by quantifying over ‘vari-
ous future states’. However, as the translations from other logics – including
logics with linear time features – shows, it is possible to mimic the linear
time aspect.

4.4.1 A Linear Time Logic

The modal µ-calculus is classified as a branching time logic referring to the
property that the modalities 〈a〉 and [a] quantify over possible futures. Nev-
ertheless, expressivity results show that also linear time logics referring in a
certain sense to only one possible future, can be embedded into the modal
µ-calculus ([49, 79, 30]). We will consider a very succinct embedding of a
simple logic combining linear and branching time features, which apart from
the usefulness of the translation will supply us with a collection of derived
operators (or ‘macros’).

4.4 General Temporal properties 97

The logic will be a sub-logic of the logic CTL∗ (Computation Tree Logic)
[36]. We first, however, describe CTL∗ in a slightly weaker version by omit-
ting the ‘until’-operator U , instead having explicit versions of the ‘eventually’-
and ‘always’-operators ✸ and ✷. The syntax of this mini-CTL∗ is given by
the grammar:

Φ ::= p | Φ ∨ Φ | Φ ∧ Φ | ©′ Φ | ©′ Φ | ✷Φ | ✸Φ | ∃Φ | ∀Φ

where p is are a propositional constant, © a ‘next’-operator, ©′ a ‘weak
next’-operator and ∃ and ∀ are path quantifiers. We use greek capital letters
Φ, Θ, . . . to range over linear time formulae. A commonly used abbreviation
is ❀ (‘leads to’):

Φ ❀ Φ′ = ✷(Φ → ✸Φ′)

Here we have taken the liberty of using Φ → Φ′ as an abbreviation for ¬Φ∨Φ′.
Although strictly speaking ¬Φ is not part of the syntax, we consider ¬ to be
a syntactic operation dualizing every operator in Φ (© and ©′ respectively
✸ and ✷ being dual), assuming that every propositional constant has an
associated negated version.

Semantics of linear time logics is given with respect to runs through a
transition system, i.e. as finite and infinite completed sequences of transi-
tions.

Definition 4.2 Given a transition system T = (S, i, L,→) of type ·. For a
transition (s, a, s′) ∈→ define pre(s, a, s′) = s, post(s, a, s′) = s′, lbl(s, a, s′) =
a. The set of (completed) runs Runss through T starting at s ∈ S is defined
as the set of pairs (s, δ) where δ ∈ Seq(→) is a sequence such that

(i) |δ| > 0 ⇒ pre(δ0) = s
(ii) ∀1 ≤ i < |δ|. post(δi) = pre(δi+1)

(iii) |δ| < ω ∧ post(δ|δ|)
a→ ⇒ a = ∗

(iv) lbl(δi) = ∗

Let Runs =
⋃

s∈S Runss be the set of all completed runs through T . For a
run (s, δ) let init(s, δ) = s. ✷

The length of a run is the length of the underlying sequences, and the i’th

98 Expressing Properties in the Logic

element and i’th suffix of a run is the i’th element and i’th suffix of the
underlying sequence (with an initial state added for the suffix).

As adjacent transitions in a run are required to match by (ii) we can
think of a run as an alternating sequences of states and actions, i.e.

s0a1s1 . . . ansn

for the run (s0, (s0, a1, s1)(s1, a2, s2) . . . (sn−1, an, sn)).

To summarize: Completed runs are finite or infinite sequences of non-
idling transitions with a final state (if any) that cannot perform any non-
idling actions.

Given a valuation V giving meaning to the propositional constants p as
sets V (p) of states, the semantics ‖Φ‖T,V ⊆ Runs is defined by structural
induction on Φ as follows (omitting subscripts T and V for brevity):

‖p‖ =
⋃

s∈V (p) Runss

‖Φ0 ∨ Φ1‖ = ‖Φ0‖ ∪ ‖Φ1‖
‖Φ0 ∧ Φ1‖ = ‖Φ0‖ ∩ ‖Φ1‖

‖©′Φ‖ = {δ ∈ Runs | 1 ≤ |δ|, δ1 ∈ ‖Φ‖}
‖©′Φ‖ = {δ ∈ Runs | |δ| = 0 or δk ∈ ‖Φ‖}
‖✷Φ‖ = {δ ∈ Runs | ∀k.|δ| < k or δk ∈ ‖Φ‖}
‖✸Φ‖ = {δ ∈ Runs | ∃k ≤ |δ|. δk ∈ ‖Φ‖}
‖∃Φ‖ = {δ ∈ Runs | ∃δ′ ∈ Runsinit(δ). δ′ ∈ ‖Φ‖}
‖∀Φ‖ = {δ ∈ Runs | ∀δ′ ∈ Runsinit(δ). δ′ ∈ ‖Φ‖}

To compare this with formulas of the modal µ-calculus we need to define
what it means for a state to satisfy a linear time formula. Here we have two
possibilities:

s |=∃ Φ ⇔def ∃δ ∈ Runss.δ ∈ ‖Φ‖

or

s |=∀ Φ ⇔def ∀δ ∈ Runss.δ ∈ ‖Φ‖

Notice, however, that for a formula with a path quantifier at the top-level
the two definitions coincide as satisfaction of a path-quantified formula only
depends on the first state of a run. We will refer to such formulae as state
formulae and as a set of runs U with the property that if δ is a path in U

4.4 General Temporal properties 99

then all paths with the same initial state as δ also belongs to U , as having
the state proverty . Formally:

Definition 4.3 A set U ⊆ Runs has the state property if

δ ∈ U ⇒ (∀δ′.init(δ) = init(δ′) ⇒ δ′ ∈ U.)

A formula Φ is a state formula if for all T and V , ‖Φ‖T,V has the state prop-
erty. ✷

For a state formulae Ψ we define

s |= Ψ ⇔def s |=∃ Ψ(⇔ s |=∀ Ψ)

and we define

[[Ψ]] =def {s ∈ S | ∃δ ∈ Runss. δ ∈ ‖Ψ‖}
= {s ∈ S | s |= Ψ}

The translation of the full logic into the modal µ-calculus is quite in-
volved due to the presence of assertions like: ∃(✸Φ0 ∧ ✸✷Φ1 ∧ ✷Φ2) which
require various patterns of behaviour to hold for the same path. Dam [31]
describes one such translation. We consider instead a fragment of the logic
– which we will refer to as CTL• (pronounced ‘CTL-dot’) – which at certain
places requires the modalities to be under the scope of path quantifiers:

Ψ ::= p | Ψ ∨ Ψ | Ψ ∧ Ψ | ∃©Ψ |
∀©Ψ | ∃©′Ψ | ∀©′Ψ | ∃✷Φ | ∀✷Ψ | ∃✸Ψ | ∀✸Ψ | ∃✷✸Ψ | ∀✸✷Ψ

This fragment is actually less restrictive than one might imagine at first
sight. Using the equivalences of figure 4.4.1, many more (although far from
all) assertions can be transformed into CTL•.

The embedding of a CTL• formula Ψ into the modal µ-calculus will be
given as a function I defined recursively on the structure of Ψ. To describe
the embedding we need a weak version of the diamond-modality 〈.〉′ defined
by 〈.〉′A = 〈.〉A ∨ [.]F , and a strong version of the box-modality [.]′ defined
by [.]′A = [.]A ∧ 〈.〉T .

100 Expressing Properties in the Logic

Figure 4.1: Some valid equivalences in CTL∗. In the last two lines of clauses
Ψ is a CTL• formula. Equivalences involving the next operator also hold for
the weak next operator.

I(p) = p
I(Ψ0 ∨ Ψ1) = I(Ψ0) ∨ I(Ψ1)
I(Ψ0 ∧ Ψ1) = I(Ψ0) ∧ I(Ψ1)

I(∃ © Ψ) = 〈.〉I(Ψ)
I(∀ © Ψ) = [.]′I(Ψ)
I(∃ ©′ Ψ) = 〈.〉′I(Ψ)
I(∀ ©′ Ψ) = [.]I(Ψ)

I(∃✷Ψ) = νX.〈.〉′X ∧ I(Ψ)
I(∀✷Ψ) = νX.[.]X ∧ I(Ψ)
I(∃✸Ψ) = µX.〈.〉X ∨ I(Ψ)
I(∀✸Ψ) = µX.[.]′X ∨ I(Ψ)

I(∃✷✸Ψ) = νX.µY.〈.〉Y ∨ (〈.〉′X ∧ I(Ψ))
I(∀✸✷Ψ) = µX.νY.[.]Y ∧ ([.]′X ∨ I(Ψ))

Notice, that I always yields closed assertions. Hence, the alternation depth
of a translated formula I(Ψ) can easily seen to be one – or two when any of
the assertions ∃✷✸ and ∀✸✷ are present in Ψ. It is interesting to note that
the ‘dual’ variations3 ∀✷✸ and ∃✸✷ of ∃✷✸ and ∀✸✷, yield translations

I(∀✷✸Ψ) = I(∀✷∀✸Ψ) = νX.[.]X ∧ (µY.[.]′Y ∨ I(Ψ))

and

3They are not dual in the technical sense

4.4 General Temporal properties 101

I(∃✸✷Ψ) = I(∃✸∃✷Ψ) = µX.〈.〉X ∨ (νY.〈.〉′Y ∧ I(Ψ))

which are only of alternation depth one!

We can now prove:

Lemma 4.2 For all CTL• assertions Ψ and transition systems T with val-
uation V, we have

[[Ψ]]T,V = [[I(Ψ)]]T,V

Proof: The proof is by structural induction on Ψ – the last two cases being
a bit tricky, see appendix B.2. ✷

Operator CTL∗ Definition Meaning
EAlways(α, A) ∃✷ νX.〈α〉′X ∧ A exists path on which

always A
AAlways(α, A) ∀✷ νX.[α]X ∧ A on all paths always A
EEven(α, A) ∃✸ µX.〈α〉X ∨ A e.p.o.w. eventually A
AEven(α, A) ∀✸ µX.[α]′X ∨ A o.a.p. eventually A
ERep(α, A) ∃✷✸ νX.µY.〈α〉Y ∨ (〈α〉′X ∧ A) e.p.o.w. repeatingly A
ARep(α, A) ∀✷✸ AAlways(α, AEven(α, A)) o.a.p. repeatingly A
EInfOften(α, A) νX.µY.〈α〉Y ∨ (〈α〉X ∧ A) e.p.o.w. infinitely often A
AInfOften(α, A) νX.[α]′X ∧ AEven(α, A) o.a.p. infinitely often A
EEvenAlways(α, A) ∃✸✷ EEven(α, EAlways(α, A)) e.p.o.w. eventually alw. A
AEvenAlways(α, A) ∀✸✷ µX.νY.[α]Y ∧ ([α]′X ∨ A) o.a.p. eventually alw. A
ELeadsTo(α, A, B) ∃ ❀ νX.〈α〉′X∧ e.p.o.w. A alw. leads to B

(A → µY.〈α〉Y ∨ (X ∧ B))
ALeadsTo(α, A, B) ∀ ❀ AAlways(α o.a.p. A alw. leads to B

A → AEven(α, B))

Table 4.1: Derived path operators. We will use EEven(A) as an abbre-
viation for EEven(., A).

It is illustrative to write out the I translation of ∀(P ❀ Q). Notice first
that ∀(P ❀ Q) = ∀✷(P → ✸Q) = ∀✷∀(P → ✸Q) = ∀✷(P → ∀✸Q). We
now get

I(∀✷(P → ∀✸Q)) = νX.[.]X ∧ (P → µX.[.]′X ∨ Q)

102 Expressing Properties in the Logic

With this translation we can define a nice little collection of macros,
which we systematically name as EAlways for ‘there exists a path on which
always . . . ’, and AAlways for ‘on all paths always . . . ’. To fit the general
framework we generalize the translated assertions to allow for relativized ac-
tions. Moreover, a slight anomaly arises in connection with the CTL assertion
✷✸, which is usually understood as ‘infinitely often’. With the semantics we
have defined, this interpretation is only correct if attention is restricted to
transition systems with total transition relations enforcing all maximal se-
quences to be infinite. Instead of this rather unpleasant restriction on the
models, we give two variations of pair of macros for ✷✸, one which requires
the sequence to be infinite (EInfOften/AInfOften) and one which does not
(ERep/ARep). Similar variations could be made of the other macros by re-
moving or adding quotes. Table 4.1 shows the list of macros. Notice, that
all assertions built using these macros will have alternation depth at most
two. Figure 4.2 gives a visual explanation of some of the macros. The cones
are to be thought of as the ‘computation tree’ of the underlying transition
system with the initial state as the root.

This collection of macros includes the possibility of expressing what is
known as safety properties (Always), liveness properties (Even), fairness
properties (Rep/InfOften), and other progress properties like responsiveness
(Leadsto). By combining these macros with constants and the abbreviations
introduced in earlier chapters quite powerful assertions can be formed with-
out having to “re-encode” directly in the modal µ-calculus.

Figure 4.2: Some of the path operators.

4.4 General Temporal properties 103

Example 4.9

1. “Whenever ab∗a has occurred we always end up with a deadlock:”

AAlways([ab∗a]AEven(DeadLock)).

2. “Execution of a can always be followed in a finite number of steps by
a b without performing any a’s:”

AAlways([a]AEven(Act \ {a}, 〈〈b〉〉T)).

3. “Requesting to get into a critical region by req will in a finite number
of steps result in being in the critical region (denoted by the constant
CR):”

AAlways([req]AEven(CR))

✷

Combining the characteristic formulas from section 4.3 with the macros de-
fined here we can express some rather complicated properties:

Example 4.10

1. “Eventually this process will end up behaving weakly bisimilar to q:”

AEven(W/q).

2. “There exists a computation path on which it infinitely often will be
possible to ready-simulate q:”

EInfOften(R/q).

3. “All the states that are ready bisimilar to q are also strongly bisimilar
to r:”

AAlways((RB/q) → (B/r)).

104 Expressing Properties in the Logic

4. “The pair of states that are weakly bisimilar but neither strongly bisim-
ilar nor ready bisimilar all belongs to A except if they both can perform
an a:”

((W ∧¬B ∧ ¬RB) → A) ∨ 〈a × a〉T .

It is not obvious how useful such constructions are. But at least we are able
to be more refined in our analysis than using an approach purely based on
equational reasoning between specifications and implementations; we can for
instance try to express properties about the states for which the equality fails
or for instance change the equivalences to only consider certain actions or
states. It is even possible to build in assumptions like: ‘Is p and q equivalent
under the assumption that p′ and q′ are bisimilar?’ and so on. ✷

4.4.2 Beyond CTL•

Now, one might ask what kind of formulae are not in CTL• – and are im-
possible to translate into CTL• using the equations of figure 4.1? A typical
example would be

Θ = ∀(✷Ψ ∨ ✷Ψ′)

where Ψ and Ψ′ are formulae in CTL•. None of the equations are applicable
as neither ∀ nor ✷ distributes over disjunction. Nevertheless, we will show
how one can find an assertion in the modal µ-calculus equivalent to Θ using
a slightly more advanced idea than the simple translation I.

First, suppose that we have a constant † with valuation the set of states
that cannot perform any transitions, i.e.

V(†) = {s ∈ S | s →}

Then ‖ † ‖T,V will be a set of ‘empty’ sequences (consisting of single states).
Using this constant ©′ can now be written as:

©′Φ = © Φ ∨ †.

It is not hard to prove that ✷ satisfy ✷Φ = Φ∨©′✷Φ

(4.2)

4.4 General Temporal properties 105

(If we stick to the class of models with total transition relations, here and
everywhere else the prime could be removed and everything will still be true.)
Now, let us rewrite Θ using this equation:

Θ = ∀(∨✷Ψ′)
= ∀((Ψ∧ ©′ ✷Ψ) ∨ ((Ψ′∧ ©′ ✷Ψ′))
= ∀((Ψ ∨ Ψ′) ∧ (Ψ∨ ©′ ✷Ψ′) ∧ (Ψ′∨ ©′✷Ψ)∧ ©′ ✷Ψ∨ ©′✷Ψ′))
= ∆ ∧ ∀(©′ ✷Ψ∨ ©′ ✷Ψ′))

where ∆ = (Ψ ∨ Ψ′) ∧ (Ψ ∨ ∀ ©′ ✷Ψ′) ∧ (Ψ′ ∨ ∀ ©′ ✷Ψ)
using the equations of figure 4.4.1 as Ψ and Ψ′ are CTL•

formulae
= ∆ ∧ ∀ ©′ (✷Ψ ∨ ✷Ψ′))
= ∆ ∧ ∀ ©′ ∀(✷Ψ ∨ ✷Ψ′))
= ∆ ∧ ∀ ©′ Θ

Hence, taking F (X) = ∆ ∨ ∀ ©′ X we have that F (Θ) = Θ. Now, suppose
that Φ is another formula satisfying F (Φ) = Φ, is there any relationship
between Φ and Θ? In fact, we will argue that Φ ≤ Θ where

Φ ≤ Θ ⇔def ‖Φ‖T,V ⊆ ‖Θ‖T,V for all T and V .

In other words, Θ is the maximum fixed-point of F. Actually, we will prove
the (apparently) stronger result that if U is a post-fixed point of the map on
P(RT) induced by F , which we denote by ‖F‖, hence ‖F‖(U) ⊇ U , then

U ⊆ ‖Θ‖ (4.3)

for some fixed T and V . As F yields state formulae when applied to state for-
mulae (and ‖F‖ yields subsets with the state property when applied to such
subsets) we can intuitively speaking ‘translate F ’ into a modal µ-calculus
formula:

Proposition 4.3 Giuen a transition system T and a valuation V. For all
CTL• formulae Ψ and Ψ′ we have

s |= ∀(✷Ψ ∨ ✷Ψ′)
⇔

s ∈ [[νX.(A ∨ A′) ∧ (A ∨ [.]νY.A′ ∧ [.]Y) ∧ (A′ ∨ [.]νY.A ∧ [.]Y) ∧ [.]X]]
⇔

s ∈ [[νX.(A ∨ νY.A′ ∧ [.]Y) ∧ (A′ ∨ νY.A ∧ [.]Y) ∧ [.]X]]

106 Expressing Properties in the Logic

where A = I(Ψ), A′ = I(Ψ′).

Proof: The last bi-implication is by simple rewriting. For the first bi-
implication, we continue the above discussion assuming that U is a set of
runs, s.t. U ⊆ ‖F‖(U), and prove 4.3. We first prove that U is suffix-closed,
i.e. for all k ∈ ω,

∀δ ∈ U. k < |δ| ⇒ δk+1 ∈ U

For the base case we get

δ ∈ U = ‖F‖(U) = ‖∆‖ ∩ ‖∀ ©′‖(U)

which implies that, for all δ′ with δ0 = δ′0, (δ
′)1 ∈ U hence in particular

δ1 ∈ U . From this it can also be seen that U has the state property.

For the inductive step we assume that δ ∈ U . Then as above we get
δ1 ∈ U , which by the induction hypothesis implies (δ1)k+1 = δk+2 ∈ U .

As δk ∈ U for all k ≤ |δ| and hence δk ∈ ‖∆‖ we have δk ∈ [[∆]] .

Now, we must argue that for all δ ∈ U we have

∀k ≤ |δ|. δk ∈ [[Ψ]]

or (4.4)

∀k ≤ |δ|. δk ∈ [[Ψ′]]

implying that δ ∈ ‖✷Ψ ∨ ✷Ψ′‖ and hence as U has the state property that
U ⊆ ‖Θ‖. We already know that for all k ≤ |δ| we have δk ∈ [[∆]] thus in
particular δk ∈ [[Ψ]] or δk ∈ [[Ψ′]]. Hence it is enough proving

δk /∈ [[Ψ]] ⇒ ∀l ≥ k. δl ∈ [[Ψ′]] (4.5)

Assume given such a k. Then δk ∈ [[Ψ′]] and as δk ∈ [[∆]] also

δk ∈ [[Ψ]] ∨ [[∀ ©′ ✷Ψ′]],

hence

δk ∈ [[∀ ©′ ✷Ψ′]],

4.4 General Temporal properties 107

This implies that for all l > k, we have δl ∈ [[Ψ′]] and we are done.

Assuming for a moment that we extend the syntax for linear time for-
mula with fixed-point operators with semantics an element of the lattice
P(Runs), we have actually shown that

Θ = νX.∆ ∧ ∀ ©′ X.

Now, notice that ∆ is a CTL• formula with

I(∆) = (A ∨ A′) ∧ (A ∨ [.]νY.A′ ∧ [.]Y) ∧ (A′ ∨ [.]νY.A ∧ [.]Y)

where A = I(Ψ) and A′ = I(Ψ′). We extend I to fixed-points by taking

I(νX.Ψ) = νX.I(Ψ)

I(X) = X

hence

I(Θ) = νX.I(∆) ∧ [.]X

and we claim that

[[Θ]] = [[νX.∆ ∧ ∀ ©′X]] = [[νX.I(∆) ∧ [.]X]].

(Proving this formally requires the use of a theorem relating fixed-points in
different lattices, the reduction lemma of section 3.2 suffices.) ✷

If we considered instead another assertion outside CTL•, Θ = ∀(✸Ψ ∨ ✷Ψ′)
with Ψ and Ψ′ CTL• formulae we could try to employ the same trick using

✸Ψ = Ψ ∨ © ✸Ψ

for the ✸-modality. This time both a minimum and a maximum fixed-point
will be involved. We start rewriting Θ:

Θ = ∀(✸Ψ ∨ ✷Ψ′)
= ∀(Ψ∨ © ✸Ψ ∨ (Ψ′∧ ©′ ✷Ψ′))
= ∀((Ψ ∨ Ψ′∨ © ✸Ψ) ∧ (Ψ∨ © ✸Ψ∨ © ✷Ψ′ ∨ †))
= (Ψ ∨ Ψ′ ∨ ∀ © ✸Ψ) ∧ (Ψ ∨ † ∨ ∀©∀(✸Ψ ∨ ✷Ψ′))
= ∆ ∧ (Ξ ∨ ∀ © Θ)

where ∆ = Ψ ∨ Ψ′ ∨ ∀ © ✸Ψ
and Ξ = Ψ ∨ †

108 Expressing Properties in the Logic

Notice, that ∆ and Ξ are in CTL•. Hence, Θ is a fixed-point of the function
F (X) = ∆ ∧ (Ξ ∨ ∀ © X) and again it can actually be shown that all other
(post-)fixed-points will be less, thus

Θ = νX.∆ ∧ (Ξ ∨ ∀ © X)

and we find the µ-calculus formula

νX.I(∆) ∧ (I(Ξ) ∨ [.]X),

where

I(∆) = I(Ψ) ∨ I(Ψ′) ∨ [.]′µY.[.]′Y ∨ I(Ψ)

and

I(Ξ) = I(Ψ) ∨ †.

It is not obvious how far this idea of ‘pulling out CTL•-formulae’ can be
taken and it is an interesting task to find out using this idea whether a
more succinct translation than that of Dam [31] from CTL∗ into the modal
µ-calculus is possible.

4.5 Bibliographic Notes

More literature on how to express properties in the modal µ-calculus can be
found in for example Emerson and Clarke [34], Kozen [49], Emerson and Lei
[35], Dam [31], and Stirling [79]. Case studies using the modal µ-calculus
can be found in Walker [87] and Bruns [18].

We have shown how a variety of properties can be expressed in the
extended modal µ-calculus including linear time temporal properties, equiv-
alences, preorders, and characteristic formulae. We shall later in section 5.10
see how to get algorithms for automatically checking all these relations.

As we have seen, the modal µ-calculus seems to be a good candidate for
a low-level general language for expressing behaviours of concurrent systems
and could as such be used as the backbone of a general verification tool.

Cleaveland and Steffen present in [26] ideas of computing preorders very
much like the present approach, however, whereas they suggest checking

4.5 Bibliographic Notes 109

s ≤ s′ for a preorder ≤ by generating a characteristic formula C of ≤ with
respect to s by ad hoc means and verify whether s′ satisfies s, we get the
same effect much simpler by writing down directly the definition of ≤ as a
formula in the extended modal µ-calculus allowing model checking algorithms
to be applied directly, and in effect we can get characteristic formulas for free
through the reduction for product; hence also characteristic formulas for all
the preorders investigated by Steffen [75].

110 Expressing Properties in the Logic

Chapter 5

Model Checking in Finite-State
Systems

In this chapter we consider the problem of determining satisfaction for finite-
state systems, a task which is often referred to as model checking.

The compositional method from chapter 3 already offers one way of per-
forming model checking: Given a finite-state process and a closed assertion
we can repeatedly apply the reductions until we end up with a boolean ex-
pression with atoms that are correctness assertions about the nil process.
These correctness assertions can easily be removed by the reduction for nil,
and we arrive at a boolean expression which can be evaluated to produce the
answer. This, however, is not an efficient algorithm.

Instead, using the reduction for product we will describe a very simple
way of transforming the satisfaction problem into a problem of determining
the value of a boolean fixed-point expression – a boolean expression involving
simultaneous fixed-point operators over boolean-valued variables – and de-
scribe algorithms for evaluating such expressions in an efficient manner.

Remark 5.1 In the analysis of time and space complexities we are going
to make in the sequel, we will make use of some general assumptions about
the representations of assertions and transition systems. Firstly, variables
and labels will be assumed to be represented by natural numbers, which in
turn will be assumed to be representable in a constant amount of memory.1

1As usual in camplexity analysis we make the assumptions that integers amount of
memory and that an arbitrary memory address can be accessed in can be stored in a

112 Model Checking in Finite-State Systems

Secondly, functions from an interval of the natural numbers to a set of ‘sim-
ple’ values, e.g. numbers, will be represented efficiently such that access
to the value at one particular element in the domain can be performed in
constant time (like ‘arrays’ in many programming languages). Thirdly, we
assume that directed graphs consisting of a set of nodes (an interval of nat-
ural numbers) and a set of edges (pairs of natural numbers) are represented
such that a list containing the edges out of one particular node can be found
in constant time and such that this list can be traversed in linear time. A
labelled transition system and a simple equation system can be implemented
by such a graph representation – for the transition systems, labels are also
attached to the edges. Fourth, the set of states is assumed to be an interval
of the natural numbers such that subsets of states can be represented as their
characteristic functions with contant time tests for membership.

These assumptions are met by the class of machine models called RAM
models ; an abstract machine model which in practice is realized by all general
purpose computers. We will later discuss to what extent even weaker models
suffice for implementing our algorithms.

Often we will use statements like this algorithm runs ‘in time and space
K(n)’, where it actually should be ‘in time and space asymptotically bounded
by K(n)’. We will use the notation O(K(n)) for this statement. All these
assumptions and slight abuses of language are standard when analyzing com-
plexities of algorithms (see for example Hopcroft and Ullman [43]). ✷

5.1 Tansforming Satisfaction to Boolean Ex-

pressions

We will start by looking only at assertions in µKwhere,Q, i.e. the standard
calculus extended with whereµ-clauses and constants, and discuss the gener-
alizations to µKext in section 5.9. Assume we have given a finite-state process
p and a closed assertion in µKwhere,Q. The transformation of the satisfaction
problem

|= p : A

constant constant time (the ’uniform cost criterion’, cf. Aho, Hopcroft and Ullman [3]).

5.1 Tansforming Satisfaction to Boolean Expressions 113

to a boolean expression with fixed-points will proceed in three steps. First A
is transformed to positive, normal form by pushing negations inwards. Sec-
ondly, the fixed-points of A are transformed to a simple form. And thirdly we
‘divide’ this assertion by the process p to get a boolean fixed-point expression.

The first two steps were described in section 2.6.1 and section 3.7. (The
idea of translating into a simple form is due to Arnold and Crubille [9].) The
third step of the translation will turn out to be a special case of the reduction
for product! To motivate this translation, assume given a finite-state process
p and a closed assertion A. Instead of deciding whether

|= p : A (5.1)

holds, we could take an apparent detour by considering instead the process
(nil × p){Ξ} where Ξ : Act∗ ⇀ Act∗ is defined by

Ξ(x) =

{
a if x ≡ ∗ × a, a ∈ Act
undefined otherwise.

Then it should be obvious that (5.1) is valid, if and only if,

|= (nil × p){Ξ} : A (5.2)

is valid.

For (5.2) we can apply first the reduction for relabelling to get an asser-
tion red{Ξ}(A) which is actually going to be like A except that all modalities
〈a〉 have changed to 〈∗×a〉 and then proceed with the reduction for product
to get the assertion B = red×p(red{Ξ}(A)) which by theorems 3.4 and 3.7 has
the property that (5.2) is valid, if and only if,

|= nil : B (5.3)

is valid.

However, if we consider how B looks, we discover that in it no modalities
except modaliities over the idling action appear. As [[〈∗〉A]]nilρ = [[A]]nilρ even
these trivial modalities can be removed and we get an equivalent b which
is a boolean expression with simultaneous fixed-points, the value of which
determines the validity of (5.3) and hence of (5.1).

The combined reduction consisting of applying first the reduction for
relabelling, then the reduction for product and finally removing the trivial
modalities will be called dividing A with p and is tabulated in figure 5.1.

114 Model Checking in Finite-State Systems

Figure 5.1: The division operator; A/s (respectively (A/-s)) abbreviates
reds(A; σ, V) (respectively red,s(A; σ, V)).

From the above discussion we get as an immediate corollary of theorem
3.8:

Corollary 5.1 Assume given a finite transition system T with states S =
{s1, . . . , sn}, a valuation V and an assertion A in µKwhere,Q. Then for a
change of variables σ which is fresh for A,

[[A[σ]]]T,V ρ = in([[red→
s

n(A; σ, V)]]nil,V ′ρ)

where V ′ is an arbitrary valuation and in is the composition of the in-map
from the reduction of relabelling and the reduction of product, i.e. the map
in : (P(nil))n → P(S) with

in(
→
u

n
) = {si | ui = {nil}}.

5.1 Tansforming Satisfaction to Boolean Expressions 115

How do we now evaluate b = redsi
(A; σ, V)? As b contains fixed-points

this is not a trivial task. Semantically, when interpreting b over the one-
state transition system pointed by nil, the denotation of b will be either the
property ∅ or the property {nil}. However, the two-point lattice P({nil}) of
properties of nil is nothing else than an isomorphic copy of the well-known
Sierpinski space O = {0, 1} with ordering 0 < 1, so for convenience we
consider the semantics of boolean fixed-point expressions as being given as
an assertion about nil, but we will use 0, for false, and 1, for true, for the
values ∅ and {nil}. Hence, we can define for a closed b,

[[b]] =

{
0 if [[b]]nilρ = ∅
1 if [[b]]nilρ = {nil}

for an arbitrary environment ρ. We proceed similarly for tuples -b.

Now, for a monotonic function f on O we observe the following property
of fixed-points:

Proposition 5.1 If f : O → O is a monotonic function then µf = f(0)
and νf = f(1).

Proof: Trivial. ✷

Using this simple observation we can compute the value of b by first
applying Bekič’s theorem to get only unary fixed-points and replace all the
fixed-points with their bodies applied to 0 (for minimum fixed-points) or to
1 (for maximum fixed-points) resulting in a simple boolean expression that
only contains disjunctions and conjunctions over the atoms 0 and 1 and which
is easily evaluated to yield the result.

However, the use of Bekič’s theorem has the potential danger of increas-
ing exponentially the size of the expression, so although the evaluation is
simple (“linear time”) the expression to evaluate can be huge. Curiously
enough, this simple observation seems to offer an explanation of why the
tableau-based methods of Stirling and Walker [80] and Cleaveland [23], and
the methods of Larsen [53] and Winskel [92] have bad complexities com-
pared to the algorithms we are going to present (see section 5.2 below for a
discussion of this point).

116 Model Checking in Finite-State Systems

Instead we will transform simple, simultaneous fixed-points -x = -b to
a normalized form, which resembles a kind of directed graphs. Inspired by
this analogy we give graph-like algorithms for computing the fixed-points.
In section 5.3 we present a global algorithm computing the values of all of -x
and in section 5.6 a local algorithm computing only a certain minimal part
of -x.

But before proceeding to the evaluation we state and prove the correct-
ness of the three-step translation just given.

Theorem 5.1 Given a closed assertion A in µKwhere,Q, a state s in a fi-
nite transition system T = (S, L,→) and a valuation V, then we can find a
boolean fixed-point expression b such that

(i) |=T,V s : A ⇔ [[b]] = 1,
(ii) b has O(|A||S|) variables,

(iii) the size of b is O(|A||T |),
(iv) b can be computed in time O(|A||T |),
(v) ad(b) = max{1, ad(A)}, and

(vi) b is simple.

Proof: Take A0 to be the positive normal form of A. Surely, A0 can be
computed from A in linear time and this without changing the alternation
depth. Let A1 be the simple form of A0 as given by lemma 3.5. Take
b = reds(A

1; σ, V) for some change of variables σ. Hence, since the division
is a special case of the reduction for product, (i)−(v) follows from lemma 3.5
and lemma 3.6. Finally, it is easy from the definition of division, to observe
that since A1 is simple so is b. ✷

For a single unnested fixed-point (Xi whereµ

→ l

X =
→ l

A) with | →m

A | =

k our transformation first derives a simple k-ary fixed-point (Yj whereµ

→k

Y =

→k

B) and then, given a transition system with n states, transforms this into

a nk-ary fixed-point (yjiwhereµ

→nk

y =
→nk

b) where
→nk

b only consists of
conjunctions and disjunctions over variables. By these transformations we
have reduced the problem of finding a fixed-point over the lattice P(S)l to a
problem of finding a fixed-point of a boolean function over the lattice Onk.

We will normalize the equations of the boolean fixed-point expression
slightly more:

5.2 Relation to Other Model-Checking Algorithms 117

Definition 5.1 The boolean equation system
→n

x =
→n

b with free vari-
ables V is on normalized, simple form if for all i, 1 ≤ i ≤ n, we have

bi =
∨

χ or bi =
∧

χ

for a χ ⊆ V . ✷

Any boolean expression in simple form is easily normalized by using
(somewhat arbitrarily) disjunction of a singleton set if the right-hand side is
a variable, and empty disjunctions and conjunctions for false and true.

An equational system →nx =
→n

b in normalized, simple form can be
thought of as a directed graph taking the variables as nodes, letting occur-
rences of variables on the right-hand side induce edges, and labelling the
nodes with disjunctions and conjunctions depending on the connective of the
right-hand sides. An example is provided in figure 5.2.

5.2 Relation to Other Model-Checking Algo-

rithms

It might appear that the boolean expression resulting from the translation
of the satisfaction problem |= p : A has very little to do with the original
problem. However, the situation is indeed very different. Because of the
step transforming A into an equivalent simple assertion, in effect, adding a
variable for each subassertion, and the subsequent division by p, b actually
contains a boolean variable xs′:A′ for each state s′ and subussertion A′ of A,
corresponding precisely to the satisfaction problem

|=ρ s′ : A′

for some proper environment ρ.

In this sense, there is a very close relationship between variables of b and
the satisfaction problem; what we are doing is actually to be quite explicit
about which states satisfy which subassertions of A and it is by explicit
representation of the dependencies between these satisfaction problems that
we succeed in getting efficient algorithms — and it is the lack of this which
makes other algorithms inefficient.

118 Model Checking in Finite-State Systems

Figure 5.2: A simple equational system and its normalized version given as
a graph.

This is easiest to see for the algorithm of Winskel [92] since it is closest
to the algorithms here. First, however, it will be useful to review Bekič’s
theorem for two-point lattices:

Corollary 5.2 (Bekič’s theorem for two-point lattices.) Let fi : On →
O for 1 ≤ i ≤ n be monotonic maps. Then

µ(x1, . . . , xn).(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) = (E∅1 , . . . , E∅n)

where

EJ
i =

{
0 if i ∈ J

fi(E
J∪{i}
1 , . . . , E

J∪{i}
n otherwise

Proof: From theorem 2.3 using proposition 5.1. ✷

The corollary works by unfolding the fixed-points of each component in
a tree-like manner, starting with a variable and replacing any variable the
first time it is met by its right-hand side and the second time by a zero, such
that on all paths from the root of the tree no zero will have been substituted
for a variable without the path having passed the right-hand side of that
variable.

Winskel’s [92] model-checking algorithm is described as a set of rewrite
rules on correctness assertions. The fixed-points are decorated with sets of

5.2 Relation to Other Model-Checking Algorithms 119

states U such as µX{U}A, and the semantics is2

[[µX{U}A]]ρ = µW.([[A]]ρ[W/X] \ U).

For example, he gives for the diamond-modality and the minimum fixed-point
the rules

(s : 〈a〉A) →
∨

s′;s
a→s′

(s′ : A)

(s : µX{U}A) →
{

F if s ∈ U
(s : A[µX{U, s}A/X]) if s /∈ U

(5.4)

The µ-rule (5.4) is based on the observation that

s ∈ [[µX{U}A]]ρ ⇔ s ∈ [[A]]ρ[[[µX{U, s}A]]ρ/X] \ U (5.5)

assuming that µX{U}A is a closed assertion. (This follows from a lemma
proven by Winskel, and cited as the “second reduction lemma” (lemma 7.1)
in chapter 7 on page 189). We might already notice that the unfolding of
the fixed-point, attaching another state to the fixed-point, is very similar to
how the EJ

i ’s in Bekič’s theorem adds new indices to J . We will actually
formalize this and show a very precise correspondence.

Let us consider the fixed-point assertion µX.A abbreviating (X whereµ X =
A). By performing the division with respect to the states S = {s1, . . . , sn}
of a transition system T , we get the assertion

→nx whereµ
→nx = (A/ →ns)

where A/ →ns = red
→ns

(A; σ) for a change of variables σ. From corollary

5.1 it follows that

[[µX.A]]ρ = in([[→nx whereµ
→nx = (A/ →ns)]]ρ)

where in : On → P(S) is the isomorphism taking →nu to {si | ui = 1}.
Hence in particular

2Winskel uses maximum fixed-points; we dualize to minimum fixed-points to fit our
present discussion.

120 Model Checking in Finite-State Systems

si ∈ [[µX.A]]ρ ⇔ [[xi whereµ
→nx = (A/ →ns)]]ρ = 1 ⇔ [[E∅i]]ρ = 1

where the last bi-implication follows from corollary 5.2, and EJ
i is the ex-

pression from that corollary. We will actually strengthen this statement and
prove that for all U ⊆ S

[[µX{U}A]]ρ = in([[-E{j|sj∈U}]]ρ) (5.6)

where for all J, -EJ = (EJ
1 , . . . , EJ

n). The proof is by induction on the size
of S \ U . For the base case, U = S, and the statement is vacuously true as
both sides are empty. For the inductive step assume si /∈ U , and deduce as
follows:

si ∈ [[µX{U}A]]ρ ⇔ si ∈ [[A]]ρ[[[µX{U, si}A]]ρ/X]
by 5.5 as si /∈ U

⇔ si ∈ [[A]]ρ[in([[-E{j|sj∈U∪{si}]])/X]
by the induction hypothesis

⇔ si ∈ [[A[σ]]]ρ[[[-E{j|sj∈U∪{si}}]]/-x] = 1
for a change of variables σ with σ(X) = IN(-x)

⇔ [[A/si]]ρ[[[-E{j|sj∈U∪{si}}]]/-x] = 1
by the definition of A/si

⇔ [[E
{j|sj∈U}
i]] = 1

by definition of EJ
i

If si ∈ U then clearly si /∈ [[µX{U}A]]ρ by (5.5) and E
{j|sj∈U}
i = 0, complet-

ing the inductive step.

This proves that the two rules for µX{U}A are precisely matched by the

two defining clauses for -E in Bekič’s theorem, that is, performing a rewrite
step according to the rule (5.4), corresponds to unfolding the definition of
EJ

i :

E
j|sj∈U
i =

{
0 if si ∈ U

A/si[-E
{j|sj∈U∪{si}}/-x] if si /∈ U

si : µX{U}A →
{

F if si ∈ U
si : A[µX{U, si}A/X] if si /∈ U

This shows that

5.3 A Global Algorithm 121

the model-checker of Winskel can be viewed as a way of gener-
ating and evaluating at the same time the expression that results
from applying Bekič’s theorem to the boolean fixed-point expres-
sion originating from the division (µX.A)/si.

As we have already seen Bekič’s theorem can generate highly exponentially
sized expres-sions, explaining why the algorithm as it stands is very bad.3

Exactly the same thing happens with the tableau-methods of Larsen [53]
and Stirling and Walker [80] (see for instance Winskel’s discussion about
the relations between the methods), even the improvements suggested by
Cleaveland [23] do not remove the exponential behaviour. However, Larsen
[54] has recently proposed an improvement to his original algorithm, which
for one fixed-point gives a polynomial time algorithm. His improvement
can be seen as exploiting the observation that some of the subexpressions
generated in applying Bekič’s theorem imply others allowing for a certain
amount of “re-use” of information. This re-use is, however, not enough to
achieve the efficiency of the algorithms we present in subsequent sections.

5.3 A Global Algorithm

In this section we will describe an algorithm for computing the minimum

fixed-point of a normalized, simple equation system
→n

x =
→n

b . It will be
global in the sense that it computes the complete fixed-point, and it will have

time and space complexity O(|→n

b |). If
→n

b is constructed from an unnested

fixed-point formula (Xi whereµ

→ l

X =
→ l

A) and a transition system T as

described in section 5.1, the size of
→n

b will be O(|A||T |), hence we have
a global model checking algorithm that in the worst-case is linear in the
product of the size of the assertion and the size of the transition system.

We present the algorithm in the version for finding minimum fixed-
points, the case of maximum fixed-points being completely dual.

3Note that the fix is not simply a question of storing information (called “dynamic
programming” see e.g. Aho, Hopcroft and Ullman [3]), since Bekič’s theorem generates
exponentially many different subexpressions.

122 Model Checking in Finite-State Systems

Recall, that
→n

b with free variables V = {x1, . . . , xn} induces a mono-
tonic function f : OV → OV , and the fixed-point we are interested in com-
puting is the ‘environment’ µf . The algorithm will start with the bottom
element of the lattice OV and gradually increase it until eventually the min-
imum fixed-point will be reached. Pictorially one can think of the algorithm

as ‘chasing ones’ around the graph described by
→n

b : Starting with vari-
ables that have empty conjunctions on the right-hand sides and therefore
must have value one, we look for dependent variables that can be forced to
be one, repeating until no further variables can be forced to one thereby as
it will turn out having found the minimum fixed-point.

Figure (5.3) describes the algorithm. The function st : V → Z, where
Z is the set of integers, denotes the ‘strength’ of variables, i.e. st(xi) is the
number of successors that must be one before the variable xi will be forced

to be one. The function f induced by
→n

b can be extended to a function on
strengths by taking for all xi ∈ V :

ḟ(st)(xi) =

{
|χi ∩ st>0| if bi =

∧
χi

1 − |χi ∩ st≤0| if bi =
∨

χi

where st>0 = {v | st(v) > 0}, i.e. the set of variables which still need some
successors to become one, and st≤0 = {v | st(v) ≤ 0}, i.e. the set of variables
which have enough successors that are one (negative values indicating the
‘excess’ of ones). A strength defines an environment ŝt ∈ OV by

ŝt(v) =

{
1 if st(v) ≤ 0
0 if st(v) > 0

It is now easy to see that if ḟ(st) = st then f(ŝt) = ŝt, implying that ŝt
is a fixed-point of f . The algorithm will compute a strength st with this
property.

In the algorithm, the set A will denote an ‘active’ set of variables with
value one for which the consequences of becoming one has not yet been com-
puted. Correctness can be shown from the invariant I:

I ⇔def A ⊆ st≤0 &

ŝt ≤ µf &

∀xi ∈ V. (st)(xi) =

{
|χi ∩ (st>0 ∪ A| if bi =

∧
χi

1 − |χi ∩ (st≤0\A| if bi =
∨

χi

5.3 A Global Algorithm 123

Theorem 5.2 The algorithm of figure 5.3 correctly computes the minimum

fixed-point µf and it can be implemented to run in time O(|→n

b |).

Figure 5.3: A global algorithm: Chasing 1’s. The set of predecessors of a
variable xj is the set Pred(xj) = {xi | xj belongs to the χi on the right-hand
side of xi}.

Proof: It is a simple exercise to show that the invariant I holds immediately
before the while-loop and that it is preserved by the body. When the while-
loop terminates we have A = ∅ which from the invariant implies that st =
ḟ (st) and ŝt is a fixed-point, which by the second conjunct of the invariant
is less than or equal to the minimum fixed-point, hence ŝt = µf .

For the time complexity, we assume that A is implemented as for in-
stance a stack with constant insertion and deletion times. The strength is
simply a map from the variables to the integers, which according to our as-
sumptions can be implemented with constant access times. Now, first notice
that whenever a variable has been removed from A, it will never be inserted
again as this only happens when its strength equals zero, and strengths al-
ways decrease. Hence the body of the while-loop will at most be executed
once for each variable. Each execution of the innermost for-all-loop takes
time proportional to the size of Pred(v), i.e. the number of predecessors of
the variable v. In total the while-loop takes time proportional to the sum of

124 Model Checking in Finite-State Systems

the number of predecessors, i.e. the total number of edges in G, and is thus

bounded by |→n

b |. The first loop and the last assignment are also bounded

by |→n

b |.
As the algorithm looks at predecessors of variables the ‘graph’ must

initially be reversed, which can easily be done in linear time (see e.g. Tarjan
[81]). ✷

5.4 A Global Algorithm for Alternating Fixed-

Points

In this section we will describe how the global algorithm, Chasing 1’s, can
be extended to yield a model checker for assertions with nested fixed-points
with running time O(|A|k|S|k−1|T |), where k = max{1, ad(A)}.

The algorithm, presented in figure 5.4, needs the notion of a top µ-
assertion. Recall, that a µ-subassertion of A is a subassertion of A with
main connective whereµ.

Definition 5.2 A µ-subassertion of A is a subassertion of A with main
connective whereµ. Dually for a ν-subassertion. The top µ-assertions of
A is the set of µ-subassertions of A which are not subassertions of any ν-
subassertion of A. ✷

The algorithm follows very closely the definition of alternation depth given
in 2.6, which simplifies the analysis considerably.

Theorem 5.3 Assume given an algorithm that can compute closed, simul-
taneous, unnested fixed-points (-X whereµ

-X = -A) and (-X whereν
-X = -A)

on a transition system T in time O(|A||T |). There exists an algorithm that
will compute the set of states denoted by a closed assertion A in µKwhere,Q in
time O(|A|k|S|k−1|T |) and space O(|A||T |), where k = max{ad(A), 1}.

Proof: Assume that the efficient algorithm for unnested fixed-points runs in
time bounded by c|A||T | for a constant c.

Define the predicate P on closed assertions by

5.4 A Global Algorithm for Alternating Fixed-Points 125

P (A) ⇔def for all V . Compute(A, V) executes in time asymptotically
bounded by c|A|k|S|k−1|T |,

where k = max{ad(A), 1}. Assume inductively that for all A′, |A′| < |A| ⇒
P (A′). We show by cases that P (A) holds. (In the sequel k will always be
max{ad(A), 1}.)

Case m > 0. By the induction hypothesis Compute(Bi, V) takes time
c|Bi|ki|S|ki−1|T |, where ki = max{ad(Bi), 1}.
Hence letting k′ = max{ad(A′), 1} the total time for computing A is

c|A′|k′|S|k′−1|T | +
m∑

i=1

c|Bi|ki|S|ki−1|T | ≤ c|A′|k|S|k−1|T | +
m∑

i=1

c|Bi|k|S|k−1|T |

by definition of alternation depth

≤ c(|A′| +
m∑

i=1

|Bi|)k|S|k−1|T |

≤ c|A|k|S|k−1|T |.

Case A ≡ Q. Trivial.

Case A ≡ 〈a〉B. The time to compute the diamond-modality is bounded
by c|T |, hence the total cost is c|T | + c|B|k|S|k−1|T | ≤ c(|B| +
1)k|S|k−1||T | = c|A|S|k−1||T |.

Case A ≡ B0 ∧ B1. As for 〈a〉B.

Case A ≡ (C whereµ

→n

X =
→n

B). Observe that | -B′| ≤ |A|.

Subcase -B′ unnested. As ad(A) = ad(-B′) = 1 the claim follows
immediately from the assumption about the efficient algorithm
for unnested fixed-points and the induction hypothesis on C ′.

Subcase -B′ nested. Let k′i = ad(B′i) and k′ = ad(C ′). Observe,
that k = max{k′, 1 + max{k′i | 1 ≤ i ≤ m}}. By the induction

hypothesis each iterate
→m

U is computed in time

m∑
i=1

c|B′i|k
′
i|S|k′i−1|T | ≤ c| -B′|max{k′i|1≤i≤m}|S|max{k′i|1≤i≤m}−1|T |

126 Model Checking in Finite-State Systems

The number of required iterations are bounded by the height of
the lattice P(S)m, which is m|S| ≤ | -B′||S|. Hence, the total cost
of computing the fixed-point is

| -B′||S|c| -B′|max{k′i|1≤i≤m}|S|max{k′i|1≤i≤m}−1|T |

= c| -B′|max{k′i|1≤i≤m}+1|S|max{k′i|1≤i≤m}|T |

By the induction hypothesis Compute(C ′, V [
→m

U /
→m

X]) takes

time c|C ′|k′ |S|k′−1|T |, hence the total cost is

c| -B′|max{k′i|1≤i≤m}+1|S|max{k′i|1≤i≤m}|T | + c|C ′|k′|S|k′−1|T |
≤ c|A|k|S|k−1|T |

as k = max{k′, 1 + max{k′i | 1 ≤ i ≤ m}}
and |C ′| + | -B′| ≤ |A|

Throughout the algorithm, we have assumed that maximal, closed,
and top µ/ν-subassertions of A can be detected in time O(|A|) and
therefore does not increase the overall complexity. This is justified by
the assumption that variables are represented by elements of an interval
of integers so that sets of variables can be represented effectively by a
function into O - a ‘bitvector’. ✷

5.5 Other Global Algorithms

The algorithm of the previous section only assumes the presence of an effi-
cient algorithm for handling the unnested case, and then by applying this at
appropriate places handles the general case. Boolean graphs are not used,
except perhaps in the base-case. Another attempt of extending the global
algorithm to the full modal µ-calculus, could be through a generalization of
the graph-like ideas of ‘Chasing 1’s’. Let us concentrate on an alternation
depth two formula with one minimum and one maximum fixed-point:

Xi

whereµ
-X = -B

whereν
-Y = -C

5.5 Other Global Algorithms 127

Figure 5.4: Global algorithm for µKwhere,Q given as a recursive function; ‘ff’
means ‘else if’ . . .

128 Model Checking in Finite-State Systems

where -B contains free occurrences of variables from -Y and -C contains free
occurrences of variables from -X and -Y . Having performed the translation
into a boolean fixed-point expression we end up with:

xi

whereµ
→nx =

→n

b

whereµ
→my = →mc

where
→n

b and
→n

b has free variables in V = Vx ∪ Vy where Vx =
{x1, . . . , xn} and Vy = {y1, . . . , ym}. Ignoring that we are only interested
in the i’th component we are really involved with evaluating the expression

e = µx.f(x, νy.g(x, y)) (5.7)

where f : OVx × OVy → OVx is the function induced by
→n

b and g : OVx ×

OVy → OVy is the function induced by
→m

c .

Method 1

Pictorially, we now have two graphs connected by some edges, for instance:

The idea of the algorithm of the previous section is essentially to compute
e ∈ OVx by an increasing sequence of approximations x0 1 x1 1 . . . in OVx

defined by

x0 = 0

xi+1 = f(xi, νhi)

where hi(y) = g(xi, y)) (5.8)

5.5 Other Global Algorithms 129

In each step from approximation number i to number i + 1 the maximum
fixed-point νy.hi(y) is computed with the efficient algorithm ‘Chasing O’s’

running in time c2|→mc |)|. Therefore the running time is determined by the
length of the approximation sequence i.e. |{xi}i∈ω| or in other words the
least i such that xi = xi−1. The total running time for this method is then

(c1|
→n

b | + c2|→mc |)|{xi}i∈ω|

as the time for computing one application of f is proportional to the size of
the boolean graph representing f . Notice, that |{xi}i∈ω| is bounded by n,
height of the lattice OVx .

For the model checking problem this gives running time

O((| -B||T | + |-C||T |)| -B||S|) = O(|A|2|S||T |).

Method 2

One way of improving upon this is to try to make bigger steps thereby reach-
ing the fixed-point in fewer – and not more expensive steps. Here is one way
of doing it. Consider the sequence:

u0 = 0

ui+1 = µz.f(ui ∨ z, νhi) (5.9)

where hi(y) = g(ui, y))

Again we can compute νh by ‘Chasing 0’s’ in time c2|→mc | but in each step
we compute the least fixed-point µz.f(ui ∨ z, νhi) starting from the previous
approximation and using ‘Chasing 1’s.’ As the ui sequence is increasing, each

computation of νh must be started from scratch taking time c2|→mc | at each
step, but as the arguments to the minimum fixed-point in ui+1 are increasing
we can reuse the earlier configuration and just restart ‘Chasing 1’s’ with the
newly increased values (i.e. by properly decreasing strengths and adding to

A), yielding a total cost for the minimum fixed-points of c1|
→n

b |)|. Hence the
total cost is

c1|
→n

b |)| + c2|→mc |)||{ui}i∈ω|.

130 Model Checking in Finite-State Systems

For the correctness of using the ui sequence, it is not difficult to see by
mathematical induction that for all i,

xi ≤ ui ≤ e

and therefore taking least upper bounds,

e = 6xi ≤ 6ui ≤ e

implying 6ui = e. Notice, that the sequence {ui}i∈ω is never longer than the
sequence {xi}i∈ω and possibly very much shorter.

Method 3

In order to increase the steps even more, we could consider the following
sequence where we are increasing the ν-part by using a minimum fixed-point
(!):

v0 = 0

vi+1 = µz.f(vi ∨ z, µz′.g(vi ∨ z, νhi ∨ z′)) (5.10)

where hi(y) = g(vi, y))

It is straightforward to see that this yields an increasing sequence and by
mathematical induction that ui ≤ vi.

Now, we will argue that vi ≤ e by induction on i. The base case is
trivial. Hence, assume that vi ≤ e. Then

vi+1 = µz.f(vi ∨ z, µz′.g(vi ∨ z, νhi ∨ z′))

≤ µz.f(vi ∨ z, µz′.g(vi ∨ z, (νy.g(vi ∨ z, y)) ∨ z′))

using monotonicity, noting that νhi ≤ νy.g(vi ∨ z, y)

≤ µz.f(vi ∨ z, νz′.g(vi ∨ z, (νy.g(vi ∨ z, y)) ∨ z′))

as µf ≤ νf for all f

= µz.f(vi ∨ z, νy.g(vi ∨ z, y))

collapsing the two ν ′s to one by lemma 5.2 below

= µz.f(z, νy.g(z, y)) = e

replacing vi ∨ z by z as justified by lemma 5.1 below since vi ≤ e.

Hence

5.5 Other Global Algorithms 131

Figure 5.5: The three approximation sequences. Horizontal arrows indicate
increases in the ‘µ’-approximants xi, ui, and vi, whereas vertical arrows indi-
cate increases in the ν-parts νhi. Notice, that for the last method horizontal
and vertical moves are combined by the computation of the simultaneous
minimum fixed-point of the two parts.

xi ≤ ui ≤ vi ≤ e

implying that 6vi = e and that the sequence {vi}i∈ω is always the short-
est. How do we compute each new approximation? Again, we must every

time use ‘Chasing 0’s’ to compute the ν-part taking time c3|→mc |. The two
minimum fixed-points will have increasing arguments and can be computed

simultaneously in each step, yielding a total cost of c1|
→n

b | + c2|→mc |. This
gives a total cost for computing the solution of

c1|
→n

b | + c2|→mc | + c3|
→m

c ||{vi}i∈ω| = c1|
→n

b | + c3|→mc |(c2/c3 + |{vi}i∈ω|)

In other words, if just c2/c3 + |{vi}i∈ω| < c2/c3|{ui}i∈ω| this last approach
is the better. As the constant factors c2 and c3 of Chasing 1’s and Chas-
ing 0’s should be the same c2/c3 is 1 and this last methods seems to almost
always pay off. Hence, although for the model-checking problem, in terms
of worst-case complexities, we have gained nothing – it is still O(|A|2|S||T |)
– in practice the third method could turn out to perform much better on
average and at least never worse than the two others! Figure 5.5 illustrates
the behaviour of the approximation sequences.

Lemma 5.1 Let f be an ω-continuous function on a complete lattice D.
Assume ẋ ∈ D is an element satisfying ẋ ≤ µf . Then

132 Model Checking in Finite-State Systems

µx.f(ẋ ∨ x) = µf

and dually if f is ω-anticontinuous and ẏ ≥ νf then

νy.f(ẏ ∧ y) = νy

Proof: Take the sequence x0 = 0, xi+1 = f(ẋ ∨ xi) which surely is below µf
and bigger than the usual approximation sequence for f , hence must have
least upper bound µf . ✷

Lemma 5.2 For a monotonic function f on a complete lattice D we have

νx.f(νf ∨ x) = νf .

Proof: Easy, using e.g. the second reduction lemma (lemma 7.1). ✷

5.6 A Local Algorithm

Model checking is usually involved with deciding satisfaction for just one
particular state, so it might seem overwhelming to have to compute the
complete fixed-point in order to decide the value at just one particular state.
This observation is central to the development of local model checkers with
the idea being that starting from one particular state, only a ‘necessary’ part
of the transition system will be investigated in order to determine satisfaction.

In this section we present a local algorithm for finding a fixed-point
of a normalized, simple equation system, which will only visit a subset of
the system in the search for deciding the minimum fixed-point value for one
particular node. We will explain how it can be implemented to run in time
proportional to (within a logarithmic factor) the size of the subset being
visited.

First, we need to review the problem. We want to find the value of an
expression

xi whereµ
→nx =

→n

b

where →nx =
→n

b is a normalized, simple equation system with free variables

V = {x1, . . . , xn} inducing a function
→n

f : On → On in the obvious way:

5.6 A Local Algorithm 133

→n

f (-u) = [[
→n

b]]ρ[-u/ →nx]

In view of the trivial isomorphism ι : On ∼= OV between a product lattice of

O and a function space into O ordered pointwise, the function
→n

f can also
be viewed as a function f : OV → OV i. e.

f(u) = ι(
→n

f (ι−1
x (u)))

We will distinguish between the two views by the presence or absence of the
vector arrow.

The function space OV is a kind of variable environment with domain
V , hence the fixed-point µu.f(u, v) is an environment giving the values of

the variables x1, . . . , xn in the minimum solution to →nx =
→n

b .

To state and reason about the local algorithm, we will be faced with
situations in which the value of some of the variables are unknown, and we
therefore must be quite explicit in our treatment of ‘unknown values’. Hence,
we model an unknown value by the symbol ? and use a lifting-construction
well-known from domain theory to add an unknown value to a lattice.

Definition 5.3 The ?-lifting D? of a poset D is the poset

D? = {?} ∪ {7d8 | d ∈ D}

with ordering ≤D defined by

x ≤D?
y ⇔def x =? or ∃a, b ∈ D. x = 7a8 & y = 7b8 & a ≤D?

b

Hence ? is a ‘bottom element’ of D? (The function 7 8 is any injective func-
tion without ? in its image.) ✷

The ?-lifting of a complete lattice is again a complete lattice. Notice, that
On can be embedded into (O?)

n by mapping (u1, . . . , un) to (7u18, . . . , 7un8).
We will, somewhat ambiguously, use 7 8 for this embedding. Similarly, for
any set D, OD can be embedded into (O?)

D by pointwise ?-lifting, a map
which we also use 7 8 to denote. Moreover, for u ∈ (O?)

D we take dom(u) to
be the domain of u, i.e. dom(u) = {d ∈ D | u(d) =?}.

134 Model Checking in Finite-State Systems

Now, the boolean expression
→n

b with free variables V = {x1, . . . , xn}

induces a function
→n

f ′ : (O?)
n → (O?)

n by extending
∨

and
∧

to maps∨
: P(O?) → O? and

∧
: P(O?) → O? as follows:

∨
C =

718 if 718 ∈ C
708 if C ⊆ {708}
? if ? ∈ C & 718 /∈ C

∧
C =

718 if C ⊆ {718}
708 if 708 ∈ C
? if ? ∈ C & 708 /∈ C

Again we refer to the function-space version of
→n

f ′ as simply f ′ which is a
map f ′ : (O?)

V → (O?)
V .

The following fact is easily proven (see e.g. section 6.3.1):

∀-v ∈ Om.µ-v.
→n

f ′ (-u ∨ 7-08, 7-v8) = 7µ-v.
→n

f ′ (-u,-v)8 (5.11)

This, somewhat trivial relationship, will be used by our algorithm: By par-
tially finding the fixed-point on the left-hand side we also gain knowledge
about the fixed-point on the right-hand side. This will be based on a notion
of relativized equivalence and relativized partial order on functions.

Definition 5.4 Assume D is a set and E a poset. If u and v are func-
tions u, v : D → E then define for all S ⊆ D,

u =S v ⇔def ∀d ∈ S. u(d) = v(d)
u ≤S v ⇔def ∀d ∈ S. u(d) ≤E v(d)

✷

In particular we have relativized equivalences and partial orders on the par-
tial environments OV , which due to the isomorphism ι induces relativized
equivalences and partial orders on On. We now have for minimum fixed-
points:

Lemma 5.3 (Projection lemma) Suppose D and E are cpo’s with bottoms.
Let p : E → D be a surjective, ω-continuous function. For any ω-continuous
function f : E → E and element y ∈ D, which satisfy

5.6 A Local Algorithm 135

(i) ∀x ∈ p−1(y).p(f(x)) = y
(ii) y ≤ p(µx.f(x))

we have
y = p(µx.f(x)).

Proof: For any x ∈ p−1(y) it is easy to show by induction on n ∈ ω from
the monotonicity of p and (i) that p(fn(⊥E)) ≤ p(fn(x)) = y. Then by
continuity of p, p(µx.f(x)) = p(6n∈ωfn(⊥E)) = 6n∈ωp(fn(⊥E)) ≤ y, and
the lemma follows from (ii). ✷

As an easy corollary of the projection lemma we have:

Lemma 5.4 (Partial fixed-point lemma) Let I be an indexing set and
for each i ∈ I, Ei a cpo, and let E =

∏
i∈I Ei be the product cpo of the Ei’s

ordered pointwise. Assume f : E → E is ω-continuous and that u ∈ E.
Then for all S ⊆ I, if

(i) ∀u′.u =S u′ ⇒ u =S f(u′), and
(ii) u ≤S µf

then
u =S µf .

Proof: Let D = Πi∈SEi. Define p : E → D by p(m)(s) = m(s) which
is easily seen to be surjective and ω-continuous. Notice, that m =S m′ ⇔
p(m) = p(m′). Then, if x ∈ p−1(p(u)), i.e. p(x) = p(u), we have p(f(x)) =
p(u) by (i). Moreover, u ≤S µf implies p(u) ≤ p(µf), hence from the
projection lemma we get p(u) = p(µf), i.e. u =S µf . ✷

The local algorithm can be found in figure 5.6.

In the presentation of the algorithm we leave out the lifting operations
for improved readability. The variables of the algorithm serve the following
purposes:

The task of the algorithm is to find a partial environment m, giving

partially the fixed-point of the function f induced by
→n

b . The set A is a set
of variables that have to be recomputed either because their value is needed
by some other variable, or because the value of one of the successors have
changed. The partial map d associates to each variable on which it is defined
a set of its predecessors that need to be ‘informed’ if the variable change

136 Model Checking in Finite-State Systems

value. The partial map p associates to each variable a number indicating the
next successor to be investigated, assuming that in each right-hand side,

∨
χj

or
∧

χj the variables of χj are numbered from 1 to |χj|. All successors with
index less than the current value of p has defined values in m. Finally, the
partial map h indicates for each variable on which it is defined the number
of successors (with index below that given by p) which has value 1.

Figure 5.6: The local algorithm for (xi whereµ
→
x

n
=
→
b

n

).

The algorithm starts with a particular variable xi assumes it has value
0 and tries to verify this by evaluating the right-hand of xi, adding other
variables to A if their values are needed, and tries to verify that these have
value 0 and so on. In doing so p keeps track of which successors of a variable
have been visited and d dynamically keeps track of the dependencies between
variables. If a variable change value from 0 to 1 this change is propagated to
all dependent variables stored in d.

5.6 A Local Algorithm 137

The new value of a variable, eval(b, h, p), is computed as

eval(b, h, p) =

1 if (b ≡
∨

χ & h > 0)
or (b ≡

∧
χ & h = p = |χ|)

0 if (b ≡
∨

χ & h = 0 & p = |χ|)
or (b ≡

∧
χ & h < p)

? otherwise.

Theorem 5.4 When the local algorithm of figure 5.6 terminates, we have
(i) xi ∈ dom(m) and
(ii) m =dom(m) 7µf8 It can be implemented to run in time proportional

to |-b′|log|dom(m)|) where -b′ is the part of -b examined by the algorithm, hence

the running time is O(|-b| log n).

Proof: Correctness is postponed to after the proof of correctness for the
more general algorithm in chapter 6 (see lemma 6.1 in 6.5).

For the complexity we assume that the partial maps m, d, p and h
are implemented as e.g. balanced search trees such that extensions and
alternations of maps can be performed in logarithmic time. The sets of
variables A could be implemented as a stack giving constant-time insertions
and deletions. We use an amortized cost argument by counting the number
of insertions to A and observe that between any two insertions and deletions
only a constant number of logarithmic time operations are performed.

Now, considering each variable at a time, how many times can xj be
inserted into A? First, perhaps once in line (1:). Secondly, due to line (2:),
incrementing p(xj), xj is at (3:) and (4:) at most added to A a number of
times bounded by |χj| and it is at most added as the successor χip(xi) of some
xi once since the value at xj is then changed from ? to 0. Thirdly, due to
the condition of (6:) and the increase of m(xj) to one, line (7:) is at most
executed once, adding to A at most |d(xj)| ≤ |Pred(xj)| times. Summing

over all variables xj we get a total number of insertions that is O(|-b|) (or

more precisely c|-b′| where -b′ is the part of -b being examined by the algorithm
and c is some constant).

Hence, we have a total number of insertions and deletions on A bounded
by O(|-b|) giving the bound O(|-b| log n). ✷

138 Model Checking in Finite-State Systems

5.7 A Local Algorithm for Alternating Fixed-

Points

As a step towards a local algorithm for computing alternating fixed-points,
we refine the algorithm of the previous section, such that it computes the
value of the expression

xi whereµ
→nx =

→n

b

where
→n

b contains not only the free variables Vx = {x1, . . . , xn} but also the
free variables Vy = {y1, . . . , ym}, without an initial values for the variables of
Vy. These values will be demanded in a lazy fashion, as they become needed.
We implement this by a data-structure – a ‘Mu-Component’ – which is essen-
tially the previous local algorithm with proper interruptions for demanding
the values of variables in Vy and operations for supplying these values and
restarting the evaluation.

Dually, a Nu-Component will compute a maximum fixed-point in the
same way as a Mu-Component computes a minimum fixed-point. A Mu- and
a Nu-Component will later together form the basis of an algorithm computing
alternating fixed-points in a local fashion.

5.7.1 A Mu-Component

Now, the boolean expression
→n

b with free variables V = Vx∪Vy where Vx =

{x1, . . . , xn} and Vy = {y1, . . . , ym} induces a function
→n

f : On×Om → On

in the obvious way:

→n

f (-u,-v) = [[
→n

b]]ρ[-u/ →nx ,-v/ →my]

As before, in view of the trivial isomorphisms ιx : On ∼= OVx and ιy : Om ∼=
OVy between product lattices of O and function spaces into O ordered point-

wise, the function
→n

f can also be viewed as a function f : OVx×OVy → OVx

i.e.

f(u, v) = ιx(
→n

f (ι−1
x (u), ι−1

y (v))).

5.7 A Local Algorithm for Alternating Fixed-Points 139

Furthermore,
→n

b also induces a function
→n

f ′ : (O?)
n × (O?)

m → (O?)
n

and a function f ′ : (O?)
Vx × (O?)

Vy → (O?)
Vx using the extensions of

∨
and∧

defined previously.

Now, the data-structure will maintain a partial environment m : V → O?

with the two parts mx : Vx → O? and my : Vy → O? storing information
about the ‘current’ value . of variables. The data-structure (see figure 5.7.1)
is operated through the four operations init, find, set, and update which has
intuitive behaviour as follows:

init (). We use a program variable R ⊆ Vy recording the variables of Vy

for which the values have been requested. All program variables are
initialized properly.

find(xj) → y. The variable xj is added to the set of variables for which
the value must be determined, and the evaluation is continued. The
returned value y is either • implying that A = ∅, in which case the
component is said to be stable and the partial fixed-point has been
found, or y is a variable from Vy, the value of which must be supplied.

set(y,b). Sets the value of the variable y to b. Notice, that it is required
that the previous value of y was smaller or the same reflecting the fact
that in a Mu-Component it is easy to propagate increases in values,
but not decreases.

update() → y. Restarts the evaluation, for instance, after a requested vari-
able has been set, and returns a y as ‘find’ above.

Theorem 5.5 (Correctness of Mu-Component) Let K be a Mu-Compo-

nent for →nx =
→n

b with free variables Vx = {x1, . . . , xn} and Vy = {y1, . . . , ym}
inducing the function f ′ : (O?)

Vx∪Vy → (O?)
Vx . If, after having performed an

init and any sequence of update, find(xi) and legal set(yj, b) operations, K is
stable (i.e. A = ∅) then, letting S be the set of variables used as arguments
to find, we have,

(i) S ⊆ dom(mx)
(ii) ∀v ∈ (O?)

Vy . v =R my ⇒ mx =dom(mx) µu.f ′(u ∨ 708, v)

Proof: Line (i) is obvious from the behaviour of find. Line (ii) is postponed
to after the presentation of the general fixed-point finder in chapter 6 (see
lemma 6.2 in section 6.5). ✷

140 Model Checking in Finite-State Systems

The theorem states that, when a Mu-Component is stable all variables
requested by find has the ‘correct values’ as given by the minimum fixed-
point relative to my. Moreover, the values are independent of whatever is
supplied for the yet unknown values of variables of Vy.

A Nu-Component is constructed like a Mu-Component by dualizing ev-
erything: zeroes are replaced by ones, disjunctions by conjunctions etc. Sim-
ilarly, the ?-lifting ()? and the embedding 7 8 is replaced by ‘?-lowering’ ()?

and the embedding 9 :. By the principle of duality we immediately get:

Corollary 5.3 (Correctness of Nu-Component) Let L be a Nu-Component

for →my = →mc with free variables Vy = {y1, . . . , ym} and Vx = {x1, . . . , xn}
inducing the function g′ : (O?)Vx×(O?)Vy → (O?)Vy . If after having performed
an init and any sequence of update, find(yj) and legal set(xi, b) operations, L
is stable (i.e. A = ∅) then, letting S be the set of variables used as arguments
to find we have,

(i) S ⊆ dom(my)
(ii) ∀u ∈ (O?)

Vx . u =R mx ⇒ my =dom(my) νu.g′(u, v ∨ 718, v)

Theorem 5.6 (Complexity of Mu- and Nu-Components) A Mu-Compo-
nent (and a Nu-Component) for the normalized, simple equation system
→nx =

→n

b with m free variables besides →nx can be implemented such that
after a call to init any sequence of length N of calls to find, update, ‘lookup’
(K.mx) and set takes amortized time

O((N + | →n

b |)log n).

Stability can always be reached in fewer than m update-operations.

Proof: The complexity follows easily from the proof of theorem 5.4 – the
only difference being that we interrupt the algorithm now-and-then, so still
only O(| →n

b |) insertions on A are nerformed.

Moreover, after m call to update, each of the m yj’s has (at least) value
0, so no yj’s will be requested and an update-call will end with A = ∅, i.e.
K is stable. ✷

5.7 A Local Algorithm for Alternating Fixed-Points 141

Figure 5.7: The Mu-Component for
→n
x =

→n

b with variables Vx = {x1, . . . , xn}
and Vy = {y1, . . . , ym}.

142 Model Checking in Finite-State Systems

5.7.2 Connecting Two Components

In order to evaluate an expression like

xi

whereµ
→nx =

→n

b

whereµ
→my = →mc

in a local fashion, we shall use a Mu-Component K and a Nu-Component L

and ‘connect’ them. Let f be the map induced by
→n

b and g the map induc-

ed by →mc as defined in the previous section. Then we want to compute
part of the alternating fixed-point

e = µu.f(u, νv.g(u, v)) ∈ OVx .

Now, the central idea will be to locally start searching in the Mu-Component
K for f , moving to searches in the Nu-Component L for g whenever an input
node from L is needed. If while searching L an input from K will be needed,
we check whether the value is already present, if not we assume that the input
has value 0 thereby

not only approaching the minimum fixed − point from below ,
but also having a successive set of maximum fixed − points (5.12)
approaching the final maximum fixed − point from below .

(In this respect our approach can be seen as a local version of the global
method called method 2 in section 5.5.) To be a bit more specific, we only
stop searching in L when the component is stable and the overall search in
K, forcing searches in L, only stops when K is stable, thereby ensuring that
the environments of the components really contain a (partial) fixed-point
with respect to the current value of input variables. Any false assumptions
made in this process must be properly propagated, which might involve re-
computation of variables in K and complete re-computation of L.

The algorithm is presented in figure 5.8. The annotations I(1), I(2) and
I(3) refer to invariants used in proving correctness.

In stating the invariants we use the following list of assertions:

5.7 A Local Algorithm for Alternating Fixed-Points 143

Figure 5.8: The two-components algorithm. Finds the value of xi.

(i) K.mx ≤dom(K.mx) 7e8
(ii) L.my ≤dom(L.my) 7νv.g(v, e)8

(iii) R ∪ R′ = K.R (iii′) R ∪ R′ = K.R = ∅
(iv) S = L.R
(v) R = ∅ ⇒ K stable

(vi) R = ∅ ⇒ L.mx =S K.mx

(vii) K.my =R′ L.my (vii′) K.my =R′\y L.my

(viii) x = • ⇒ L stable
(ix) K.R ⊆ dom(L.my) & L.R ⊆ dom(K.mJx) & xi ∈ dom(K.mx)

The invariants are now:

I(1) ⇔def (i) & (ii) & (iii) & (iv) & (v) & (vi) & (vii) & (ix) & L stable
I(2) ⇔def (i) & (ii) & (iii′) & (iv) & (v) & (vii) & (ix) & L stable
I(3) ⇔def (i) & (ii) & (iii) & (iv) & (vii′) & (viii) & (ix) & r ∈ R′

Theorem 5.7 (Correctness of two-components algorithm)

144 Model Checking in Finite-State Systems

Let K be a Mu-Component for →nx =
→n

b and let L be a Nu-Component
for →my = →mc . Let Vx = {x1, . . . , xn} and Vy = {y1, . . . , ym}. Then when
the algorithm of figure 5.8 terminates,

(i) xi ∈ dom(K.mx)
(ii) K.mx =dom(K.mx) 7µx.f(x, νy.g(x, y))8

where f : OVx × OVy → OVx and g : OVx × OVy → OVy are the functions

induced by
→n

b and →mc .

Proof: The proof of the validity of the invariants is standard using Hoare
logic: To show that I(1) is valid, we first assume that I(2) and I(3) are valid.
After the initializations I(1) holds trivially. After an iteration of the loop
most conjuncts of I(1) follows easily from I(2). The only non-trivial case
is (vi) which follows from (iii′) of I(2) and the fact that after the last if-
statement, if R = ∅ then R′ = ∅ by (iii′) and therefore the conditional must
have been false, implying L.mx =S K.mx.

The two other invariants are no more difficult utilizing theorem 5.5 and
corollary 5.3.

To show that I(1) is strong enough to prove the theorem, let us assume
that I(1) is indeed an invariant for the outermost while-loop. Then at termi-
nation we have I(1) & R = ∅. For e = µu.f(u, νv.g(u, v)) we now first deduce
as follows:

7e8 = 7µu.f(νv.g(u, v))8
by definition

= µu′.f ′(u′ ∨ 708, 7νv.g(7u′8, v)8)
by (5.11)

= µu′.f ′(u′ ∨ 708, νv′.g(u′, v ∧ 718))
by the dual of (5.11)

= µu′′.µu′.f ′(u′ ∨ 708, νv′.g(u′′, v ∧ 718))
by simple fixed-point theory

µu′′.h(u′′)
by taking the right-hand side below µu′′

as definition of h(u′′).

Hence, 7e8 is the minimum fixed-point of h. Moreover, for all w =dom(K.mx)

K.mx we deduce

5.7 A Local Algorithm for Alternating Fixed-Points 145

νv′.g(w, v ∧ 718) =dom(L.my) L.my

from corollary 5.3 which applies as (iv), (vi) and R = ∅ implies K.mx =L.R

L.mx which from (ix) implies w =L.R K.mx =L.R L.mx. Using this, we
notice that (iii) and (vii) implies L.my =K.R K.my and hence using (ix),
L.my =dom(L.my) K.my, therefore from theorem 5.5 we get:

K.mx =dom(K.mx) h(w).

Combining this with

K.mx ≤dom(K.mx) 7e8 = µh

which follows from (i), we get by lemma 5.4 that

K.mx =dom(K.mx) 7e8.

Since xi ∈ dom(K.mx) follows directly from (ix), we have proven the theo-
rem. ✷

Intuitively, when the algorithm terminates the theorem tells us that ev-
erything known about the fixed-point is correct, i.e. all variables that have
a known value, have the correct value. Of course, when using the algorithm,
it is safe to terminate if at a point the node of interest reaches the value one.

Theorem 5.8 (Complexity of two-components algorithm) The two-
components algorithm of figure 5.8 can be implemented to run in worst-case
time when evaluating the expression

O((| →n

b | + n|→mc |)log(n + m))

when evaluating the expression (xi whereµ
→nx = (

→n

b whereν
→my = →mc))

Proof: We again use an amortized cost argument. Assume that R and
S are implemented as simple list structures allowing constant insertion and
removal times and linear time traversals.

First, we note by theorem 5.6 that for the contribution from K and
L, it suffices to count the number of initializations of K and L and the
number of operations performed between initializations. Secondly, we notice

146 Model Checking in Finite-State Systems

that between any two calls to K and L except for the last if-statement (if
∃x ∈ S . . .), only an input-independent bounded number of constant-time op-
erations are performed. Thirdly, the amortized cost for this last if-statement
is bounded by the number of iterations of the outermost while-loop multiplied
with the maximum size of S, which is n.

For K only one initialization takes place and the number of set, lookup
(“K.mx”) and update-calls is bounded by the number of iterations of the sec-
ond while-loop. Since a y is never re-entered into R in the second while-loop,
at most m y’s can be entered into R, hence this loop executes at most m
times for each iteration of the outermost loop. Let n′ be the number of x’s

referred to in →nc . The outermost while-loop executes at most 2n′ times,
because each iteration requires an x ∈ S on which K and L disagree of the
value, and in the following iterations such an x will never cause disagreement
more than at most one more time (if its value increases from zero to one).
Finally, the innermost while-loop executes at most n′ times for each itera-
tion of the outermost while-loop as an x is never re-entered into S between
executions of the last if-statement.

Ignoring the constants, this gives:

for K: (2n′m + |→n

b |) log n
because of at most 2n′m executions of the body of the
second while-loop

for L: 2n′(n′ + m + |→mc |) log m
since up to 2n′ initializations and maximally n′ + m
calls between each

for last if : 2n′n′

in total: O((|→n

b | + n′|→mc |) log(n + m))

As n′ ≤ n we get the bound in the theorem. ✷

Corollary 5.4 There exists a local model-checker for assertions on the form
A ≡ (X whereµ

-X = (-B whereν
-Y = -C)) running in worst-case time

O(|A|2|S||T | log(|A||S|)

for a finite transition system T with states S.

5.7 A Local Algorithm for Alternating Fixed-Points 147

Proof: Use the translation in section 5.1 and apply the two-components
algorithm. The correctness and complexity now follows immediately from
theorem 5.7 and theorem 5.8. ✷

Remark 5.2 The choice of assuming that undefined ‘outputs’ from K have
value 0 is crucial to the validity of K.mx ≤dom(K.mx) 7e8 (assertion (i) in
the invariants) stating that K.mx is always smaller than the needed result.
Taking the value 1 could result in this property being violated. Now, alter-
natively one might ask: Why, when an output s from K is needed, do we not
just start searching for it in K? The reason for the failure of this approach
is intricate: When L is not stable, L.my might be bigger than the true result
for this component. (Recall that L is a Nu-Component, and approaches the
maximum fixed-point from above.) This in turn can make K.mx be too big,
and the result wrong.

Figure 5.9: An intricate example. What is the correct value of x2?.

Figure 5.9 shows in a graphical manner a simple example illustrating the
point. Assume we are interested in determining the value of x2. As we are
in a Mu-Component we assume that x2 has value 0, and investigate the son
y2 to try to verify this. Now, as y2 belongs to a Nu-Component we assume
it has value 1, and we find the value of y1, which is also assumed to be 1 and
depends on x1. Contrary to the algorithm which at this point simply assumes
that x1 has value 0 and continues with L, we will proceed the search in K,
trying to verify that the assumption of 0 is correct. Hence, we investigate
the single son of x1, which is y1 and discovers that y1 already is defined, with
value 1, so x1 gets the value 1, thereby confirming that y1 and y2 are indeed
1, and also x2 must be changed to 1. Yielding the result that all nodes have
value 1.

148 Model Checking in Finite-State Systems

This is wrong! The fixed-point we are computing is really the very trivial
one

x2 whereµ (x1, x2) = (y1, y2)
whereµ (y1, y2) = (x1, y1)

which is easily seen to have solution (x1, x2) = (0, 0) by computing approxi-
mants. The problem is the cycle x1 − y1 , which in this case is very obvious
and perhaps could be handled properly, but in general much more compli-
cated cycles could be present.

It is, however, possible that by being careful, some searching in K is
safe — if it does not involve inspecting output from L, which is too big.
This, however, requires a more refined algorithm, and will not be further
investigated here. ✷

5.7.3 Extensions

In order to extend the two-components algorithm to a model checker for the
full alternation depth two case, we must use some properties of the definition
of alternation depth. We claim that any closed assertion of alternation depth
two can be transformed to an assertion

((. . . (A whereµ
-X1 = -B1

whereν
-Y1 = -C1)

whereν
-X2 = -B2

whereµ
-Y2 = -C2)

...

whereµ
-Xk = -Bk

whereν
-Yk = -Ck)

where A, -Bi, and -Ci contain no fixed-points. Actually, this is an easy conse-
quence of Bekič’s theorem and the definition of alternation depth: If we start
with a closed assertion A0 we can take out all the top µ-subassertions (recall,
that this is µ-subassertions that are not contained in any ν-subassertion) and
get an assertion

5.7 A Local Algorithm for Alternating Fixed-Points 149

A1 whereµ
-X1 = -B1

where A1 and -B1 only contain µ-assertions inside ν’s. Hence, take out all
the top ν-assertions of A1 and -B1 which does not contain variables from -X1

to get the assertion

(A2 whereµ
-X1 = -B1

whereν
-X2 = -B2

Now, the only fixed-points that can remain in B′1 are (a) ν-fixed-points which
contain variables from -X1, and (b) µ-fixed-points contained in ν-fixed-ponts.
The µ-assertions from (b) cannot contain any free variables from any enclos-
ing ν-assertions, because this would immediately yield an assertion of alter-
nation depth at least three. (A generic instance is µX.A[X, νY.B[X, Y, µZ.C
[Y, Z]]] assuming that all free variables are accounted for in the square brack-
ets, which is easily seen to have alternation depth at least three.) Hence, such
assertions can be pulled out to give an equivalent assertion

(A2 whereµ
-X1

-X ′′1 = -B′1 -B′′1
whereν

-X2 = -B2

Finally, the ν-assertions from (a) can be pulled out to get the assertion

(A2 whereµ
-X1

-X ′′1 = -B′1 -B′′1
whereν

-Y1 = -C1

whereν
-X2 = -B2

in which neither A2 nor -B′1, -B′′1 or -C1 contain any fixed-points. Repeating
this procedure, we end up with an assertion of the claimed form.

The size of the resulting assertion is no bigger than the original; we are
only moving subassertions around and do not copy anything, hence using Mu-
Nu two-components algorithms and Nu-Mu two-components algorithms for

150 Model Checking in Finite-State Systems

Figure 5.10: A normalized assertion of even alternation depth. Arrows indi-
cate dependencies.

the two different kinds of nested where-clauses on the assertion after division
with a transition system |T |, gives us a local model checker for alternation
depth two that runs in time O(|A|2|S||T | log(|A||S|), i.e. only a logarithmic
factor worse than the global algorithm from section 5.4.

By similar transformations, any closed assertion of alternation depth k
can be transformed to a normalized form like

(. . . ((A whereµ
-X1 = -B1

whereν
-X2 = -B2)

whereµ . . .

whereν
-Xk = -Bk)

whereν
-Y 1 = -C1

whereµ
-Y 2 = -C2)

whereν . . .

whereµ
-Y k = -Ck)

...

as sketched in figure 5.10. The generalization of the algorithm from the
previous section could be done along the following lines for one µ-ν-branch:

Partition the input nodes Vi of each Mu- or Nu-Component i into two:
let V L

i be the set of input nodes connected to components to the left of i,

5.8 Implementational Aspects 151

and let V R
i be the set of input nodes connected to components to the right

of i. Hence V L
1 = ∅ and V R

k = ∅. (For the two-components case we had
V R

1 = Vy, V
L
1 = Vx.) Now, each component must have attached two sets of

input nodes Ri ⊆ V R
i and Si ⊆ V L

i . The algorithm will start searching for the
value of an output node of component 1, and when an input is needed start
searching in the corresponding component. For the i’th component, whenever
an input x in V R

i is needed, the value of which is undefined, computation is
suspended in i and computation of the value of x is initiated. Whenever an
input y in V L

i is needed, and the value of y is undefined, it is assumed to
have the value 0 if y is an output node from a Mu-Component, and assumed
to have the value 1 if it is a Nu-Component, and computation can proceed.
The two sets Ri and Si are used to collect these input nodes, and if output
nodes of a component disagree with the connected input nodes (because of
the ‘assume 0/assume 1’-strategy) components must be re-initialized, and
values recomputed. Whenever a component is re-initialized all components
to the right must be re-initialized too. As this brief explanation shows there
are a lot of details to take care of and we refrain from giving the algorithm
and the associated proof of correctness.

Nevertheless, we conjecture that this sketch can be formalized to a cor-
rect algorithm, and that properly implemented, for the modal µ-calculus it
will run in worst-case time O(|A|ad|S|ad−1|T | log(|A||S|), thus have worst-case
behaviour which is only a logarithmic factor worse than the global algorithm
from section 5.4 – and of course on average it could be much better.

5.8 Implementational Aspects

When giving the complexity bounds we assumed the full power of a RAM
model. The main feature of RAM models, besides the ability to perform
simple operations like integer arithmetic and copying of integers, is that there
is constant-time access to computed addresses like in array indexing (see
Aho, Hopcroft and Ullman [3] for a discussion of RAM models). However,
if one looks at the algorithms and the complexity arguments we only use
this feature for the global algorithm for alternating fixed-points: In ‘Chasing
1’s’ the strength can be stored together with the predecessor list of each
variable, and the traversal of a predecessor list is an easy ‘chasing of pointers.’
Similarly, the local algorithms make no use of the feature. Hence, they could

152 Model Checking in Finite-State Systems

be used on a weaker machine model where there is constant-time access to
addresses, and addresses can only be allocated and copied, not computed.

To get the full computational benefits of the local algorithms, it is im-
portant that the transition systems are generated in a local fashion. One
potential problem here is that the operational semantics is defined as syntac-
tic manipulations of process terms, which is not easy to implement efficiently.
For the static processes, however, another approach could be used. The tran-
sition systems of the regular subprocesses could be computed first. This is
an easy task since a regular process is very close to actually being just an-
other representation of a transition system. Now, each state of the transition
system of the static process corresponds to a tuple of states in the regular
process (cf. figure 2.6). The set of transitions out of a state of the static
process can now be computed lazily by considering the transitions out of
each of the local states of the regular processes.

5.9 Model Checking the Extended Calculus

In order to extend the model checkers from µKwhere,Q to the full µKext we
must somehow deal with action quantifiers and action predicates. The trans-
lations given in section 2.7 offer at least two subclasses of assertions for which
this is easily done: If the only predicates of the assertion are matches against
constants or if all predicates are guarded, a simple replacement of the existen-
tial quantifiers with finite disjunctions suffice to get an assertion in µKwhere,Q

on which the model checkers are immediately applicable. Of course, this
increases the size of the assertion. To see how much, we define a notion of
depth of action quantifiers.

Definition 5.5 Let the action quantifier depth aqd(A) of an assertion A
be defined by

aqd(¬A) = aqd(〈γ〉A) = aqd(A)

aqd(A0 ∨ A1) = max{aqd(A0), aqd(A1)}
adq(∃α.A) = 1 + aqd(A)

aqd(Q) = aqd(X) = 0

aqd(
→n

A) = max{aqd(Ai)}1≤i≤n

aqd(
→n

A whereµ

→m

X =
→m

B) = max({aqd(Ai)}1≤i≤n ∪ {aqd(Bj)}1≤j≤m)

5.9 Model Checking the Extended Calculus 153

✷

Proposition 5.2 Let A be an assertion, T a transition system with fi-
nite basic label-set L. The assertion A′ constructed from A by replacing
each existential quantifier by a finite disjunction over L ∪ {#} has size
O(|A|(|L| + 1)aqd(A)).

Performing division on A′ results in a boolean fixed-point expression of
size O(|A|(|L|+ 1)aqd(A)|T |). However, sometimes we can do much better. A
crucial point is that instead of transforming the assertion A into a quantifier-
free A′ and then perform the division, we instead perform the division first,
in the way we extended it to µKext, and first then eliminate the action quan-
tifiers.

Example 5.1 As a simple example consider ∃̃α〈α〉A with α /∈ fv(A) which
we have abbreviated 〈.〉A. The division yields:

∃̃α〈α〉A/s = ∃̃α
∨

a,s′;s
a→s′

((α = a) ∧ A/s′)

Using some simple facts from predicate calculus we can rewrite this as follows:

∃̃α.
∨

a,s′;s
a→s′

((α = a) ∧ A/s′) =
∨

a,s′;s
a→s′

(∃̃α.α = a) ∧ (A/s′)

as ∃ and ∨ commutes, and α /∈ fv(A)

=
∨

a �=∗,s′;s a→s′

A/s′

This means that the total size of (∃α〈α〉A/-s) is no bigger than |{(a, s′) |
s

a→ s′}| + |A||T | ≤ (1 + |A|)|T | if the expressions A/s′ are properly shared
by means of a where-clause. This is much better than what proposition 5.2
suggests and no worse than for a modality in the standard calculus. ✷

Here are two more examples which give surprisingly compact divisions:

Example 5.2 Consider an assertion A ≡ ∀̃α.[α×∗]〈∗×α〉X. Let Tp and Tq

be the transition systems induced by the processes p and q. Then the total
size of A/pi × qj when p′ and q′ range over Rp and Rq is bounded by |Tp||Tq|.

154 Model Checking in Finite-State Systems

To see that this is true, observe that

(∀̃α.[α × ∗]〈∗ × α〉X)/pi × qj

=
∧

a∈(bls(Lp×Lq)\{∗})∪{#}
[a × ∗]〈∗ × α〉X/pi × qj

by lemma 2.5

=
∧

a∈(bls(Lp)\{∗})∪{#}

∧
p′;pi

a→p′

〈∗ × α〉X/p′ × qj

=
∧

a∈(bls(Lp)\{∗})

∧
p′;pi

a→p′

∨
q′;qi

a→q′

Xp′×q′

assuming thatXp′×qj
is the proper component ofσ(X)

=
∧

a �=∗;p′;pi
a→p′

∨
q′;qi

a→q′

Xp′×q′

Summing over all qj this gives the bound |{(a, p′) | a = ∗, pi
a→ p′}||Tq| for

each pi, which by summing over all pi gives the bound |Tp||Tq| for the total
reduction. ✷

Example 5.3 Let us now consider a slightly more complicated example;
a ‘weak’ version of the above: A ≡ ∀̃α.[α×∗]〈〈α〉〉rX. Given the processes p
and q inducing the transition systems Tp and Tq with the states Rp and Rq,
and basic label-set L = bls(Lp × Lq), we can rewrite A using lemma 2.5:

A =
∧

a∈L\∗
[a × ∗]〈〈α〉〉rX

Moreover, if we let

Ba = 〈〈α〉〉rX

we can write rewrite A as

A =
∧

a∈L\∗
[a × ∗]Ba.

Then, as before we get

redpi×qj
(A) =

∧
a �=∗,pi

a→p′

redp′×qj
(Ba)

5.9 Model Checking the Extended Calculus 155

Now, Ba is an abbreviation for 〈〈a〉〉rX = µY.(∗ × τ)Y ∨ 〈∗ × a〉µZ.〈∗ ×
τ〉Z ∨ X which can be written in simple form as,

Ba = Ya whereµ Ya = Y ′a ∨ Y ′′a
Y ′a = 〈∗ × τ〉Ya

Y ′′a = 〈∗ × a〉Za

Za = Z ′a ∨ X

Z ′a = 〈∗ × τ〉Za

For each qj we only need redp′×qj
(Ba) for pairs (a, p′) such that for at least

one pi, pi
a→ p′, hence at most |Tp| of these. Moreover, for each of these the

result of performing redp′×qj
(Ba) gives an assertion of size at most O(|Tq|)

hence the overall size of the reduced assertion is O(|Tp||Tq|). ✷

Figure 5.11: A three-state transition system.

Remark 5.3 The sharing across products made possible by the where-clause
is crucial for keeping the size of assertions small. To see why, consider the
three-state transition system of figure 5.9 and the assertion

A ≡ X whereµ X = 〈a〉Y
whereµ Y = X ∨ 〈a〉Y

(We will not be bothered by the fact that A is equivalent to the simpler
νY.〈a〉Y , which is irrelevant for the present discussion.) If we perform the

156 Model Checking in Finite-State Systems

division according to figure 5.1 we get the following assertion

A/p = Xp whereµ Xp = Yq ∨ Yr

Xq = Yr

Xr = Yq

whereν Yp = Xp ∨ Yq ∨ Yr

Yq = Xq ∨ Yr

Yr = Xr ∨ Yq

The size of A/p is clearly c|A||T | where c is some constant, and T is the
transition system pointed by p. If we did not allow sharing across products
the ν-part would have to be attached to all three of the right-hand sides of
the µ-part, and it is not hard to see that as fixed-points get nested, this gives
an exponential blow-up. ✷

5.10 Some Applications: Equivalences and

Preorders Revisited

We have now presented various model-checking algorithms for finite-state sys-
tems. Besides their immediate use as an automatic way of getting assertions
verified for finite-state systems, they provide a means of getting algorithms
for computing equivalences, preorders and other relations that can be ex-
pressed as assertions in the extended calculus – provided these assertions
meet criteria which make them transformable into the standard calculus.
This gives for instance algorithms for all relations that are expressible as
guarded assertions in µKext, including very familiar relations like those de-
scribed in chapter 4. How does this – in principle, infinity of algorithms –
compare with more ad hoc constructed algorithms? To answer this question
we utilize the two examples from the previous section giving rather precise
bounds on the sizes of certain kinds of assertions.

For the ‘strong relations’ like strong bisimulation, ready simulation,
ready bisimulation, and prebisimulation example 5.2 shows that they have
reduced boolean fixed-points assertions of size O(tt′) of alternation depth
one, hence the global algorithms will execute in time O(tt′). For the ‘weak

5.10 Some Applications: Equivalences and
Preorders Revisited 157

Relation Modal µ-calculus Algorithm from elsewhere Note
Strong bisim., ∼ O(tt′) O((l + l′)(t + t′) log(s + s′)) 1
Weak bisim., ≈ O(ss′tt′) O((l + l′)(t2 + t

′2) log(s + s′)) 2
Congruence, = O(ss′tt′) -
Ready sim.
Ready bisim.

}
O(tt′) O((s + s′)(t + t′)) 3

Sim. preorder, ≺ O(ss′tt′) -
Prebisim., 1 O(tt′) O(tt′) 4
Weak prebisim. O(ss′tt′) -

I = |L|l′ = |L′|t = |T |t′ = |T ′|s = |S|s′ = |S ′|
Notes:
(1) from Cai and Paige [20] — generalized to non-singleton sets of actions
from the original paper Paige and Tarjan [65].
(2) from Estenfeld et. al. [37].
(3) from Bloom and Paige [14].
(4) from Cleaveland and Steffen [26].

Table 5.1: Worst-case running times of some immediately derived algorithms.
The local counterparts would have all the running times multiplied with
log(ss′). Ready bisimulation is also often called 2/3-bisimulation.

relations’ like weak bisimulation, congruence, simulation preorder, and weak
prebisimulation example 5.3 shows that they have reduced boolean assertions
of size O(tt′) with at most ss′ references from the innermost fixed-point to the
outermost, and they have alternation depth two, hence the global algorithms
will execute in time O(ss′tt′).

The results are summarized in table 5.1.

Not surprisingly the algorithms we get from the µ-calculus cannot in
general compete with the carefully constructed algorithms for bisimulation
equivalence, which take full advantage of the knowledge of the relation being
an equivalence allowing a representation by its equivalence classes. However,
for the preorders the difference is minor. For ready simulation the difference
is down to the difference between (t + t′)(s + s′) and tt′, i.e. if the transi-
tion system is sparse there is no real difference. For the prebisimulation we
achieve the same complexity as Cleaveland and Steffen; and for the remaining
preorders we have found no non-trivial bounds – only the trivial algorithms
computing approximants, which has running time O(ss′tt′) for the relations

158 Model Checking in Finite-State Systems

of alternation depth one and O((ss′)2tt′) for alternation depth two.

What we also have is local algorithms for all these relations including the
possible benefits from local approaches, and they have worst-case complexi-
ties that are at most a logarithmic factor worse than the global algorithms.

5.11 Bibliographic Notes

The idea of model checking was pioneered by Clarke and Emerson [21] who
described a model checker for CTL. The group around Clarke has been mainly
interested in verification of hardware designs based on the logics CTL and
CTL∗ and has used a method based on compact representations of sets of
states (‘BDD’s’) to handle large state-spaces (see for example Burch et. al.
[19]).

Emerson and Lei [35] described the first non-trivial model checker for
the modal µ-calculus. They essentially exploited the observation from Bekič’s
theorem used in the normalization of assertions in section 5.7 to give a model
checker running in time O(|A|ad+1|S|ad|T |).4 The global algorithm from sec-
tion 5.4 (first published in [6]) improves this bound to O(|A|ad|S|ad−1|T |).
(Later the same bound has been achieved by Cleaveland, Dreimüller and
Steffen [24], though it is not obvious whether they use the stronger defini-
tion of alternation depth used in this thesis.) Taking into account that most
properties seem to be expressible in alternation depth two, for which the
improvement is from O(|A|3|S|2|T |) to O(|A|2|S||T |), this is a considerable
difference. For alternation depth one, the improvement is from O(|A|2|S||T |)
to O(|A||T |), a result that has independently been achieved by algorithms
of Cleaveland and Steffen [27] and Vergauwen and Lewi [85] which like our
algorithm all are building on the idea of Arnold and Crubille [9] of using sim-
ple assertions as an intermediate form. (They all refer to their algorithms as
being linear although they are linear in the product of the size of the transi-
tion system and the size of the assertion — and for Arnold and Crubille the
square of the size of the assertion.)

The idea of local model checkers for the modal µ-calculus is due to

4Recall that they use a slightly different definition of alternation depth. However, we
claim without proof, that their algorithm is really running in the time determined by
our stronger measure. If this should not be the case, the improvement from our global
algorithm is even bigger.

5.11 Bibliographic Notes 159

Larsen [53]. (He refers to the modal µ-calculus as ‘Hennessy-Milner logic
with recursion’.) Larsen’s paper describes a tableau-like method restricted
to the case of one-level fixed-points, i.e. a subset of alternation depth one,
and was later extended to the full calculus as a method based on tableaux
by Stirling and Walker [80] who named the approach local model checking. It
has been recast as a rewrite method by Winskel [92] which gives a very simple
proof of correctness. The motivation of Stirling and Walker was to give a
proof system for showing satisfaction, and its implementation as an algorithm
is by Cleaveland [23]. The tableau-method has been used as the basis for an
implementation in the Edinburgh-Sussex Concurrency Workbench [25] and
Larsen’s algorithm is used in the TAV System [55].

All these local methods suffer from severe inefficiencies. They have bad
worst-case behaviour and have exponential running times in the size of the
transition systems – even the optimizations suggested by Cleaveland [23]
does not improve on this fact. However, Larsen has recently published an
improvement of his original algorithm, which for one fixed-point has poly-
nomial running time. Nevertheless, it is not as efficient as the algorithm
of section 5.6 running in time O(|A||T |log(|A||S|)). Xinxin describes in his
thesis [96] a possible extension of Larsen’s algorithm to the full calculus.
His algorithm is rather involved and the complexity measure he gives, al-
though polynomial in the alternation depth, is considerably worse than the
bound of O(|A|ad|S|ad−1|T | log(|A||S|)) proposed as likely in section 5.7.3
and substantiated by the two-components algorithm running in worst-case
time O(|A|2|S||T | log(|A||S|)).

Cleaveland and Steffen presents in [26] ideas of computing preorders very
much like the approach outlined in section 5.10, however, whereas they sug-
gest checking s ≤ s′ for a preorder ≤ by generating a characteristic formula
C of ≤ with respect to s by ad hoc means and verify whether s′ satisfies
it, we get the same effect in a much simpler way by writing down directly
the definition of ≤ as a formula in the extended modal µ-calculus thereby
allowing model checking algorithms to be applied directly. Moreover, we can
get characteristic formulas for free through the reduction for product and
hence also characteristic formulas for all the preorders investigated in Steffen
[75].

The complexity bounds we have given are all based on the technique of
amortized complexity analysis as explained in for instance Cormen, Leiserson
and Rivest [28].

160 Model Checking in Finite-State Systems

Chapter 6

Computing Fixed-Points in
Finite Cpo’s and Lattices

The local model-checking algorithms in chapter 5 are based on ideas of shar-
ing values and tracing changes along dependencies ; ideas that are not in-
herently connected to the problem of model checking. In this chapter we
exploit this observation by considering the problem of finding minimum so-
lutions to general monotonic equation systems; present a local algorithm,
prove it correct, and discuss possibly applications and the relation to the
model-checking algorithms. Except from the discussion on the relation to
the model-checking algorithms, which among other things will provide cor-
rectness proofs for these algorithms, this chapter is self-contained and has
no direct relevance to the verification of concurrent systems and is as such
independent of the rest of the thesis.

6.1 Summary

We present a very simple, yet general algorithm for computing simultane-
ous, minimum fixed-points of monotonic functions, or turning the viewpoint
slightly, an algorithm for computing minimum solutions to a system of mono-
tonic equations. The algorithm is local (demand-driven, lazy, . . .), i.e. it
will try to determine the value of a single component in the simultaneous
fixed-point by investigating only certain necessary parts of the description
of the monotonic function, or in terms of the equational presentation, it will

162 Computing Fixed-Points in Finite Cpo’s and Lattices

determine the value of a single variable by investigating only a part of the
equational system.

In the worst-case this involves inspecting the complete system, and the
algorithm will be a logarithmic factor worse than a global algorithm (com-
puting the values of all variables simultaneously). But despite its simplicity
the local algorithm has some advantages which promises much better perfor-
mance on typical cases. The algorithm should be seen as a schema that for
any particular application needs to be refined to achieve better efficiency, but
the general mechanism remains the same. As such it seems to achieve per-
formance comparable to, and for some examples improving upon, carefully
designed ad hoc algorithms, still maintaining the benefits of being local.

We will illustrate this point by tailoring the general algorithm to con-
crete examples in such (apparently) diverse areas as type inference, model
checking, and strictness analysis. Especially in connection with the last ex-
ample, strictness analysis, and more generally abstract interpretation, it is
illustrated how the local algorithm provides a very minimal approach when
determining the fixed-points, reminiscent of, but improving upon, what is
known as Pending Analysis [97].

6.2 Introduction

Fixed-points arise everywhere in computer science, when giving semantics of
programming languages, in program analysis, in program optimization, in
program verification, and many other situations. We will present a general
algorithm for computing such fixed-points in complete partial orders (cpo’s),
and hence lattices, of finite height. (Any poset with bottom of finite height
is trivially a cpo, but we stick to the term cpo because we will only apply
the finiteness property when it is strictly necessary.) The algorithm will
be well-suited to situations where the fixed-points belong to large products
of cpo’s, and examples of type inference problems, strictness analysis, and
model checking problems will be shown to fit into the general framework and
yield efficient algorithms.

The simultaneous fixed-points will be described as solutions to sets of
monotonic equations and the algorithm works on such descriptions in a local
fashion, i.e. the algorithm will compute the fixed-point ‘demand-driven’ or
locally, assuming that only some of the components of the fixed-points are

6.2 Introduction 163

really of interest, start from one such component and investigate what is
necessary to determine the value. In this respect it differs from most fixed-
point finding algorithms which tends to globally compute the complete fixed-
point. A notable example of such an algorithm is due to Kildall [48], which
describes the algorithm as solving a problem of dataflow analysis. We show
how this, indeed very simple, global algorithm in a version suitable for the
present framework, is related to the local, and show that the possible benefits
of the local algorithm compared to the global has a cost of a logarithmic
factor in the worst-case, but the typical case would out-perform the global
algorithm.

The component of interest could be for instance a variable denoting ‘er-
ror’ in the case of type inference, and hence the algorithm would only search
locally for an error in the program under consideration, without necessarily
assigning types to all program fragments. In the case of strictness analy-
sis, this component will typically be a function applied to one particular
argument, which will then be computed without necessarily computing the
behaviour of the function on all arguments as would the global algorithm.

To be more precise, we will consider systems of equations on the following
form:

x1 = f1(χ1)
... (6.1)

xn = fn(χn)

where χi is a tuple of variables (χi1, . . . , χiai
). Associated to each variable

xi is a set of values Dxi
which we also refer to as Di and we require this

set to be a complete partial order (cpo) with a bottom element denoted by
⊥Di

and of finite height. We use Pred(xi) = {xi | ∃l.χjl = xi} for the set of
predecessors of the variable xi. Moreover, for 1 ≤ i ≤ n the function fi must
be monotonic with type

fi : Di1 × · · · × Diai
→ Di

where we have written Dil for Dχil. The combined effect of the right-hand
sides is a function

f1 × · · · × fn : (D11 × · · ·D1a1
) × · · · × (Dn1 × · · · × Dnan) → D1 × · · · × Dn

which by using the obvious injection

164 Computing Fixed-Points in Finite Cpo’s and Lattices

G : D1 × · · · × Dn → (D11 × · · ·D1a1
) × · · · × (Dn1 × · · · × Dnan)

with G(m)il = m(χil) gives rise to the function

f : D1 × · · ·Dn → D1 × · · · × Dn

defined by f = (f1×· · ·×fn)◦G. The function f is the function one usually
thinks of as being induced by the equation system, but we will need the more
refined view offered by the product of the individual functions in order to
properly describe and reason about the fixed-point algorithm.

As it is well-known a monotonic equation system (6.2) has a minimum
solution, the minimum fixed-point of f , given by

µf = 6i∈ωf i(-⊥)

with the definition

f 0(x) = x

f i+1 = f(f i(x))

yielding an increasing chain -⊥ 1 f(-⊥) 1 f 2(-⊥) 1 . . . where 1 is the ordering
on the cpo D1× . . .×Dn, and 6 is the least upper bound of increasing chains.

6.3 Algorithm

Tentatively the algorithm will proceed as follows. We associate with each
variable xj a value m(xj), which denotes the current value of xj. Initially
the value of all variables will be ‘unknown.’ We assign the variable of interest,
xi say, marking ⊥ and puts xi in a set of active variables, for which the right-
hand sides will be inspected to verify that the current marking is identical
to whatever the right-hand side evaluates to. In evaluating right-hand sides
we will always try to inspect as few of the sons as needed, utilizing that the
function might be determined by the current marking of only some of the
sons. When evaluating a right-hand side it might of course turn out that we
do indeed need the value of some sons, which will be assumed to have the
value ⊥ and put on the list of active nodes to be examined. In doing so, we
keep track of dependencies between variables, and whenever it turns out that
a variable changes its marking (actually, it can only increase) all variables

6.3 Algorithm 165

that might depend on this particular variable is put in the active set to be
re-examined. At some point the set of active nodes will become empty, and
we have actually found (part of) the fixed-point.

This approach has two benefits:

1. Only variables reachable from the root variable xi through the ‘sons-
of’ relation will ever be investigated, a kind of syntactic dependency
analysis.

2. Moreover, only variables that turns out to be actually needed in deter-
mining a right-hand side will ever be investigated, a kind of semantic
dependency analysis.

Of course, in the worst case the set of variables visited might be precisely
the set of variables ‘syntactically’ reachable from the root variable, but po-
tentially much fewer might be needed. Another important property of the
sketched algorithm is that all this happens on-the-fly: The complete sys-
tem does not have to be computed a priori, but the right-hand sides can be
supplied on demand.

6.3.1 ‘Unknown’ Values

In order to formally present the algorithm we will introduce notation for
‘unknown’ values. Technically, we will define a special kind of lifting ()?

of cpo’s, and characterize a class of functions which behaves properly with
respect to unknown arguments.1

The ?-lifting D? of a poset D is the poset

D? = {?} ∪ {7d8d ∈ D}

with ordering ≤D?
, defined by

x ≤D?
y ⇔def x =? or ∃a, b ∈ D. x = 7a8 & y = 7b8 & a ≤D b

Hence ? is a ‘bottom element’ of D?. (The function 7 8 is any injective func-
tion without ? in its image.)

Definition 6.1 For 1 ≤ i ≤ k let Di and D be posets and suppose that
f : (D1)? × . . . × (Dk)? → D? is a function. Then f is

1This is definition 5.3 in chapter 5.

166 Computing Fixed-Points in Finite Cpo’s and Lattices

• ?-strict if

f(?, . . . , ?) =?,

• ?-reflecting if

f(x1, . . . , xk) =? ⇒ ∃i. xi =?,

• ?-monotonic if

-x ≤ -y ⇒ f(-x) ≤ f(-y) or f(-y) =?,

and finally,

• ?-faithful if for all y ∈ D,

f(x1, . . . , xi−1, ?, xi+1, . . . , xk) = 7y8 ⇒
∀x. f(x1, . . . , xi−1, 7x8, xi+1, . . . , xk) = 7y8.

A function fulfilling all four is said to be ?-nice. ✷

These four notions are intended to capture some intuitive understanding
of unknown values: f must depend on its arguments, f can only yield an
‘unknown’ result if one of its arguments are unknown, f is monotonic in the
usual sense, except that sometimes, increasing the arguments can cause f to
yield an unknown value, and finally, if f yields a known value with some ar-
gument unknown, it must be independent of that particular argument (with
the other arguments fixed).

We will say that a ?-nice function f ′ : (D1)? × · · · × (Dk)? → D? is a
?-nice extension of f : D1 × · · · × Dk → D if

∀xi ∈ Di. f ′(7x18, · · · , 7xk8) = 7f(x1, . . . , xk)8 (6.2)

i.e. on the lifted elements f ′ agrees with f . Notice, that for a ?-nice extension
f ′ of f we have

µx. f ′(x 6 Ω) = 7µx.f(x)8 (6.3)

where Ω = (7⊥D18, . . . , 7⊥Dn8) ∈ (D1)? × . . .× (Dn)?, which follows directly
by induction on the approximants, utilizing (6.2).

6.3 Algorithm 167

In a trivial manner, all monotonic functions D1 × . . . × Dk → D can
be extended to ?-nice functions by mapping any vector of arguments which
includes a ? to ?. However, this will result in an algorithm which does not
fully exploit the possibility of minimizing the search because it makes the
semantic dependency analysis void; all functions will require the presence of
all arguments before giving a value.

As an example of how to choose better ?-nice functions, we consider the
case of two-point domains.

Example 6.1 Consider the situation where all Di’s are identical to the
two-point cpo O = {0, 1} with 0 < 1. We can define ?-nice extensions of
the usual boolean connectives ∨ and ∧ as shown in the two tables.

∧ ? 0 1
? ? 0 ?
0 0 0 0
1 ? 0 1

∨ ? 0 1
? ? ? 1
0 ? 0 1
1 1 1 1

These extension are non-trivial, e.g. 0∧? = 0. Notice also the ?-monotonic
behaviour showing that ∧ is not monotonic in the usual sense: For (0, ?) <
(1, ?) we get

∧(0, ?) = 0∧? = 0 >? = 1∧? = ∧(1, ?).

Hence although at one stage the value of the conjunction can be determined
by looking at only the first argument, if this argument increases its value to
1, the second argument must be inspected in order to determine the value of
the conjunction.

The ?-nice extensions here capture the well-known facts that sometimes
the values of a conjunction/disjunction can be determined by considering
only one of the arguments. ✷

6.3.2 The Local Algorithm

To prove the algorithm correct we will use a lemma, which captures a use-
ful property of fixed-points. First, we define a relativized equivalence and
relativized partial order on a product of cpo’s. Assume E =

∏
i∈I Ei is an

I-indexed product of cpo’s. For any subset S ⊆ I, let the relations =S and
≤S on E be defined by

168 Computing Fixed-Points in Finite Cpo’s and Lattices

u ≤S v ⇔def ∀i ∈ I. ui ≤Ei
vi

and u =S v ⇔def u ≤S v & v ≤S u.

We quote from chapter 5:

Partial fixed-point lemma, lemma 5.4 Let I be an indexing set and
for each i ∈ I, Ei a cpo, and let E =

∏
i∈I Ei be the product cpo of the Ei

’s ordered pointwise. Assume f : E → E is ω-continuous and that u ∈ E.
Then for all S ⊆ I, if

(i) ∀u′.u =S u′ ⇒ u =S f(u′), and
(ii) u ≤S µf

then
u =S µf .

✷

The local algorithm is stated in figure 6.1. The active set of variables
mentioned previously is denoted by A, and c(xj) is a vector of values in
O = {0, 1} with the l’th coordinate equal to 1 if the l’th son has previously
been ‘inspected.’ We have used the conditional →: O? × D? → D? defined
by

b → x =

{
? if b =? or b = O
x if b = 1

Notation. Let DL = (D1)? × · · · × (Dn)? and

DR = ((D11)? × · · · × (D1a1
)?) × · · · × ((Dn1)? × · · · × (Dnan

)?).

The inclusion G used for defining f is easily extended to an inclusion G :
DL → DR by still taking G(m)il = m(χil). Hence, for a set of ?-nice exten-
sions f ′i of the fi’s we get a ?-nice function f× = (f ′1 × · · · × f ′n) : DR → DL

and a function f ′ = f× ◦ G : DL → DL.

For a c ∈ (O?)
a1 × · · · × (O?)

an we define the monotonic function Fc :
DL → DR as the pointwise application of the conditional → to c, i.e. for an
m ∈ DL,

Fc(m)il = cil → G(m)il

6.3 Algorithm 169

meaning that for instance the function

f× ◦ Fc

is almost like f ′ except that certain values of the argument are ‘filtered out’
and replaced by unknown values.

Figure 6.1: The general local algorithm.

We overload notation and use Ω for both the value (7⊥D18, . . . , 7⊥Dn8) ∈
DL and the corresponding value G(Ω) ∈ DR.

In the presentation of the algorithm we have chosen to present elements
m of DL as functions that take a variable xj to a value in (Dj)? in order to
emphasize the partiality of these elements; they do not need to exist in their
entirety. Only defined components need to be stored in memory — an issue
we will return to when discussing implementations details. We denote by
dom(m) the set of variables (or indices) on which m is defined. ✷

170 Computing Fixed-Points in Finite Cpo’s and Lattices

Theorem 6.1 (Correctness) The algorithm of figure 6.1 correctly com-
putes part of the fixed-point µf , i.e. it terminates with an element m : DL

such that xi ∈ dom(m) and m =dom(m) 7µf8.

Proof: The correctness proof is straightforward, exploiting the partial fixed-
point lemma (lemma 5.4) and using Hoare Logic with an invariant I for the
while-loop which is the conjunction of the following assertions:

(i) m ≤ µu.f×(Fc(u) 6 Ω)
(ii) ∀j. m(xj) >? ⇒ d(xj) = {xi | ∃l.χil = xj & c(xi)l = 1}

(iii) ∀j. m(xj) >? ⇒ (c(xj)l = 1 ⇒ m(χjl) >?)
(iv) ∀j. m(xj) >? & (m(xj) < f ′xj

◦ Fc(m) or f ′xj
◦

Fc(m) =?) ⇒ xj ∈ A
(v) m(xi) >?

(vi) m ≤ f×(Fc(m)) 6 Ω

First, we argue that (I & A = ∅) is enough to prove the result. From (iv)
with A = ∅ and (vi) it follows that,

m(xj) >? implies m(xj) = f ′xj
(Fc(m)). (6.4)

Now, let u ∈ DL satisfy u =dom(m) m, i.e. u ≥ m. Then for all xi ∈ dom(m),

? < m(xj)
= f ′j(Fc(m))

by (6.4)
= f ′j(Fc(u))

as f ′j is ?-faithful, m ≤ u and Fc monotonic.

Hence, since f× = f ′1 × . . . × f ′n then

∀u ∈ DL. u =dom(m) m ⇒ m =dom(m) f×(Fc(u))

and therefore as f× is ?-faithful and Fc(u) ≤ u, we have

∀u ∈ DL. u =dom(m) m ⇒ m =dom(m) f×(u 6 Ω)

From (i) we have

6.3 Algorithm 171

m ≤ µu.f×(Fc(u) 6 Ω) ≤ µu.f ′(u 6 Ω).

Combining these two facts, it follows from the partial fixed-point lemma,
that

m =dom(m) µu.f ′(u 6 Ω)

and µu.f ′(u6Ω) = 7µf8 as f ′ is a ?-nice extension of f , proving the theorem.

Secondly, to prove that I is indeed an invariant, we consider each con-
junct in turn.

(i) : Holds at line 3 as

m ≤ Ω ≤ µu.f×(Fc(u) 6 Ω). (6.5)

and f× is ?-nice. Now, assume I holds at line 4. The variables m and
c of (i) are changed in lines 8, 10, and 15. At line 8 the fixed-point
µu.f×(Fc(u) 6 Ω) is (potentially) increased since Fc(u) is increased,
hence (i) also holds after line 8. The change in line 10 does not affect
(i) due to (6.5). Finally, in line 15, m gets a new value ṁ. It only
differs from m at xj where it has value

r = f ′xj
(c(xj)1 → m(χj1), . . . , c(xj)aj

→ m(χjaj
))

≤ f ′xj
(Fc(µu.f×(Fc(u) 6 Ω)))

by the assumption that (i) holds at line 4
= f ′xj

(Fc(µu.f×(Fc(u) 6 Ω)) 6 Ω)

by ?-faithfulness of f ′xj
and r >?

= (µu.f×(Fc(u) 6 Ω))(xj)

Hence (i) holds after line 15.

(ii) : Straightforward by looking at the changes taking place in lines 10 and
12.

(iii) : Also straightforward from the changes in line 8 and 10.

172 Computing Fixed-Points in Finite Cpo’s and Lattices

(iv) :The variables of (iv) are changed at lines 4, 10, 11, 13, and 14. From
line 4 it still holds with A replaced by A∪{xj}. At line 10 m is changed
at χjl to the lifted value 7⊥8 but as χjl is added to A together with
{xj} in line 11, (iv) still holds. At line 13 xj is simply re-entered into
A and (iv) still holds. At line 14, call the new value of m for ṁ It only
differs from m at xj where ṁ (xj) is f ′xj

◦ (Fc)(m) >? which justifies
removing xj from the left-hand side of the implication. However, the
increase of the value at xj might affect the value of f×(Fc(ṁ)), actually,
due to (ii) this can only happen at the points given by d(xj), and as
we add these elements to A, (iv) holds again.

(v) : Trivial, by observing that entries in m are only ever increased.

(vi) : It trivially holds at line 3. Now assume that it holds at line 4. Then
the only variable in (vi), m is changed at lines 10 and 15. After line 10
(vi) is trivially satisfied again. At line 15, m is changed. Call the new
value of m for ṁ. The only difference is at xj where ṁ (xj) gets the
value

f ′j(Fc(m)) >?

which is definitely less than f ′j(m) which is less than f ′j(ṁ) as the value
at xj is increased from m to ṁ. Hence (vi) holds again.

✷

The correctness proof is independent of whatever particular implemen-
tation is used for the data-structures of the algorithm. These choices will of
course have a great impact on the complexity of the algorithm. To illustrate
this, let us consider what a general implementation could look like. The set
of active nodes A could be implemented as a stack with constant insertion
and extraction times, and the algorithm will behave very much as a depth-
first traversal (Tarjan [81]); m, d, and b are all partial maps, with ? meaning
‘out side domain of definition’, that could be implemented by some balanced
search tree with search time bounded by log n, n being the number of vari-
ables. Each entry in m is a simple value; in d it is a dynamically growing list,
and each entry in b could be implemented as a simple counter bc with the
understanding that the c(xj)l of the algorithm equals 1 if the counter bc(xj)
is bigger than l, i.e. b(xj)l = 1 iff bc(xj) > l.

6.3 Algorithm 173

To sketch the complexity analysis, let ht(D) be the height of D i.e. the
length of the longest strictly increasing chain in D minus one, and let c(f)
be the maximal cost of evaluating f on any of its arguments. Now, observe
that every variable will appear in A at most

∑
u∈s(v)(ht(Du) + 1) times, as a

variable is only re-entered into A if one of its sons gets an increased value,
which for each son only can happen ht((Du)?) = ht(Du) + 1 times. Hence,
the worst-case complexity is, by this informal amortized cost argument:

O(
∑
v∈V

(c(fv)
∑

u∈S(v)

(ht(Du) + 1))log n)

Using more uniform bounds on the functions and domains we arrive at:

Theorem 6.2 (Complexity) If the cost of computing each of the func-
tions of f is bounded by c, the arity bounded by a, and the height of the cpo’s
bounded by h, then the worst-case complexity is

O(ncah log n).

In practice this bound is very pessimistic, it will only be reached in very
pathological circumstances: The fixed-point will be identical to the ‘highest’
element in the cpo and as the algorithm proceeds all the variables change
their values in the smallest possible steps. Moreover, all the variables must
be reachable from the root variable in the syntactical and the semantical
sense.

It is, however, very dificult to express anything about the behaviour
of the algorithm on typical cases and even to define what a typical case is.
However, the examples to be shown later will give some indication of when
it is successful.

Before proceeding with the discussion on the local algorithm, let us
briefly compare the local algorithm with the global algorithm of Kildall [48],
shown in figure 6.2, suitable reformulated to fit our framework. In principle
it is constructed from the local algorithm by initializing the marking of all
variables to 7⊥8, inserting all variables in the active set of variables, and re-
moving the semantic dependency analysis by always taking d(xj) = Pred(xj).
Of course the branch corresponding to fx yielding an unknown result is re-
moved. By an argument analogous to the local case, the worst-case com-
plexity is O(ncah), hence the worst-case behaviour of the local algorithm is

174 Computing Fixed-Points in Finite Cpo’s and Lattices

a logarithmic factor worse, due to the searches in connection with the partial
maps. This means that from a strict complexity argument our algorithm is
worse, but as it has already been pointed out the local algorithm offers some
benefits which the global lacks.

We now turn attention to three examples showing how the local algo-
rithm can be applied. Not all details are included, the general lines are
sketched, and emphasis is put on the points of general interest.

6.4 Example: Strictness Analysis

Our first example will be on strictness analysis as introduced by Mycroft
[60] in a version due to Wadler [86]. However, most of the remarks and
constructions apply equally well to abstract interpretation in general.

Figure 6.2: Kildall’s global algorithm.

We assume that we have given an abstract program as set of mutually
recursive function declarations:

f1(x11, x12, . . . , x1a1) = e1

...

fn(xn1, xn2, . . . , xnan) = en

where the free variables of the body ej is included in {xj1, . . . , xjaj
, f1, . . . , fn}.

(We will not bother to define any particular syntax for expressions.) Each
function has a type

6.4 Example: Strictness Analysis 175

fj : Dj1 × . . . × Djaj
→ Dj

where the D’s are cpo’s of finite height with bottom (for strictness analysis
this will typically be finite lattices) and we assume that all the bodies are
indeed well-defined with respect to this typing.

To rephrase this in terms of a monotonic equationa system (6.2) we
introduce a variable vfj ;,x for each pair of function and argument -x in the
?-lifted product

(Dj1)? × . . . (Djaj
)?.

The equation for vfj ;,x will be a bit special; we will think of the right-hand
side gfj ;,x as a function on all variables of the system, i.e. one for each pair
of function and possible argument. Although finite, this can be quite a lot
of variables!

Now, to evaluate gfj ;,x we simply proceed, by for instance executing an
interpreter for lambda-expressions (if that is the language we have used for
the expressions) and when at some point we need the value of a function at
a specific argument which is ‘unknown’, we suspend the evaluation, return
the value ?, and proceed with the algorithm, which picks a son (this should
of course be the one that made us halt in the first place), assumes it has the
value 7⊥8 and proceeds.

To tabulate a function for a range of values U we simply execute the
algorithm for each element of U , reusing, of course, earlier stored results.

For this to be valid, we must ensure that the right-hand sides are all
monotonic. This could be done by restricting the syntax, but care has to
be taken if expressions like f(f(. . .), . . .) are to be allowed (cf. the prob-
lems with Pending Analysis reported in [32]). We consider this problem to
be outside the scope of the current discussion. In the case of higher-order
functions, e.g.

f : (D → E) → E

another difficulty arises implicitly: When f is applied to an argument h,
we must search for the node vf ;h, which involves comparing functions. As-
suming that D and E are simple domains this is not too bad, the function
space will be reasonably small and the task not impossible. Finally, very
few functional programs (except perhaps when using continuations) seem to

176 Computing Fixed-Points in Finite Cpo’s and Lattices

apply functionals on many different functions, so in practice few comparisons
will be needed. Moreover, any of the techniques for compactly representing
functions could be used to speed up this part.

Considering the second-order case (like with f above) this approach
of computing strictness has two major benefits compared to iterative algo-
rithms:

1. Only first order functions will ever have to be compared, no second or-
der functions must be compared to determine stability of the iteration,
and in general comparison of n’th order functions for n + 1’st order
analysis.

2. Potentially only a very small proportion of the huge number of possible
function-argument pairs will be needed.

In this second respect our local algorithm is very similar to Pending
Analysis [97], but it can be exponentially faster, due to the explicit treatment
of dependencies. To see why, we first briefly describe the Pending Analysis:

As just described the evaluation start with a function applied
to one particular argument. If in evaluating such a function
application, any previously visited function-argument pair is re-
encountered, the value is simply assumed to be bottom. In the
case of a lattice of height one this suffices to make sure that the
minimum fixed-point will be correctly computed and in the gen-
eral case the application is re-evaluated until it is stable, every
time in a recursive occurrence of a call, using the previously com-
puted value.

To see how this differs from our algorithm, consider the following graph
of function calls assumed to occur in the evaluation of a function application.
Each arrow indicates a function call.

The pending analysis will traverse this as a tree from the root r, i.e. the
root of (I) will be visited twice and so will all nodes in (I). If the structure
of (I) is again as above it is not difficult to see that the Pending Analysis
will perform exponentially many calls, and this is not merely a problem that
can be solved using ‘dynamic programming’ or ‘memoization’. To see why,
assume that the Pending Analysis simply stores the computed values (as
suggested in [97]) and whenever an application is revisited this stored value

6.4 Example: Strictness Analysis 177

is used. Now, suppose that we first visit the left branch of the diamond,
and through the upgoing edge from (I) visit the application (∗) a second
time, which is then assumed to have the value ⊥. Then all applications in
(I) will be evaluated under the assumption that this is the value of (∗), but
having visited (I), suppose we finally visit (II) and discover that the value
of (∗) should have been something bigger than ⊥. Now, if, as suggested for
Pending Analysis, the call in the right branch simply reuses all the values
computed for (I) we will end up with a result which is potentially too small!
(This is a disaster for strictness analysis — the value will be ‘unsafe’.) Surely,
the fix is to recompute the values in (I) reflecting the change of (∗), which is
precisely what our algorithm is doing, moreover it does it in a very minimal
fashion by chasing explicit dependencies.

Let us return to a concrete example, the function cat (for ‘concatenate’)
defined in the following program:

foldr(f,[],a) = a

foldr(f,h::t,a) = f(h,foldr(f,t,a))

append(l,m) = foldr(cons,l,m)

cat(l) = foldr(append, 1, nil)

with the types

cons : α × α list → α list

foldr : (α × γ → γ) × α list ×γ → γ
append : α list × α list → α list

cat : α list list → α list

Let 2 = O = {0, 1},4 = {0, 1, 2, 3} with 0 < 1 < 2 < 3 likewise for 6. Then

178 Computing Fixed-Points in Finite Cpo’s and Lattices

Wadler’s analysis [86] suggests the following abstract types, when cat is to
be instantiated to c list list for some ground type c.2

cons : 2 × 4 → 4
foldr : (4 × 4 → 4) × 6 × 4 → 4
append : 4 × 4 → 4
cat : 6 → 4

The size of (4 × 4 → 4) × 6 × 4 is around 1011, so hopefully we do not
need to evaluate foldr on all its arguments! Actully, in computing foldr

at one argument the lock algorithm visits at most 24 variables. This case is
particularly simple, as the same function is used for the argument of foldr
in any recursive call, but the general point remains the same. If we look
at the functional defining foldr this is actually defined on a lattice of 41011

elements with height 3 ∗ 1011, so any attempt of iterating from the bottom
inside this huge lattice can be fatal.

6.5 Example: Model Checking

The local algorithm of chapter 5 is a special case of the general local algo-
rithm where all the Di’s are the two-point lattice O and the functions fi are
either conjunctions and disjunctions. Similarly, the Mu-Component of that
chapter is a small refinement of the general local algorithm. These obser-
vations makes it possible to prove the correctness of the algorithms without
redoing everything from scratch.

Lemma 6.1 (Correctness part of theorem 5.4) When the local algo-
rithm of figure 5.6 terminates, we have

(i) xi ∈ dom(m) and
(ii) m =dom(m) 7µf8

Proof: In the local algorithm for the two-point lattices we have for reasons
of efficiency realized the effect of c(xj) by a counter p(xj). The relationship
between the two can be expressed as

2Actually foldr is needed in two versions corresponding to the two different applica-
tions of foldr, but the more general of the two has enough information to deduce the
strictness information for the other.

6.5 Example: Model Checking 179

c(xj)l = 1 ⇔ l ≤ p(xj).

Similarly, also for efficiency reason we have used a partial map h : V → IN?

with the property that

h(xi) = |{l | (c(xi)l → m(χil)) = 1}|.

(This is easily verified to hold invariantly.) However, this does not in any
way affect the fact that the local algorithm of figure 5.6 is merely a special
case of the general algorithm of figure 6.1, hence (i) and (ii) fo11ow directly
from theorem 6.1. ✷

For the Mu-Component we must slightly alter the invariant, which now
should hold after every operation performed on the component under the
assumption that the invariant did hold before the call. However, it is a very
straightforward change. First, we need a little extra notation.

Notation. For two functions u : Vx → O? and v : Vy → O?, with Vx

and Vy disjoint, we let u + v : (Vx ∪ Vy) → O? be the function defined by

u + v(z) =

{
u(z) if z ∈ Vx

v(z) if z ∈ Vy

✷

Lemma 6.2 (Correctness of Mu-Component, theorem 5.5) Let K

be a Mu-Cormponent for →nx =
→n

b with free variables Vx = {x1, . . . , xn}
and Vy = {y1, . . . , ym} inducing the function f ′ : (O?)

Vx∪Vy → (O?)
Vx . If,

after having performed an init and any sequence of update, find(xi) and legal
set(yj, b) operations, K is stable, i.e. A = ∅ then,

∀v ∈ (O?)
Vy . v =R my ⇒ mx =dom(m) µu.f ′(u + v 6 Ω)

Proof: We construct an invariant I from the assertion (i) to (iv) from the
proof of theorem 6.1 and add one conjunct to capture the role of the variable
R. Hence, define I to be the conjunction of the following assertions:

180 Computing Fixed-Points in Finite Cpo’s and Lattices

(i) mx ≤ µu.f×((Fc(u) + my) 6 Ω)
(ii) ∀j. mx(xj) >? ⇒ d(xj) = {xi | ∃l.χil = xj & c(xi)l = 1}
(ii′) ∀j. my(yj) >? ⇒ d(yj) = {xi | ∃l.χil = yj & c(xi)l = 1}
(iii) ∀j. mx(xj) >? ⇒ (c(xj)l = 1 ⇒ (mx + my)(χjl) >?)
(iv) ∀j. mx(xj) >? & (mx(xj) < f ′xj

(Fc(mx + my)) or

f ′xj
(Fc(mx + my) =?) ⇒ xj ∈ A

(v) R = {yj | ∃i, l.χil = yj & c(xi)l = 1}
(vi) mx ≤ f×(Fc(mx + my) 6 Ω)

Thus R is the set of yj’s that have been ‘needed’ by the Mu-Component,
i.e. yj is a son of an xi which has looked at it.

We have used mx + my for the map V → O? which is constructed by
joining together mx : Vx → O? and my : Vy → O?; this is the variable m
in the data-structure. Similarly, for any pair of maps u : Vx → O? and
v : Vy → O?, u + v is the map V → O? constructed by joining u and v.

Exactly as in theorem 6.1 we can prove that, after a call to init, if we
assume that I holds before any call to find, update, and set it also holds after
such a call. Hence, when A = ∅, we have for the same reasons,

∀u ∈ (O?)
Vx . u =dom(mx) mx ⇒ f×(Fc(u + my)) =dom(mx) mx.

Consider any u : Vx → O? and any v : Vy → O? with v =R my. Then

Fc(u + v)(xj)(l) = c(xj)l → (u + v)(χil)

=

? if c(xi)l ∈ {?, 0}
u(χil) if c(xi) = 1, χil ∈ Vx

v(χil) if c(xi) = 1, χil ∈ Vy

=

? if c(xi)l ∈ {?, 0}
u(χil) if c(xi) = 1, χil ∈ Vx

my(χil) if c(xi) = 1, χil ∈ Vy

as c(xi) = 1 & χil ∈ Vy implies χil ∈ R

by (v) and v =R my

= c(xj)l → (u + my)(χil)

= Fc(u + my)(xj)(l)

Thus for all u, Fc(u + v) = Fc(u + my) implying that for all v =R my,

6.6 Example: Constraint Systems 181

∀u ∈ (O?)
Vx . u =dom(mx) mx ⇒ f×(Fc(u + v)) =dom(mx) mx.

Now, as f× is ?-faithful and Fc(u + v) ≤ G(u + v), it follows that

∀u ∈ (O?)
Vx . u =dom(mx) mx ⇒ f ′(u + v) =dom(mx) mx. (6.6)

From (i) we have

mx ≤ µu.f×(Fc(u + my) 6 Ω),

which using Fc(u + v) = Fc(u + my) gives,

mx ≤ µu.f×(Fc(u + v) 6 Ω),

and utilizing Fc(u + v) ≤ G(u + v) we finally get

mx ≤ µu.f×(G(u + v) 6 Ω) = µu.f×(G(u + v 6 Ω)) (6.7)

= µu.f ′(u + v 6 Ω).

Combining (6.6) and (6.8) we get by the partial fixed-point lemma, that
for all v =R my,

mx =dom(xx µu.f ′(u + v 6 Ω),

6.6 Example: Constraint Systems

Recently, it has become popular to solve various type checking, type infer-
ence, and other program analysis related problems, by constructing a set of
constraints to be solved. We will show how one of these problems can be
solved by the local method with optimal complexity (up to the logarithmic
factor).

The particular constraint system we consider is due to Palsberg and
Schwartzbach [67], used in performing what they call safety analysis — a
version of closure analysis — but very similar sets of constraints have been
used for type inference [66]. For each subterm of the program we will have
a variable, which is going to hold information about that particular part of

182 Computing Fixed-Points in Finite Cpo’s and Lattices

the program (whether this is type information or anything else is irrelevant).
In this particular situation, we will think of the information of interest as
subsets of what we will call tokens. The set of subsets of tokens is a finite
lattice P(S) ordered by inclusion and S being the set of tokens. Now, the
constraint system can be formulated as consisting of a set of conditional and
unconditional inequalities

c ⊆ x, r ⇒ y ⊆ x, x ⊆ c

where x, y are token set variables, c a constant token set, and r is a boolean
constant defined as r = e where e is an expression built from disjunctions and
conjunctions of other boolean constants and the inequalities c ⊆ x. Denote
by C the complete set of inequalities and boolean constant definitions. We
build a set of monotonic equations with

1. a variable vx of type P(S) for each of the token set variables x,

2. a variable br of type O for each of the boolean constants, and

3. a variable bc⊆x/bx⊆c of type O for each constraint c ⊆ x/x ⊆ c.

We will make use of some auxiliary functions: Let → be the conditional of
type O × P(S) → P(S) with an obvious definition (using 1 to represent
true), (c ⊆) : P(S) → O has just as obvious a definition, and finally viol(⊆
c) : (S) → O is defined on u ∈ P(S) as the negation of u ⊆ c (to make it
monotonic in u).

The equations associated with the variables are now as follows:

vx = (
⋃

r⇒y⊆x∈C
br → y) ∪ (

⋃
c⊆x∈C

c)

br = be r = e ∈ C
where be is (recursively) defined by

be =

∧
i∈I bei

if e =
∧

i∈I ei∨
i∈I bei

if e =
∧

i∈I ei

br′ if e = r′

bc⊆x = (c ⊆)rx

bx⊆c = viol(⊆ c)rx

The right-hand sides are all monotonic, and we can easily give ?-nice exten-
sions of the functions involved. For

∧
and

∨
we use the straightforward

6.6 Example: Constraint Systems 183

extension of the binary case from example 6.1 with the efficient implemen-
tation discussed in the model checking example. For

⋃
: P(S)k → P(S) we

take

⋃
(u1, . . . , uk) =

S if ∃i.ui = S
? if ∀i.ui = S & ∃i.ui =?
u1 ∪ . . . ∪ uk otherwise

The rest are as follows:

if ? n =?
? ? ?
0 ⊥D ⊥D

1 ? x

(c ⊆)
? ?

x

{
0 if c ⊆ x
1 if c ⊆ x

viol(c ⊆)
? ?

x

{
0 if x ⊆ x
1 if x ⊆ c

Now, it is not hard to see, that the set of inequalities C has a solution, if
and only if, the monotonic equation system has a minimum solution in which
all the variables vx⊆c, corresponding to what Palsberg and Schwartzbach
calls ‘safety constraints’, are 0, thus not being violated. The algorithm they
suggest has running time O(n3), n being the size of the program and the
number of tokens. They argue that the number of constraints will be O(n2).

A straightforward implementation of the union operator and the tests
for inclusion gives us a local algorithm with the following running time

∑
v∈V (c(fv)

∑
u∈S(v)(ht(Du) + 1)) log n

=
∑

vx
(avxnavx(n + 1)) log n + ‘cheaper stuff’
avx being the arity of the right-hand side of vx

= n2 log n(
∑

vx
a2

vx
)

∈ O(n4 log n)

The way to improve on this shows as a general point how the general algo-
rithm can be used as the backbone of more specific and efficient algorithms,
while maintaining the overall structure. Here, the expensive part is the re-
peated computation of unions of sets, the size of which is bounded by n.
But the only thing that happens in the algorithm is ‘small’ changes in the
arguments, so by altering the way changes are propagated we will improve

184 Computing Fixed-Points in Finite Cpo’s and Lattices

the bound to O(n3 log n) (and Kildall’s algorithm achieves O(n3), through
the same construction).

To each variable we associate a bitvector of length n, the i’th coordinate
indicating whether token number i belongs to the set or not. Then, when
a variable changes marking and we add the parents to the active set, we
will also propagate the actual change as a list of tokens, which can then be
incorporated in time proportional to the size of the change. In this manner,
the amortized cost of computing each of the union operations will be bounded
by the arity multiplied with n + 1 (the height of the lattices of the sons).
Similarly, the inclusion tests (c ⊆) and (⊆ c) can be implemented with
amortized cost O(n). The total running time is now bounded by

(total cost for vx’s + total cost for br’s + total cost for bc⊆x/bx⊆c’s) log n

which is

O((n2 + n3 + n3) log n) = O(n3 log n).

6.7 Bibliographic Notes and Related Work

The aims of minimizing the number of variables of the equation system inves-
tigated when finding a partial minimum solution is shared with the aims of
Cousot and Cousot in their “chaotic fixed-point iteration” [29, sec. 4.2.1] and
in the refined denotational semantics known as “minimal function graphs”
(Jones and Mycroft [47]). However, whereas these papers describe general
schemes for computing partial minimum solutions, they are very brief on the
subject of when functions “need” the values of other functions applied to spe-
cific arguments, and how to incorporate that into an algorithm. Jones and
Mycroft leave out this decisions, their description is parameterized by such
proper choices, and Cousot and Cousot seems to indicate merely a syntac-
tic criterion (corresponding roughly to the part of our algorithm performing
syntactic dependency analysis). Contrary to this, we formalize the depen-
dency as the notion of ?-nice extensions and show how this together with the
explicit presence of a graph representing the semantic dependencies, allowing
for efficient sharing and updating of values, makes, even in the worst-case,
this local method almost3 as efficient as the global method — the global
method having bad average-case behaviour.

3The log-factor.

6.8 Further Work 185

Similarly, the aims of fast fixed-point finding of functionals illustrated
in our example on strictness analysis, is shared by the work of Nielson and
Nielson [62, 61]. Their approach is, however, somewhat orthogonal to the
algorithms described here. They focus on classifying functions subject to
the number of steps needed in computing the fixed-point iteratively and on
finding classes for which equality tests of functions can be done without hav-
ing to consider by brute-force each element in the domains of the functions.
(An example is: if the elements of the approximation sequence can guaran-
teed to be join-preserving, then the functions need only be compared on the
join-irreducible elements (often called primes) of the poset constituting the
domain of the functions.) Especially, as concerns this last analysis, minimiz-
ing the cost of comparing functions, the present algorithm could benefit from
their results when applied to higher-order cases.

6.8 Further Work

We have introduced a local fixed-point finder, and shown how it can be used
for solving three problems of general interest. The pattern we have used is
to reformulate the problems to problems of finding minimum solutions to
sets of monotonic equations, and by tailoring the local algorithm achieve an
efficient solution to the problem. We expect that this approach can be used
on a variety of cases.

An interesting aspect which has not been investigated in this paper,
is the potential speed-up coming from decomposing the value domains to
smaller domains and thereby adding new variables. A notable example of the
success of such an approach is the model checking problem, where the original
problem is to compute a fixed-point of a function f = λX.A on a lattice
P(S). This lattice is decomposed to the lattice O|S| and the corresponding
systems has |S| variables with a total size of the right-hand sides of |A||T |
(T is the labelled transition system), thereby yielding a significant speed-up
(from |A||T |2 to |A||T |), which actually corresponds to computing just one
approximation to the fixed-point, i.e. one application of f .

The connection to the work from data-flow analysis is intriguing and
should be further investigated.

186 Computing Fixed-Points in Finite Cpo’s and Lattices

6.9 Acknowledgements

At various points in the work towards this chapter, I have had useful discus-
sions with Chris Hankin, Sebastian Hunt, John Launchbury, Hanne Riis Niel-
son, Flemming Nielson, Jens Palsberg, Mads Rosendahl, Michael Schwartzbach,
Glynn Winskel and others, and last but not least Fritz Henglein who pointed
me to Kildall’s algorithm.

Chapter 7

Model Checking in
Infinite-State Systems

7.1 Introduction

In this chapter we describe a method for performing model checking on infi-
nite state systems in the modal µ-calculus. In contrast to the situation with
finite state systems allowing more or less efficient automatic methods, we are
in general forced to consider only semi-automatic or machine-assisted meth-
ods when considering infinite state systems. This is an obvious fact whenever
the class of models and the logic is powerful enough to encode undecidable
properties, such as the Halting problem for Turing machines.

The modal µ-calculus is one such powerful logic. It is very straightfor-
ward to encode the behaviour of a Turing machine TM as an infinite-state
system with states coding the internal state of the Turing machine as well as
the contents of the tape; and find an assertion H, s.t.

TM(i, w) |= H

is valid, if and only if, the Turing machine TM when started in the initial
state i with tape contents w, halts. So for the general case, any hope of finding
an algorithm actuary deciding the model-checking problem is of course domed
to failure.

We describe a general method, which can assist in proving that sub-
sets of states of infinite labelled transition systems satisfy formulae in the

188 Model Checking in Infinite-State Systems

modal µ-calculus. Success of using the method in one particular situation
will depend on proper choices in certain steps of applying the method, and
on the ability to show properties of infinite sets of states by induction. The
actual inductive proof takes place as part of the method but depends on a
well-founded relation being suppled. The undecidability can now be viewed
as a combination of the impossibility of making these choices algorithmically
and of the impossibility of algorithmically supplying the ‘right’ well-founded
relation. The method will be sound in the sense that, whenever a model is
shown to satisfy an assertion of the logic using the method, this is certainly a
valid conclusion, and it will be complete in the sense that, whenever a model
satisfies an assertion it is possible to make correct choices, and provide well-
founded relations such that in a finite number of steps of the method this
fact will be proven.

The method raises some interesting questions. One is a question of
‘relative completeness’, i.e. in analogy with Hoare Logic, whether proper no-
tations for infinite sets can be found, making the method complete under the
assumption that the mathematical reasoning within this notation of infinite
sets can be performed. Another issue is whether non-trivial subclasses of the
models and perhaps subsets of the logic yields decidable systems.

It is also of great importance to find reasonable notations for subsets of
infinite state systems, which, although not necessarily ‘relative complete’ at
least yields convenient frameworks for application of the method. We show
how this might be done for Bounded Processes, a subset of Milner’s CCS
[59] where precesses do not have unlimited evolving, but bounded structure.
Another example for Petri-Nets can be found in the work of Bradfield [16],
[15], which employs a related method due to Bradfield and Stirling [17]. To
some extent the present method can be seen as a recast of their method
inspired by the work of Winskel [92] for the finite-state case. The relation
between their method and the method described here, will be considered in
the concluding section.

An interesting point manifest in the method, is the commonly accepted
dogma that reasoning about maximum fixed-points is ‘easy’, like ‘partial
correctness’ in Hoare-Floyd Logic allowing non-termination, and bisimulation
equivalence of Process Algebras, whereas reasoning about minimum fixed-
points is often more involved, as when showing termination of programs in
Hoare-Floyd Logic. The analogy with Hoare-Floyd Logic can actually be
made quite precise, see e.g. Bradfield [15, sec. 3.7]. In the method described

7.2 Fixed-Points 189

here, these parallels manifest themselves, as reasoning about minimum fixed-
points requires a well-founded relation to be supplied, whereas no such thing
is required for the maximum fixed-point.

7.2 Fixed-Points

Winskel [92] has shown that a slightly modified unfolding of a maximum
fixed-point can be used as the key step in the development of a model checker
for finite-state systems. This property of maximum fixed-points will be in-
troduced as the second reduction lemma:

Lemma 7.1 (The second reduction lemma, Kozen [49], Winskel
[92]) Let ψ be a monotonic function on P(S). For V ⊆ S we have

V ⊆ νψ ⇔ V ⊆ ψ(νU.V ∪ ψ(U)).

Winskel uses this lemma in the situation where V is a singleton {p}. He
defines a relation which in a precise sense makes the right-hand side smaller,
thus ‘simpler’ to verify, and because he works with finite-state systems, this
relation turns out to be well-founded, ensuring termination of the algorithm.
As we consider infinite state systems, termination is no longer guaranteed.
Moreover, following Bradfield and Stirling [17] we will try to verify that
(possibly infinite) sets of states satisfy an assertion, not only singletons. This
seems more appropriate for infinite-state systems; although initially we might
only want to know whether one particular state satisfies an assertion, this
state can quickly lead to considering whether an infinite number of states
satisfy an assertion (an example of this is provided later). So we will be
involved in deciding judgements like V ⊆ U , where V is a (possibly infinite)
set of states and U is a property expressed in our assertional language. We
will use lemma 7.1 to give a rule for the maximum fixed-points, but what
about the minimum fixed-points? The Duality Principle for Complete Lat-
tices yields an immediate corollary.

Corollary 7.1 Let ψ be a monotonic function on P(S). For V ⊆ S we
have

V ⊇ µψ ⇔ V ⊇ ψ(µU.V ∩ ψ(U)).

190 Model Checking in Infinite-State Systems

This, however, is not very useful. Being interested in determining whether
sets of states satisfy a property corresponds to determining whether V ⊆ µψ
and not V ⊇ µψ. So we must find another formulation. Notice, however,
that for singletons we can derive a useful bi-implication like the one in the
reduction lemma:

p ∈ µU.ψ(U) ⇔ S \ {p} ⊇ µU.ψ(U)
by simple set theory

⇔ S \ {p} ⊇ ψ(µU.(S \ {p}) ∩ ψ(U))
by corollary 7.1

⇔ p ∈ ψ(µU.(ψ(U) \ {p})).
(The first and last bi-implication fail for arbitrary sets). Hence, the minimum
fixed-point on the right-hand side is now slightly ‘smaller’ as the state p has
been excluded. For finite-state systems this is actually enough to ensure
termination as the exclusion of states from a fixed-point cannot go on forever;
eventually we will find out that a state p belongs to minimum fixed-point, or
we will be involved with deciding whether a state p belongs to a minimum
fixed-point from which it has previously been explicitly excluded. (See also
the discussion in section 5.2.)

However, for infinite-state systems, excluding singletons are not enough
to guarantee termination; we could go on unfolding the fixed-point forever
without ever reaching a conclusion. Instead we will use a principle of well-
founded induction based on the lemma below. Recall, that a relation � on
the set U is a well-founded relation (abbreviated w.f.r.) if there does not
exist an infinitely decreasing chain u0 � u1 � · · · � un � · · · . Moreover, we
extend a relation � on U to a relation on P(U) by defining

V � W ⇔def ∀v ∈ V, w ∈ W. v � w

and we let (� W) be the set of elements of U less than all elements of W ,
i.e.

(� W) =def {v ∈ U | ∀w ∈ W. v � w}
To state the lemma we need the notion of a covering: A covering of U is a
collection of sets {Ui}i∈I s.t

⋃
i∈I Ui = U .

Lemma 7.2 (Well-founded induction on minimum fixed-points)
Let ψ be a monotonic function on P(S). For a set U ⊆ S, the following
holds:

7.3 Logic 191

If there exists a w.f.r. � on U and a covering {Ui}i∈I of U such that
∀i ∈ I. Ui ⊆ ψ(µV.(� Ui) ∪ ψ(V))

then U ⊆ µψ

Proof: Recall, the principle of well-founded induction for a predicate Q on
a set U with w.f.r. �:

If ∀u ∈ U. (∀u′ � u.Q(u′)) ⇒ Q(u) then ∀u ∈ U. Q(u).

Hence, take any u ∈ U . As {Ui}i∈I covers U , there exists a Ui containing u.
We now deduce as follows:

∀u′ � u. u′ ∈ µψ ⇒ ∀u′ � Ui. u′ ∈ µψ
since u ∈ Ui

⇒ � Ui ⊆ µψ
⇒ µV.(� Ui) ∪ ψ(V) = µψ

by lemma 5.1
⇒ u ∈ Ui ⊆ ψ(µV.(� Ui) ∪ ψ(V)) = ψ(µψ) = µψ

by assumption

From the principle of well-founded induction it follows that

∀u ∈ U. u ∈ µψ

proving the lemma. ✷

The other direction of the implication holds in a trivially way. Take
I = {1}, U1 = U , and � any w.f.r. for instance the empty relation. Then
as (� U) = ∅, the requirement to this trivial covering degenerates to the
validity of unfolding of fixed-points. However, also more interesting choices
of covering and well-founded relation exist, indeed in showing completeness
of the method we will argue that a certain canonical covering and relation
can be found such that the minimum fixed-point will never be unfolded more
than once.

7.3 Logic

We will use a version of the modal µ-calculus, which is essentially the stan-
dard calculus (in positive, normal form) extended with constants, sets of

192 Model Checking in Infinite-State Systems

actions in the modalities, and annotations on the fixed-points expressing
states ‘assumed to satisfy’ the fixed-point. The syntax is described by the
following grammar:

A ::= Q | A0 ∨ A1 | A0 ∧ A1 | 〈κ〉A | [κ]A | X | µX{U}A | νX{U}A

In the modalities κ is a (possibly infinite) set of labels, hence the modality
〈κ〉A is an abbreviation for ∃a.(a ∈ κ) ∧ 〈a〉A.

The denotation of the modalities are

[[〈κ〉A]]T,V ρ = {s ∈ S | ∃s′ ∈ S ∃a ∈ κ. s
a→ s′ & s′ ∈ [[A]]ρ}

[[[κ]A]]T,V ρ = {s ∈ S | ∀s′ ∈ S ∀a ∈ κ. s
a→ s′ ⇒ s′ ∈ [[A]]ρ}

and for the fixed-points, let ψ : P(S) → P(S) be the function ψ(U) =
V ∪ [[A]]ρ[U/X] and define

[[µX{V }A]]T,V ρ = µψ

[[νX{V }A]]T,V ρ = νψ

This means that the usual µX.A is an abbreviation for µX{∅}A. For closed
assertions define [[A]]T,V = [[A]]T,V ρ for any environment ρ. When there is no
risk of confusion we will even leave out T and V .

We define the satisfaction predicate |= on sets of states as follows: For
a closed assertion A and a set U ⊆ S let

|=T,V U : A ⇔def U ⊆ [[A]]T,V .

7.4 The Model Checking Method

In this section we will introduce a syntactic counterpart < of the satisfaction
relation |= and give a set of rules that allow us to verify that correctness as-
sertions < U : A belongs to <. Let CorrAssncl be the set of closed correctness
assertions. We give a binary relation −→⊆ CorrAssncl → P(CorrAssncl)
between correctness assertions and sets of correctness aisertions. The in-
tuition is that if (U : A) −→ Γ then to prove that (U : A) is valid,
we can prove each of the correctness assertions in the set Γ. However, as
the minimum fixed-points can result in infinite sets of correctness asser-
tions — all of the same ‘form’ — we will describe a ‘schematic relation’

7.4 The Model Checking Method 193

=⇒⊆ P(CorrAssncl) → P(CorrAssncl) which will allow sets of correctness
assertions to be rewritten.

The rules for −→ is defined by structural induction on assertions in
figure 7.1.

Figure 7.1: The rules.

We notice that the rules (R1), (R2), (R5), (R6), (R7), (R8), (∅),
and (I) all are deterministic, in the sense that, given an instantiation of the
left-hand side there is only one instantiation of the right-hand side, whereas
(R3), (R4), (R9), and (W) all involve choices, and as there in general will
be more than one proper choice, give rise to several possible instantiations
of the right-hand sides, thus introducing ‘non-determinacy’. For the method
to be successful in showing validity of a correctness assertion these choices
must all be made correctly. Let us consider the rules in more detail.

(R1), (R2), (R3). All are quite obvious. Only (R3) involves a choice.

(R4), (R5). In rule (R5) (U
κ→) denotes the set of states that can be

reached through an action in κ from a state in U , i.e.

(U
κ→) = {s ∈ S | ∃u ∈ U ∃a ∈ κ.u

a→ s}.

194 Model Checking in Infinite-State Systems

Figure 7.2: The simultaneous rewrite relation.

The importance of this operator is that

U ⊆ [[[κ]A]] ⇔ (U
κ→) ⊆ [[A]].

It is, however, not possible to define a similar operation for the diamond-
modality, which inevitably involves some choices. To see this consider
the simple three-state transition system ({p, q, r}, {a},→) with p

a→ q
and p

a→ r. Now, if {p} : 〈a〉A is to be valid, then either {q} : A or
{r} : A or both must be valid, but it is not possible to tell whether we
should insist on this being {q}, {r} or perhaps {q, r}. We have chosen
to present this choice in a way which also allows for weakening, hence
in (R4) U ′ is any set which satisfies U ⊆ (

κ→)U ′, where

κ→ U ′ = {s ∈ S | ∃u ∈ U ′ ∃a ∈ κ. s
a→ u}.

Notice, that (R5) could have been given in a completely analogous
fashion, but we keep the current presentation because it is deterministic
and the analogue of (R4) for the box-modality can be achieved as a
derived rule through the weakening rule (W).

(R6), (R7), (R8), (R9). The ν-rule (R7) expresses the reduction lemma
and (R6) an easy consequence of the semantics of the ν-operator. The
µ-rule (R9) is inspired by lemma 7.2.

(W). The weakening rule allows for very many choices! It is essential to the
completeness of the system.

(∅). Included for convenience. It is derivable from the other rules.

(I). The identity rule making −→ reflexive, is used later when defining =⇒.

7.5 Examples 195

The µ-rule (R9) might give rise to infinite sets of correctness assertions
being generated. However, they all have the same form and we can expect
that they to a large extent can be rewritten simultaneously, considering the
index i merely as a parameterization of the correctness assertions. To for-
malize this idea we introduce a rewriting relation between (possibly infinite)
sets of correctness assertions =⇒. It has one defining rule given in figure 7.4.
As −→ by (I) is reflexive the rule allows one to select some of the correctness
assertions in Γ to be rewritten according to −→ and leave others unchanged.

Let =⇒∗= (
⋃

n∈ω =⇒n) where =⇒0= Id, =⇒n+1= (=⇒ ◦ =⇒n). A
correctness assertion U : A is now provable on a transition system T with
valuation V , written <T,V U : A if this fact can be derived using =⇒∗, i.e.

<T,V U : A ⇔def {U : A} =⇒∗ ∅.

With this definition of a provably correct assertion, the rules are sound:

Theorem 7.1 (Soundness) Suppose T is a labelled transition system with
valuation V and A is a closed assertion. If <T,V U : A then |=T,V U : A.

And complete:

Theorem 7.2 (Completeness) Suppose T is a labelled transition system
with valuation V and A is a closed assertion. If |=T,V U : A then <T,V U : A.

The proof of these two theorems can be found in section 7.7.

7.5 Examples

In this section we will show how to apply the method to two small examples.
We extend WPA with value-passing and suggest a notation for infinite sets of
states which seems to be particularly useful for a class of bounded processes,
processes which do not have arbitrarily, unboundedly evolving structure.

First, we assume that A is a set of neutral actions or channel names,
and assume that V is a set of values. Then the set of basic actions is Act =
A ∪ {a?v | a ∈ A, v ∈ V} ∪ {a!v | a ∈ A, v ∈ V}. Prefixes π are now either
input, output, or neutral prefixes:

π ::= a?v | a!e | a,

196 Model Checking in Infinite-State Systems

where a ∈ A, v is a value variable, and e a value expression. Moreover,
we add process constants parameterized by value expressions, such that the
extended syntax for process terms is

t ::= . . . | π.t | (ψ)t | C(e1, . . . , en),

where C denotes a process constant with arity n defined through an equation

C(v1, . . . , vn) = t

where the free value variables of t are among v1, . . . , vn (we often abbreviate
this as -v). Constant definitions can be mutually recursive (cf. remark 2.2 on
page 22). Value expressions e are build from a set of operators, value variables
v ∈ var, and constants c ∈ const. Guards, (ψ), are boolean expressions over
predicates on the value expressions. Now, states are identified with closed
process expressions, so sets of states are sets of processes, which we suggest
can be described by

-t; -ψ(-v)

where -t is a list of process expressions, -ψ a list of predicates, and -v a list of
free value-variables, which are implicitly assumed to be universally quantified.
That is, tentatively the semantics of -t; -ψ(-v) is the set

[[-t; -ψ(-v)]] = {-t[-c/-v] | -ψ[-c/-v], ci ∈ V},

where -v includes all the free variables of -t and -ψ. An example when the
values are natural numbers is

P, Q(n); n > 0, n ≤ 3(n)

i.e. the set {P, Q(1), Q(2), Q(3)}. We will simply write -t(-v) instead of -t; -ψ(-v)

when -ψ is empty. Now, entailments will be on the form < -t; -ψ(-v) : A or
< -t(-v) : A.

The operational semantics is as before, with the following rules for the
prefixes and guards:

7.5 Examples 197

a!v.t
a!v→ t

a?x.t
a?v→ t[v/x] v ∈ V

t
a→ t

(ψ)t
a→ t

ψ true

Example 7.1 This is a classic example. It has been used to show that on a
very simple transition system, µX{}[.]X cannot be found as the ω-limit of
its approximants, F, [.]F, [.][.]F, . . . the ordinal ω + 1 is necessary. Define P
and Q(n) as follows:

P = a?n.Q(n)

Q(n) = (n > 0)τ.Q(n − 1)

So P inputs a number n on the channel a, and then proceeds by making n
τ ’s. We will show that P always terminates, i.e. that all execution sequences
are finite. This is expressed in the modal µ-calculus as µX{}[.]X. We rewrite
as follows:

P : µX{}[.]X (R9)−→ P : [.]µX{}[.]X
with trivial singleton covering, arbitrary w.fr.

(R5)−→ Q(n) (n) : µX{}[.]X
(R9)−→ {Q(n) : [.]µX{� Q(n)}[.]X}n∈ω

with covering {Q(n)}n∈ω} and w.f.r.

Q(m) � Q(n) ⇔def m < n.

= (Q(0) : [.]µX{� Q(0)}[.]X), {Q(n) : [.]µX

198 Model Checking in Infinite-State Systems

{� Q(n)}[.]X}n>0

(R5)
=⇒ (∅ : µX{� Q(0)}[.]X), {Q(n) (n) : [.] . . . }n>0

since Q(0) →, hence (Q(0) : [.]µ . . .

−→ (∅ : µ . . .)

(∅)
=⇒ {Q(n) : [.]µX{� Q(0)}[.]X}n>0

(R5)
=⇒ {Q(n) : [.]µX{� Q(0)}[.]X}n>0

(R8)
=⇒ ∅ as n − 1 < n

Notice, that the splitting of the ω-set of correctness assertions after the third
step was strongly suggested to us by the guard n > 0 in the definition of
Q(n).

It is also worthwhile to observe that although we used a covering of
singleton sets here, it is not always necessary to fall back on singletons. If
we instead had the definition

P = a?n.b?m.Q(n, m)

Q(n, m) = (n > 0)c!m.b?m.Q(n − 1, m)

we could use the covering

{{Q(n, m) | m ∈ ω}}n∈ω

and the w.f.r. Q(n′, m′) � Q(n, m) ⇔def n′ < n. ✷

Example 7.2 This is an example from Bradfield [16, p. 6].

Consider the following definition of a process M :

M(A, B, C) = (A ≥ 1)a.M(A, B + 1, C)

+ (A ≥ 1)b.M(A − 1, B, C + 1)

+ (B ≥ 1 ∧ C ≥ 1)c.M(A, B − 1, C)

The process M(l, m, n) is really describing the firing sequence of a certain
Petri net with l tokens on the place A, m tokens on place B, and n tokens
on the place C, and the actions a, b, and c are transitions of the Petri net.
(See Bradfield [16] for details.)

7.5 Examples 199

Using the previously defined notation, sets of states will now be de-
scribed by

M(A, B, C); -ψ

For convenience, we will omit M(A, B, C) and just write -ψ. The initial
marking we consider is A = 1, B = 0, C = 0 and we will show that c only
happens finitely often, expressed as the assertion µX{}νY {}[c]X ∧ [a, b]Y .
Intuitively this is obvious: Either a fires indefinitely, increasing the number
of tokens on B, or at some point b fires, and then only c can fire. As there
is only a finite number of tokens on B when this happens and c removes one
token whenever fired, it must eventually stop.

Formally, we show:

(A = 1, B = 0, C = 0 : µX{}νY {}[c]X ∧ [a, b]Y) =⇒∗ ∅.

Let X0 = µX{}νY {}[c]X ∧ [a, b]Y and rewrite as follows:

(A = 1, B = 0, C = 0 : X0)

(W)−→ A + C = 1 : X0

(R9)−→ {A + C = 1, B = n : νY {}[c]X1 ∧ [a, b]Y }n∈ω

where X1 = µX{A + C = 1, B < n}νY {}[c]X ∧ [a, b]Y

(R7)
=⇒ {A + C = 1, B = n : [c]X1 ∧ [a, b]Y0}n∈ω

where Y0 = νY {A + C = 1}[c]X1 ∧ [a, b]Y

(R2)
=⇒ {A + C = 1, B = n : [c]X1, A + C = 1, B = n : [a, b]Y0}n∈ω

(R5)
=⇒ {A + C = 1, B = n : [c]X1}n∈ω,

{A + C = 1, B = n, n = 0 ⇒ C = 1 : Y0}n∈ω

(R6)
=⇒ {A + C = 1, B = n : [c]X1}n>ω

(R5)
=⇒ {A = 0, B = n − 1 C = 1 : X1}n∈ω

(R8)
=⇒ ∅

It is essential to extend the sets of markings in the first weakening step in
order to make the later application of rule (R9) successful. ✷

200 Model Checking in Infinite-State Systems

In the previous two examples, the processes involved were of a particular
simple kind, they did not have ‘evolving structure’. To be precise about this,
let us define an operation ˆ which maps WPA process expressions with values
to WPA process expressions without:

n̂il = nil

π̂.t = π̂.t̂

(̂ψ)t = t̂

t̂ � Λ = t̂ � Λ

t̂{Ξ} = t̂{Ξ}
t̂0 + t1 = t̂0 + t̂1

t̂0 × t1 = t̂0 × t̂1

Ĉ(-e) = C

where for action prefixes: â?v = a, â!v = ā, â = a.

Definition 7.1 A process P is bounded if the set

{(Q̂ | ∃n∃a1, . . . , an. P
a1→ a2→ . . .

an→ Q}

is finite. ✷

The notation we have used seems to be particularly well-suited for bounded
processes, as all the reachable states can be described by a finite number
of process expressions, together with a collection of constraints on the free
value-variables. We claim that it is not difficult to see that each particular
state can actually be described by a process expression and a finite num-
ber of constraints, but whether any set of states expressible in the modal
µ-calculus can actually be described by finitely many constraints, yielding a
relative completeness result, is another issue not addressed here.

7.6 Relation to the Tableau Method of Brad-

field and Stirling

We have chosen to present the method as a set of rewrite rules. However,
it is not difficult to give a presentation of the rewrite rules as ‘goal-oriented’

7.6 Relation to the Tableau Method of Bradfield and Stirling 201

Figure 7.3: Some of the rewrite rules presented as ‘goal-oriented’ proof rules.

proof rules (see figure 7.5). In general, a rewrite rule of the form

(U : A) −→ Γ if C

gives rise to a proof rule

U : A
Γ

(C)

which has side condition C.

Besides the annotations on fixed-points which localizes validity, i.e. mak-
es it independent of the proof tree, the main difference to the tableau method
of Bradfield and Stirling [17, 15] is in the treatment of the minimum fixed-
points. Whereas Bradfield and Stirling constructs a finite proof tree with
certain non-trivial success criteria — a tableau — which for the minimum
fixed-point involves determining, outside the system, well-foundedness of a
relation induced by the tableau, we supply a well-founded relation on the
states which is independent of the proof being constructed; and carry out
the inductive reasoning inside the system as we proceed with the rules.

For the present method, building a proof tree, showing how rules are
applied, is not an essential ingredient, but it could be used as an organiza-

202 Model Checking in Infinite-State Systems

tional trick that makes explicit where choices were taken and perhaps could
be altered.

Another apparent difference is that the tableau method of Bradfield
and Stirling constructs a finite proof tree, whereas the application of =⇒
seems to have an inherent infinite nature. However, the appealing feature of
generating finite proof trees has the cost of pushing the infinite reasoning into
the reasoning involved in showing well-foundedness of the relation induced
by the tableau. Moreover, the infinite nature of =⇒ is only apparent. As the
examples show the infinite reasoning performed with =⇒ is rather innocent;
the correctness assertions all have the same form, so the proof proceeds in
the same manner for each correctness assertion, and is thus more a means of
proving ‘parameterized’ correctness assertions.

7.7 Proofs of Soundness and Completeness

In this section we show soundness (theorem 7.1) and completeness (theorem
7.2) of the method.

7.7.1 Soundness

In order to show soundness we assume that < U : A, i.e. {U : A} =⇒∗ ∅ and
argue that |= U : A.

Proof (Soundness): Let the predicate Q be defined by

Q(n) ⇔def (Γ =⇒n ∅) ⇒ for all (U : A) ∈ Γ. |= U : A.

We prove by induction on n ∈ ω that Q(n) holds for all n, from which the
theorem follows. The base case is trivial. As the only clause defining =⇒ is

∀γ ∈ Γ. γ −→ ∆γ

Γ =⇒
⋃

γ∈Γ ∆γ
(=⇒)

the inductive step amounts to showing that if (U : A) −→ ∆ and ∆ −→n−1 ∅
then |= U : A. By the induction hypothesis ∆ =⇒n−1 ∅ implies that for all
(U ′ : A′) ∈ ∆ we have |= U ′ : A′, hence we must argue that if

(U : A) −→ ∆ & ∀(U ′ : A′) ∈ ∆. |= U ′ : A′

7.7 Proofs of Soundness and Completeness 203

then

|= U : A.

We consider each rule in turn.

(R1), (R2), (R3), (R4), (R5). Straightforward.

(R6), (R7). From the semantics of the annotated maximum fixed-point we
deduce as follows

[[νX{V }A]]ρ = νW.V ∪ [[A]]ρ[W/X] = V ∪ [[A]]ρ[νW..../X] ⊇ V .

Hence, certainly if U ⊆ V , we have U ⊆ [[νX{V }A]]ρ and therefore
|= U : νX{V }A proving soundness of (R6). 0therwise, if U ⊆ V , the
soundness of (R7) follows from lemma 7.1.

(R8), (R9). Rule (R8) is like for the minimum fixed-point above. The rule
(R9) is sound by lemma 7.2.

(W), (∅), (I). Trivial.

✷

7.7.2 Completeness

In order to show completeness we will need some facts about the ordinals, On.
Let < be the well-founded relation on On. Define for a monotone function
f : P(S) → P(S) the set µαf inductively as follows:

µ0f = ∅
µα+1f = f(µαf)

µλf =
⋃
α<Λ

µαf for λ a limit ordinal.

The following proposition shows, that the minimum fixed-point of a
monotonic function f on a powerset can be found as the least upper bound
of all the approximants µαf .

204 Model Checking in Infinite-State Systems

Proposition 7.1 Let P(S) be a powerset, and assume f : P(S) → P(S) is
a monotonic function. Then {µα f}α∈On is an increasing sequence with

µf =
⋃

α∈On

µαf,

and there is a least ordinal β (the closure ordinal), such that µβf = µβ+1f
and

µf = µβf,

We denote this ordinal cl(f).

Proof: The proposition holds in all complete lattices, consult e.g. Aczel
[2] for a proof. ✷

In the completeness proof we construct a canonical proof which only
need to unfold each fixed-point once. A simple property of the annotations
on fixed-points that make this possible is captured by the following lemma.

Lemma 7.3 Assume that V is a valuation with V (QX) = W . If A is
an assertion with only one free variable X and

<V U : A[QX/X]

then

<V U : A[µX{W}B/X]

and

<V U : A[νX{W}B/X].

Proof: Simple structural induction on A. Any application of the (R1)-rule
is replaced by an application of (R6) or (R8). ✷

Define the relation ≺ on closed assertions by A′ ≺ A if and only if, A′ =
A′′[-Q/ -X] for some proper subassertion A′′ of A where -Q is a vector of con-

stants and -X are the free variables of A′′. Surely, ≺ is well-founded. We can
now prove the completeness:

Proof (Completeness): We show that the following predicate P (A) holds
for all closed assertions A by induction on ≺:

7.7 Proofs of Soundness and Completeness 205

P (A) ⇔def <V [[A]] : A

Given an A, let U = [[A]] and consider the possible forms of A.

A ≡ νX{V }B . If U ⊆ V the claim follows from rule (R6). Otherwise,
assume given a constant Q with valuation V (Q) = U . Then by the
induction hypothesis

<V [[B[Q/X]]] : B[Q/X]

which by lemma 7.3 implies

<V [[B[Q/X]]] : B[νX{V ∪ U}B/X]

Hence, as [[B[Q/X]]] = [[B[νX{V ∪ U}B/X]]] = U then

<V U : B[νX{V ∪ U}B/X]

and the result follows from rule (R7).

A ≡ µX{V }B. If U ⊆ V the claim follows from rule (R8). Otherwise, we
use rule (R9) in the following way. Let ψ(Z) = [[B]]ρ[Z/X] ∪ V for an
arbitrary environment ρ. Let β be the closure ordinal of ψ, and let for
all u ∈ U , αu be the ordinal such that αu + 1 is the least ordinal with

u ∈ µαu+1ψ

(Notice, that this must be a successor ordinal, as for a limit ordinal λ,

u ∈
⋃
γ<λ

µγψ

implies that there exists a γ < λ such that u ∈ µγψ. Moreover, αu + 1
can be no bigger than the closure ordinal β of ψ.)

Define the relation � on elements of U = µψ by u′ � u iff αu′ < αu.
By the well-foundedness of the ordinals, � is a well-founded relation.
Notice, that µαuψ = (� u).

Assume given a set of constants Qu with valuation V (Qu) = V ∪ (� u).
Then since B[Qu/X] ≺ µX{V }B the induction hypothesis yields

206 Model Checking in Infinite-State Systems

<V [[B[Qu/X]]] : B[Qu/X]

which by lemma 7.3 implies

<V [[B[Qu/X]]] : B[µX{V ∪ (� u)}B/X]. (7.1)

Observe, that u ∈ µαu+1ψ = ψ(µαuψ) = ψ(� u) ⊆ [[B[Qu/X]]] assum-
ing V (Qu) = V ∪ (� u).

We can now proceed rewriting with =⇒ as follows:

[[µX{V }B]] : µX{V }B −→ {u : B[µX{V ∪ (� u)}B/X]}u∈[[µX{V }B]]

by (R9)
=⇒ {[[B[Qu/X]]] : B[µX{V ∪ (� u)}

B/X]}u∈[[µX{V }B]]

by (W) since u ∈ [[B[Qu/X]]]
=⇒ ∅

by (7.1).

Remaining cases. They are all very straightforward.

We can now prove the completeness: For any U ⊆ [[A]] we use the
weakening rule to rewrite as follows

(U : A) −→ ([[A]] : A)

and then by the inductive proof above,

([[A]] : A) =⇒∗ ∅

✷

7.8 Conclusion

When restricting ourselves to finite-state systems and using only singletons
in the correctness assertions, we can replace the few choices that remains
by finite disjunctions, thereby rediscovering the model checker of Winskel –
in a version without negations, but with an explicit rule for the minimum
fixed-point. Note, however that for the finite case, the algorithms in chapter

7.8 Conclusion 207

5 are more efficient. One short-coming of the method presented so far, is
the inability to show that |= U : A does not hold. The rules are not very
appropriate for this; one has to show that all the possible choices lead to false
expressions. An attempt to remedy this, could be through making explicit
the choices as – rather large – disjunctions and then appealing to external
methods for showing that all the disjuncts rewrite to false. This is certainly
not appealing, especially because some of the (wrong) choices could lead to
infinite rewriting sequences, making the task almost impossible, and at least
requiring very strong external reasoning.

A more obvious attempt would be to simply try to show that U satisfies
another assertion making |= U : A impossible. If U is a singleton {u}, this
is quite easy as

 |= {u} : A ⇔ |= {u} : ¬A

where we have introduced negation with semantics [[¬A]] = S [[A]], i.e. the
complement of A. This is not the case for general U , but we instead observe
that

 |= U : A ⇔ ∃U ′(∅ = U ′ ⊆ U). |= U ′ : ¬A.

Instead of introducing a new rule for negation – which is just as difficult
as to cope with showing non-validity – we consider ¬A to be simply an
operation on assertions that dualizes every operator in A (taking constants
to new constants denoting their complement, 〈κ〉 to [κ], µ to ν etc.), thereby
making the method applicable as it is.

208 Model Checking in Infinite-State Systems

Chapter 8

Categorical Models for an
Intuitionistic Modal µ-Calculus

8.1 Introduction

One of the major open problems in connection with the modal µ-calculus,
is the question of whether a finite axiomatization exists. Kozen [49] gave
a finite axiomatization for a sublogic consisting of ‘aconjunctive’ assertions,
but for the full calculus the problem remains open.

The aim of this chapter is to give a completeness result using meth-
ods from categorical logic and show how to recast the problem of finding a
complete axiomatization with respect to Kripke-like models as a problem of
cutting down the set of models allowed by the categorical framework. We
define a class of monotone transition systems, which seems to be a suitable
candidate for a non-trivial completeness result, and for which we can find
concrete instances from work in the process algebraic community.

We will use an intuitionistic version of the calculus, although as we point
out in the concluding section everything should carry through to the classical
calculus. The choice of considering an intuitionistic version is somewhat
arbitrary, but emphasizes the generality of the categorical approach.

To stress the difference to the standard and extended calculus considered
in the rest of the thesis, we have chosen to use lowercase greek letters for
assertion in the intuitionistic modal µ-calculus, and use lowercase letters
p, q, . . . for assertion variables.

210 Categorical Models for an Intuitionistic Modal µ-Calculus

8.2 Logic

For simplicity of presentation we will only consider unrelativized modalities
✸ and ✷. We claim that using relativized modalities 〈α〉 and [α] would not
change the fundamental issues.

The syntax of the intuitionistic modal logic µIK is defined by the fol-
lowing grammar:

ψ ::= p | ⊥ | = | ψ ∧ ψ | ψ ∨ ψ | ✸ψ | ✷ψ | µp.ψ | νp.ψ

The set of propositional variables ranged over by p is assumed to be a count-
able set {p0, p1, . . . }. The two fixed-point operators µp.ψ and νp.ψ bind the
variable p and denote minimum and maximum fixed-points of the function
of p described by the body ψ. Let IAssn be the set of assertions.

We will present a theory for µIK such that the fragment of µIK without
the fixed-points is equivalent to an implication-free fragment of the minimum
modal logic IK given by Plotkin and Stirling [72] and the fragment without
fixed-points and modalities is a usual implication-free first order intuitionistic
propositional logic. The theory for µIK will be presented as sequents closed
under rules of deduction. The sequents have the general form

Γ < ϕ

where Γ is a finite set of formulas, hence <⊆ Fin(IAssn) × IAssn is the least
relation between finite sets of assertions and assertions, closed under the
rules of figure 8.1, 8.2, and 8.3. (The rules for the intuitionistic propositional
fragment is taken from [70], with a rule added for = necessary due to the
absence of implication.) The rules are presented in natural deduction style.

We will now define a class of categorical models, called µIK-categories,
for the logic. A µIK-category will be a category with finite products, an
internal distributive lattice object, K-modalities, and families of operators
µX and νX .

Definition 8.1 Assume C is a category with finite products. An inter-
nal distributive lattice object of C is an object D of C equipped with the
morphisms

⊥,= : 1 → D,

∧,∨ : d × D × D,

Categorical Models for an Intuitionistic Modal µ-Calculus 211

Figure 8.1: Rules for the intuitionistic propositional fragment.

Figure 8.2: Rules for the modalities.

such that the following equations hold for all morphisms a, b, c : X → D,

(i) (a ∨ b) ∨ c = a ∨ (b ∨ c) (i ′) (a ∧ b) ∧ c = a ∧ (b ∧ c)

(ii) a ∨ b = b ∨ a (ii ′) a ∧ b = b ∧ a

(iii) a ∨ a = a (iii ′) a ∧ a = a

(iv) a ∨ (a ∧ b) = a (iv ′) a ∧ (a ∨ b) = a

(v) a ∨ ⊥ = a (v ′) a ∧ = = a

Usually in algebra these equations are called the associative laws (i), (i′), the
commutative laws (ii), (ii′), the idempotency laws (iii), (iii′), the absorption
laws (iv), (iv′), and the unit laws (v), (v′).

To be more categorically precise all the equations should be stated as

212 Categorical Models for an Intuitionistic Modal µ-Calculus

Figure 8.3: Rules for the fixed-points.

commutative diagrams in C. There is, however, an obvious way of reading
the equations as diagrams, which we indicate by two examples. Equation (i)
corresponds to: For all a, b, c : X → D the following diagram commutes,

Equation (iv) corresponds to the diagram:

Notice, that we can define a partial order ≤ as a ≤ b ⇔def a ∨ b = b or
equivalently (by the absorption laws) as a ≤ b ⇔def a ∧ b = a.

Definition 8.2 A category C with an internal distributive lattice object
D has K-modalities, if there exists morphisms ✷, ✸ : D → D satisfying the

Categorical Models for an Intuitionistic Modal µ-Calculus 213

following equations:

(x) ✷ψ ∧ ✷ϕ = ✷(ψ ∧ ϕ)
(xi) ✷= = =
(xii) ✸ψ ∨ ✸ϕ = ✸(ψ ∨ ϕ)
(xiii) ✸⊥ = ⊥
(xiv) ✷ψ ∧ ✸ϕ = ✷ψ ∧ ✸(ψ ∧ ϕ)

Again these should be expressed as diagrams to be truly categorical. Writing
out equation (x) in more detail suggests how:

∧ ◦ 〈✷ ◦ ψ,✷ ◦ ϕ〉 = ✷ ◦ ∧ ◦ 〈ψ, ϕ〉

✷

Instead of (xiv) often the inequality

✷ψ ∧ ✸ϕ ≤ ✸(ψ ∧ ϕ),

is used for expressing the relationship between the two modalities. These two
formulations can easily be shown to be equivalent using the rules in definition
8.1. Notice, that we do not include the dual equation

✸ψ ∨ ϕ = ✸ψ ∨ ✷(ψ ∨ ϕ),

simply because it is not valid for the monotone transition system models
we are going to consider in section 8.4, and therefore would require more
restricted models to be sound. It could be added without complications for
the categorical models.

It is useful to observe that (x) and (xii) imply that the modalities are
monotonic with respect to ≤. For ✷ the argument is as follows:

ψ ≤ ϕ ⇒ ψ ∧ ϕ = ψ by def.
⇒ ✷(ψ ∧ ϕ) = ✷ψ
⇒ ✷ψ ∧ ✷ϕ = ✷ψ by eqn. (x)
⇒ ✷ψ ≤ ✷ϕ by def.

Now, let C be a category with an internal distributive lattice object, and
define ≤X on morphisms of C by

214 Categorical Models for an Intuitionistic Modal µ-Calculus

f ≤X g ⇔def ∧ ◦ 〈f, g〉 = f ,

where f, g : X → D. With this ordering the rules of definition 8.1 essen-
tially turn each hom-set C(X, D) into a distributive lattice. Moreover, each
morphism f : X ′ → X induces a homomorphism of distributive lattices

f ∗ : C(X, D) → C(X ′, D)

by f ∗ = ◦ f.

Definition 8.3 In a category C with finite products and internal distributive
lattice object D we define: A morphism f : X × D → D is monotonic if for
all g : Y → X and h, k : Y → D,

h ≤Y k ⇒ f ◦ 〈g, h〉 ≤D f ◦ 〈g, k〉.

The morphism g is needed to take care of the ‘context’ X, and hence this
definition requires the inequality to hold in all contexts.

A morphism x : X → D is a pre-fixed point of a monotonic morphism
f : X × D → D if

f ◦ 〈id, x〉 ≤X x.

✷

We are now ready to state the requirements to the fixed-point operators
in the category. It will be given as an indexed family of operators µX and
νX .

Definition 8.4 A family of minimum fixed-point finders is a family of oper-
ators µX indexed by the objects X of C, which to each monotonic morphism
f : X × D → D associates a morphism µX(f) : X → D such that:

• µX is natural in X, that is for all morphisms f : X ×D → D, g : Y →
X:

µY (f ◦ (g × id)) = µX(f) ◦ g

(This is required to ensure that µX commutes with substitution.)

Categorical Models for an Intuitionistic Modal µ-Calculus 215

• For all monotonic morphisms f : X × D → D, µX(f) is a pre-fixed
point and it is the least such pre-fixed point, that is for all x : X → D,

f ◦ 〈id, x〉 ≤X x ⇒ µX(f) ≤X x

✷

A completely dual definition gives a notion of family of maximum fixed-
point finders: A morphism x : X → D is a post-fixed point of a monotonic
morphism f : X × D → D if

x ≤X f ◦ 〈id, x〉.

Hence νX must be natural in X and for all monotonic f : X×D → X, νX(f)
is a post-fixed point and it is the greatest such post-fixed point, that is for
all x : X → D,

x ≤X f ◦ 〈id, x〉 ⇒ x ≤X νX(f).

Definition 8.5 A µIK-category is a category C with finite products, an
internal distributive lattice object, K-modalities, and families of minimum
and maximum fixed-point operators. ✷

Given a µIK-category C with the internal distributive lattice object D,
we can interpret the logic µIK in C, thereby giving a rather general class
of models which are both sound and complete for the logic. To define the
interpretation we will need to consider assertions in context ψ (-p), where
-p = (p1, . . . , pn) is a tuple of distinct variables. For an assertion in context
to be well-formed we require all the free variables of ψ to appear among the
variables of -p. For such an assertion ψ (-p) we define a morphism

[[ψ (-p)]] : Dn → D

inductively on the structure of ψ:

216 Categorical Models for an Intuitionistic Modal µ-Calculus

[[pi(-p)]] = πi : Dn → D

[[⊥(-p)]] = ⊥◦ !Dn : Dn → 1 → D

[[=(-p)]] = =◦ !Dn : Dn → 1 → D

[[ψ ∧ ϕ(-p)]] = ∧ ◦ 〈[[ψ (-p)]], [[ϕ (-p)]]〉 : Dn → D × D → D

[[ψ ∨ ϕ(-p)]] = ∨ ◦ 〈[[ψ (-p)]], [[ϕ (-p)]]〉 : Dn → D × D → D

[[✸ψ(-p)]] = ✸ ◦ [[ψ (-p)]] : Dn → D → D

[[✷ψ(-p)]] = ✷ ◦ [[ψ (-p)]] : Dn → D → D

[[µq.ψ(-p)]] = µDn([[ψ (-pq)]]) : Dn → D

[[νq.ψ(-p)]] = νDn([[ψ (-pq)]]) : Dn → D

For this interpretation to be well-defined on the fixed-points we must argue
that [[ψ (-pq)]] : Dn × D → D is monotonic, however, as no implication
is present all operators are monotonic so this follows easily by structural
induction on ψ.

Note in particular that for each closed assertion ψ we can use the empty
context to get a well-formed assertion in context and obtain the global ele-
ment [[ψ]] =def [[ψ ()]] ∈ C(1, D). In general for a sequent in context Γ < ψ (-p),
subject to the well-formedness criterion that all free variables of Γ and ψ must
be in -p, we define a semantic entailment relation by

Γ |=C ψ (-p) ⇔def

∨
γ∈Γ

[[γ (-p)]]C ≤Dn [[ψ(-p)]]C.

With this interpretation the class of µIK-categories provides sound and com-
plete models for the logic µIK.

Theorem 8.1 (Soundness of µIK wrt. µIK-categories)
If Γ < ψ (-p) then for all µIK-categories C, Γ |=C ψ (-p).

Theorem 8.2 (Completeness of µIK wrt. µIK-categories)
If for all µIK-categories C, Γ |=C ψ (-p) then Γ < ψ (-p).

The next section will be devoted to showing these theorems.

Categorical Models for an Intuitionistic Modal µ-Calculus 217

8.3 Proofs

We will often make use of the property captured by the lemma below that
composition in the categorical model C corresponds to syntactic substitution
in the logic.

Lemma 8.1 (Substitution lemma) Let C be a µIK-category with internal
distributive lattice object D. Then

[[ψ[ϕ/q](-p)]]C = [[ψ(-pq)]]C ◦ 〈idDn , [[ϕ(-p)]]C〉

where q is not in -p (and therefore not free in ϕ).

Proof: Straightforward by structural induction on ψ. ✷

8.3.1 Soundness

The proof of soundness is standard. Each rule is verified separately.

Proof (Soundness, Theorem 8.1): We consider a few characteristic cases.
The remaining rules are all similar or simpler.

Rule (✷✸). We assume that Γ |=C ✷ψ ∧ ✸ϕ and must argue that Γ |=C

✸(ψ∧ϕ). Assume -p is a context making the sequent well-defined. From
the definition of |=C we have:

Γ |=C ✷ψ ∧ ✸ϕ (-p) ⇔
∧

γ∈Γ[[γ (-p)]]C ≤Dn [[✷ψ ∧ ✸ϕ (-p)]]C

We now use the equation (xiv) to rewrite the right-hand side:

[[✷ψ ∧ ϕ (-p)]]C = ✷[[ψ (-p)]]C ∧ ✸[[ϕ (-p)]]C by def.
= ✷[[ψ (-p)]]C ∧ ✸([[ψ (-p)]]C ∧ [[ϕ (-p)]]C) by (xiv)

≤Dn ✸([[ψ (-p)]]C ∧ [[ϕ (-p)]]C)
= [[✸(ψ ∧ ϕ (-p)]]C) by def.

hence by definition of |=C,

218 Categorical Models for an Intuitionistic Modal µ-Calculus

∧
γ∈Γ[[γ (-p)]]C ≤Dn [[✸(ψ ∧ ϕ) (-p)]]C ⇒ Γ |=C ✸(ψ ∧ ϕ) (-p).

Rule (µ1). We will show that ϕ[µp.ϕ/p] |=C µp.ϕ, i.e.

[[ϕ[µp.ϕ/p] (-p)]]C ≤Dn [[µp.ϕ (-p)]]C

where -p = (p1, . . . , pn) is a context making the assertions well-formed.
Now,

[[ϕ[µp.ϕp](-p)]]C = [[ϕ(-pp)]]C ◦ 〈idDn [[µp.ϕ(-pp)]]C〉
by the substitution lemma

= [[ϕ(-pp)]]C ◦ 〈idDn , µDn([[ϕ(-p)]]C)〉
by definition

≤Dn µDn([[ϕ(-pp)]]C)
as µDn(f) is a pre-fixed point of f in C

= [[µp.ϕ (-p)]]C

Rule (µ2). Assume that ϕ[ψ/p] |=C ψ. Hence,

[[ϕ[ψ/p] (-p)]]C ≤Hn [[ψ (-p)]]C ⇒ [[ϕ (-pp)]]C ◦ 〈idHn [[ψ (-p)]]C ≤Hn [[ψ (-p)]]C〉
by the substitution lemma

⇒ (µHn [[ϕ(-pp)]]C) ≤Hn [[ψ(-p)]]C
as µHn yields least fixed-points

⇒ µp.ϕ |=C ψ
by definition of |=C

✷

8.3.2 Completeness

Proof (Completeness, Theorem 8.2): We use a construction similar to
the construction of a Lindenbaum algebra for the case of boolean algebra.
First, define the equivalence ∼ on assertions by

ψ ∼ ϕ ⇔def ψ < ϕ and ϕ < ψ

Categorical Models for an Intuitionistic Modal µ-Calculus 219

Let D(n) be the set of equivalence classes [ψ] under ∼ of assertions with
free variables in {p1, . . . , pn}. On D(n) we define the partial order � as
[ψ] � [ϕ] ⇐⇒ ψ < ϕ which makes D(n) into (at least) a distributive lattice,
with operators induced by the syntactic counterparts, i.e. bottom is [⊥], top
is [=], meet of [ψ] and [ϕ] is [ψ ∧ϕ] etc. We can now define a category D as
follows.

Objects are numbers n ∈ ω written Un.

Morphisms Un → Um are m-tuples of elements of D(n), i.e. equivalence
classes of lists Ψ1, . . . , Ψm where each formula Ψi is a formula with
free variables contained in {p1, . . . , pn} under the equivalence relation
(Ψ1, . . . , Ψm) ∼ (Ψ′1, . . . , Ψ′m) iff Ψi ∼ Ψ′i: for 1 ≤ i ≤ m.

Composition is substitution on representative formulas:

[-Ψ] ◦ [-Φ] =def [-Θ]

where Θi = Ψi[Φ1/p1, . . . , Φn/pn] i.e. Θ is constructed from Ψ by
simultaneously substituting all the Φi’s for the pi’s.

Identity is

[(p1, . . . , pn)] : Un → Un

We observe that D has finite products: The terminal object 1 is U0, and
the unique map ! : Un → U0 is the empty tuple. The product Un × Um

is Un+m where π1 = [p1, . . . , pn], π2 = [pn+1, . . . , pn+m] and for morphisms

[-Φ] : Uk → Un, [-Ψ] : Uk → Um we take

〈[-Φ], [-Ψ]〉 = [(Φ1, . . . , Φn, Ψ1, . . . , Ψm)] : Uk → Un+m.

In D U is an internal distributive lattice object with K-modalities: = = [=] :
1 → U , ∧ = [p1∧p2] : U×U → U , etc. Commutativity of the diagrams follow
straightforward from the rules of the logic; it amounts to showing that the
equational presentation is sound for the sequent presentation. We consider
a few typical cases.

Equation (xxi). We must argue that ✸a∨✸b = ✸(a∨ b) for all morphisms
a, b : Un → U . Now a = [ψ], b = [ϕ] for some ψ, ϕ ∈ D(n) and

220 Categorical Models for an Intuitionistic Modal µ-Calculus

✸a ∨ ✸b = ✸[ψ] ∨ ✸[ψ]
= [p1 ∨ p2] ◦ 〈[✸p1] ◦ [ψ], [✸p1] ◦ [ϕ]〉

by def. of ∨ : U × U → U , and ✸ : U × U
= [✸ψ ∨ ✸ϕ]

by definition of composition in D

Similarly, ✸(a ∨ b) = [✸(ψ ∨ ϕ)] so we must argue that ✸ψ ∨ ✸ϕ ∼
✸(ψ ∨ ϕ). The direction ✸(ψ ∨ ϕ) < ✸ψ ∨ ✸ϕ follows directly from
(Id) and (✸∨). For the other direction we have the following proof:

ψ < ψ
(Id)

ψ < ψ ∨ ϕ
(∨I1) ...

✸ψ < ✸(ψ ∨ ϕ)
(✸I)

✸ϕ < ✸(ψ ∨ ϕ)
(✸I)

✸ψ ∨ ✸ϕ < ψ ∨ ✸ϕ
(Id)

(∨E)
✸ψ ∨ ✸ϕ < ✸(ψ ∨ ϕ)

Equation (xiv) . As above this amounts to showing that ✷ψ✸ϕ < ✸(ψ∧ϕ)
and ✷ψ✸(ψ ∧ϕ) < ✷ψ ∧✸ϕ. We consider the first, the second follows
easily from monotonicity of ✸:

✷ψ < ✷ψ
(Id)

✸ϕ < ✸ϕ
(Id)

✷ψ✸ϕ < ✷ψ ∨ ✸ϕ
(∧I)

✷ψ < ✷ψ
(Id)

✷ψ✸ϕ < ✸(ψ ∧ ϕ)
(✷✸)

(∧I)
✷ψ✸ϕ < ✷ψ ∧ ✸(ψ ∧ ϕ) ∧ I

Moreover, D has families of minimum and maximum fixed-point find-
ers. Let [ψ] : Un × U → U be a monotonic morphism in D. Define
µUn([ψ]) : Un → U by µUn([ψ]) = [µpn+1.ψ]. We must check that
this family of operators µX is natural in X and indeed yields least
fixed-points in D.

Naturality of µX. We must show that for all [-Φ] : Un → Um, [ψ] : Um ×
U → U ,

µUn([ψ] ◦ ([-Φ] × idU)) = µUm([ψ]) ◦ [-Φ].

Categorical Models for an Intuitionistic Modal µ-Calculus 221

We rewrite as follows:

µUn([ψ] ◦ ([-Φ] × idU)) = [µpn+1.(ψ/[-Φ/(p1, . . . , pm), pn+1/pm+1])]
= [(µpm+1.ψ)[Φ/(p1, . . . , pm)]]

as pn+1 is not free in -Φ

= µUm([ψ]) ◦ [-Φ]

Fixed-point property of µX. Assume that [ψ] : Un × U → U is a mono-
tonic morphism, we must argue that µUn [ψ] = [µpn+1.ψ] is a pre-fixed
point, hence that

[ψ] ◦ 〈idUn , [µpn+1.ψ]〉 ≤Un [µpn+1.ψ]

which by the substitution lemma is equivalent to showing that

[ψ[µpn+1.ψ/pn+1]] � [µpn+1.ψ]

But by (µ1) we have

ψ[µpn+1.ψ/pn+1] < µpn+1.ψ

from which the result follows.

Hence D is a µIK-category, and the interpretation of the logic given by [[]]D
coincides with [], i.e. for a context -p = (p1, . . . , pn),

[[ψ(-p)]]D = [ψ] : Un → U ,

which can easily be shown by structural induction on ψ. Furthermore, �
coincides with ≤Dn :

[ψ] ≤Un [ϕ] ⇔ [ψ] ∧ [ϕ] = [ψ] by definition of ≤Un

⇔ [p1 ∧ p2] ◦ 〈[ψ], [ϕ]〉 = [ψ] by definition of ∧ : U × U → U
⇔ [ψ ∧ ϕ] = [ψ] by definition of composition in D
⇔ ψ ∧ ϕ ∼ ψ
⇔ ψ ∧ ϕ < ψ and ψ < ψ ∧ ϕ by definition of ∼
⇔ ψ < ϕ (∗)
⇔ [ψ] � [ϕ]

222 Categorical Models for an Intuitionistic Modal µ-Calculus

For the bi-implication (∗) we observe that ψ < ψ ∧ ϕ implies that ψ < ϕ by
(∧E2). For the other direction by (∧I) and (Id) we see that ψ < ϕ implies
ψ < ψ ∧ ϕ, and by (Id) and (∧E1) we also have ψ ∧ ϕ < ψ.

Now, we deduce

Γ |=D ψ ⇔
∧

γ∈Γ[[γ (-p)]]D ≤Un [[ψ (-p)]]D for a proper context -p = (p1, . . . , pn)

⇔ [[
∧

γ∈Γ γ (-p)]]D ≤Un [[ψ (-p)]]D by def. of [[]]D
⇔ [

∧
γ∈Γ γ] ≤Un [ψ]

⇔ [
∧

γ∈Γ γ] � [ψ]

⇔
∧

γ∈Γ γ < ψ by def. of �
⇒ Γ < ψ

For the last implication we have used the rule (∨E) for performing a ‘cut’ as
follows: From

∧
γ∈Γ γ < ψ we deduce Γ,

∧
γ∈Γ γ < ψ by weakening with (W),

and by repeated application of (∧I) we can prove Γ <
∧

γ∈Γ γ and hence we
apply (∨E) with the premises (Γ,

∧
γ∈Γ γ < ψ), (Γ,

∧
γ∈Γ γ < ψ), (Γ <

∧
γ∈Γ γ)

and get Γ < ψ.

Hence in particular if Γ < ψ then Γ |=D ψ (-p) from which the complete-
ness follows. ✷

8.4 Monotone Transition Systems

We now turn our attention to a more restricted and intuitively appealing
class of models, which we call monotone transition systems. They are vari-
ants of the Kripke models used as models for various modal and intuitionistic
logics, including the modal µ-calculus. (Kripke models are essentially what
we elsewhere have called labelled transition systems.) We will later describe
a particular instance of monotone transition systems arising in the process
algebraic world. But as pointed out by Plotkin and Stirling [72] one might
also expect monotone transition systems to appear in many situations when
using domain theory (our monotone transition systems are precisely their
Kripke frames with ‘Frame Condition 1’).

Definition 8.6 A monotone transition system T is a triple (S,1, →̇) where
S is a set of states, 1 is a partial order on S and →̇ ⊆ S × S is a transi-
tion relation between states. We require that 1 and →̇ fulfill the following

Categorical Models for an Intuitionistic Modal µ-Calculus 223

condition

∀s, s′, t ∈ S. s 1 s′ & s→̇t ⇒ ∃t′ ∈ S. t 1 t′ & s′→̇t′. (8.1)

✷

The partial order 1 should be thought of as representing an information
ordering. The condition relating the partial order and the transition system
can be viewed as a monotonicity requirement on the transition relation; in
the degenerate case where →̇ is actually a total function, it is nothing else
than the usual definition of monotonicity. Another interesting degenerate
case is when →̇ is the identity relation on S, the monotone transition sys-
tem is then a normal (transitive, reflexive, anti-symmetric) Kripke model as
investigated by van Dalen [84] and Hughes and Cresswell [44]. When 1 is
discrete we arrive at the normal transition systems.

As a diagram the monotonicity condition becomes:

We will show that a monotone transition system T induces a µIK -
category T, thus provides models for the logic µIK. When restricting the
interpretation to the fixed-point free fragment IK this interpretation will
coincide with the satisfaction relation of Plotkin and Stirling [72]. First,
however, we will show that T induces a complete lattice T given by the up-
per (upwards closed) subsets of S with respect to 1, which is known as the
Alexandrou topology on (S,1), see for instance Johnstone [46]. The upper
sets are going to be the properties of the underlying monotone transition
systems.

We recall that a subset U of the partial order (S,1) is an upper set if
for u, v, u ∈ U, u 1 v implies v ∈ U . We now have:

Proposition 8.1 Given a partial order (S,1). Then the collection of upper

224 Categorical Models for an Intuitionistic Modal µ-Calculus

subsets of S, U(S,1) ordered by inclusion is a complete distributive lattice
with meet given by intersection and join given by union.

Proof: It is straightforward to verify that U(S,1) is closed under arbi-
trary intersections and unions. ✷

For the modalities we will need a little more structure. Define the two oper-
ations ✸T and ✷T on subsets of S as follows:

✸T U = {v ∈ S | ∃u ∈ U.v→̇u}
✷T U = {v ∈ S | ∀v′ ∈ S, ∀w ∈ S.v 1 v′ & v′→̇w ⇒ w ∈ U}

Upper sets are closed under these operations.

Proposition 8.2 If U is an upper set, so is ✸T U and ✷T U .

Proof: Straightforward, for ✸T the monotonicity condition (8.1) is needed.
✷

Recall, that on a complete lattice (D,≤) a monotonic function f : D →
D has by Tarski’s theorem [82] minimum and maximum fixed-points given
by

µf =
∧
{x ∈ D | fx ≤ x}

and

νf =
∨
{x ∈ D | x ≤ fx}.

This means in particular than on the lattice U(S,1) we have minimum and
maximum fixed-points of monotonic functions. We now have enough struc-
ture to give the category T as a particular subcategory of the category of
sets. Let U = U(S,1).

Objects are finite Cartesian products of U .

Morphisms Un → Um are functions from Un to Um, i.e. m-tuples of func-
tions from Un to U .

Categorical Models for an Intuitionistic Modal µ-Calculus 225

Composition and identity is as usual.

Now, we make U into an internal distributive lattice by the following defini-
tion of operators.

⊥ = λx ∈ 1.∅
= = λx ∈ 1.S

∧ = λ〈x, y〉 ∈ U × U.x ∩ y

∨ = λ〈x, y〉 ∈ U × U.x ∪ y

It is trivial to verify that all the diagrams commute (recall that they represent
an equational presentation of a distributive lattice). Moreover, U has K-
modalities ✷T ,✸T and fixed-point operators by the following definitions.

µUn(f) = λ〈x1, . . . , xn〉 ∈ Un .µ(λy ∈ U.f(x1, . . . , xn, y))

νUn(f) = λ〈x1, . . . , xn〉 ∈ Un .ν(λy ∈ U.f(x1, . . . , xn, y))

It is straightforward to verify that ✷T and ✸T satisfy the equations (x) to
(xiv). Naturality of µUn and νUn and the fixed-point properties are just as
easy. Hence T is a µIK-category.

The usual notion of satisfaction s |= ψ between a state s and a closed
assertion ψ can now be obtained as

s |= ψ ⇔def↑ s ⊆ [[ψ]]T(∗),

where ∗ denote the single element of the terminal object 1 and ↑ s is the
upwards closure of s with respect to 1: ↑ s = {q ∈ S | s 1 q}. It is
not hard to prove that this definition coincides with the deinition of Plotkin
ind Stirling [72] (using ‘frame condition 1’). We just write out some of the
consequences for IK:

s |= ✸ψ ⇔ ∃q.s→̇q & q |= ψ

s |= ✷ψ ⇔ ∀s′, q.s 1 s′ & s′→̇q ⇒ q |= ψ

Now, from the general result of soundness for µIK-categories, it follows that
this interpretation is sound. Whether it is complete is a much more difficult
question. For the classical version of the modal µ-calculus with classical
Kripke models/transition systems this is a problem which has been open

226 Categorical Models for an Intuitionistic Modal µ-Calculus

since the partial solution given by Kozen in [49]. Thus we might expect it to
be even harder to give a completeness result for the intuitionistic version.

Stirling has shown that a finite axiomatization exists for the fixed-point
free fragment of µIK [78] (with models almost identical to monotone transi-
tion systems), so the problem is whether the axioms for the fixed-points are
strong enough to achieve completeness.

Figure 8.4: One way of attacking completeness: Search for a map M ‘extract-
ing’ monotone transition systems from µIK-categories, or at least a universal
MT S-model from the universal model D.

Figure 8.4 indicates how completeness can be solved by finding a proper
way of generating monotone transition systems from (at least some, includ-
ing U) µIK-categories; having such a validity-preserving construction would
immediately yield a universal falsifying model for µIK. An idea of how this
could be done can be found by studying the fixed-point free fragment, i.e. the
intuitionistic modal logic IK. The traditional way of constructing a universal
model for intuitionistic logic (see Fitting [39]) is like the construction of a
Lindenbaum algebra for showing completeness of propositional logic; states
of the model are particularly well-behaved (infinite) sets of assertions and the
reachability relation is set inclusion. This can be extended to intuitionistic
modal logic by defining a transition relation on the states by

Γ → ∆ ⇔def
∀φ. ✷φ ∈ Γ ⇒ φ ∈ ∆
∀φ. φ ∈ ∆ ⇒ ✸φ ∈ Γ

and taking the information ordering to be set inclusion, as done by Stirling
in [78].

Categorical Models for an Intuitionistic Modal µ-Calculus 227

However, preliminary studies seem to indicate that using this approach
on IK involves work in constructing a universal model from the categorical
universal IK-model that is no simpler than going directly from the logic to a
monotone transition system. The construction sketched above can be reused,
but no great benefits seem to be easily obtainable.

A big obstacle in getting a completeness proof is the failure of compact-
ness for the full modal µ-calculus.1

8.5 Adding Implication

When adding implication to the logic, a problem due to a mismatch between
syntactic and semantical monotonicity arise. As implication → is contravari-
ant in its first argument with respect to the order ≤, minimum and maximum
fixed-points must be formed subject to the syntactic monotonicity criterion
that the variable being bound must only occur positively in the assertion.
This causes difficulties in the construction of the categorical universal model
as we need a family of operators µUn with the property that for all mono-
tonic morphisms, [ψ] : Un × U → U , we get a morphism µUn([ψ]) : Un → U .
We define this by taking µUn([ψ]) = [µpn+1.ψ]; however, in order for this
to be well-defined, ψ must be syntactically monotone in pn+1, which is not
necessarily the case even though the morphism [ψ] is semantically monotone.
One way around this problem is to show that there always exists a provably
equal assertion ψ∗ which is indeed syntactically monotone and use this in the
definition. This is a rather unpleasant approach as it requires a proof which
will be very dependent on the actual rules – and it is not even obvious how
to actually prove it.

A more thorough treatment should take proper account of the mono-
tonicity of assertions in the categorical models, by having an object U op

‘with the opposite ordering’ and letting → be a morphism →: U op ×U → U .
Although such an approach solves the problems about constructing the op-
erators µX in the completeness proof, it raises other difficulties. How is one
going to define satisfaction and entailment such that the models are sound?

1In the standard calculus an example showing non-compactness (sug-
gested to me by Glynn Winskel) is: The infinite set of assertions {µX.Q ∨
〈a〉X,¬Q, [a]¬Q, [a][a]¬Q, . . . , [a] . . . [a]¬Q, . . . } entails false, but no finite subset of
the assertions do so.

228 Categorical Models for an Intuitionistic Modal µ-Calculus

To interpret assertions we have to annotate the positive and negative occur-
rences of free variables ψ+ and get a morphism [ψ+] : (U op)m × Un → U .
However, this makes vaiables occurring in negative and positive positions
different and how do we reflect that they are ‘the same’? For instance, how
can we ensure that the assertion p → p gives rise to the same morphism as =,
although p → p has both a positive and a negative occurrence of p considered
to be different, but still p → q must be different from =?

8.6 Conclusion

The way in which we introduced the categorical models follows a very general
pattern known from work on categorical logic, that could be used whenever
equivalent sequent and equational presentations of a logic is present. The
fixed-point operators called for some special constructions, which required
ad hoc ingenuity, but the task seemed very straightforward. As mentioned in
the introduction everything will carry through to the classical situation by
introducing sequent rules for negation, and rules making the two modalities
and the two fixed-points interdefinable. Instead of categories with internal
distributive lattice objects, we would be involved with categories with inter-
nal Boolean algebra objects. Everything should carry through.

We have introduced a new logic, an intuitionistic (implication-free) ver-
sion of the modal µ-calculus. Apart from the problem of completeness, this
automatically raise a lot of questions like: Is validity decidable, for the µIK -
categories? For the monotone transition systems ? Does the logic have the
‘finite model property’? With the satisfaction relation defined in section 8.4,
is the model checking problem decidable?

Chapter 9

Conclusion and Further Work

In the preceding chapters various aspects of the verification of temporal prop-
erties of concurrent systems have been addressed. In this final chapter we
will summarize the achievements and point to remaining unsolved problems
and possible further work.

9.1 Compositionality

The first contribution of the thesis was the compositional method for de-
ciding satisfaction in chapter 3. The method, building upon earlier work
by Winskel[89, 94], was based on the notion of a reduction. The main dif-
ference from Winskel’s previous work is the completely new reductions for
recursion and product and the introduction of the propositional logic L with
correctness assertions as atoms, allowing for reductions quite different from
and simpler than the previous attempts.

The reduction for product incidentally turned out to be very similar to
what Larsen and Xinxin have achieved with their ‘operational contexts’ [57],
but we avoid the complication of going through the notions of operational
contexts and we also provide a syntactic reduction, showing how the reduc-
tion for product fits together with the other reductions. The adaptation of
(some of) the reductions to the extended calculus, showed how it might be
expected that these reductions can be an integral part of a general frame-
work for reasoning about concurrent systems using a powerful specification
language. (There should be no difficulties in extending the remaining reduc-

230 Categorical Models for an Intuitionistic Modal µ-Calculus

tions as well.)

The compositional technique also had some unexpected applications in
verifying equivalences and preorders by providing algorithms and character-
istic formulas as investigated in chapter 4.

The reductions can be seen as running a proof system backwards, for
instance the reduction for sum express that |= (p+g : 〈a〉A) ↔ (p : 〈a〉A)∨(q :
〈a〉A), ie. to prove |= p + q : 〈a〉A it is sufficient (and necessary) to prove
either |= p : 〈a〉A or |= q : 〈a〉A. For this simple example it is not hard to
supply the two forwards rules

< p : 〈a〉A
< p + q : 〈a〉A

< q : 〈a〉A
< p + q : 〈a〉A,

but for some of the other operators, in particular the parallel operator and
the recursion operator, things are more complicated. Also the fixed-point
assertions crucial for the expressiveness of the logic cause severe difficulties.
An indication of how such a compositional proof system could look can be
found in the work of Stirling [77, 76] and Winskel [90, 93] (which contain
versions of the above rules). They do not address the problem of the recursive
operator and they solve the problems with the parallel operator in different
ways. Stirling suggests using a satisfaction predicate relativized with respect
to one part of a parallel composition. However, it requires guessing proper
assertions for these components in order to be successful. Winskel factorizes
all fixed-point-free assertions into finite disjunctions of products of assertions
and shows how it is always possible to decompose such assertions into – rather
large – assertions for the individual components of a product of transition
systems.

For the fixed-point assertions they put a bound on the number of needed
unfoldings determined by the size of the process in question thereby solving
the problem by removing the fixed-point operators altogether. This is not a
very satisfactory solution because it requires knowledge about the size of the
process under consideration, and when reasoning compositionally this should
be of no concern to the reasoning – after all part of the process might still
be missing.

In contrast to this, it is central to the reductions presented in this thesis
that the fixed-points are kept and the main contribution of the reductions is
actually to show that this can be done for all operators. The decompositional
nature of the reductions can be ‘turned around’ and used to generate – a

Categorical Models for an Intuitionistic Modal µ-Calculus 231

rather unwieldy – forwards system for assertions with fixed-points. However,
due to the complexity of the rules, it seems to be of little use and we have
not yet succeeded in getting a satisfactory proof system in this way.

9.2 Model-Checking Algorithms

Another indirect application of the compositional method was in transform-
ing the problem of deciding satisfaction into a problem of determining the
value of a boolean fixed-point expression. Based on this idea we presented
global model checkers improving on the bounds of Emerson and Lei [35]. (A
recent paper by Cleaveland, Dreimüller, and Steffen [24] presents another
global algorithm for the full calculus with a similar complexity bound.) And
we presented local model checkers improving on the local algorithms of Larsen
[53], Cleaveland [23] (based on the proof system of Stirling and Walker [80])
and Winskel [92]. (Larsen [54] has recently improved on his local algorithm
for non-alternating fixed-points giving a polynomial-time algorithm, but it is
still not as efficient as the algorithm of chapter 5.)

These algorithms all required (for the local algorithm only in the worst-
case) the computation of the complete transition system for a process term;
something that might generate transition systems exponentially bigger than
the original process term – a problem sometimes referred to as the ‘state
explosion problem.’ Now, are the presented algorithms then ‘good enough’?
A partial answer can be found by analyzing the complexity of performing
model checking on static processes.

Using the observations of chapter 4 it is quite immediate that model
checking of the extended calculus (for the subsets that are decidable, cf.
the discussions in section 2.7 and section 5.10) is at least as difficult as the
checking of bisimulation equivalence and the checking of any of the preorders
in that chapter. Hence, using the result of Rabinovich [73] that deciding
bisimulation equivalence for what we refer to as static processes is PSPACE-
hard, it follows that model checking of the extended calculus is PSPACE-hard
for static processes.

A more direct proof strengthening this result to the standard calculus
can be given based on Rabinovich’s construction.

Theorem 9.1 Deciding

232 Categorical Models for an Intuitionistic Modal µ-Calculus

|= p : A

for a static process p

p = op(p1, . . . , pn),

and a closed assertion A in the standard calculus of alternation depth one is
PSPACE-hard.

Proof: (Sketch) Take A to be the assertion EEven(τ, 〈✓〉T) = µX.〈τ〉X ∨
〈✓〉T . Let M be any Turing machine for a PSPACE-hard problem with space
bound s and time bound t. Define for each input x a process p(x) which sim-
ulates the Turing machine, and terminates by performing the action ✓ if the
input is accepted. This can be done as described by Rabinovich [73] by tak-
ing for an input of size n, s(n) cells p1, . . . , pn each simulating one location
on the tape, and defining a process q simulating the finite state control of
the Turing machine. Then the process

(q | p′1 | · · · | p′n | pn+1 | · · · | ps(n)) � L

where L = {τ,✓}, p′i initially contains the i’th bit of the input x, and pi

contains a blank symbol, will eventually perform a ✓-action if and only if
the Turing machine M accepts x. This translation is easily performed within
polynomial time. ✷

The algorithm for deciding satisfaction for static processes we get by
simply computing the induced transition system and using for example the
global algorithm, gives for any fixed alternation depth an algorithm in EXP-
TIME. Hence we have a gap between the lower bound of PSPACE supplied
by the theorem and the upper bound of EXPTIME. However, recent pre-
liminary results on checking bisimulation equivalence giving a lower bound
of EXPTIME implies that model checking of static processes in even very
restricted subsets of the extended calculus is EXPTIME-hard and proba-
bly (depending on the construction used in the proof) also implies that for
the standard calculus the problem is EXPTIME-hard. (Cf. Rabinovich [73,
p.706] which conjectures that bisimulation checking is EXPTIME-hard and
refers to private communications with Stockmeyer proving this fact.) Hence,
if this is correct the algorithm that first computes the induced transition

Categorical Models for an Intuitionistic Modal µ-Calculus 233

system and then applies the global algorithm is optimal for static processes
and assertions of alternation depth one.

If we allow more than static processes we can go even further. Let CCSfin

be the set of finite CCS-processes (recall, from section 2.2 that this set is not
recursive, only recursively enumerable). Using a construction similar in spirit
to Rabinovich’s, but using two stacks as when Milner shows Turing strength
of CCS [59], we can actually that the satisfaction problem for CCSfin is
arbitrarily hard more precisely, for any time (or space) bound t, there exists
an assertion and infinitely many processes for which it requires at least time
(or space) t to decide the satisfaction problem.

This is proven by simply constructing for a Turing machine M and input
x in linear time a process term p(M, x) that when M is total induces a finite
transition system and hence belongs to CCSfin. This is very straightforward
using Milner’s idea; we simply construct two stacks simulating what is to the
left and respectively to the right of the head of the Turing machine, and en-
code the finite control as a process. Initially the stack to the left will contain
the input x and the stack to the right is empty. (See Milner [59] section 6.1.)
We again indicate that we have reached an accepting state by performing the
action ✓, hence the only possible actions of the encoding p(M, x) will be τ
and ✓. This translation takes polynomial time and linear space.

Theorem 9.2 For any time bound t at least exponential (and for any space
bound t at least polynomial), there exists a closed assertion A in the standard
calculus of alternation depth one and a Turing machine M such that deciding

|= p(M, x) : A

for inputs x of length n takes time (or space) at least t(n) for infinitely many
x. Hence, deciding satisfaction for processes in CCSfin and assertions of
alternation depth one in the standard calculus takes time (or space) at least
proportional to t.1

Proof: (Sketch) This is a direct consequence of the space and time hier-
archy theorems stating, intuitively, that there exists problems with arbitrar-
ily complex time (and space) requirements. (See for example Hopcroft and

1The time and space hierarchy theorems used in the proof require t to satisfy a technical
criterion of being time (respectively space) constructible, which we will not describe in
detail; we just use the term of being ‘a time (or space) bound t’ to capture this fact.

234 Categorical Models for an Intuitionistic Modal µ-Calculus

Ullman [43].) Hence, for any t these theorems supply a Turing machine
which requires at least time (or space) t to determine whether inputs should
be accepted or not. Taking again A to be the assertion EEuen(τ〈 ✓ 〉T),
the construction of p(M, x) in polynomial time and linear space proves the
theorem. ✷

9.3 Other Issues

State explosion. One way of attacking the problem of state explosion is
offered by the reduction for product. Consider the situation where we
have a static process p = p1 | · · · | pn and we want to decide whether
p satisfies an assertion A. We could use the reduction for product (or
rather the reduction for |) once to get

p1 | . . . | pn−1 : red|pnA.

Repeating this n − 1 times we end up with the answer. But in each
step we are increasing the assertion considerably – by a factor of the
size of the process we are dividing out. However, if these interme-
diate assertions could somehow be kept small, by for instance some
assertion-minimizing algorithm, this would provide a means for avoid-
ing the state-explosion problem. At present no non-trivial algorithm for
minimizing modal µ-calculus assertions exists, but perhaps one could
be constructed, at least for the non-alternating part, using rewrite tech-
niques from one of the existing finite axiomatizations of the fixed-point
free fragment (also known as Hennessy-Milner logic, or the minimal
modal logic K).

It is easy to construct simple examples where the above approach even
with a naive minimization algorithm gives good results.2 But whether
it can provide a good heuristic depends on whether minimization algo-
rithms that work well on non-trivial subsets can be found.

The extended calculus. The extended calculus was introduced mainly for
convenience of expressing properties, but the interplay between the

2Here is on e. If the assertion is: ‘There exists an infinite sequences of a-actions’, and
the process pn can perform these by itself, the first division will result in an assertion
which is quite easily seen to be true, irrespective of what the remaining processes are.

Categorical Models for an Intuitionistic Modal µ-Calculus 235

fixed-point operators and the predicate logic on actions seems to have
features that makes it interesting enough to deserve a study on its own.
Such a study was initiated in section 2.7 where it was discussed briefly
when model checking is decidable and how assertions in the extended
calculus under certain circumstances could be translated to assertions
in the standard calculus, but many questions concerning for example
the expressive power of the logic and the hardness of the model checking
problems have been left open.

The elaborate logical structure on actions given by the action predicates
and quantifiers could also turn out to be useful in the context of pro-
cesses with value passing where synchronizations also include passing
of values and the action structure is more complex.

The local algorithms. A feature of the local algorithms that have not been
investigated here is their ability to offer explanations (an observation
used in the TAV system [55].) If for instance we use the local algorithm
for maximum fixed-points in determining whether two states p and q are
bisimilar using the encoding as a maximum fixed-point B from chapter
4 and we get the result that this is not the case; then in the boolean
fixed-point expression we can find a tree of boolean variables with value
0 and a root corresponding to the satisfaction problem p × q : B, such
that any variable with right-hand side a conjunction has one successor
(and only one as the local algorithm stops when the first is found) in the
tree, and if the variable has a disjunction on the right-hand side all the
successors of that variable are in the tree. No cycles will be present.3

As each boolean variable corresponds to a pair of states p′ × q′ and
subassertion A of B, this information can be used to explain why p and
q are not bisimilar.

Similarly, if a process turns out not to satisfy a minimum fixed-point
assertion, a subgraph (now possibly with cyclic dependencies) can be
extracted that explains why.

The general local fixed-point finding algorithm. The ideas of sharing
and chasing dependencies that made the local model checker efficient
turned out to be of more general applicability and in chapter 6 a general
local algorithm for computing fixed-points in finite cpo’s and lattices

3Such a cycle could never get assigned value 0 to all its variables by the algorithm!

236 Categorical Models for an Intuitionistic Modal µ-Calculus

where given. It seems to have applications in for instance abstract in-
terpretations, where other local approaches as Pending Analysis has
already turned out to be quite successful. It is of major interest and
an important area for future work to find out whether the local al-
gorithm we presented can be used in giving an efficient algorithm for
higher-order abstract interpretation, a problem which currently, despite
several attempts, has no good and efficient solution.

The infinite-state method. The infinite-state method of chapter 7, which
we consider as being a recasting of the method of Bradfield and Stirling
[17], could be implemented as a tool along the lines of Bradfield [16].
As Bradfield points out the major difficulty is in supplying a useful
notation for the infinite-state processes. We believe that for bounded
processes the notation suggested in chapter 7 provides a promising
attempt.

Fundamental theoretical problems. The major open problem with the
standard calculus, is the problem of finding a finite axiomatization; a
problem which was solved by Kozen [49] for a restricted ‘aconjunctive’
calculus, but which for the general calculus remains open. Kozen has
given an axiomatization with one infinitary rule for the minimum fixed-
point operator in [50]. We offered, modestly, a new way of attack by
providing a class of categorical models for which completeness is easily
shown. But the problem of restricting these to Kripke-like or transition
system-like models does so fa not seem to have any simple solution.

The logic is known to be decidable, a result due to Kozen and Parikh
[51] and improved upon by Emerson and Jutla [33] which give the best
known, exponential time algorithm. Kozen [50] showed that it has the
finite model property, i.e. if an assertion is satisfiable it is satisfiable in
a finite model.

Another open problem concerns the hierarchy of sublogics that arise
from bounding the number of alternations of minimum and maximum
fixed-points. Niwiński [63, 64] has shown that for a term-interpretation
of the µ-calculus with the operators – including the modal operators
– being simple term-constructors, the hierarchy is indeed strict. But
this does not imply that the hierarchy is strict for the more traditional
Kripke models; it merely says that it cannot be ruled out that the
hierarchy is indeed strict.

Bibliography

[1] Proceedings of the 4th Workshop on Computer Aided Verification,
June 29 - July 1, 1992, Montreal, Quebec, Canada, 1992. Forth-
coming.

[2] P. Aczel. An introduction to inductive definitions. In Jon Barwise,
editor, Handbook of Mathematical Logic. North-Holland, 1983.

[3] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-Wesley, 1974.

[4] Henrik Reif Andersen. Local computation of alternating fixed-
points. Technical Report No. 260, Computer Laboratory, Univer-
sity of Cambridge, June 1992.

[5] Henrik Reif Andersen. Local computation of simultaneous fixed-
points. Technical Report PB-420, Computer Science Department,
Aarhus University, October 1992.

[6] Henrik Reif Andersen. Model checking and boolean graphs (ex-
tended abstract). In B. Krieg-Brückner, editor, Proceedings of
4’th European Symposium on Programming, ESOP’92, Rennes,
France, volume 582 of LNCS. Springer-Verlag, 1992.

[7] Henrik Reif Andersen and Glynn Winskel. Compositional checking
of satisfaction. Formal Methods In System Design, 1(4), December
1992.

[8] Henrik Reif Andersen and Glynn Winskel. Compositional checking
of satisfaction (extended abstract). In Larsen and Skou [56].

238 Categorical Models for an Intuitionistic Modal µ-Calculus

[9] André Arnold and Paul Crubille. A linear algorithm to solve fixed-
point equations on transitions systems. Information Processing
Letters, 29:57–66, 1988.

[10] G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca,
editors. Proceedings of ICALP, volume 372 of LNCS, 1989.

[11] J.C.M. Baeten and J.W. Klop, editors. Proceedings of CONCUR
’90, volume 458 of LNCS. Springer-Verlag, 1990.

[12] H. Bekič. Definable operations in general algebras, and the theory
of automata and flow charts. In C. B. Jones, editor, Hans Bekič:
Programming Languages and Their Definition, volume 177, pages
30–55. Springer-Verlag, 1984.

[13] Bard Bloom. Ready Simulation, Bisimulation, and the Semantics
of CCS-Like Languages. PhD thesis, Massachusetts Institute of
Technology, August 1989.

[14] Bard Bloom and Robert Paige. Computing ready simulations ef-
ficiently. Draft, July 1992.

[15] Julian C. Bradfield. Verifying Temporal Properties of Systems with
Applications to Petri Nets. PhD thesis, Laboratory for Founda-
tions of Computer Science, University of Edinburgh, July 1991.

[16] Julian C. Bradfield. A proof assistant for symbolic model-checking.
Technical Report ECS-LFCS-92-199, Laboratory for Foundations
of Computer Science, University of Edinburgh, March 1992.

[17] Julian C. Bradfield and Colin P. Stirling. Verifying temporal prop-
erties of processes. In Baeten and Klop [11], pages 115–125.

[18] Glenn Bruns. A case study in safety-critical design. Technical Re-
port ECS-LFCS-92-239, Laboratory for Foundations of Computer
Science, University of Edinburgh, September 1992.

[19] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.
J. Hwang. Symbolic model checking: 1020 states and beyond. In
Proceedings, Fifth Annual IEEE Symposium on Logic in Computer
Science, pages 428–439. IEEE Computer Society Press, 1990.

Categorical Models for an Intuitionistic Modal µ-Calculus 239

[20] Jiazhen Cai and Robert Paige. Program derivation by fixed point
computation. Theoretical Computer Science, 11:197–261, 1989.

[21] E.M. Clarke and E.A. Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Dexter
Kozen, editor, Logics of Programs, Workshop, Yorktown Heights,
New York, May 1981, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer-Verlag, 1981.

[22] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model
checking. In Proceedings, Fourth Annual Symposium on Logic in
Computer Science, pages 353–362, Asilomar Conference Center,
Pacific Grove, California, June 5–8 1989. IEEE Computer Society
Press.

[23] Rance Cleaveland. Tableau-based model checking in the proposi-
tional mu-calculus. Acta Informatica, 27:725–747, 1990.

[24] Rance Cleaveland, Marion Dreimüller, and Bernhard Steffen.
Faster model checking for the modal mu-calculus. In Proceedings
of the 4th Workshop on Computer Aided Verification, June 29 -
July 1, 1992, Montreal, Quebec, Canada [1], pages 383–394. Forth-
coming.

[25] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The
Concurrency Work-bench: A semantics based tool for the verifi-
cation of concurrent systems. Technical Report ECS-LFCS-89-83,
Laboratory for Foundations of Computer Science, Uni. of Edin-
burgh, August 1989.

[26] Rance Cleaveland and Bernhard Steffen. Computing behavioural
relations, logically. In J. Leach Albert, B. Monien, and M.
Rodŕiguez Artalejo, editors, Proceedings of ICALP, volume 510
of LNCS, pages 127–138. Springer-Verlag, July 1991.

[27] Rance Cleaveland and Bernhard Steffen. A linear-time model-
checking algorithm for the alternation-free modal mu-calculus. In
Larsen and Skou [56].

[28] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. McGraw-Hill, 1990.

240 Categorical Models for an Intuitionistic Modal µ-Calculus

[29] Patrick Cousot and Radhia Cousot. Static determination of dy-
namic properties of recursive procedures. In Erich J. Neuhold, edi-
tor, Formal Description of Programming Concepts, pages 237–277.
North-Holland, 1978. Proceedings of the IFIP Working Conference
on Formal Description of Programming Concepts, St. Andrews,
N.B., Canada, August 1–5, 1977.

[30] Mads Dam. Translating CTL∗ into the modal µ-calculus. Tech-
nical Report ECS-LFCS-90-123, Laboratory for Foundations of
Computer Science, University of Edinburgh, November 1990.

[31] Mads Dam. CTL∗ and ECTL∗ as fragments of the modal µ-
calculus. In Raoult [74], pages 145–164.

[32] Alan J. Dix. Finding fixed points in non-trivial domains: Proofs
of pending analysis and related algorithms. Technical Report YCS
107, University of York, Department of Computer Science, 1988.

[33] E. A. Emerson and C. S. Jutla. The complexity of tree automata
and logics of programs. IEEE Foundations of Computer Science,
29:328–337, 1988.

[34] E. Allen Emerson and Edmund M. Clarke. Characterizing cor-
rectness properties of parallel programs using fixpoints. In J.W.
de Bakker and J. van Leeuwen, editors, Automata, Languages and
Programming. ICALP’80, volume 85 of Lecture Notes in Computer
Science, pages 169–181. Springer-Verlag, 1980.

[35] E. Allen Emerson and Chin-Luang Lei. Efficient model checking
in fragments of the propositional mu-calculus. In Symposium on
Logic in Computer Science, Proceedings, pages 267–278. IEEE,
1986.

[36] E.A. Emerson and J. Halpern. “Sometimes” and “not never” re-
visited: On branching versus linear time. Journal of the ACM, 33,
1986.

[37] Klaus Estenfeld, Hans-Albert Schneider, Dirk Taubner, and Erik
Tidén. Computer aided verification of parallel processes. In A.

Categorical Models for an Intuitionistic Modal µ-Calculus 241

Pfitzmann and E. Raubold, editors, VIS ’91 Verlässliche Informa-
tionssysteme, volume 271 of Informatik Fachberichte, pages 208–
226, Darmstadt, 1991. Springer.

[38] M.J. Fischer and R.E. Ladner. Propositional dynamic logic of reg-
ular programs. JCSS, 18:194–211, 1979.

[39] Melvin Fitting. Intuitionistic Logic. Model Theory and Forcing.
North-Holland, 1969.

[40] N. De Francesco and P. Inverardi. A semantic driven method to
check the finiteness of CCS processes. In Larsen and Skou [56].

[41] Carl A. Gunter. Semantics of Progamming Languages: Structures
and Techniques. MIT Press, 1992.

[42] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall
International, 1985.

[43] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 1979.

[44] G. Hughes and M. Cresswell. An Introduction to Modal Logic.
Methuen, 1968.

[45] IEEE Computer Society. Proceedings, Third Annual Symposium
on Logic in Computer Science, Edinburgh, Scotland, July 5–8
1988.

[46] Peter T. Johnstone. Stone spaces. Cambridge studies in advanced
mathematics 3. Cambridge University Press, 1982.

[47] Neil D. Jones and Alan Mycroft. Data flow analysis of applica-
tive programs using minimal function graphs: Abridged version.
In Proceedings of 13th Annual ACM Symp. on Principles of Pro-
gramming Languages, 1986.

[48] Gary A. Kildall. A unified approach to global program optimiza-
tion. In Proceedings of POPL’73, pages 194–206. ACM, 1973.

[49] Dexter Kozen. Results on the propositional mu-calculus. Theoret-
ical Computer Science, 27, 1983.

242 Categorical Models for an Intuitionistic Modal µ-Calculus

[50] Dexter Kozen. A finite model theorem for the propositional µ-
calculus. Studia Logica, 47:233–242, September 1988.

[51] Dexter Kozen and Rohit Parikh. A decision procedure for the
propositional mu-calculus. In E. Clarke and D. Kozen, editors,
Logics of Programs, Proceedings, volume 164 of LNCS, 1983.

[52] Leslie Lamport. “Sometimes” is sometimes “not never”. In Pro-
ceedings of 7th Annual ACM Symp. on Principles of Programming
Languages, 1980.

[53] Kim G. Larsen. Proof systems for Hennessy-Milner logic with
recursion. In M. Dauchet and M. Nivat, editors, Proceedings of
CAAP, Nancy, Franch, volume 299 of Lecture Notes in Computer
Science, pages 215–230, March 1988.

[54] Kim G. Larsen. Efficient local correctness checking. In Proceedings
of the 4th Workshop on Computer Aided Verification, June 29 -
July 1, 1992, Montreal, Quebec, Canada [1]. Forthcoming.

[55] Kim G. Larsen, J.C. Godskesen, and M. Zeeberg. TAV–Tools for
Automatic Verification. Technical Report R 89-19, Aalborg Uni-
versitetscenter, 1989.

[56] Kim G. Larsen and Arne Skou, editors. Proceedings of the 3rd
Workshop on Computer Aided Verification, July 1991, Aalborg,
volume 575 of LNCS. Springer-Verlag, 1992.

[57] Kim G. Larsen and Liu Xinxin. Compositionality through an op-
erational semantics of contexts. In M.S. Paterson, editor, Proceed-
ings of ICALP, volume 443 of LNCS, pages 526–539. Springer-
Verlag, 1990.

[58] Robin Milner. A Calculus of Communicuting Systems, volume 92
of LNCS. Springer-Verlag, 1980.

[59] Robin Milner. Communication and Concurrency. Prentice Hall,
1989.

[60] Alan Mycroft. Abstract Interpretation and Optimising Transfor-
mations for Applicative Programs. PhD thesis, Laboratory for

Categorical Models for an Intuitionistic Modal µ-Calculus 243

Foundations of Computer Science, University of Edinburgh, De-
cember 1981.

[61] Flemming Nielson and Hanne Riis Nielson. Finiteness conditions
for fixed point iteration. Manuscript. To appear, November 1991.

[62] Hanne Riis Nielson and Flemming Nielson. Bounded fixed point
iteration. In Proceedings of the 18’th Annual Symposium on Prin-
ciples of Programming Languages, POPL, 1991. Also as DAIMI
PB-359, Aarhus University, July 1991.

[63] Damian Niwiński. On fixed-point clones. In Laurent Kott, editor,
Proceedings of ICALP, volume 226 of LNCS, pages 464–473, 1986.

[64] Damian Niwiński. Fixed points vs. infinite generation. In Proceed-
ings, Third Annual Symposium in Logic in Computer Science [45],
pages 402–409.

[65] Robert Paige and Robert E. Tarjan. Three partition refinement
algorithms. SIAM Journ. Comput, 16(3):973–989, December 1987.

[66] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type
inference. In Proc. OOPSLA ’91, ACM SIGPLAN Sixth Annual
Conference on Object-Oriented Programming Systems, Languages
and Applications, pages 146–161, Phoenix, Arizona, October 1991.

[67] Jens Palsberg and Michael I. Schwartzbach. Safety analysis ver-
sus type inference. Technical Report PB-389, Computer Science
Department, Aarhus University, 1992. Submitted for publication.

[68] David Park. Fixpoint induction and proofs of program properties.
Machine Intelligence, 5, 1969.

[69] David Park. Concurrency and automata on infinite sequences.
In Peter Deussen, editor, Proceedings of Theoretical Computer
Science, 5th GI-Conference, Karlsruhe, March 23-25, 1981, vol-
ume 104 of Lecture Notes in Computer Science, pages 167–183.
Springer-Verlag, 1981.

[70] Andrew M. Pitts. On an interpretation of second order quantifi-
cation in first order intuitionistic propositional logic. Journal of
Symbolic Logic. To appear.

244 Categorical Models for an Intuitionistic Modal µ-Calculus

[71] Gordon Plotkin. Unpublished notes on domain theory (‘The Pisa
Notes’).

[72] Gordon Plotkin and Colin Stirling. A framework for intuitionis-
tic modal logics. In J. Y. Halpern, editor, Theoretical Aspects of
Reasoning About Knowledge, 1986.

[73] Alexander Rabinovich. Checking equivalences between concurrent
systems of finite agents (extended abstract). In Proceedings of
ICALP, volume 623 of LNCS, pages 696–707. Springer-Verlag,
1992.

[74] J.-C. Raoult, editor. Proceedings of 17’th Colloquium on Trees in
Algebra and Programming, CAAP’92, Rennes, France, volume 581
of LNCS. Springer-Verlag, 1992.

[75] Bernhard Steffen. Characteristic formulae for CCS with diver-
gence. In Ausiello et al. [10], pages 723–733.

[76] Colin Stirling. A complete compositional modal proof system for a
subset of CCS. volume 194 of Lecture Notes in Computer Science,
pages 475–486. Springer-Verlag, 1985.

[77] Colin Stirling. A complete modal proof system for a subset of
SCCS. volume 185 of Lecture Notes in Computer Science, pages
253–266. Springer-Verlag, 1985.

[78] Colin Stirling. Modal logits for communicating systems. Technical
Report CSR-193-85, Department of Computer Science, University
of Edinburgh, October 1985.

[79] Colin Stirling. Modal and Temporal Logics. In S. Abramsky, D.
Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer
Science. Oxford University Press, 1991.

[80] Colin Stirling and David Walker. Local model checking in the
modal mu-calculus. In J. Díaz and F. Orejas, editors, Proceed-
ings of TAPSCFT, Barcelona, Spain, volume 351 of Lecture Notes
in Computer Science, pages 369–383, March 1989.

Categorical Models for an Intuitionistic Modal µ-Calculus 245

[81] R. Tarjan. Depth-first search and linear graph algorihtms. SIAM
J. Comput., 2(1), June 1972.

[82] A. Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5:285–309, 1955.

[83] Dirk Taubner. Finite Representations of CCS and TCSP Programs
by Automata and Petri Nets, volume 369 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1989.

[84] Dirk van Dalen. Logic and Structure. Springer-Verlag, second edi-
tion, 1983.

[85] Bart Vergauwen and Johan Lewi. A linear algorithm for solving
fixed-point equations on transition systems. In Raoult [74], pages
322–341.

[86] Philip Wadler. Strictness analysis on non-flat domains. In Samson
Abramsky and Chris Hankin, editors, Abstract interpretation of
declarative languages, chapter 12. Ellis Horwood, 1987.

[87] David J. Walker. Automated analysis of mutual exclusion algo-
rithms using CCS. Technical Report ECS-LFCS-89-91, Laboratory
for Foundations of Computer Science, University of Edinburgh,
August 1989.

[88] Glynn Winskel. Synchronisation trees. Theoretical Computer Sci-
ence, 34:33, 1984.

[89] Glynn Winskel. On the composition and decomposition of asser-
tions. Technical Report TR-59, Computer Laboratory, University
of Cambridge, 1985.

[90] Glynn Winskel. A complete proof system for SCCS with modal
assertions. Fundamenta Informaticae, IX:401–420, 1986.

[91] Glynn Winskel. A category of labelled Petri Nets and composi-
tional proof system (extended abstract). In Proceedings, Third
Annual Symposium on Logic in Computer Science [45], pages 142–
153.

246 Categorical Models for an Intuitionistic Modal µ-Calculus

[92] Glynn Winskel. A note on model checking the modal ν-calculus.
In Ausiello et al. [10], pages 761–772.

[93] Glynn Winskel. A compositional proof system on a category of la-
belled transition systems. Information and Computation, 87, 1990.

[94] Glynn Winskel. On the compositional checking of validity. In
Baeten and Klop [11], pages 481–501.

[95] Glynn Winskel. The Formal Semantics of Programming Lan-
guages. MIT Press, 1993.

[96] Liu Xinxin. Specification and Decomposition in Concurrency. PhD
thesis, Institute for Electronic Systems, Department of Mathemat-
ics and Computer Science, University of Aalborg, Denmark, April
1992.

[97] Jonathan Young and Paul Hudak. Finding fixpoints on function
spaces. Technical Report YALEU/DCS/RR-505, Yale University,
Department of Computer Science, December 1986.

Appendix A

Proofs of Theorems of Chapter
3

This section contains the proofs of all major results in chapter 3.

A.1 Proof of Rooting Lemma

Rooting lemma, lemma 3.1 Given a pointed transition system, T =
(ST , i, L,→T), where ST is countable and with the rooting T . Let r : P(ST) →
P(ST ∪ {i}) be the map on properties that take the initial state of T to the
two copies of it in T and take all other states to their obvious counterparts.
Assume A is a pure assertion. Let ρ : AssnV ar → P(ST) be an environment
of assertions which since A is pure, respects the types of A. Then

r([[A]]T ρ) = [[A]]T (r ◦ ρ).

✷

Proof: The proof is by structural induction on A.

A ≡ X. By the definition of [[X]]T φ we immediately get:

r([[X]]T φ) = r(φ(X)) = r ◦ φ(X) = [[X]]T (r ◦ φ).

A ≡ µX.B. By definition we have

r([[µX.B]]T φ) = r(µθ) (A.1)

248 Categorical Models for an Intuitionistic Modal µ-Calculus

where θ : P(ST) → P(ST) is defined by θ(U) = [[B]]T φ[U/X]. Taking ψ(V) =
[[B]]T (r ◦ φ)[V/X] we obtain:

r ◦ θ(U) = r([[B]]T φ[U/X]))

= [[B]]T (r ◦ φ)[r(U)/X]

by the induction hypothesis

= ψ(r(U)) = ψ ◦ r(U)

Furthermore r is easily seen to be strict and ω-continuous, and as we assume
ST to be countable, the reduction lemma yields

r(µθ) = µψ

which by expanding ψ and (A.1) gives the result:

r([[µX.B]]T φ = µV ⊆ ST .[[B]]T (r ◦ φ)[V/X]

= [[µX.B]]T (r ◦ φ).

A ≡ 〈α〉B, α = ∗. We proceed by rewriting the left-hand side:

r([[〈α〉B]]T φ) = r({s ∈ ST | ∃s′ ∈ ST .s
α→ s′ & s′ ∈ [[B]]T φ})

by definition

= r({s ∈ ST | ∃s′ ∈ ST .s
α→ s′ & s′ ∈ r([[B]]T φ)})

by def. of rooting

= r({s ∈ ST | ∃s′ ∈ ST ∪ {i}.s α→ s′ & s′ ∈ r([[B]]T φ)})
as no transitions enter i

= r({s ∈ ST | ∃s′ ∈ ST ∪ {i}.s α→ s′ & s′ ∈ [[B]]T (r ◦ φ)})
by the induction hypothesis

= {i, i | ∃s′ ∈ ST .i
α→ s′ & s′ ∈ [[B]]T (r ◦ φ)}

∪{s′ ∈ ST \ {i, i} | ∃s′ ∈ ST .s
α→ s′ & s′ ∈ [[B]]T (r ◦ φ)}

by applying r
[[〈α〉B]]T (r ◦ φ).

A ≡ A0 ∨ A1 and A ≡ ¬B. Immediate as r distributes over disjunction and
negation.

✷

Categorical Models for an Intuitionistic Modal µ-Calculus 249

A.2 Proof of Reduction Lemma

We prove the reduction lemma as a corollary of a more general result, for
which we need the notion of height of a partial order.

Definition A.1 Define the height of a partial order (D,≤) to be the smallest
cardinal κ such that for any T ⊆ D, where (T,≤ ∩T × T) is totally ordered,
|T | ≤ κ. Say a partial order has countable height if its height is countable.
✷

Note that if X is a countable set, then the partial orders (P(X),⊆) and
(P(X),⊇) have countable height.

Lemma A.1 Let D, E be complete lattices of mountable height. Let in :
D → E be an ω-continuous function such that in(⊥D) = ⊥E. Suppose
ϕ : E → E and θ : D → D are monotonic functions such that

in ◦ θ = ϕ ◦ in.

Then

in(µθ) = µϕ.

Proof: The following facts are well–known (see e.g. [2]):
For a monotonic function θ : D → D,

1. µθ =
∨

α∈On
θα(⊥D),

where
θ0(x) =def x,
θα+1(x) =def (θα(x)), and
θλ(x) =def

∨
α<λ θα(x) for λ a limit-ordinal,

are such that α ≤ α′ ⇒ θα(⊥D) ≤ θα′(⊥D).

2. In addition, there is a least ordinal β (the closure ordinal) such that
θβ(⊥D) = θβ+1(⊥D). Then µθ = θβ(⊥D).

Further:
3. If D is of height ω then β is a countable ordinal: The function α �−→

θβ(⊥D) for α ∈ β is 1-1 and has range a total order in D; hence be-
cause D has height ω theordinal β is countable. It follows that when
D has height ω then

250 Categorical Models for an Intuitionistic Modal µ-Calculus

µθ =
∨

α∈Con

θα(⊥D),

where Con is the set of countable ordinals.

Now, we proceed to the main proof. Under the assumptions stated in the
lemma we see

in(µθ) = in(
∨

α∈Con θα(⊥D))
= in(θβ(⊥D)) where β is the closure ordinal as in (3) above
=

∨
α∈Con in(θα(⊥D)) by ω-continuity of in. (A)

By ordinal induction we show:

in(θα(⊥D)) = ϕα(in(⊥D)) (B)

for all α ∈ Con:

When α = 0 then in(θα(⊥D)) = in(⊥D) = ϕα(in(⊥D)).

For a successor ordinal,

in(θα+1(⊥D)) = in(θ(θα(⊥D))) by definition
= ϕ(in(θβ(⊥D))) as in ◦ θ = ϕ ◦ in
= ϕ(ϕα(in(⊥D))) by induction
= ϕα+1(in(⊥D)).

Assume λ is a countable limit ordinal. Then λ is co-final with ω in the
sense that there is an ω-sequence of elements of λ

β0, β1, . . . , βn, . . .

such that for all α ∈ λ there is some n ∈ ω such that α ≤ βn: With respect
to α0, α1, . . . , αn, . . . a countable enumeration of elements of λ, take β0 = α0

and inductively take βn+1 to be the maximum of βn and αn+1.

Now we argue:

in(θλ(⊥D)) = in(
∨

α<λ θα(⊥D))
= in(

∨
n∈ω θβn(⊥D)) by cofinality

=
∨

n∈ω in(θβn(⊥D)) by ω-continuity of in
=

∨
n∈ω ϕβn(in(⊥D)) by induction

=
∨

α<λ ϕα(in(⊥D)) by iconfinality
= ϕλ(in(⊥D)).

Categorical Models for an Intuitionistic Modal µ-Calculus 251

This completes the inductive proof of (B).

Recalling in(⊥D) = ⊥E, we conclude:

in(µθ) =
∨

α∈Con in θα(⊥D)) by (A)
=

∨
α∈Con ϕαin(⊥D)) by (B)

=
∨

α∈Con ϕα(⊥E))
= µϕ by (3).

✷

We remark that the ω-continuity of in is necessary, as the following ex-
ample shows.

Example A.1 Let E consist of ⊥ < = and D be the ordinal ω + 1 or-
dered by the usual ordering on ordinals. Let in : D → E be the monotonic
(but not continuous) function such that

in(n) = ⊥ for n ∈ ω,
in(ω) = =.

Take ϕ : E → E to be the identity on E, and θ : D → D to act so

θ(n) = n + 1 for n ∈ ω,
θ(ω) = ω.

Then µϕ = ⊥ and µθ = ω. Hence in this case where in is monotonic and not
continuous we have µϕ = ⊥ and in(µθ) = = so µϕ = in(µθ). (Monotonicity
of in guarantees µϕ ≤ in(µθ).) ✷

If D, E are powersets of countable sets then they are complete lattices
of height ω and so meet the conditions required by the reduction lemma,
yielding the special case, lemma 3.2, used in chapter 3.

A.3 Proof of Reduction for Prefix

Reduction for prefix, theorem 3. Given a closed, pure assertion A, a
change of variables σ which is fresh for A, and an arbitrary process term t,
then

|= (at : A) ↔ red1(at : A; σ).

252 Categorical Models for an Intuitionistic Modal µ-Calculus

✷

Proof: We prove by structural induction on A that for a change of variables
σ which is fresh for A, we have for all environments ρ:

[[A[σ]]]at ρ = in([[red0(at : A; σ)]]t ρ, [[red1(at : A; σ)]]• ρ). (1)

The result then follows from the discussion preceding theorem 3.1.

A ≡ X. Assuming that σ(X) = IN (X0, X1) we get

[[X[σ]]]at ρ = in(ρ(X0), ρ(X1))

= in([[X0]]t ρ, [[X1]]• ρ)

= in([[red0(at : X; σ)]]t ρ, [[red1(at : X; σ)]]• ρ)

A ≡ µX.B By definition we have

[[(µX.B)[σ]]]at ρ = µψ,

where ψ is defined by

ψ(U) = [[B[σ \ X]]]at ρ[U/X].

Taking as abbreviations B0 = red0(at : B; σ) and B1 = red1(at : B; σ) and
defining

θ(V0, V1) = ([[B0]]t ρ[V0/X0, V1/X1], [[B
1]]• ρ[V0/X0, V1/X1])

we can show that θ and ψ are related as required by the reduction lemma:

in ◦ θ(V0, V1) = in([[B0]]t ρ[V0/X0, V1/X1], [[B
1]]• ρ[V0/X0, V1/X1])

= [[B[σ]]]at ρ[V0/X0, V1/X1]

by the ind. hyp.

= [[B[σ \ X]]]at ρ[in(V0, V1)/X]

as σ(X) = IN (X0, X1) and σ is fresh for µX.B

= ψ ◦ in(V0, V1) =

by def. of ψ.

It is easy to see that in is strict and ω-continuous, hence the reduction lemma
yields

Categorical Models for an Intuitionistic Modal µ-Calculus 253

in(νθ) = µψ

Writing out µθ in full details we can proceed by applying Bekič’s theorem:

µθ = µ(V0, V1).([[B
0]]t ρ[V0/X0, V1/X1], [[B1]]• ρ[V0/X0, V1/X1])

= (µV0.[[B
0]]t ρ[V0/X0], µV1.[[B

1]]• ρ[(µV0.[[B
0]]t ρ[V0/X0])/X0, V1/X1])

by Bekič′s theorem and the observation that X1 is not free in B0

= ([[µX0.B
0]]t ρ, µV1.[[B

1]]• ρ[[[µX0.B
0]]t ρ/X0, V1/X1])

by definition

= ([[µX0.B
0]]t ρ, µV1.[[B

1[µX0.B
0/X0]]]• ρ[V1/X1])

by the substitution lemma

= ([[µX0.B
0]]t ρ, [[B1[µX0.B

0/X0]]]• ρ[∅/X1])

as P({•}) is just a two − point lattice with bottom element ∅
= ([[µX0.B

0]]t ρ, [[B1[µX0.B
0/X0][F/X1]]]• ρ)

by the substitution lemma

= ([[red0(at : µX.B; σ)]]t ρ, [[red1(at : µX.B; σ)]]• ρ).

We have established that

[[(µX.B)[σ]]]at ρ = in([[red0(at : µX.B; σ)]]t ρ, [[red1(at : µX.B; σ)]]• ρ)

as required.

A ≡ 〈α〉B, α = ∗. We rewrite from the definition:

[[〈α〉B[σ]]]at ρ = {s ∈ Sat | ∃s′ ∈ Sat.s
α→ s′ & s′ ∈ [[B[σ]]]at ρ}

= {s ∈ Sat | ∃s′ ∈ Sat.s
α→ s′ & s′ ∈ in([[B0]]t ρ, [[B1]]• ρ)}

by ind. hyp. where B0 abbreviates red0(at : B; σ)

andB1abbreviates red1(at : B; σ)

= {s ∈ Sat | ∃s′ ∈ Sat \ {at}.s α→ s′ & s′ ∈ in([[B0]]t ρ, [[B1]]• ρ)}
as no transitions enter at

= {s ∈ Sat | ∃s′ ∈ Sat \ {at}.s α→ s′ & s′ ∈ [[B0]]t ρ}
by definition of in

= {at | ∃s′ ∈ Sat \ {at}.at
α→ s′ & s′ ∈ [[B0]]t ρ}

∪{s ∈ Sat \ {at} | ∃s′ ∈ Sat \ {at}.s α→ s′ & s′ ∈ [[B0]]t ρ}
by simple splitting

254 Categorical Models for an Intuitionistic Modal µ-Calculus

= {at | α = a & t ∈ [[B0]]t ρ}
∪{s ∈ St | ∃s′ ∈ St.s

α→ s′ & s′ ∈ [[B0]]t ρ}
as the only transition from at is at

a→ t and

by observing Sat \ {at} = St

=

{
[[〈α〉B0]]t ρ if α = a
{at | t ∈ [[B0]]t ρ} if α = a

from the definition of [[〈α〉B0]]t ρ

= in([[red0(at; 〈α〉B; σ)]]t ρ, [[red1(at; 〈α〉B; σ)]]• ρ

by def. of red0, red1, and in

A ≡ A0 ∨ A1 and A ≡ ¬B. Straightforward.

✷

A.4 Proof of Reduction for Restriction

Reduction for restriction, theorem 3.5 Assume A closed and pure, a
change of variables σ which is fresh for A and an arbitrary process term t,
then

|= (t � Λ : A) ↔ (t : red Λ(A; σ)).

✷

Proof: We show by structural induction on A that for a change of vari-
ables σ which is fresh for A we have, for all ρ:

[[A[σ]]]t Λ ρ = in([[red(t � Λ : A; σ)]]t ρ). (A.2)

From (A.2) and the definition of in it follows that

t � Λ ∈ [[A[σ]]]t Λ ρ iff t ∈ [[red(t � Λ : A; σ)]]t ρ

hence by the locality lemma

|= (t � Λ : A) ↔ (t : red(t � Λ : A; σ)),

Categorical Models for an Intuitionistic Modal µ-Calculus 255

as required.

A ≡ X. Assuming that σ(X) = IN (Y) we get:

[[X[σ]]]t λρ = in(ρ(Y))

= in([[Y]]t ρ)

= in([[red(t � Λ : X; σ]]t ρ).

A ≡ µX.B. By definition we have

[[(µX.B)[σ]]]t λ ρ = µψ

where ψ : P(St Λ) → P(St Λ) is defined by

ψ(U) = [[B[σ/X]]]t Λ ρ[U/X]

Defining θ : P(St) → P(St) by

θ(V) = [[red(t � Λ : B; σ)]]t ρ[V/Y],

we show that θ and ψ are related as required by the reduction lemma:

in ◦ θ(V) = in([[red(t � Λ : B; σ)]]t ρ[V/Y])

= [[B[σ]]]t ρ[V/Y]

by the induction hypothesis

= [[B[σ/X]]]t ρ[in(V)/X]

as σ(X) = IN (Y) and σ is fresh for µX.B

= ψ ◦ in(V)

by definition of ψ.

It is easy to see that in is strict and ω-continuous, hence the reduction lemma
applies, yielding

µψ = in(µθ),

256 Categorical Models for an Intuitionistic Modal µ-Calculus

hence

[[(µX.B)[σ]]]t Λ ρ = in(µV ⊆ St Λ.[[red(t � Λ : B; σ)]]t ρ[V/Y])

= in([[µY.red(t � Λ : B; σ)]]t ρ)

by definition of the µ−operator

= in([[red(t � Λ : B; σ)]]t ρ)

by definition of red(t � Λ : µY.B; σ).

A ≡ 〈α〉B, α = ∗. We rewrite the left-hand side:

[[〈α〉B[σ]]]]t Λ ρ = {s ∈ St Λ | ∃s′ ∈ St Λ.s
α→ s′ & s′ ∈ [[B[σ]]]t Λ ρ}

by definition

= {s ∈ St Λ | ∃s′ ∈ St Λ.s
α→ s′ & s′ ∈ in([[red(t � Λ; σ)]]t ρ)}

by the induction hypothesis A.2

=

{s � Λ | s ∈ St & ∃s′ ∈ St.s
α→ s′ &

s′ ∈ [[red(t � Λ : B; σ)]]t ρ} ∪ St Λ if α ∈ Λ
∅ if α /∈ Λ

by definition of in and the restriction operator

=

{
in([[〈α〉red(t � Λ : B; σ)]]t ρ) if α ∈ Λ
in(∅) if α /∈ Λ

by definition of in and 〈α〉
= in([[red(t � Λ : 〈α〉B; σ)]]t ρ)

by definition of red(t � Λ : 〈α〉B; σ).

A ≡ A0 ∨ A1 and A ≡ ¬B. Straightforward.

✷

A.5 Proof of Reduction for Recursion

In order to show the correctness of the reduction for recursion we will need
a small lemma which describe a useful relationship between transitions in t
and rec P.t.

Categorical Models for an Intuitionistic Modal µ-Calculus 257

Lemma A.2 Let j be the function described in the main text. Then for
all s, s′ ∈ St and α = ∗ we have:

j(s)
α→ j(s′)

if and only if,

∃s′′ ∈ St. j(s′′) = j(s′)& ((s = P & t
α→ s′′) or (s = P & s

α→ s′′)).
Proof: Suppose s = P . Then j(s) = rec P.t and

rec P.t
α→ j(s′) iff t[rec P.t/P]

α→ j(s′)

as only the ‘unfolding rule‘ apply when α = ∗
iff ∃s′′ ∈ St. t

α→ s′′ & s′′[rec P.t/P] = j(s′)

asP is strongly guarded

iff ∃s′′ ∈ St. t
α→ s′′ & j(s′′) = j(s′)

by definition of j.

Now suppose s = P . We first consider the case where j(s) = rec P.t,
i.e. s /∈ {t, rec P.t}. Then as P is strongly guarded, the first transition from
j(s) is independent of whether rec P.t is substituted for P or not:

j(s)
α→ j(s′) iff ∃s′′ ∈ St. s

α→ s′′ & j(s′′) = j(s′).

When s = t we get by the same arguments as in the case of s = P , that

j(s)
α→ j(s′) iff ∃s′′ ∈ St. t

α→ s′′ & j(s′′) = j(s′),

which by definition of rooting is equivalent to

∃s′′ ∈ St. s
α→ s′′ & j(s′′) = j(s′).

For s = rec P.t the result is trivial as j(s) = s. ✷

In the inductive proof of correctness it turns out that we will need a
stronger induction hypothesis than for the other reductions. We will intro-
duce a notion of ‘balanced subset’, in the sense that if a state s ∈ St belongs
to the subset, then every other state, which under j maps to the same state

258 Categorical Models for an Intuitionistic Modal µ-Calculus

in Srec P.t belongs to the subset. Formally, a subset U ⊆ St is said to be
balanced if j−1 ◦ in(U) = U . Note that if j is injective all subsets are trivially
balanced. An environment ρ is said to be balanced if ρ(X) is balanced for
all variables X. It is easily seen that D = {U ⊆ St | U is balanced} is a
complete sublattice of P(St).

We are now able to prove theorem 3.6 (reduction for recursion):

Reduction for recursion, theorem 3.6 Given a closed, pure assertion
A, a change of variables σ which is fresh for A, and a regular process term t
in which P is strongly guarded then

|= (rec P.t : A) ↔ (t : red(rec P.t : A; σ)).

Proof: By structural induction on A, we show that P (A) holds for all A,
where P is defined by:

P (A) ⇔def for all balanced ρ. [[A[σ]]]rec P.t ρ =

in([[red(rec P.t : A; σ)]]tρ) (A.3)

& [[red(rec P.t : A; σ)]]t ρ ∈ D

From this it follows that

|= (rec P.t : A) ↔ (t : red(rec P.t : A; σ))

for all closed, pure A.

A ≡ X. Assuming that σ(X) = IN (Y) we have by definition,

[[X[σ]]]rec P.t ρ = [[IN (Y)]]rec P.t ρ = in(ρ(Y)) = in([[Y]]t ρ).

From the assumption that ρ is balanced we immediately get [[Y]]t ρ ∈ D.

A ≡ µX.B. By definition we have

[[(µX.B)[σ]]]rec P.t ρ = µψ

where ψ : P(Srec P.t) → P(Srec P.t) is defined by

ψ(U) = [[B[σ \ X]]]rec P.t ρ[U/X].

Categorical Models for an Intuitionistic Modal µ-Calculus 259

Defining θ : P(St) → P(St) by

θ(V) = [[red(rec P.t : B; σ)]]t ρ[V/Y],

we show that ψ and θ are related as required by the reduction lemma:

in ◦ θ(V) = in([[red(rec P.t : B; σ)]]t ρ[V/Y])

= in([[B[σ]]]rec P.t ρ[V/Y])

by the ind. hyp. (A.3)

= [[B[σ/X]]]rec P.tρ [in(V)/X])

asσ(X) = IN (Y) and σ is fresh for µX.B

= ψ ◦ in(V)

by def. of ψ

It is easy to see that in is strict and ω-continuous, hence the reduction lemma
yields

in(µθ) = µψ

Writing out θ and ψ and using the definition of the µ-operator we get:

[[(µX.B)[σ]]]rec P.tρ = in([[red(rec P.t : µY.B; σ)]]tρ).

Moreover, θ restricts to a function θ′ on D, as can be seen from the induction
hypothesis: For a balanced environment ρ, P (B) states that θ(V) is balanced
for all balanced V , i.e. θ maps balanced sets to balanced sets. Hence, letting
in′ be the embedding of D into P(St) – easily seen to be strict and ω-
continuous – we have that

θ ◦ in′ = i,′ ◦θ′

which by the reduction lemma gives µθ = in′(µθ′). In other words µθ ∈ D.

A ≡ 〈α〉B, α = ∗. We rewrite from the left-hand side:

[[〈α〉B[σ]]]rec P.t ρ

260 Categorical Models for an Intuitionistic Modal µ-Calculus

= {s ∈ Srec P.t | ∃s′ ∈ Srec P.t.s
α→ s′ & s′ ∈ [[B[σ]]]rec P.t ρ}

by definition

{s ∈ Srec P.t | ∃s′ ∈ Srec P.t.s
α→ s′ & s′ ∈ in[[B′]]t ρ}

by the induction hypothesis where B′ = red(rec P.t : B; σ)
∗
= in({s ∈ St | ∃s′ ∈ St.j(s)

α→ j(s′) & j(s′) ∈ in([[B′]]t ρ)})
by the fact that j is surjective

in({s ∈ St | ∃s′ ∈ St.j(s
′) ∈ in([[B′]]t ρ) & ((s = P & t

α→ s′)

or s
α→ s′)})

by lemma A.2

= in({s ∈ St | ∃s′ ∈ St.s
′ ∈ [[B′]]t ρ & ((s = P & t

α→ s′) or s
α→ s′)})

by the second part of the induction hypothesis

= in([[(P̂ ∧ (t : 〈α〉B′)) ∨ 〈α〉B′]]t ρ)
by definition of [[]]t ρ)

= in([[red(rec P.t : 〈α〉B; σ)]]t ρ)
by definition

Let in(U) be the right-hand side of the third equality (marked ∗). It is easy
to observe that j−1(in(U)) = U as the predicate determining whether s ∈ U
only depends on the value of j(s). Moreover, notice that the last five equal-
ities hold without in, hence [[red(rec P.t : 〈α〉B; σ)]]t ρ = U and is therefore
balanced (this property actually dictated the construction of the reduction
for 〈α〉).

A ≡ A0 ∨ A1 and A ≡ ¬B. Simple.

✷

A.6 Proof of Reduction for Product

Reduction for product, theorem 3.7 Assume given a pure and closed
assertion A of type η1 × η2, a change of variables σ, and a term p of type η2

with no restrictions and relabellings. We then have for an arbitrary term q
of type η1:

|= (q × p : A) ↔ (q : red×p(A; σ)).

✷

Categorical Models for an Intuitionistic Modal µ-Calculus 261

Proof: We will prove that

[[A[σ]]]q×p ρ = in([[A/p1]]q ρ, . . . , [[A/pn]]q ρ) (A.4)

for all environments ρ. Assuming without loss of generality that p = p1 it
follows that

|= q × p : A ↔ q : (A/p1).

Let slicei : P(Sq×p) → P(Sq) be the function that projects onto the i’th
component, i.e.

slicei(U) = {s ∈ Sq | s × pi ∈ U}

From the definition of in, it is easy to see that (A.4) is equivalent to the
following:

∀1 ≤ i ≤ n. slicei([[A[σ]]]q×p ρ) = [[A/p1]]q ρ, (A.5)

which we will take as our induction hypothesis (but apply (A.4) when most
appropriate).

A ≡ X. By definition we immediately have

slicei([[X[σ]]]q×p ρ) = ρ(Xpi
) = [[X/pi]]q ρ

A ≡ µX.B. Let θ : P(Sq)
n → P(Sq)

n be defined by

θ(V1, . . . , Vn) = ([[B/p1]]q ρ′, . . . , [[B/pn]]q ρ′),

where

ρ′ = ρ[V1/Xp1 , . . . , Vn/Xpn].

Let ψ : P(Sq×p) → P(Sq×p) be defined by

ψ(U) = [[B[σ/X]]]q×p ρ[U/X].

262 Categorical Models for an Intuitionistic Modal µ-Calculus

We show that θ and ψ are as required by the reduction lemma:

in ◦ θ(V1, . . . , Vn) = [[B[σ]]]q×p ρ[V1/Xp1 , . . . , Vn/Xpn]

by the induction hypothesis

= [[B[σ/X]]]q×p ρ[in(V1, . . . Vn)/X])

as σ(X) = IN (Xp1 , . . . , Xpn) and σ is fresh

= ψ ◦ in(V1, . . . , Vn)

by def. of ψ

From the reduction lemma we now conclude:

in(µθ) = µψ

which, by writing out θ and ψ, yields

in(µ-V .([[B/p1]]q ρ[-V / -X], . . . , [[B/pn]]q ρ[-V / -X])) = [[µX.B]]q×p ρ.

By repeated application of Bekič’s theorem, the simultaneous fixed-point on
the left-hand side can be converted into a unary fixed-point, yielding the
claimed reduction.

A ≡ ¬B and A ≡ A0 ∧ A1. Immediate by definition.

pi ≡ r × s. We rewrite from the left-hand side:

slicei([[A[σ]]]q×p ρ) = {u ∈ Sq | u × (r × s) ∈ [[A(σ]]]]q×p ρ}
by definition of slicei

= {u ∈ Sq | (u × r) × s ∈ [[Ã[σ]]]q×p ρ}
by reassociating modalities in A

= [[(Ã/s)/r]]q×p ρ

by definition.

A ≡ 〈α × β〉 and pi ≡ nil, α × β = ∗. We immediately get:

Categorical Models for an Intuitionistic Modal µ-Calculus 263

slicei([[〈α × β〉B]]q×pρ)

=

{
{u ∈ Sq | ∃u′ ∈ Sq.u

α→ u′ & u′ × pi ∈ [[B[σ]]]q×p ρ} if β = ∗
∅ if β = ∗

by definition

=

{
[[〈α〉(B/pi)]]q ρ} if β = ∗
∅ if β = ∗

by the induction hypothesis

= [[A/pi]]q ρ

by definition.

The missing cases are all similar to the last case considered.

✷

264 Categorical Models for an Intuitionistic Modal µ-Calculus

Appendix B

Proofs of Theorems of Chapter
4

B.1 Adequacy for ω-Regular Expressions

In this appendix we prove an adequacy result for ω-regular expressions. De-
note by Act∞ the set of all finite and infinite sequences over Act. Given
a transition system T , let ActSeqs ⊆ Act∞ be the set of finite and infinite
sequences of actions out of s generated by the transition relation, i.e.

ActSeqs = {a0 . . . an | n ∈ ω,∃s0, . . . , sn+1. s = s0
a0→ s1

a1→ . . .
an→ sn+1}

∪{a0 . . . an . . . | ∃{si}i∈ω.s = s0,∀i ∈ ω. si
ai→ si+1}

(Thus ActSeqs is the set of all prefixes of the action part of the sequences
of Rs, where Rs is the set of maximal runs defined on page 97 in definition
4.2.) For any set U ⊆ Act∞ let fin(U) ⊆ U be the finite sequences of U and
inf (U) ⊆ U the infinite sequences s.t U = fin(U) ∪ inf (U).

Theorem B.1 (Adequacy for ω-regular expressions) Assume A is a
closed assertion, T a transition system with states S and R an ω-regular

266 Categorical Models for an Intuitionistic Modal µ-Calculus

expression. For all s ∈ S,

s |= 〈R〉A
iff

∃δ ∈ fin(ActSeqs ∩ [[R]]), s′ ∈ S. s
δ→ s′ & s′ |= A (B.1)

or

inf (ActSeqs ∩ [[R]]) = ∅ (B.2)

Proof: The proof is by structural induction on R. The cases for R ≡ a and
R ≡ ∗ are immediate.

R ≡ R0R1.

s |= 〈R0R1〉A iff s |= 〈R0〉〈R1〉A by def.
iff ∃δ ∈ fin(ActSeqs ∩ [[R0]]),

s′ ∈ S. s
δ→ s′ & s′ |= 〈R1〉A (∗)

or
inf (ActSeqs ∩ [[(R0]]) = ∅ by i.h.(∗∗)

Now, observing that inf ([[R0]]) ⊆ inf ([[R0R1]]) we see that (∗∗) implies (47).
Similarly, if (*) holds we can apply the induction hypothesis again to get

∃δ′ ∈ fin(ActSeqs′ ∩ [[R1]]), s
′′ ∈ S. s′

δ→ s′′ & s′′ |= A (∗∗∗)
or
inf (ActSeqs′ ∩ [[(R1]]) = ∅ (∗∗∗∗)

Hence (∗) and (∗∗∗∗) implies (B.2), and (∗) and (∗∗∗) implies (B.1) using the
sequence δδ′. This completes the only-if-direction. For the if-direction we
notice that (B.1) implies (∗) and (∗∗∗) by definition of concatenation, and
that (B.2) implies (∗) and (∗∗∗∗) or (∗∗).

R ≡ R0 ∪ R1. Analogously.

R ≡ R∗0. If-direction. First suppose (B.2) holds. Then

inf (ActSeqs ∩ [[R∗0]]) = ∅

Categorical Models for an Intuitionistic Modal µ-Calculus 267

⇒ ∃n ∈ ω, r1, . . . , rn ∈ fin
([[R0]]), r ∈ inf ([[R0]]).r1 . . . rn ∈ ActSeqs

⇒ s |= 〈R0〉n+1B for any B by i.h.
⇒ s |= 〈R0〉n+1µX.〈R0〉X
⇒ s |= µX.〈R0〉X ∧ A by unfolding and weakening
⇒ s |= 〈R∗0〉A by def.

Now, suppose (B.1) holds. Then

∃δ ∈fin(ActSeqs ∩ [[R∗0]]).s
′ ∈ S. s

δ→ s′ & s′ |= A
⇒ ∃n ∈ ω, r1, . . . , rn ∈ fin([[R0]]), s

′ ∈ S

δ = r1 . . . rn ∈ActSeqs & s
δ→ s′ & s′ |= A

⇒ s |= 〈R0〉nA by i.h.
⇒ s |= µX.〈R0〉X ∨ A by unfolding
⇒ s |= 〈R∗0〉A by def.

Only-if-direction. First, recall that by definition [[〈R∗0〉A]]ρ = µU.f(U)
where

f(U) = [[〈R∗0〉X ∨ A]]ρ[U/X].

Define M to be the set of states s satisfying (B.1) or (B.2), i.e.

M = {s | ∃δ ∈ inf (ActSeqs ∩ [[R0]]), s
′ ∈ S. s s′ & s′ |= A or

inf (ActSeqs ∩ [[R0]]) = ∅ }.

It can be argued that M is a pre-fixed point of f , i.e. f(M) ⊆ M and there-
fore µU.f(U) ⊆ M from which it follows that if s ∈ µU.f(U) then s ∈ M .
This is done along the lines of the proof of lemma 4.1.

R ≡ Rω
0 . First notice that by definition fin([[Rω

0]]) = ∅.
For the if-direction we have for each infinite sequence δ ∈ ActSeqs∩ [[Rω

0]]
that

∃n ∈ ω, r1, . . . , rn ∈ fin([[R0]]), r ∈ inf ([[R0]]).δ = r1 . . . rn

or
∃r1, . . . , rn, . . . ∈ fin([[R0]]).δ = r1 . . . rn . . .

268 Categorical Models for an Intuitionistic Modal µ-Calculus

Using this it is not hard to see that ActSeqs ∩ [[Rω
0]] is a post-fixed point for

f , i.e. f(U) ⊇ U , where f(U) = [[〈R0〉X ∨ A]]ρ[U/X] and hence as νU.f(U)
is the maximum post-fixed point we have that ActSeqs ∩ [[Rω

0]] ⊆ νU.f(U) =
[[〈Rω

0 〉A]] by definition.

For the only-if-direction we assume that s |= 〈Rω
0 〉A. We prove by

mathematical induction that for all n ∈ ω

∃s′ ∈ S, δ1, . . . , δn ∈ fin([[R0]]). s
δ1...δn→ s′ & s′ |= νX.〈R0〉X (B.3)

or

∃k ∈ ω, s′ ∈ S, δ1, . . . , δk ∈ fin([[R0]]), δ ∈ inf ([[R0]]).

s
δ1...δk→ s′ & δ ∈ inf (ActSeqs′) (B.4)

The base case n = 0 is trivial. For the inductive step we assume that
(B.3) or (B.4) holds. If (B.4) holds the inductive step is trivially valid.
Hence, assume that (B.3) holds. Now, as s′ |= νX.〈R0〉X hence by un-
folding s′ |= 〈R0〉νX.〈R0〉X, we have by the induction hypothesis of the
structural induction that either ∃δ ∈ fin(ActSeqs′ ∩ [[R0]]), s

′′ ∈ S.s′′ |= A or
inf (ActSeqs′ ∩ [[R0]]) = ∅. In both cases the inductive step of the mathemat-
ical induction is easily completed. ✷

B.2 Correctness of Embedding of CTL•

We prove by structural induction on CTL• formulae Ψ that

[[Ψ]]T,V = [[I(Ψ)]]T,V

for any transition system T with valuation V . In fact we only consider the
case where Ψ ≡ ∃✷✸Ψ′. The case Ψ ≡ ∀✸✷Ψ′ is dual and the remaining
cases are quite similar to the proof of adequacy for ω-regular expressions in
appendix B.1.

Proof (Lemma 4.2): Hence, we assume that Ψ ≡ ∃✷✸Ψ′. Writing out

Categorical Models for an Intuitionistic Modal µ-Calculus 269

from the definition of [[]] we get

s ∈ [[∃✷✸Ψ′]] ⇔ ∃δ ∈ Rs. δ ∈‖ ✷✸Ψ′ ‖
by definition

⇔ ∃δ ∈ Rs.∀k.|δ| < k or (∃l. k ≤ l ≤ |δ| & δl ∈‖ Ψ′ ‖)
by definition

⇔ ∃δ ∈ Rs.∀k.|δ| < k or ∃l. k ≤ l ≤ |δ| & δl ∈ [[Ψ′]])

as Ψ′ is a state formula

⇔ ∃δ ∈ Rs.∀k.|δ| < k or (∃l. k ≤ l ≤ |δ| & δl ∈ [[I(Ψ′)]])

by the induction hypothesis

We first consider the case of an infinite sequence. Observe, that if we have
an l with k ≤ l and δl ∈ [[I(Ψ′)]] then for all k′ with k ≤ k′ ≤ l we have that
there exists an l′ such that k′ ≤ l′ and δl′ ∈ [[I(Ψ′)]] namely l. Hence in the
case of δ being infinite we have the equivalent formulation

∃δ ∈ inf (Rs). ∃{li}i∈ω. l0 < l1 < . . . < li < . . . & ∀i.δli ∈ [[I(Ψ)]]

and in the finite case we have

∃δ ∈ inf (Rs). ∃k. ∃{li}i≤k. l0 < l1 < . . . < lk & lk = |δ| & ∀i ≤ k.δli ∈ [[I(Ψ)]]

which is equivalent to1

∃s0, s
′
0, s1, s

′
1, . . . , si, s

′
i, . . . ∈ ω. s = s0,

∀i.si
·∗→ s′i

·→ si+1 & s′i ∈ [[I(Ψ′)]]

or (B.5)

∃k. ∃s0, s
′
0, s1, s

′
1, . . . , sk, s

′
k. s = s0,

sk
·∗→ s′k & s′k → & s′k ∈ δ ∈ [[I(Ψ′)]]

∀i < k.si
·∗→ s′i

·→ si+1 & s′i ∈ [[I(Ψ′)]]

We will argue that this is equivalent to

s |= νX.(·∗)(〈·〉′X ∧ I(Ψ′)). (B.6)

1It is not hard to realize that for finite sequences this is equivalent to saying that the
final state must be in I(Ψ′), but this apparently simpler formulation will not be very
helpful in getting a compact µ-calculus formula.

270 Categorical Models for an Intuitionistic Modal µ-Calculus

Now, expanding the 〈·∗〉 we get

s |= νX.µY.〈·〉′Y ∨ (〈·〉′X ∧ I(Ψ′)).

which is what we wanted to prove.
(B.5) implies (B.6). Let M be the set of states s satisfying (B.5). Notice,
that if s ∈ M then there exists an s′ ∈ [[I(Ψ′)]] such that either s′ → or there

exists an s′′ such that s′
·→ s′′ and s′′ ∈ M . Using this observation we will

prove that M is a post-fixed point of f , i.e. f(M) ⊇ M where

f(U) = [[〈·∗〉(〈·〉′X ∧ I(Ψ′))]]ρ[U/X]

and hence M ⊆ νU.f(U) = [[νX.〈·∗〉(〈·〉′X∧I(Ψ′))]]ρ. This is straightforward:
picking an s ∈ M then by the previous discussion there exists an s′ such that

s
·∗→ s′ and s′ ∈ [[〈·〉′X ∧ I(Ψ′))]]ρ[M/X] . Hence s ∈ f(M).

(B.6) implies (B.5). Assume s satisfies (B.6). By mathematical induction on
n we show that for all n ∈ ω

∃s0, s′0, s1, s
′
1, . . . , sn, s

′
n.

s = s0, sn
·∗→ s′n, s

′
n |= νX.〈·∗〉(〈·〉′X ∧ I(Ψ′)),

∀i < n. si
·∗→ s′i

·∗→ si+1 & s′i ∈ [[I(Ψ′)]]
or
∃k. ∃s0, s

′
0, s1, s

′
1, . . . , sk, s

′
k.

s = s0, sk
·∗→ s′k & s′k ∈ [[I(Ψ′)]] & s′k →,

∀i < k.si
·∗→ s′i

·→ si+1 & s′i ∈ [[I(Ψ′)]]

The base case is trivial (taking s′0 = s0). The inductive step follows by
unfolding the maximal fixed-point splitting into the two situations where
there exists an sn+1 such that s′n

·→ sn+1 and when s′n →.

Hence we have proven

s ∈ [[∃✷✸Ψ′]] ⇔ s |= νX.µY.〈·〉Y ∨ (〈·〉′X ∧ I(Ψ′))

✷

Index

?-faithful, 166
?-lifting, 165
?-monotonic, 166
?-nice, 166
?-reflecting, 166
?-strict, 166
A, 18
L, 52
µIK-category, 215
µ-assertion, 38
µ-calculus, see modal µ-calculus
µ-subassertion, 124
ν-assertion, 38
ω-continuous, 55
ω-regular expressions, 90
cps(A), 38
Nam, 11

2/3-bisimulation, 93

action predicates, 27
action quantifier, 27
action quantifier depth, 152
action test, 27, 42
action variable, 26
action variable environment, 26
adequacy, 90
alternation depth

extended calculus, 23, 38
standard calculus, 23, 38

amortized complexity, 145, 159

amortizedcomplexity, 137
assertion variable, 24

basic action, 11
Bekič’s theorem, 29
binding convention, 11
boolean equation system, 117
bounded process, 200
bounded processes, 195
box, 24
branching time, 96

canonical proof, 204
CCS, 17, 33, 46, 233
change of variable, 56, 62
characteristic formula, 94, 159
Chasing 0’s, 131
Chasing 1’s, 124, 129, 131, 151
Chasing O’s, 129
co-names, 18
compactness, 227
complete partial order, 163
of model checking, 232, 233
composite action, 11
composite action expressions, 26
constant assertion, 27
constraint system, 181
correctness assertion, 34, 50
cpo, 163
CTL, 158
CTL∗, 97

272 Categorical Models for an Intuitionistic Modal µ-Calculus

CTL•, 104
CTL•, 99, 268

deadlock, 35
diamond modality, 24
dynamic operators, 13

environment, 24
explanations, 235
expressiveness, 23
EXPTIME, 232
extended calculus, 25

finitary, 15, 66
finite axiomatization, 209
finite transition system, 10
finite-state process, 20
fresh substitution, 58

global algorithm, 121
state identifier, 13
strongly, 13
term, 13
guarded

assertion, 45

Halting problem, 187
height of a partial order, 249
height of partial order, 173

idling action, 12
inactive process, 11
infinite transition system, 14
initial state, 10
input actions, 18, 19
internal distributive lattice object,

210
intuitionistic modal logic, 209

Kildall, 173

Kripke model, 222

labelled transition system, 9
lifting, 133
linear time, 96
local model checking, 132, 159
Locality lemma, 34

macros, 102
maximum fixed-point, 25
maximum fixed-point finders, 215
mcps(A), 39
minimum fixed-point, 24
minimum fixed-point finders, 214
modal µ-calculus, 22
monotone transition system, 222
monotonic morphism, 214
monotype, 33
Mu-Component, 138–140

names, 18
neutral actions, 19, 74
non-deterministic choice, 11
normalized, simple form, 117
Nu-Component, 138–140

obervation congruence, 91
observation congruence, 157
OPA, 17, 19, 46
operational rules, 12
ordinal, 203
ordinals, 197, 249
output action, 18
output actions, 19

Partial fixed-point lemma, 135, 168
pending analysis, 175
Petri net, 198
pointed transition system, 10

Categorical Models for an Intuitionistic Modal µ-Calculus 273

positive normal form, 38
post-fixed point, 25
of morphism, 215
pre-fixed point, 25
of morphism, 215
prebisimulation, 93, 156
predecessor, 10
prefix, 11
probe problem, 46
process variable, 13, 67
product, 11
Projection lemma, 134
PSPACE, 232
pure assertion, 50
purifying lemma, 62

RAM model, 112, 151
reachable states, 10
ready bisimulation, 93, 156
ready simulation, 93, 156
reduction, 49, 52, 54, 57
reduction lemma, 55
regular expression, 87
regular process, 20
relabelling, 11
equivalences, 134
partial order, 134
respecting types, 58
restriction, 11
rooting, 53
Rooting lemma, 247
run, 97

safety property, 36
satisfaction, 34
semantics, 24
sequence, 87
sequent in context, 216

sharing across products, 46, 83, 155
Sierpinski space, 115
silent action, 18
simple assertion, 80
simple form, 79
simulation preorder, 93, 157
Simultaneous fixed-point, 27
Simultaneously defined processes, 22
size

of assertion, 23
of transition system, 21

sort, 33
standard calculus, 24
State explosion, 234
state identifier, 13
state identifiers, 11
state property, 99
state proverty, 99
static operators, 13
static process, 20
strictness analysis, 174
strong bisimulation, 91, 156
strong box modality, 99
strong box-modality, 68
strongly guarded, 15
successor, 10
sum, 11
synchronization algebras, 11
syntactic monotonicity, 24
syntactically infinite, 17

Tarski’s theorem, 25
time complexity, 111
token, 198
top µ-assertion, 124
top µ-subassertion, 124
top-level µ-subassertions, 39
transition relation, 10

274 Categorical Models for an Intuitionistic Modal µ-Calculus

transition system, see labelled tran-
sition system

transition system induced by a pro-
cess, 14

Turing machine, 14
type

of action, 33
of assertion, 33
of assertion variable, 70
of process, 33

type-annotated assertion , 51

undecidable, 14, 187
universal falsifying model, 226
universal quantifier, 27
universal transition system, 13
universal valuation, 27
unknown value, 165

valuation, 27

weak bisimulation, 91, 157
weak diamond modality, 92, 99
well-founded induction, 190
well-founded relation, 188
WPA, 9–13
WPA

with value-passing, 195

