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Abstract

While graphs are normally defined in terms of the 2-place rela-
tion of adjacency, we take the 3-place relation of interception as the
basic primitive of the definition. The paper views graphs as an eco-
nomic scheme for encoding interception relations, and establishes an
axiomatic characterization of relations that lend themselves to repre-
sentation in terms of graph interception, thus providing a new char-
acterization of graphs.
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1 Introduction

One of the main reasons that graphs offer useful representations for a wide
variety of phenomena is that they display vividly the associations that ex-
ist among objects in the domain and they distinguish direct from indirect
associations. Traditionally, graph theory takes the notion of adjacency (or
neighborhood) as a basic primitive, on the basis of which more elaborate
notions, such as connectivity and interception are defined and analyzed. In
certain applications, the property of adjacency cannot be measured directly
nor can it be defined uniquely in terms of the measured properties. Instead,
adjacency can only be postulated as a convenient means for explaining as-
sociational phenomena resembling connectivity and interception for which
the distinction between direct and indirect association has clear operational
definition in the domain.

A typical example is the notion of dependence and conditional depen dence
in probability theory. Given a probability function P on a collection of vari-
ables or events, it is straightforward to determine whether a pair of variables
X and Y are dependent or independent, and whether X and Y are condition-
ally independent given a third variable Z. Yet P does not dictate which pairs
of variables are considered adjacent. It is not even clear whether the notion
of adjacency, hence graph theory, would be helpful in analyzing properties
of conditional independence. While it is true that conditional independence
bears similarity to interception in graphs, the similarity may not be complete,
and it is not easy to determine what properties of conditional independence
are mirrored by graph interception.

This paper takes the notion of interception as a basic primitive, and estab-
lishes necessary and sufficient conditions under which a relation of indirect
associations can be faithfully represented by graph thcoretical interception.
When no faithful mapping exists, we then establish sufficient conditions for
finding a unique best approximate representation in graphs. Thus, the paper
lays a logical basis for studies such as Markov random fields [Isham, I-81]
and graphical models in statistics [Lauritzen, L-82], where graphs are used
primarily as a language for encoding com plex patterns of mediated associa-
tions.
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2 Definitions and notations

Let U be a finite set U = {u1, . . . , un}, and let X,Z, Y denote finite subsets
of U . We consider ternary relations over U as sets of triplets of the form
(X,Z, Y ). In the sequel we shall assume, unless otherwise specified that all
the relations R considered have the following properties:

(i) If (X,Z, Y ) ∈ R (notation: R(X,Z, Y )) then X,Z, Y are mutually dis-
joint sets.

(ii) R(X,Z, ∅) and R(∅, Z,X) for all disjoint X,Z, Y , where ∅ denotes the
empty set.

The elements of R will be called triplets, each triplet conveying the general
notion of Z intercepting or mediating the indirect interaction between X and
Y .

Undirected graphs (UG’s) will be denoted be G = (V,E) where V are
the vertices and E are the edges of G. The graphs considered in this paper
will be assumed to be simple and with no loops (i.e. if (a, b) ∈ E then a 6= b).

Definition 1 Let G = (V,E) be a graph. The relation RG over V , induced
by G, is defined as follows. (X,Z, Y ) ∈ RG iff either X is disconnected from
Y in G or Z is a cutset between X and Y in G. 2

Notice that in the above definition Z is not required to be a minimal cutset
between X and Y . For any set of vertices X ⊆ V , X is considered discon-
nected from ∅ by definition.

Definition 2 Let t be a triplet over V where G = (V,E) is a given graph. t
is represented (or holds) in G if and only if t ∈ RG 2

Definition 3 Let G = (V,E) be a graph and let R be a relation over V .
G is an I-map of R if RG ⊆ R. G is a D-map of R if R ⊆ RG. G is a perfect
map of R and represents R if R = RG. 2

Remark The I -map and D-map definitions are borrowed from the applica-
tions to probabilistic distribution representations by graphs where “I ” stands
for “Independency” and “D” stands for “Dependency”.
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3 Properties of RG

Let G be a graph and let RG be the relation induced by G. The subscript G
will be omitted from RG in the sequel and when understood.
Lemma 1 The relation R induced by G has the following properties:

(1) R(X,Z, Y )→ R(Y, Z,X) : Symmetry.

(2) R(X,Z, Y ∪W )→ R(X,Z, Y ) ∧R(X,Z,W ) : Decomposition.

(3) R(X,Z, Y )→ R(X,Z∪W,Y ) for all W disjoint from X∪Z∪Y : Strong
Union.

(4) R(X,Z ∪W,Y ) ∧R(X,Z ∪ Y,W )→ R(X,Z, Y ∪W ) : Intersection.

(5) R(X,Z, Y )→ R({a}, Z, Y ) ∨R(X,Z, {a}) for any a ∈ V, a /∈ {X ∪ Z ∪
Y }: Transitiuity.

The above properties will be called the Graph Axioms in the sequel.

Proof: The proof of the first three properties is trivial and left to the reader.

Proof of the intersection property: Assume that the lefthand side of (4)
holds for R(= RG). If X is disconnected in G from both Y and W then the
righthand side of (4) holds by definition.

If X is disconnected from Y say, but is not disconnected from W then
R(X,Z ∪ Y,W ) on the lefthand side of (4) implies that all the paths be-
tween X and W intersect Z. Thus R(X,Z, Y ∪W ). The case where X is
disconnected from W only is similar.

The remaining case is the case where X is connected to both Y and W .
Assume that this is the case and that the righthand side of (4) does not
hold. From ¬R(X,Z, Y ∪ W ) we infer that there is a path from X to Y
not intercepted by Z or there is a path from X to W not intercepted by Z.
Assume the former w.l.o.g.. From R(X,Z ∪ W,Y ) we infer that the path
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from X to Y not intercepted by Z must be intercepted by W . We conclude
that there is a path from X to W not intercepted by Z ∪ Y contrary to
R(X,Z ∪ Y,W ). This contradiction completes the proof.

Proof of Transitivity: If R(X,Z, Y ) and a /∈ {X ∪ Z ∪ Y } then either Z
disconnects X from a or Z disconnects Y from a since otherwise X is con-
nected to Y via a path through a not intersecting Z. Thus the righthand
side of (5) must hold. 2

Definition 4 Let R be a relation and let f be a boolean formula involving
triplets. If f is an (atomic) triplet then f holds in R iff f ∈ R.

If f = g ∨ h then f holds in R iff either g or h holds in R.

If f = h ∧ g then f holds in R iff both h and g hold in R.

If f = ¬g then f holds in R if and only if g does not hold in R.

The relation R is closed under a set of axioms A iff whenever the lefthand
side of an axiom holds in R then the righthand side of that axiom holds in
R. 2

Corollary 1 If R is a relation induced by a graph then R is closed un-
der the graph axioms.

Lemma 2 Let R be a relation closed under the graph axioms. Then R also
satisfies the following properties:

(6) R(X,Z, Y ) ∧R(X,Z,W )→ R(X,Z, Y ∪W ) where X,Z, Y,W are mu-
tually disjoint.

(7) R(X,Z, Y )↔ (∀a ∈ X)(∀b ∈ Y )R(a, Z, b)

Proof: From R(X,Z, Y ) ∧ R(X,Z,W ) we get, by axiom (3), R(X,Z ∪
W,Y ) ∧ R(X,Z ∪ Y,W ) which imply, by axiom (4) R(X,Z, Y ∪W ). This
proves property (6). Property (7) is a direct consequence of properties (1),
(2) and (6). 2
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4 The Graph Characterization Theorem

We can now prove our main Theorem.

Theorem 3 Let R be a ternary relation over V . Iff R is closed under the
Graph Axioms then a graph G can be constructed such that G is a perfect
map of R (i.e. R = RG).

Proof: Given a relation R over V construct the graph G0 = (E0, V ) such
that for every pair a, b ∈ V , a 6= b; (a, b) ∈ E0 iff (a, V/{a, b}, b) /∈ R. (We
use here and will use in the sequel the notation “a′′ for “{a}′′, “b′′ for “{b}′′,
etc. where a, b etc. are vertices.)

We split the proof into two parts.

First we prove that if R is closed under the axioms (1), (2) and (4) then
the graph G0, defined above, is an I-map of R. In the second part of the
proof we will show that if R is closed under all the graph axioms then G0 is
a D-map of R thus showing that G0 is a perfect map of R.

Proof of I-mapness. Assume that R is closed under the axioms (1), (2) and
(4). We show, by finite descending induction on the size of the middle set
| Z | that RG0 ⊆ R (| S | denotes the number of elements in the set S).

Basis: t = (a, V/{a, b}, b), | V/{a, b} |= n−2. t is represented in G0 iff (a, b)
is not an edge of G0, iff t ∈ R, by the construction of G0.

Step: Assume that all t = (X,Z, Y ) ∈ RG0 with | Z |= k, for some k(≤
n − 2), are in R, and let t′ = (X ′, Z ′, Y ′) ∈ RG0 be a triplet such that
| Z ′ |= k − 1(< n − 2). To show that t ∈ R, we distinguish between 2
subcases.

Subcase 1: X ′ ∪ Y ′ ∪ Z ′ = V . From | Z ′ |= k − 1(< n − 2) we infer that
either | X ′ |≥ 2 or | Y ′ |≥ 2 and we may assume w.l.o.g. that | Y ′ |≥ 2 with
Y ′ = Y ′′∪c, where c is a vertex. Then RGO(X ′, Z ′, Y ′′∪c)→ RG0(X

′, Z ′, c) ∧
RG0(X

′, Z ′, Y ′′) by decomposition (which holds for graph relations). By
strong union we get from the above thatRG0(X

′, Z ′∪Y ′′, c)∧RG0(X
′, Z ′∪c, Y ′′).

By the induction hypothesis we get R(X ′, Z ′ ∪ Y ′′, c) ∧ R(X ′, Z ′ ∪ c, Y ′′)
since | Z ′ ∪ Y ′′ |, | Z ′ ∪ c |≥ k. By intersection, which holds for R, we get
R(X ′, Z ′, Y ′′ ∪ c) = R(X ′, Z ′, Y ′) as required.
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Subcase 2: X ′ ∪ Y ′ ∪ Z ′
⊂
6= V . Let c be a vertex c /∈ X ′ ∪ Y ′ ∪ Z ′. From

RG0(X
′, Z ′, Y ′) we get, by transitivity, thatRG0(c, Z

′, Y ′)∨RG0(X
′, Z ′, c). By

strong union we get, from the above that RG0(X
′, Z ′ ∪ c, Y ′) and RG0(c, Z

′ ∪
X ′, Y ′) ∨ RG0(X

′, Z ′ ∪ Y ′, c) by induction, since now the size of the middle
sets is at least k, we get

R(X ′, Z ′ ∪ c, Y ′) ∧ [R(c, Z ′ ∪X ′, Y ′) ∨R(X ′, Z ′ ∪ Y ′, c)]

By intersection and symmetry, which holds for R we get from the above that

R(c ∪X ′, Z ′, Y ′) ∨R(X ′, Z ′, Y ′ ∪ c)

Finally, by decomposition and symmetry, which holds forR we getR(X ′, Z ′, Y ′).
as required. We have thus shown that G0 is an I-map of R.

Proof of D-mapness. Based on lemma 2 it is enough to prove D-mapness
(i.e., that R(X,Z, Y ) implies RG0(X,Z, Y )) for triplets of the form (a, Z, b)
where a and b are single vertices. The proof is again by descending induction
on the size of | Z |.
Basis: For | Z |= n − 2 we know that t = (a, V/{a, b}, b) ∈ G0 iff (a, b) is

not an edge of G0, iff t ∈ R, by the construction of G0.

Step. Assume that all t = (a, Z, b) ∈ R with | Z |= k, for some k(≤ n− 2),
are in RG0 . Let t′ = (a′, Z ′, b′) ∈ R be a triplet such that | Z ′ |= k − 1, (<
n−2). Then there is some c /∈ Z ′∪{a, b}. From t′ ∈ R we get, by transitivity
that R(c, Z ′, b′)∨R(a′, Z ′, c) and from this and t′ we get by strong union that

R(a′, Z ′ ∪ c, b′) ∧ [R(c, Z ′ ∪ a′, b′) ∨R(a′, Z ′ ∪ b′, c)]

by induction (since the middle sets have now size ≥ k) we get

RG0(a
′, Z ′ ∪ c, b′) ∧ [RG0(c, Z

′ ∪ a′, b′) ∨RG0(a
′, Z ′ ∪ b′, c)]

By intersection and symmetry we get RG0(c ∪ a′, Z ′, b′) ∨RG0(a
′, Z ′, c ∪ b′).

Finally by decomposition and symmetry we get from the above thatRG0(a
′, Z ′, b′)

holds, as required. This completes the proof of the D-mapness and of the
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“if” part of the theorem. The “only if” part follows from lemma 1. 2

Corollary 2 Let R be a relation over V , closed under the axioms (1), (2) and
(4). Then a unique graph G = (V,E) can be constructed such that RG ⊆ R
(i.e. G is an I-map of R) and such that G is edge minimal (i.e. if an edge
is removed from G then its I-mapness is violated).

Proof The first part of the corollary follows from the first part of the proof
of Theorem 3, showing that G0 is an I-map of R, under the condition of
the corollary. If an edge is added to G0 it will still be an I-map of R since
addition of edges to a graph G can only remove triplets from RG but cannot
add triplets to RG. On the other hand if an edge (a, b) is removed from G0

then (at least) the triplet t = (a, V/{a, b}, b) is added to RG0 , but this triplet
is not in R since, by construction t ∈ R iff (a, b) is not an edge of G0. Thus
any edge minimal I-map of R must be equal to G0. 2

Not all the graph axioms are needed to guarantee the existence of a unique
minimal I-map G0. In Section 7 we give a weaker set of axioms which is
sufficient to provide this guarantee.

5 Extensions

Definition 5 Let
∑

be a set of triplets over a set V . A relation R, over V ,
is an extension of

∑
(notation R∑) if it satisfies the following conditions

1.
∑ ⊆ R

2. R is closed under the graph axioms.

R is a minimal extension of
∑

if no proper subset R is an extension of
∑

.
R is a minimum extension of

∑
if any other extension R’ of

∑
satisfies

| R′ |≥| R |. 2

Example: Let
∑

= {(a, c, b), (a, d, b)} over {a, b, c, d}. The relations shown
below are minimal extensions of

∑
and both are at the same time minimum

extensions too.
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R1 = {(a, {b, d}, c), (a, {c, d}, b), (b, {a, c}, d), (a, d, {b, c}), (b, c, {a, d}),
(a, c, b), (a, d, c), (a, d, b), (b, c, d)+ symmetric triplets}

R2 = {(a, {b, c}, d), (a, {c, d}, b), (b, {a, d}, c), (a, c, {b, d}), (b, d, {a, c}),
(a, c, b), (a, c, d), (a, d, b), (b, d, c)+ symmetric triplets}

There are additional extensions which are minimal but not minimum. The
extension including all the possible triplets over V is neither minimal nor
minimum.

There are additional extensions which are minimal but not minimun. The
extension including all the possible triplets over V is neither minimal nor
minimum.

An algorithm is shown below which provides minimal extensions of a given
set

∑
, whose time complexity is polynomial in the size of

∑
. Finding an

extension which is minimum, in polynomial time, is an open problem.

An algorithm for finding minimal extensions of a given
set of triplets

∑
over a set V

1. Start with the complete graph over V and remove all edges (a, b) such
that a ∈ X and b ∈ Y for some (X,Z, Y ) ∈ ∑. Denote the resulting
graph by G∑.

2. If
∑

(i.e. all the triplets in
∑

) is represented in G∑ then return G∑.

3. Let σ = (X,Z, Y ) be the first triplet in
∑

not represented in G∑. This
implies that there are vertices a, b, c in V such that a ∈ X, b ∈ Y and
c /∈ X ∪Y ∪Z and such that there is a path from a to b in G∑ passing

through c and not passing through Z (this follows from the fact that
as a result of step 1, all the vertices in X are not directly connected
to the vertices in Y in G∑). Choose c as above to be a vertex with at

least one neighbour in X (i.e. c is chosen to be the first vertex outside
of X ∪ Y ∪ Z on a path between a and b outside of Z). Reset G∑ by
removing from it all edges connecting c to a vertex in X. Go to 2.

End of algorithm.
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The number of iterations of the algorithm is O(n2), since at every iteration
at least one edge is removed from G∑, and, as the number of operations at
every iteration is polynomial in the size of

∑
, the algorithm is polynomial in

the size of
∑

.

The graph G∑ output by the algorithm defines the relation RG∑ which

includes
∑

as a subset and is closed under the graph axioms. Thus RG∑ is

an extension of
∑

. That the extension is minimal can be shown as follows:
Every extension of

∑
is a relation closed under the graph axioms. By (the

characterization) theorem 3, every relation closed under the graph axioms
has a unique graph which is a perfect map of it. The algorithm directly
constructs the graph representing such an extension and the edges removed
at steps 1 and 3 are a minimal set of edges whose removal is necessary in
order to enable the representation of

∑
in the graph.

6 Soundness and Completness

Denote by A the set of graph axioms and by G the farnily of simple undi-
rected graphs with no loops.

Definition 6 Let
∑

be a set of triplets and σ a single triplet.
∑

A-derives
σ (notation:

∑ `A σ) iff σ is an element of every extension of
∑

. 2

The relation of A-derivation to the usual concept of deductive derivation
will be given in Definitlon 9.

Definition 7 Let
∑

be a set of triplets and σ a single triplet.
∑G implies σ

(notation:
∑ `G σ) iff for any graph G ⊂ G,∑ ⊂ RG implies that σ ∈ RG. 2

Definition 8 A set B of axioms is sound for G if
∑ `B σ implies that∑ |=G σ. The set of axioms is complete for G if

∑ |=G σ implies
∑ `B σ for

any set of triplets
∑

and single triplet σ. 2

Theorem 4 The graph axioms A are sound and complete for G.

Proof of soundness. Let G be any graph in G, assume that
∑

is repre-
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sented in G and assume that
∑ `A σ. RG is an extension of

∑
and therefore,

from
∑ `A σ, we get that σ is represented in RG as required.

Proof of completeness. Given
∑

and σ, let R∑ be an extension of
∑

.
By theorem 3, there is a graph G which is a perfect map of R∑. Thus∑ ⊂ RG = R∑. From

∑ |=G σ we get that σ ∈ RG. Thus σ ∈ R∑ = RG.
2 The concept of an A-derivation, as defined in Definition 6 depends on the
concept of an extension. The usual (and stronger) concept of A-derivation is
defined below.

Definition 9 Let
∑

be a set of triplets and σ a single triplet.
∑

strongly
A-derives σ (notation:

∑ |`A σ) if a can be derived from
∑

by a deductive
chain of formulas f1, f2, . . . , fk such that fk = σ and every fi, i < k, is a
boolean formula of triplets such that either fi ∈

∑
or fi is derived from pre-

vious fj’s in the chain as a derivation of the propositional calculus extended
by the A-axioms. 2

Example: Let
∑

= {(3, 2, {1, 4}), (1, 2, {3, 4}), (1, 4, 3)} and let σ = (1, ∅, 3),
over V = {1, 2, 3, 4}. Below is a derivation chain for σ.

f1 : (1, 4, 3) ∈ ∑
f2 : (2, 4, 3) ∨ (1, 4, 2) by transitivity
f3 : (2, {1, 4}, 3) ∨ (1, {3, 4}, 2) from f2 by strong union and

propositional calculus
f4 : ({1, 4}, 2, 3) from

∑
by symmetry

f5 : (1, 2, {3, 4}) ∈ ∑
f6 : (1, 2, 4, ∅, 3) ∨ (1, ∅, {2, 3, 4}) from f3, f4 and f5 by

symmetry, intersection and propositional calculus
f7 : (1, ∅, 3) ∨ (1, ∅, 3) from f6 by decomposition and

propositional calculus
f8 : (1, ∅, 3) from f7 by propositional calculus.

It is easy to see that strong A-derivation implies A-derivation: Let f1, . . . , fk
be a strong derlvation of σ from

∑
, and let R∑ be an extension of

∑
. Then

fi, 1 < i < k, holds in R∑, since
∑ ⊂ R∑, and R∑ is closed under A. It

follows that σ = fk ∈ R∑, so that
∑
A-derives σ. We have thus proved

Lemma 5 For any set of triplets
∑

and single triplet σ,
∑ |`A σ implies
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that
∑ `A σ.

The question whether
∑ `A σ implies

∑ |`A σ is open. A positive answer to
this question will assert (based on the fact that every extension of

∑
has a

perfect graph representation) that every valid cut-set graph property of the
form: “For any graph G, if

∑
holds in RG then σ holds in RG” can be proved

in propositional calculus when extended by the graph axioms. Consider e.g.
again the example above. The example can be extended to the following: Let
G(V,E) be a graph and let X, Y, Z,W be a partition of V such that Y is a
connected set of vertices. If (Z, Y,X ∪W ), (X, Y, Z ∪W ) and (X,W,Z) hold
in RG then G has at least 2 components with X in one component and Z in
the other (which is equivalent to (X, ∅, Z) ∈ RG). The example shows that
this particular property can be proved in the propositional calculus when
extended by the graph axioms. The question whether every valid property
of graph separation can be decided by these means depends on whether `
implies |`.

7 NP-completeness of weak independence

Let
∑

be a set of triplets and σ a triplet over V . We shall say that σ is weakly
independent on

∑
if
∑ `a σ does not hold. σ is strongly independent on

∑
if
∑ 6 |`Aσ does not hold. It follows from lemma 5 that weak independence

implies strong independence. It follows from theorem 4 that σ is weakly
independent on

∑
(notation:

∑ 6 `Aσ) if and only if there exists a graph
G such that

∑
is represented in G and σ is not represented in G. We will

show now that the problem of ascertaining whether a graph G as above
(representing

∑
and not representing σ) exists for any given

∑
and σ is

NP -complete.

The fact that the problem is in NP is trivial since for any given
∑

and
σ we can guess, in polynomial time, a graph and then check, in polynomial
time, whether it has the required property. To show NP -completeness we
will present a polynomial reduction from the Hamiltonian problem, a well
known NP -complete problem (see [Garrey, GJ-79]), to the weak indepen-
dence problem. We set first the definitions in standard form:

Hamiltonian. Input: a graph G(V,E) and a pair of vertices a, b ∈ V .
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Problem: Does there exist a path in G from a to b passing through every
vertex in V exactly once?

Independence. Input: a set of triplets
∑

over V and a triplet σ over V .
Problem: Does there exist a graph G = (V,E) such that

∑
is represented in

G and σ is not represented in G?

Theorem 6 The independence problem is NP-complete.

Proof: We have already shown that Independence is in NP . Consider now
the following reduction. Given G = (V,E) and a, b ∈ V , an input for the
Hamiltonian problem, set:

∑
1 = {(u, V/{u, v}, v) : (u, v) /∈ E}∑
2 = {(a, v, b) : v ∈ v/{a, b}}∑

=
∑

1 ∪
∑

2

σ = (a, ∅, b).

It is clear that
∑

and σ can be set in polynomial time. To complete the proof
of the Theorem it suffices to prove the following claim: The Hamiltonian
problem with input G and a, b has a solution if and only if the independence
problem has a solution with input

∑
and σ.

To prove this claim we notice first that every graph G′ that satisfies
∑

1 is
a subgraph of G, by the definition of

∑
1. If in addition G′ does not satisfy

σ then there must be a path in G′ between a and b. Finally, if G′ satisfies∑
2 then the path in G′ between a and b must be intercepted by every vertex

in V exactly once (every vertex in V must disconnect between a and b, as
required by

∑
2. The path cannot have a loop since otherwise the vertices on

the loop will not disconnect a from b). Thus, if G′ satisfies
∑

and does not
satisfy σ then it has a Hamiltonian path between a and b and this Hamilto-
nian path exists in G, since G′ is a subgraph of G. On the other hand, if G
has a Hamiltonian subgraph G′ between a and b then G′ is a subgraph of G
satisfying

∑
and not satisfying σ, as is easy to see. 2
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8 Neighborhoods

Given a relation R over a set V , the proof of theorem 3 provides a method
for constructing a graph G0 such that RG0 = R if and only if R is closed
under the graph axioms. If R is closed under the symmetry, decomposition
and intersection axioms then G0 is only an edge minimal I-map of R. An
intermediary situation will be considered in this section. We will show that
if R is closed under the axioms of symmetry, decomposition, intersection and
weak union - an axiom to be defined below - then the approximation provided
by G0 for R is not only an edge minimal I-map of R but stronger in the sense
that it encodes and unifies two diverse notions of neighborhood in R.

Since each (X,Z, Y ) triplet in R conveys the informal notion of broken in-
teraction (Z breaks the interaction between X and Y ), there are two natural
ways of defining neighborhood. One is to proclaim a pair of elements a and
b neighbors iff their interaction cannot be broken by all other elements in
U , namely, (a, U{a, b}, b) /∈ R. Alternatively, we may wish to define the
neighbors of a as a minimal set of elements needed to break the interaction
between a and all other elements of U . We will show that under certain
conditions these two notions of neighborhood will become identical, and will
coincide with ordinary adjacency in G0.

The following property, for a relation R over a set V will be called the axiom
of weak union

R(X,Z, Y ∪W )→ R(X,Z ∪ Y,W ) ∧R(X,Z ∪W,Y ).

Notice that a relation which satisfies strong union and decomposition also
satisfies weak union; since we can remove first, by decomposition, W or Y
from the lefthand side of R(X,Z, Y ∪W ) and then reinsert the removed set
in the middle, by strong union.

Let R be a relation over V , let a be a vertex in V and let G0 be the graph
defined in the proof of theorem 3 for the given R. Define the set S(a) as
below

S(a) = {b : R(a, V/{a, b}, b), b ∈ V }.

By the definition of G0, the set S(a) is the set of vertices in G0 which are
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not connected by an edge to a in G0. It follows that V/{S(a) ∪ a} is the set
of neighbours of a in G0, the set of vertices in G0 connected by an edge to a
in G0. Denote this set by N(a), i.e. N(a) = V/{S(a) ∪ a}. For the given R,
V and a ∈ V we define also the following sets

ϕ(a) = {X : R(a,X, V/{X ∪ a})}
Bl(a) = the set in ϕ(a) whose size (= number of elements) is minimal

Bl(a) stands for the “blanket of a” since it is a set of minimal size shielding
a from the rest of the vertices.

Theorem 7 Let R be a relation closed under the axioms of symmetry,
decomposition, weak union and intersection. Then Bl(a) is uniquely de fined
and Bl(a) = N(a).

Proof: We will show that for any set X ⊆ V such that a /∈ X, X ∈ ϕ(a) if

and only if X
⊃
= N(a). This implies the claim of the theorem since it shows

that all the sets in ϕ(a) are supersets of N(a) and it shows that N(a) itself
is a set in ϕ(a) so the set of minimal size in ϕ(a) must equal to N(a).

Proof of the “if” part. Assume X ⊇ N(a). Then X = V/{Y ∪ a} where
Y ⊆ S(a). We prove, by induction on the size of Y that X ∈ ϕ(a).

Basis. | Y |= 1 or Y = y ∈ S(a) then, by the definition of S(a), R(a, V/{a, y}, y) =
R(a,X, y) by our assumption on X. Thus X ∈ ϕ(a).

Step. Assume that the claim is true for Y1, | Y1 |≥ 1 and let Y = {Y1∪y} ⊆
S(a) where y is a singleton.

We can assume, by induction, that X1 = V/{Y1 ∪ a} and X2 = V/{y ∪ a}
are in ϕ(a) so that

R(a, V/{Y1 ∪ a}, Y1) ∧R(a, V/{y ∪ a}, y).

By intersection we get from the above that

R(a, V/{Y1 ∪ a ∪ y}, Y1 ∪ y} = R(a, V/{Y ∪ a}, Y )

or Y ∈ ϕ(a) as required.
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Proof of the “only if” part. Assume that X ∈ ϕ(a). Then R(a,X, V/{X ∪
a}). If X is not a superset of N(a) then we can set N(a) = X1 ∪ X2,
X = X1 ∪X3 and X2 /∈ ∅; X1, X2, X3 mutually disjoint.

Now R(a,X, V/{X ∪ a}) = R(a,X3 ∪ X1, V/{Xcupa}) is given. Also
R(a,N(a), V/{N(a) ∪ a}) = R(a,X1 ∪X2, V/{N(a) ∪ a}) since, by the first
part of the proof N(a) is in ϕ(a).

All the elements of V are included in the above triplets with X2 in the
righthand side of the first triplet and X3 in the righthand side of the second.
We can therefore move, by weak union, all variables in the righthand side
not in X2 to the middle part in the first triplet and all the variables in the
righthand side not in X3 to the middle part of the second triplet resulting in

R(a, V/{X2 ∪ a}, X2) ∧R(a, V/{X3 ∪ a}, X3).

By intersection we get

R(a, V/{X2 ∪X3 ∪ a}, X2 ∪X3).

But we assumed that X2 /∈ ∅. Let b be a variable in X2. Using weak union
again, we can move all the elements except b from the righthand side of the
above triplet to the middle, resulting in

R(a, V/{a, b}, b)

On the other hand b ∈ X2 ⊆ N(a) and N(a) is disjoint from S(a), implying
that b /∈ S(a) which, by the definition of S(a) implies that ¬R(a, V/{a, b}, b),
a contradiction. We must therefore conclude that X ⊇ N(a). 2
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