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Abstract. In this paper we show that we are close at the proof that the
type of characteristics used by Biham and Shamir in their di�erential

attack on DES [3] are in fact the best characteristics we can �nd for DES.

Furthermore we show that the criteria for the construction of DES-like
S-boxes proposed by Kim [6] are insu�cient to assure resistance against

di�erential attacks. We show several good iterative characteristics for

these S-boxes to be used in di�erential attacks. Finally we examine the
probabilities of the two characteristics used by Biham and Shamir in [3].

We found that for some keys we do not get the probabilities used in

the attack. We suggest the use of 5 characteristics instead of two in the
attack on DES.

1 Introduction

In 1990 Eli Biham and Adi Shamir introduced di�erential cryptanalysis, a chosen
plaintext attack on block ciphers that are based on iterating a cryptographically
weak function r times (e.g. the 16-round Data Encryption Standard (DES)). The
method proved strong enough to break several cryptosystems, Lucifer, GDES,
Feal-4, Feal-8, Snefru a.o. and DES with a reduced number of rounds, i.e. less
than 16 rounds [1, 2, 4].
In december 1991 Biham and Shamir published an improved di�erential attack
that is capable of breaking the full 16-round DES [3]. The attack needs 247 cho-
sen plaintexts. The heart in di�erential attacks is the �nding and the use of
characteristics. In their attack Biham and Shamir use 2-round iterative charac-
teristics. These characteristics are believed to be the best characteristics for an
attack on 16-round DES, but so far no proof of this has been published in the
open literature. We are close to the conclusion that this is in fact the case.
After the breaking of the full 16-round DES the question is if we can redesign
DES to withstand this kind of attack. There has been a huge research on DES,
since its publication in the mid 70's. Some of this work has been concentrat-
ing on the design of secure S-boxes. In [6] Kwangjo Kim provides a way of
constructing DES-like S-boxes based on boolean functions satisfying the SAC
(Strict Avalanche Criterion). Kim lists 5 criteria for the constructions, includ-
ing \Resistance against di�erential attacks". Furthermore 8 concrete examples
of these S-boxes, the s2-DES S-boxes, are listed. The cryptosystem s2-DES is



obtained by replacing all the 8 DES S-boxes by the 8 s2-DES S-boxes, keeping
everything else as in DES. It is suggested that s2-DES withstands di�erential
attacks better than DES. We show that this is indeed not the case. The conlusion
is that Kims 5 criteria for the construction of DES-like S-boxes are insu�cient
to assure resistance against di�erential attacks.
In [1] Biham and Shamir observed that the probability of the two characteristics
used in [3] will split into two depending on the values of certain keybits. In [3]
this phenomena is not considered, and the estimates of complexity are calculated
using average probabilities. This means that for some keys we will need more
chosen plaintexts as stated in [3]. We think that exact probabilities should be
used in the estimates of complexity and suggest the use of 3 additional charac-
teristics to lower the need for chosen plaintexts for a successful attack.
In section 2 we show di�erent models of iterative characteristics for DES and
s2-DES to be used in di�erential attacks. In section 3 and 4 we show concrete
examples of these characteristics for DES and s2-DES, the probabilities all be-
ing average values. In section 5 we consider the exact probabilities of iterative
characteristics for DES.

2 Iterative characteristics for DES and s2-DES

We expect the reader to be familiar with the general concepts of di�erential
cryptanalysis and refer to [1, 8] for further details. In DES and s2-DES equal
inputs (to the F-function) always lead to equal outputs. This means that an in-
putxor equal to zero leads to an outputxor equal to zero with probability 1. This
is the best combination of input/outputxors. In �nding the best characteristics
we therefore try to maximize the number of these zero-rounds. In the following
we will show di�erent models of iterative characteristics for DES and s2-DES. In
section 3 and 4 we will justify the usability of the models by showing concrete
examples of these in DES and s2-DES.

2.1 2-round iterative characteristics

Two consecutive zero-rounds in a characteristic of DES-like cryptosystems lead
to equal inputs and outputs of all rounds. We get equal plaintexts resulting
in equal ciphertexts, a trivial fact. The maximum occurrences of zero-rounds
therefore is every second round. This situation evolves by using the 2-round
characteristic as in [1]. In the following we will use this notation:

(�, 0)
0  0 prob. 1
0  � prob. something
(0, �)

for the 2-round iterative characteristic.



2.2 3-round characteristics

In [7] Knudsen found that the best di�erential attack on LOKI89 [9] was based
on a 3-round �xpoint characteristic. A �xpoint is an inputxor that can result in
itself as an outputxor. Instead of looking for �xpoints we should in general look
for, what we call, twinxors.

De�nition 1 Twinxors, � and �, are xors for which �  � and �  �, both

combinations with a positive probability.

1 With twinxors we can build the following 3-round characteristic :

(� , 0)
0  0 prob. 1
�  � some prob.
�  � some prob.
(0, �)

The characteristic is in fact only \half" an iterative characteristic. Concatenated
with the characteristic with rounds no. 2 and 3 interchanged we obtain:

(� , 0)
0  0 prob. 1
�  � some prob.
�  � some prob.
0  0 prob. 1
�  � some prob.
�  � some prob.
(0, � )

In that way we get a 6-round iterative characteristic. Still we choose to call the
3-round characteristic an iterative characteristic.

2.3 4-round characteristic

As for the 3-round characteristic we look for a 4-round characteristic, which ex-
tended to 8 rounds becomes an iterative characteristic. It must have the following
form:

(� , 0)
0  0 prob. 1
�  � some prob.

� � 	  � some prob.
�  	 some prob.
(0, 	 )

It means that we have to �nd two inputxors 	 and � both resulting in � and �

resulting in the (xor-)di�erence between 	 and � .

1 The best twinxors for LOKI89 is obtained with �= �= 00400000x , i.e. �xpoints.



2.4 Longer characteristics

We can of course continue the search for n-round characteristics, n > 4. For every
time we go one round further, we compare the characteristic we are now looking
for with the best characteristic, we have found so far. We can easily �nd the
best non-trivial input/outputxor combination in the pairs xor distribution table.
From this probability we calculate the maximum number of di�erent inputs to
S-boxes we can have for the characteristic to be better than the one we have
found.
By looking closer at the possible xor-combinations and the overall architecture
of the cryptosystem we can calculate the minimumnumber of di�erent inputs to
S-boxes we must have for the particular characteristic. Using this minimum and
the above maximumwe �nd the possible combinations of input- and outputxors
in the characteristic and compare the probability with the other characteristics
we have found.
Of course characteristics do not have to contain a zero-round. Before making
any conclusions about the best possible characteristic, we must check whether
good characteristics of this kind exist.

3 DES

3.1 Properties

The following 5 properties of the DES S-boxes are well known.

1. No S-box is a linear of a�ne function.
2. Changing one bit in the input to an S-box results in changing at least two

output bits.
3. The S-boxes were chosen to minimize the di�erence between the number of

1's and 0's when any single bit is held constant.
4. S(x) and S(x � (001100)) di�er in at least two bits.
5. S(x) 6= S(x � (11ef00)) for any e and f .

A DES S-box consists of 4 rows of 4-bit bijective functions. The input to an
S-box is 6 bits. The left outermost bit and the right outermost bit (the row bits)
determine through which function the four remaining bits (the column bits) are
to be evaluated. This fact gives us a 6'th property of the DES S-boxes important
for di�erential cryptanalysis.

6. S(x) 6= S(x � (0abcd0)) for any a, b, c and d, abcd 6= 0000.

The inner input bits for an S-box are input bits that do not a�ect the inputs
of other S-boxes. We have two inner input bits for every S-box. Because of the
P-permutation we have the following property also important for di�erential
cryptanalysis.

{ The inner input bits for an S-box, Si, come from S-boxes, whose inner input
bits cannot come from Si.

Example: The inner input bits for S1 come from S2 and S5, whose inner input
bits come from S3 and S7 respectively S2 and S6.



3.2 2-round iterative characteristics

As stated in [1, 3] the best characteristics for a di�erential attack on 16-round
DES is based on a 2-round iterative characteristic. The following theorem was
already proven in [5]. We give the proof in a di�erent manner.

Theorem 1 If two inputs to the F-function result in equal outputs, the inputs

must di�er in at least 3 neighbouring S-boxes.

Proof: If the inputs di�er only in the input to one S-box the expanded inputxor
must have the following form: 00ab00 (binary), where ab 6= 00. Because of prop-
erties 2 and 4 above, these inputs cannot give equal outputs. This also tells us
that the inputs must di�er in neighbouring S-boxes. If the inputs di�er in only
two neighbouring S-boxes, Si and S(i + 1), the two inputxors must have the
following forms: Si : 00abcd and S(i + 1) : cdef00. Now

cd 6= 00, because of properties 2 and 4.
cd 6= 01, because of property 6 for S(i + 1).
cd 6= 10, because of property 6 for S(i).
cd 6= 11, because of property 5 for S(i + 1).

2

We have several 2-round iterative characteristics for DES, where the inputs di�er
in three neighbouring S-boxes. By consulting the pairs XOR distribution table

for the 8 S-boxes we easily �nd the best possibilities. The two best of these
are used in [3] to break the full 16-round DES using 247 chosen plaintexts. The
probability of the two characteristics is 1

234
for the two rounds.

3.3 3-round iterative characteristics

The highest probability for a non trivial input/outputxor combination in DES
is 1

4
. Because (1

4
)x � ( 1

234
)1:5 ) x < 6, there can be di�erent inputs to at most

5 S-boxes for the two nonzero round together. Because of the P-permutation in
DES, see Section 3.1., � and � must di�er in the inputs to at least two S-boxes
each. Property 2 of the S-boxes implies that at least one additional S-box have
di�erent inputs, making � and � together di�er in the inputs to at least 5 S-
boxes. The proof is given in the Appendix. For DES the best twinxors, which
di�er in the inputs to 5 S-boxes are: � = 31200000x and � = 00004200x. The
probability for the 3-round iterative characteristic is 2�18:42. This probability
is very low and there is in fact twinxors, which together di�er in the inputs to
6 S-boxes with a higher probability, � = 03140000x and � = 00004014x. The
probability for the 3-round iterative characteristic is 2�18:1. Both characteristics
have a probability too low to be used in a successful di�erential attack.

3.4 4-round iterative characteristics

There can be di�erent inputs to at most 7 S-boxes, because (1
4
)x � ( 1

234
)2 )

x < 8, however there is no 4-round iterative characteristics for DES with a
probability higher than for best 2-round iterative characteristic concatenated
with itself. The proof is tedious and is given in the Appendix.



3.5 Longer characteristics

We believe that it can be proven that we cannot �nd n-round iterative char-
acteristics, n > 4, with probabilities higher than for the best 2-round iterative
characteristic concatenated with itself n

2
times. To obtain this for a 5-round

iterative characteristic there can be di�erent inputs to at most 9 S-boxes, as
(1
4
)x � ( 1

234
)2:5 ) x < 10. It seems impossible that we can �nd such a character-

istic di�erent in the inputs to 9 S-boxes and all combinations with a probability
close to the highest possible of 1

4
. If we go one round further to a 6-round itera-

tive characteristic the doubt will be even bigger. Before making any conclusions
for the best di�erential attack on DES using characteristics, we must also check
that no non iterative characteristics exist, as stated in Section 2.4. These proofs
are a topic for further research.

4 s2-DES

4.1 Properties

Kims s2-DES S-boxes do not have the DES properties 2, 4 and 5. They do have
a property though that is part of property 2 for the DES S-boxes.

4a. S(x) 6= S(x � (a0000b)) for ab 6= 00.

As the s2-DES S-boxes are build as 4 rows of 4-bit bijective functions, they have
property 6 like the DES S-boxes.

4.2 2-round characteristics

Because of property 6 there is no 2-round iterative characteristic for Kims s2-DES
S-boxes where the inputs di�er only in one S-box, however the lack of property
5 enables us to build a 2-round iterative characteristic where the inputs di�er in
two neighbouring S-boxes. We have

0x  00000580x with prob. 8�10
64�64

' 1
51

Extending this characteristic to 15-rounds yields a probability of 2�39:7. Using
the original attack by Biham and Shamir [1] we will need about 242 chosen
plaintexts for a successful di�erential attack. To do a similar attack as by Biham
and Shamir in [3] we construct a 13-round characteristic with probability 2�34.
The megastructures used in the attack will consist of 29 plaintexts and we will
need a total of about 235 chosen plaintexts for the attack. This being said without
having studied the attack in details. The above characteristic is not the only 2-
round iterative characteristic for s2-DES that is better than the best 2-round
iterative characteristics for DES. We have several others, the two secondbest
characteristics both with probability 6�10

64�64
' 1

68
are based on the combinations:

0x  07e00000x and 0x  5c000000x.



4.3 3-round characteristics

The best non-trivial input/outputxor combination in s2-DES has probability 1
4
.

Therefore there can be at most 4 S-boxes with di�erent inputs in the 3 rounds
all together, as (1

4
)x � ( 1

51
)1:5 ) x < 5 : As with DES, because of the P-

permutation, � and � must di�er in the inputs to at least two S-boxes each.
Unlike for DES it is possible for two inputs di�erent in only 1 bit to result in
two outputs di�erent in 1 bit. Therefore we can build a 3-round characteristic
with � = 04040000x and � = 00404000x. The probability for the characteristic
is 8�6�4�10

644
' 2�13:5. This is the best 3-round characteristic we have found for

s2-DES. We can build a 13-round characteristic to be used as in the attack
in [3]. The probability for the characteristic is 2�52:5. However we can use the
combinations from the 3-round characteristic to build 6-round \half"-iterative
characteristics, which are better, as we will show later.

4.4 4-round characteristics

There can be at most 5 S-boxes with di�erent inputs, because (1
4
)x � ( 1

51
)2 )

x < 6; and again we exploit the fact that s2-DES S-boxes do not have property
2. We construct a 4-round characteristic based on the following combinations:

00000002x 0000006ex with prob. 8�10
64�64

00080000x 00020000x with prob. 8
64

00000002x 0000002ex with prob. 6�10
64�64

We have P(00000002x) = 00020000x and P(00080000)x = 00000040x= 0000006ex
� 0000004ex. The total probability for the 4-round characteristic is 2�14:77. Ex-
tended to 13 rounds we obtain a probability of 2�44:3.

4.5 Longer characteristics

A 5-round iterative characteristic will have to di�er in the inputs to at least
6 S-boxes. However we can �nd 6-round iterative characteristics also di�erent
in the inputs to only 6 S-boxes as indicated above. The P-permutation makes
it impossible to have � ! � and � ! �, where both � and � di�er only in
the inputs to one S-box. However it is possible to have �, � , 	 and 
, all four
di�erent only in the input to one S-box and such that � ! � , � ! 	 , 	 ! 


and 
 ! �. We use this observation to construct a 6-round characteristic:

(� , 0)
0  0 prob. 1
�  � some prob..
	  � some prob.

� � 
  � � 	 some prob.
�  
 some prob.

  	 some prob.

(0, 	 )



With � = 04000000x, � = 00004000x, 	 = 00040000x and 
 = 00400000x we
get a total probability for the 6-round characteristic of 8�10�8�6�4�6

646
' 2�19:5.

Extended to 13 rounds the probability becomes 2�39. Starting with (� , 0) we
get a similar 6-round characteristic with probability 2�19:5. Starting with (	 , 0)
or (
 , 0) yields a 6-round characteristic with probability 2�19:8. These 6-round
characteristics di�er in the inputs to 6 S-boxes, that is, di�erent inputs to one
S-box per round in average.
If we try to construct n-round iterative characteristics, n > 6, we �nd that we
will get more than one S-box di�erence per round in average.

4.6 Conclusion on Kims s2-DES S-boxes.

The above illustrates that we have to ensure that DES-like S-boxes have the six
properties listed in section 3.1. The fact that for s2-DES two inputs di�erent
only in the inputs to 2 neighbouring S-boxes can result in equal outputs enables
us to build 2-round iterative characteristic more than 4 times as good as the
best 2-round characteristic for DES. The fact that two S-box inputs di�erent in
only one bit can result in outputs di�erent in one bit enables us to construct a
4-round and a 6-round iterative characteristic both better for di�erential attacks
on s2-DES than the 2-round characteristic for DES. Furthermore we must check
that there is no 2-round iterative characteristic where only 3 neighbouring S-
boxes di�er in the inputs with a too high probability. For the s2-DES S-boxes
the best such characteristic is based on the combination dc000002x  0x. It has
probability 10�10�14

643
' 1

187
. This is higher than the best 2-round characteristic

for DES and illustrates that we should also consider this in the construction of
DES-like S-boxes.

5 Probabilities of iterative characteristics

5.1 DES

As stated earlier the best characteristics for a di�erential attack on DES are
based on 2-round iterative characteristics. The two best of these have the fol-
lowing inputxors in the second round: � = 19600000x and � = 1b600000x. Both
xors lead to equal outputs with probability 1

234
. However this probability is only

an \average" probability. As stated in [1, section 6.5], if the sixth keybit used in
S2 is di�erent from the second keybit used in S3 the probability for � increases

to 1
146

and the probability for � decreases to 1
585

. If the two keybits are equal
the probabilities will be interchanged. We call these keybits, critical keybits for
� and � . In their attack on DES [3] Biham and Shamir use these two character-
istics to build 13-round characteristics, where six rounds have inputxor � or � .
The probability is claimed to be ( 1

234
)6 ' 2�47:22. But depending on the values

of the six pairs of critical keybits the probability for � will vary from ( 1
146

)6 '
2�43:16 to ( 1

585
)6 ' 2�55:16 and the other way around for � . Using both charac-

teristics as in [3] we are ensured to get one characteristic with a probability of



Table 1. The probabilities for the best 13-round characteristic obtained by using the
2 characteristics � and � .

#Keys (log2) Probability (log2)

51.00 -43.16
53.58 -45.16

54.88 -47.16

54.30 -49.16

at least ( 1
146�585

)3 ' 2�49:16. Table 1 shows the probabilities and for how many
keys they will occur.
It means that for one out of 32 keys, we will get a 13-round characteristic with
the highest probability and for about one out of three keys we will get the lowest
probability. We found that for other 2-round iterative characteristics the prob-
ability splits into more than one depending on equality/inequality of certain
critical keybits. It turns out that we can �nd 2-round iterative characteristics
for which the best of these probabilities is better than for the lowest for � and
� . For the 2-round characteristic (with inputxor) 00196000x we have only one
probability. It means that regardless of the key values this characteristic will
have a probability of 1

256
. Table 2 shows the probabilities for � and � and for

the 2-round iterative characteristics, whose best probability is higher than 1
256

.

Table 2. Exact probabilities for 11 characteristics.

Characteristic Probabilities (1/n) Average Prob.(1/n)
19600000x 146, 585 234

1b600000x 585, 146 234

00196000x 256 256
000003d4x 210, 390 273

4000001dx 205, 1024 341

19400000x (+) 0, 195 390

1b400000x (+) 195, 0 390

40000019x ($) 248, 390, 744, 1170 455

4000001fx ($) 248, 390, 744, 1170 455

1d600000x (+) 205, 512, 819, 2048 468

1f600000x (+) 205, 512, 819, 2048 468

It seems unlikely that we can �nd n-round characteristic, n > 2, for which the
exact probabilities will be higher than for the above mentioned 2-round iterative
characteristics. The subkeys in DES are dependent, therefore some keybits might
be critical for one characteristic in one round and for another characteristic in
another round. For example by using characteristic 19400000x we have the two
probabilities 1

195
and 0. But this division of the probability depends on the val-

ues of the same critical keybits as for � and � and we would get a probability of



1
146

for either � or � . The characteristics marked with (+) in Table 2 depends
on the values of the same critical keybits as for � and � . Doing an attack on
DES similar to the one given in [3], this time using the �rst 5 of the above char-
acteristics will give us better probabilities for a 13-round characteristic. Table 3
shows the best probabilities and for how many keys these will occur. The above

Table 3. The probabilities for the best 13-round characteristic obtained by using 5
characteristics.

#Keys (log2) Probability (log2)

51.00 -43.16
53.58 -45.16

49.64 -46.07

49.64 -46.29
54.88 -47.16

50.90 -47.18

54.10 -48.00

probabilities are calculated by carefully examining the critical keybits for the 5
characteristics in the rounds no. 3, 5, 7, 9, 11 and 13, i.e. the rounds where we
will expect the above inputxors to be. By using the two characteristics in Table
2 marked with ($) in addition would yield slightly better probabilities. However
the best probability we would get by using these characteristics is ( 1

248
)6 ' 2�47:7

and it would occur only for a small number of keys.
As indicated in Table 3 we are ensured to get a characteristic with a proba-
bility of at least 2�48. However the megastructures of plaintexts and analysis
will become more complex. Whether using 5 characteristics instead of two will
dramatically increase the complexity of the analysis remains an open question.

5.2 s2-DES

The best characteristic for an attack on s2-DES is, as we saw earlier, a 2-round
iterative characteristic with (average) probability of 1

51
. The exact probabili-

ties of this characteristic is 1
57

and 1
46

making the probability for a 13-round
characteristic vary from 2�35 to 2�33. It means that even in the worst case the
characteristic is far better than the best characteristics for DES.

A Appendix

In this section we give the proofs of the claims given in Sect. 3.3 and 3.4.
Notation: Let � be an xor-sum of two inputs Y; Y � to the F-function. Then
�S(� ) is the set of S-boxes, whose inputs are di�erent after the E-expansion of
Y and Y �. Furthermore #�S(� ) denotes the number of S-boxes in �S(� ). Ex-
ample: Let � = 0f000000x (hex), then �S(� ) = fS1; S2; S3g and #�S(� ) = 3.



Note that xor-addition is linear in both the E-expansion and the P-permutation
of DES. In the proofs below the following Tables and lemmata are used. Table 4
shows for each of the 8 S-boxes, which S-boxes are a�ected by the output of
the particular S-box. Numbers with a subscript indicate that the particular bit
a�ects one S-box directly and another S-box via the E-expansion. Example: If
the output of S1 is 6x (hex), then S-boxes 5 and 6 are directly a�ected and
S-box 4 is a�ected after the E-expansion in the following round. Table 5 shows
the reverse of Table 4, i.e. for every S-box it is shown which S-boxes from the
preceding round a�ect the input.

Table 4. Where the bits from an S-box goes to

S1 ! 3 2 5 4 6 8

S2 ! 4 3 7 8 1 5

S3 ! 6 7 4 5 8 2

S4 ! 7 5 6 3 1 8

S5 ! 2 3 4 7 6 1

S6 ! 1 2 8 7 3 5

S7 ! 8 1 3 4 6 2

S8 ! 2 1 7 4 6 5

Table 5. Where the bits for an S-box come from

S1 S2 S3 S4 S5 S6 S7 S8
4 2 5 6 8 3 7 5 1 4 6 7 2 5 8 3 1 2 6 4 8 7 1 3 5 4 8 2 6 3 1 7

The next �ve lemmata follow from Table 4 and 5.

Lemma 1 The six bits that make the input for an S-box, Si, come from six

distinct S-boxes and not from Si itself.

Lemma 2 The middle six input bits for two neighbouring S-boxes come from

six distinct S-boxes.

Lemma 3 The middle ten input bits for three neighbouring S-boxes come from

all 8 S-boxes. Six of the ten bits come from six distinct S-boxes and four bits

come from the remaining two S-boxes.

Lemma 4 The middle two bits in the input of an S-box Si, the inner input bits,

come from two S-boxes, whose inner input bits cannot come from Si.

Lemma 5 Let � and � be two input sums, where � ! � . If #�S(�) =
#�S(� ) = 2 then for at least one S-box of �S(� ) the inputs di�er in only

one bit.



Theorem 2 For twinxors, � and � , i.e. � ! � and � ! � , the inputs to at

least 5 S-boxes are di�erent. That is, #�S(� ) + #�S(�) � 5.

Proof: 1. #�S(� ) = 1. The inputs to �S(� ) di�er in the inner input bits, i.e. at
most two bits. Because of properties 2 and 4 of the DES S-boxes #�S(�) � 2.
The inputs of �S(�) di�er in at most one bit each. Because of property 2 the
outputs of � di�er in at least four bits. Therefore � 6! � .
2. #�S(� ) = 2. Because of the symmetry of the characteristic we have imme-
diately #�S(�) � 2. There are two cases to consider:

a. �S(� ) are not neighbours. Because of properties 2 and 4 the outputs of
both S-boxes in �S(� ) will di�er in at least two bits, making #�S(�) � 3
according to Table 4.

b. �S(� ) are neighbours. From Lemma 2 it follows that the outputs of �S(�)
di�er in at most one bit each. Property 2 requires the inputs of �S(�) to
di�er in at least two bits each. From Table 4 it follows that the only way two
neighbouring S-boxes in � can make the inputs of �S(�) di�er in at least
two bits each, is when #�S(�) = 3. This is however not possible for all two
neighbouring S-boxes. For example let �S(� ) = fS5; S6g, then it is possible
to get �S(�) = fS1; S2; S3g where for each S-box the inputs di�er in two
bits. But for �S(� ) = fS1; S2g there will always be at least one S-box in
�S(�), whose inputs di�er in only one bit.

3. #�S(� ) � 3. Because of the symmetry of twinxors #�S(�) � 2. 2

We want to show that there is no 4-round iterative characteristic with a
probability higher than the best 2-round iterative characteristic concatenated
with itself. First we prove

Theorem 3 For a 4-round iterative characteristic with input sums � , � and 	 ,

see Section 2.2,

#�S(� ) + #�S(�) + #�S(	 ) � 7:

Furthermore, for at least one of the input sums, the inputs to three neighbouring

S-boxes di�er.

Proof: We are looking for input sums � , � and 	 , such that � ! �, 	 ! � and
� ! � � 	 . Note that �S(� ) \�S(	 ) 6= ; and that if �S(� ) are neighbours
then so are �S(	 ).
1. #�S(� ) = 1. From the proof of Theorem 2 we have #�S(�) � 2, and each
of the inputs to those S-boxes di�er in exactly one bit.

a. #�S(�) = 2. The S-boxes in �S(�) are not neighbours and the inputs
di�er in one inner input bit, therefore each of the outputs di�er in at least
two bits. From a close look at Table 4 it follows that if �S(� ) = S7 then it
is possible to get #�S(	 ) = 3, but then for one S-box 2 �S(	 ), not S7,
the inputs di�er in only one bit, an inner input bit. If �S(� ) 6= S7 then
#�S(	 ) � 4 and for at least one S-box, not �S(� ), the inputs di�er in only
one bit. Therefore 	 6! �.



b. #�S(�) � 3. The outputs for every S-box of�S(�) di�er in at least two bits.
It follows easily from Table 4 that #�S(��	 ) � 4. Since �S(� ) � �S(	 ),
#�S(	 ) � 4.

2. #�S(� ) = 2. By the symmetry of the characteristic #�S(	 ) � 2 and there-
fore #�S(�) � 3. There are two cases to consider:

a. �S(� ) are not neighbours. Because of properties 2 and 4 #�S(�) � 3
leaving only the possibility that #�S(	 ) = 2 and #�S(�) = 3. The S-
boxes in �S(�) must be neighbours. If not, let Si be an isolated S-box,
di�erent in the inputs in only inner bits. The outputs of Si di�er in at least
two bits, that must go to the inner bits of the two S-boxes in �S(� ), since
�S(� ) = �S(	 ). But that is not possible according to Lemma 4.

b. �S(� ) are neighbours.

i) #�S(�) = 1. The outputs of �S(�) di�er in at least two bits. From
Table 4 it follows easily that for at least one S-box 2 �S(	 )=�S(� ) the
inputs di�er in only one bit and 	 6! �.

ii) #�S(�) = 2. Assume that #�S(	 ) = 2. If �S(� ) = �S(	 ) then the
outputs of �S(�) can di�er in at most one bit each, according to Lemma
2. But by Lemma 5, the inputs of at least one S-box in �S(�) di�er in
only one bit, a contradiction by property 2. Therefore �S(� ) 6= �S(	 ).
Since �S(� ) \ �S(	 ) 6= ; and �S(� ) are neighbours we must have
�S(� ) = fS(i � 1); Sig and �S(	 ) = fS(i); S(i + 1)g or vice versa.
The outputs from S(i� 1) in � must be equal as must the outputs from
S(i+ 1) in 	 . Therefore � �	 must have the following form (before the
expansion):

S(i � 1) kS(i) kS(i + 1) = 0xyz k 1 � �1 k 0vw0 ;

where '*' is any bit, xyz 6= 000 and vw 6= 00. From Table 5 it follows
that � 6! � � 	 for #�S(�) = 2 and therefore #�S(	 ) � 3.

iii) #�S(�) = 3. Then #�S(	 ) = 2. If �S(� ) 6= �S(	 ) then the di�er-
ences in the inputs to � is the e�ect of one S-box. For every S-box in
�S(�) the inputs di�er in only one bit, therefore � 6! � �	 . By similar
reasoning we �nd that for both S-boxes in �S(� ) the outputs have to
di�er. Furthermore �S(�) are neighbours. Assume that they are not.
Then the outputs of the isolated S-box di�er in at least two bits and
from Table 4 it follows that they a�ect at least 2 not neighbouring or 3
neighbouring S-boxes, a contradiction with �S(� ) = �S(	 ).

3. #�S(� ) = 3. Because of the symmetry in the characteristic we already cov-
ered the cases where �S(	 ) < 3. Therefore #�S(� ) = #�S(	 ) = 3 and
#�S(�) = 1. �S(� ) must be neighbours. Furthermore �S(� ) = �S(	 ) other-
wise � 6! � � 	 . 2

Theorem 4 There are no 4-round iterative characteristics with a probability

higher than ( 1
234

)2.



Proof: From the proof of Theorem 3 we �nd that to have a 4-round iterative
characteristic, the inputs to seven S-boxes must be di�erent in the three nonzero
rounds. Furthermore for at least one round the inputs to three neighbouring
S-boxes must be di�erent. There are three cases to consider. Case A: By Lemma

�S(� ) �S(�) �S(	)

Case A 2 2 3
Case B 2 3 2

Case C 3 1 3

5 we know that for at least one S-box in �S(�) the inputs di�er in only one bit.
Furthermore for at least one of the three neighbouring S-boxes in �S(	 ) the
outputs must be equal, otherwise � 6! �. There are two cases to consider:

1. For both S-boxes in �S(�) the inputs di�er in only one bit. By property
2 the outputs di�er in at least two bits each. For every three neighbouring
S-boxes in 	 we know the only two possible S-boxes of �S(�) by Lemma
3 and Table 5. Example: If �S(	 ) = fS1; S2; S3g then �S(�) = fS5; S6g.
Furthermore the outputs of either S1 or S3 must be equal.
We have eight triples of three neighbouring S-boxes in 	 to examine and
from Table 4 and 5 it follows that there are only three possible values for
�S(	 ) and�S(�). From the pairs xor distribution tablewe �nd that the best
combination for 	 ! � has probability 8�12�10

643
. But then the probability

for a 4-round iterative characteristic P(4R) � 1
44
� 8�12�10

643
< ( 1

234
)2:

2. For one of the S-boxes in �S(�) the inputs di�er in one bit, for the other
S-box the inputs di�er in two bits. For every three neighbouring S-boxes of
	 there are only two possibilities for the S-box in �S(�), whose inputs di�er
in only one bit. From a closer look at Table 4 it follows that �S(�) must
be neighbours and there are only two possible values for �S(	 ) and �S(�).
From the pairs xor distribution table we �nd that the best combination for
	 ! � has probability 12�10�4

643
. But then the probability for the 4-round

iterative characteristic P(4R) � 1
44
� 12�10�4

643
< ( 1

234
)2:

Case B: The three S-boxes in �S(�) are neighbours. From the proof of Theo-
rem 3 we have �S(� ) = �S(	 ). Then by Lemma 2 the outputs of each of the
three neighbouring S-boxes in �S(�) can di�er in at most one bit, therefore the

inputs must di�er in at least two bits each by property 2. Then it follows from
Table 5 that for each of the S-boxes in�S(� ) the outputs must di�er in two bits.
For every triple of three neighbouring in �S(�) there is only one possible way
for the inputs to di�er and only one possibility for�S(� ). The best combination
of �S(� ) and �S(�) gives a probability for the 4-round iterative characteristic

P(4R) � 12�12�16�(8�4)2

647
< ( 1

234
)2:

Case C: From Theorem 3 we have �S(� ) = �S(	 ). The only possibility we have
for a 4-round iterative characteristic of this kind is when �S(� ) = fS2; S3; S4g



and �S(�) = fS7g. The best combinations yields a probability for the 4-round
iterative characteristic P(4R) � 1

44
� 14�8�8

643
< ( 1

234
)2: 2
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