

Dynamic Word Problems∗

Gudmund Skovbjerg Frandsen
Peter Bro Miltersen

Sven Skyum

Computer Science Department, Aarhus University

May 1993

Abstract

Let M be a fixed finite monoid. We consider the problem of im-
plementing a data type containing a vector x = (x1, x2, . . . , xn) ∈
Mn, initially (1, 1, . . . , 1) with two kinds of operations, for each i ∈
{1, . . . , n}, a ∈M , an operation changei,a which changes xi, to a and a
single operation product returning

∏n
i=1 xi. This is the dynamic word

problem. If we in addition for each j ∈ 1, . . . , n have an operation
prefixj ; returning

∏n
i=1 xi, we talk about the dynamic prefix prob-

lem. We analyze the complexity of these problems in the cell probe or
decision assignment tree model for two natural cell sizes, 1 bit and log
n bits. We obtain a classification of the complexity based on algebraic
properties of M .

∗This work was partially supported by the ESPRIT II Basic Research Actions Program
of the EC under contract No. 7141 (project ALCOM II) and CCI-Europe.

1

1 Introduction and results

Statement of problem

A finite monoid is a finite set M equipped with an associative binary oper-
ation ◦ and containing an identity element 1. We assume M is non-trivial,
i.e. M 6= {1}. The word problem for M is to take a sequence of elements
(x1, x2, . . . , xn) and find the product x1 ◦ x2 ◦ · · · ◦ xn (we will write this as
x1, x2, · · · , xn when no confusion can arise). The more general prefix problem
for M is to take a sequence of elements (x1, x2, . . . , xn) and find the sequence
(x1, x1x2, x1x2x3, . . . , x1x2 · · ·xn).

In this paper, we consider the dynamic complexity of word and prefix
problems. The dynamic word problem for a monoid M is the task of imple-
menting a data type M -WORD(n) containing a vector x = (x1, x2, . . . , xn) ∈
Mn, initially (1, 1, . . . , 1) with two kinds of operations:

• For each i ∈ {1, . . . , n} and a ∈ M an operation changei,a. This
operation changes xi to a.

• A single operation product, returning x1x2 · · ·xn.

The dynamic prefix problem for M is the task of implementing a data type
M -PREFIX(n) defined in the same manner, except that we instead of the
single product operation have an operation prefixj for each j ∈ {1, . . . , n}
returning x1x2 · · ·xj.

The model in which we consider implementing the data type is the cell
probe or decision assignment tree model, previously considered by Fredman
[9, 10] and Fredman and Saks [11]. In this model, the complexity of a com-
putation is the number of cells accessed in the random access memory con-
taining the data structure during the computation, while the computation
itself is for free (and information about which operation to perform is also
given for free). The number of bits B in a cell is a parameter of the model.
Formally, the model is as follows: In an implementation of the data type
we assign to each operation a decision assignment tree, i.e. a rooted tree
containing read nodes and write nodes. When performing an operation we
proceed from the root of its tree to one of the leaves. The read nodes are
labeled with a location of the random access memory. Each has 2B sons, one

2

for each possible content of the memory location. The write nodes which
are unary are labeled with a memory location and a value between 0 and
2B − 1. When such a node is encountered, the value is written in the mem-
ory location. If the operation is to return an answer, this is found in the leaf
finally encountered. The complexity of an implementation is the depth of
its deepest tree, i.e. we consider only worst case, deterministic complexity.
The model is very general, focusing on the storage and access aspect of data
structuring. We consider two natural choices of B, namely B = 1 and B =
log n. Lower bounds in the B = log n model is also lower bounds for the
complexity of implementing the type on a random access computer [1], i.e. a
unit cost random access machine with word size bounded by O(log n). Also,
our upper bounds in the B =log n models do not take any advantage of the
non-uniformity of the model, i.e. the data structures can be implemented on
a random access computer.

Motivation

There are two main motivations for studying dynamic word problems. Firstly,
dynamic word problems can be regarded as a special case of a very gen-
eral class of natural data structure problems, dynamic language member-
ship problems considered by Sairam, Vitter and Tamassia [18] and Miltersen
[15, 16]. A problem in this class is given by a language L ⊆ {0, 1}∗. We
are supposed to implement a data type L-MEMBER containing a string
x ∈ {0, 1}∗ with three kinds of operations:

• init(n). This operation initializes x to 0n.

• change(i, a). This operation changes the i’th component of x to a.

• query. This operation returns true if x ∈ L, false otherwise.

Many natural occurring d ata structure problems for instance dynamic
graph problems, can be phrased as a dynamic language membership problem.
Sairam, Vitter and Tamassia consider the complexity class incr-POLYLOG-
TIME which is the class of languages having an implementation on a log
cost random access machine so that init(n) can be done in time nO(1) and
change and query can be done in time logO(1)n (with n = |x|). Clearly,

3

incr-POLYLOGTIME ⊆ P , but it is an open problem if the inverse con-
tainment holds. This problem corresponds roughly to the P versus NC
question in parallel complexity. We seem to be far from answering the P
versus incr-POLYLOGTIME question. Indeed, the best known lower bound
for a language in P for the number of cells touched by a change or query

operation seems to be Ω(log n), even when the cell size is 1 [15, 16]. This
again corresponds to the world of parallel complexity where no lower bound
on (bounded fan-in) depth for problems in P better than Ω(log n) is known,
i.e. P = NC1 is unresolved. However, in order to get a better understanding
of the techniques available and their limitations, one has studied sub-NC1

complexity extensively and have a very good understanding of it. It seems
natural to try the same approach for dynamic problems, i.e. study the lan-
guages for which the dynamic membership problem can be implemented so
that the change and query operations touches O(log n) cells or less. With
the natural Boolean encoding, the dynamic word problems is a nice, natural
class of such problems.

The second motivation is closely related to the first: Several authors
have noted that there seems to be some kind of correspondence between
parallel and dynamic complexity. Is this correspondence purely accidental,
or can we establish some kind of formal correspondence, linking parallel and
dynamic complexity? Indeed, Cohen and Tamassia [7] and Sairam, Vitter
and Tamassia [18] consider this question and has several partial results on
when one can and when one can not transfer information between the two
worlds. In order to gain further understanding, dynamic word and prefix
problems are nice, because the parallel complexity of these problems has been
the subject of extensive research during the last decade. From a parallel point
of view, there is not much difference between word and prefix problems, since
the prefixes can be computed independently. A tight relationship between the
complexity and algebraic properties of the monoid has been shown in a series
of paper. Chandra, Fortune and Lipton [6] note that if the monoid contains
a non trivial group as subset, the word problem is not in AC0, i.e. can not
be computed by polynomial size, unbounded fan-in, constant depth, AND-
OR circuits. In fact, depth Θ(log n/ log log n) is sufficient and necessary
if polynomial size is to be retained. (this is as a corollary to a celebrated
series of results by Furst, Saxe and Sipser [12], Yao [19] and H̊astad [13]).
Chandra, Fortune and Lipton show that if the monoid is in fact group free,
i.e. does not contain a non trivial group, the prefix problem is in AC0 and

4

the size of the circuit can be made almost linear. Barrington and Therien [4]
refine this result by relating the exact depth required by a polynomial size,
unbounded fan-in circuit solving the word problem of a group free monoid
to the position of the monoid in a hierarchy, the “dot-depth” hierarchy. For
monoids containing groups, Barrington [2] shows that for a solvable monoid,
i.e. a monoid where all contained groups are solvable, the word problem is
in ACC, i.e. can be computed by polynomial size, constant depth circuits
containing AND, OR and MOD-q gates for some fixed integer q, while the
word problem for a non-solvable monoid is complete for NC1. Thus, modulo
the unsolved problem “ACC = NC1?”, we have a complete understanding of
the parallel complexity of the word problem for all finite monoids M , based
on algebraic properties of M . So, is it the same algebraic properties of the
monoid influencing the complexity in the dynamic case? Interestingly, it
turns out that the complexity of the dynamic word problem is influenced in
a nice way by the algebraic properties of the monoid, and in some cases the
relevant properties are the same. However, we get a more diverse picture,
because, interestingly, the properties influencing the complexity change with
cell size and when going from word to prefix problems.

Results

While dynamic word problems do not seem to have been considered previ-
ously, the literature contains two previous results on dynamic prefix problems
in the cell probe model (by Zr we mean the group of integers modulo r).

• If M is any non-trivial finite monoid then for cell size B = 1, M -
PREFIX(n) can be implemented with complexity O(log n). Further-
more, in any implementation, some operation will require access to
Ω(log n

log log n
) cells. This result is due to Fredman [10] (who only states it

for M = Z2 but the proof is easily seen to hold in general).

• If M is any finite monoid, then for cell size B = log n, M -PREFlX(n)
can be implemented with complexity O(log n

log log n
) . If M = Zr, for some

r ≥ 2, then in any implementation, some operation will require access
to Ω(log n

log log n
) cells. This result is due to Fredman and Saks [11] (who

again only state it forM = Z2 but the proof holds in general). Since any

1We actually show the bound for a slightly larger class of monoids, see Theorem 10

5

non-trivial group contains Zr for some r as a subgroup, the complexity
is completely determined for all monoids containing non-trivial groups.

With the results we prove in this paper, we get the bounds in Figure 1. For
instance, for any finite monoid M , which is commutative, but not a group,
M -WORD(n) can be implemented on a cell probe machine with cell size
B = 1 with the operations having worst case complexity 2 log log n+O(1).
Furthermore, in any correct implementation, some operation will require ac-
cess to at least 1

2
log log n − O(1) cells in the worst case. The constants in

the O’s may depend upon M .

Word problem

Cell size Type of monoid Lower bound Upper bound
commutative group Θ(1)

B = 1 commutative non-group 1
2

log log n−O(1) 2 log log n+O(1)

non-commutative Ω(log n
log log n

) O(log n)

commutative Θ(1)
B = log n group free O(log log n)

non-commutativegroup1 Θ(log n
log log n

)

other O(log n
log log n

)

Prefix problem
Cell size Type of monoid Lower bound Upper bound

B = 1 any non-trivial Ω(log n
log log n

) O(log n)

B = log n group free O(log log n)

contains non-trivial group Θ(log n
log log n

)

Figure 1: The classification

The proof techniques are rather diverse: The B = 1 upper bound for
commutative non-groups is based on an efficient implementation of a counter,
i.e. a data type containing an integer which can be incremented, decremented
and tested for equality to certain special values. The corresponding lower
bound is based on a Ramsey-like theorem, the Erdös-Rado sunflower lemma.

6

The B = 1 lower bound for non-commutative monoids is based on a technique
due to Fredman [10], used previously for getting the B = 1 prefix lower
bound mentioned above. The B = log n upper bound for group free monoids
is proved by an application of the Krohn-Rhodes decomposition theorem [14]
(which was also used to show that the prefix problem for the same class of
monoids is in AC0 [6]). The data structure use stratified trees [17]. The lower
bound for non-commutative groups is proved by reducing Zr-PREFIX(n) to
M -WORD(n).

The only significant gap for B = 1 is the gap for non-commutative
monoids. We do not have any additional information here, i.e. there is no
non-commutative monoid for which we have an upper bound better than
O(log n), nor do we for any monoid know a lower bound better than Ω(log
n/ log log n). For B = log n, we understand the prefix problem fairly well.
If an Ω(log log n) bound for any non commutative monoid is proven, we
would have tight bounds on the prefix problem for any finite monoid M .
For the word problem and B = log n, we have good bounds on all monoids
except for a certain class of non-commutative monoids containing non-trivial
commutative groups but no non-commutative ones.

As an extension to the above theory, we consider the dynamic member-
ship problem for regular languages L ⊆ {0, 1}∗. Clearly, we can get an upper
bound for this problem by solving the dynamic word problem for the syn-
tactic monoid ML of L, i.e. the monoid consisting of maps on the states of
the minimum finite automaton for L, generated by the two maps correspond-
ing to the 0-transitions and the 1-transitions. However, we have examples
that show that this is not necessarily optimal, i.e. a regular language may
be easier than its syntactic monoid. A similar situation arises in parallel
complexity, e.g. a regular language may be in AC0, while the word prob-
lem for its syntactic monoid is not [6]. However, in the parallel case, the
situation has been completely resolved by Barrington, Compton, Straubing
and Thérien [3]. We provide a sufficient condition for a regular language to
be as hard as its syntactic monoid in the dynamic case, but we don’t know
anything in general about languages violating the condition. We consider
this a promising topic for further research.

7

2 Proofs

Commutative groups

Proposition 1 If M is a commutative group, then for any B ≥ 1, there is
an implementation of M-WORD(n) on a B bit machine with complexity O(1).

Proof The data structure contains two components, the value of the xi’s
themselves in an array and the value w =

∏n
i=1 xi. When xi is changed from

a to b, multiply w by a−1b. 2

Commutative non-groups

Both the upper and lower bound for commutative non-groups are based on
counting. For the upper bound, we use that for any a ∈ M , the sequence
a0, a1, . . . , ai, . . . is eventually cyclic. Thus we can find out the contribution
of a’s to the final product by maintaining the value of the number of a’s
modulo the length of the cycle and looking out for those special values which
may occur before we enter the cycle.

Theorem 2 If M is a commutative monoid, then for cell size B = 1, M-
WORD(n) can be implemented with complexity 2 log log n + O(1). For cell
size B = log n, there is an implementation with complexity O(1).

Proof Let a ∈ M . There are values 1 ≤ ka, ca ≤ |M | and a map fa :
{0, . . . , ca − 1} → M so that i ≥ ka ⇒ ai = fa((i − ka) mod ca). The data
structure consists of the following components:

n 0 1 2 3 4 5 6 7 8 9 10 11

w(n) 000 001 010 011 010 100 100 101 110 111 110 100

Figure 2: Scheme for representing integers

• An array containing the xi’s.

• For each a ∈M−{1} the value of (|{i|xi = a}|−ka) mod ca represented
in any convenient way. These values are easily maintained.

8

• For each a ∈ M − {1}, the value of na = |{i|xi = a}| represented in a
way to be determined later.

When we change xi from a to b, we increment nb and decrement na. In
order to find the product, for each a ∈ M − {1}, we check if the number
of a’s is between 0 and ka − 1 in which case we find the exact number and
know the contribution of a’s to the product. Otherwise the contribution is
determined by na − ka modulo ca. If we have cell size B = log n, we can
trivially maintain the na’s in time O(1). For cell size B = 1, the maintenance
of the na’s becomes non-trivial. What we need is the implementation of a
data type COUNTER(n, V), maintaining a value t ∈ {0, . . . , n} with V a
subset of {0, . . . , n} of size O(1) with the following operations:

• inc. This operation puts t := t+ 1.

• dec. This operation puts t := t− 1.

• test. If t ∈ V = {v0, . . . , vk−1} with t = vj, this operation outputs j.

We now show that all COUNTER(n, V) can be implemented on a cell
probe machine with cell size B = 1 with the inc and dec operations taking
time log log n+O(1) and the test operation taking time O(1). This completes
the proof of the theorem.

Let m be a positive integer. We consider the following scheme for rep-
resenting an integer t ∈ {0, . . . 2m+1 − 2 −m} as a bit string w(t) of length
m with one of the bits marked:

• w(0) = 00 . . . 00

• If w(t) = xm−1 . . . x10 then w(t+ 1) = xm−1 . . . x11.

• If w(t) = xm−1 . . . xl01 . . . x0 then w(t+ 1) = xm−1 . . . xl10 . . . x0.

• If w(t) = xm−1 . . . xl00 . . . x0 then w(t+ 1) = xm−1 . . . xl00 . . . x0.

• If w(t) = xm−1 . . . xl11 . . . x0 then w(t+ 1) = xm−1 . . . xl10 . . . x0.

It is relatively easy to see that this scheme defines a unique representation
for each integer in the range. The case m = 3 is summarized in figure 2.

9

The idea of the implementation of COUNTER(n, V) is to pick m so that
2m+1 − 2−m ≥ n and to represent t as a bit array containing w(t) and
d log me bits representing the position of the mark. The mark is represented
in Gray code (using log log n bits) so that after having read it, it can be
incremented and decremented in time O(1). With this representation, t can
be incremented and decremented in time log log n+O(1) as required.

We still have to explain how to implement the test-operation: For each
value v ∈ V we maintain a bit array Av[0..m−1] with the following invariant
attached (where h is the position of the mark):

• Let i be the greatest i strictly smaller than h such that for j ≤
i, w(v)j = w(t)j. Then Av[i] = 1. Let k be the smallest k strictly
greater than h such that for all j ≥ k, w(v)j = w(t)j. Then Av[k] = 1.
For i < j < k,Av[k] = 0.

It is easy to see that we can maintain this structure with complexity O(1)
during inc’s and dec’s. If we furthermore maintain a bit array H[0..m− 1]
with H[i] = 1 if and only if h = i, we can check if t = v in time O(1). Since
|V | = O(1), we can identify t if t ∈ V in time O(1). 2

The counter in the proof is a special case of a more general class of
counters, described by Frandsen, Miltersen, Schmidt and Skyum [8].

We next prove that if M is a commutative non-group, the complexity
of any implementation of M -WORD(n) is Ω(log log n). The proof of this
lower bound is based on the following idea: If M is commutative but not a
group, there is an element a ∈ M , so that ai = 1 implies that i = 0. Now
suppose we have a state where the sequence of elements consists solely of a’s
and we successively changes a’s into 1’s. For the first n−1 operations, we get
an answer different from 1, while after the last operation, we get the answer
1. Thus, we have almost reduced the type COUNTER(n, {0}) with initial
state n and no inc-operation to the word problem, except for the fact that
we don’t have a single dec-operation, but a family of n operations, and we
should use each one only once. It is easy to see that COUNTER(n, {0}) can
not be implemented without the dec operation taking time log log n in the
worst case, since the data structure must consist of at least log n bits. If we
can generalize this lower bound for counters to this very special counter, we
are done. The problem is that the different dec-operations do not necessarily
have anything to do with one another. Indeed, they may address different

10

segments of the data structure and interact in complicated ways. However,
if we by Si denote the set of memory locations addressed by the decision
assignment tree corresponding to the i’th dec-operations, we can use a theo-
rem from the combinatorial theory of set systems which ensures that we can
find a subfamily of the Si’s which behaves “nicely”. More precisely we are
going to apply the following definition and lemma:

Definition 3 (Erdös and Rado, Boppana and Sipser) A sunflower
with p petals is a collection S1, S2, . . . , Sp of (not necessarily distinct) sets so
that the intersection Si∩Sj is the same for each pair of distinct indices i and
j. The intersection is called the center of the sunflower.

Lemma 4 (Erdös and Rado) Let S1, . . . , Sn be a collection of (not neces-
sarily distinct) sets each of cardinality at most l. If n > (p − 1)l+1l!, then
the collection contains as a subcollection a sunflower with p petals.

For a proof, see Boppana and Sipser [5]. Note that they state a slightly
different version of the lemma, because they require the collection to be of
distinct sets. However, only the base case of the induction has to be modified
to convert their proof into a proof of the above lemma.

Theorem 5 If M is a commutative monoid, but not a group, then with
cell size B = 1, in any implementation of M -WORD(n) some operation ac-
cesses at least 1

2
log log n− 1− o(1) cells in the worst case.

Proof Let an implementation I of M -WORD(n) be given. Assume its worst
case complexity is less than or equal to d.

For i ∈ {1, . . . , n}, let Si be the union of the set of memory loca-
tions appearing in the decision assignment tree corresponding to the opera-
tion changei,1 and the decision assignment tree corresponding to the single
product-operation, i.e. the set of memory locations which could possibly ap-
pear during the execution of these two operations. We have that |Si| ≤ l
where l = 2d+1. By the lemma, we find a sunflower Si1 . . . Sip with p petals,

where log p ≥ logn
l+1
−O(log(l + 1)). Let C be the center of the sunflower.

Since M is commutative but not a group, there is an element a ∈ M ,
so that ∀b ∈ M : ab 6= 1. Now we consider performing the sequence of
operations changei1,a, . . . , changeip,a starting in the initial state of the data

11

structure. Let s0 ∈ {0, 1}|C| be the state of C after these i operations. In
this state, we now perform changei1,1 and let s1 be the new state of C. Next,
we perform changei2,1 and let s2 be the new state of C etc.

We now show that sj 6= sk for 0 ≤ j < k < p. Indeed, assume sj = sk.
Then, starting from the initial state of the data structure, the sequence of
operations

changei1,a, . . . , changeip,a, changei1,1, . . . , changeip,1, product.

and the sequence of operations

changei1,a, . . . , changeip,a
changei1,1, . . . , changeij ,1, changeik+1,1

, . . . , changeip,1, product

return the same answer. Therefore 1 = ak−j, a contradiction, since a has no
inverse. 2

Therefore |C| ≥ log p and hence l ≥ log p and thus l ≥ log n
l+1
−O(log(l+

1)), i.e. l ≥ (1− o(1))
√

log n and d ≥ 1
2

log log n− 1− o(1).

There are other natural dynamic problems besides word problems to
which counting “almost” reduces in the same way. For examples, see the
thesis of Miltersen [16].

Non-commutative monoids, cell size B = 1

For the lower bound, we are going to apply a technique due to Fredman [10].
Fredman’s technique is best described as reduction from a special data type,
WHICH-SIDE(n), maintaining a value t ∈ {1, . . . , n} with two operations:

• For each i ∈ {1, . . . , n}, an operation initi, putting t := i. The first
operation performed on the type must be an initi for some i.

• For each j ∈ {1, . . . , n}, an operation askj, answering true if j < t and
false otherwise. All operations performed after the first one must be
of this type.

The proof of Theorem 5 in [10] is easily modified to show the following lemma.

12

Lemma 6 (Fredman) In any implementation of WHICH-SIDE(n) with
cell size B = 1, at least Ω(log n

log log n
) cells are accessed by some operation in

the worst case.

Theorem 7 If M is a non-commutative monoid, in any implementation
of M-WORD(n) at least Ω(log n

log log n
) cells is accessed in the worst case.

Proof Let ab 6= ba be a non-commutative pair from M .

Assume an implementation I of M -WORD(n) is given, we will show
how to use it to implement WHICH-SIDE(n). Apart from I we also need a
bit array A[1..n], initially 0. The initi-operation is performed by executing
changei,a, on I and setting A[i] := 1. The askj-operation is performed by
testing if A[j] = 1, if it is, we return the answer false. Otherwise we execute
changej,b on I and finds out if the product maintained by I is ab or ba by
executing product, after which we know the answer. Before returning the
answer, we execute changej,1. 2

Group free monoids, cell size B = log n

We wish to implement M -PREFIX(n) for a group free monoid M .

We use the following lemma, a consequence of the Krohn-Rhodes de-
composition theorem [14] (recall that a semigroup is an associative structure
that does not necessarily have an identity element).

Lemma 8 (Krohn-Rhodes) Let S be a group free finite semigroup. Then
one of the following cases hold.

• S = 〈a〉 = {a, a2, a3, . . . , ak = ak+1}

• For all a, b ∈ S, ab = a.

• S = V ∪ T , where V 6= S, T 6= S, V is a subsemigroup of S, i.e. closed
under the semigroup operation, while T is a left ideal of S, i.e. ab ∈ T
for each a ∈ S, b ∈ T .

Furthermore, we use the following auxiliary data type, NEIGHBOUR(n),
containing a set K ⊆ {1, 2, . . . , n} and supporting the following operations

13

• For each j ∈ {1, . . . , n} an operation insertj putting K := K ∪ {j}
and an operation deletej putting K := K − {j}.

• For each j ∈ {1, . . . , n} an operation predj returning max{i | i ≤ j, i ∈
K} and an operation succj returning min{i | i ≥ j, i ∈ K}.

NEIGHBOUR(n) can be implemented on a machine with cell size O(log n)
with all operations being O(log log n) using the stratified tree data structure
of Van Emde Boas, Kaas and Zijlstra [17].

Theorem 9 If M is a group free monoid, M-PREFIX(n) can be implemented
on a random access computer with cell size O(log n), so that all operations
take time O(log log n).

Proof We actually implement a more general data type, M -INFIX(n), where
we for each pair (i, j) have an operation infixi,j returning

∏j
k=i xk.

Given a semigroup S, let S ′ be the monoid defined by adjoining an
identity element 1S to S. We prove the theorem by proving the following
statement:

• For a semigroup S, S ′-INFIX(n) can be implemented so that all oper-
ations take time O(log log n).

The proof is by induction in the size of S. Thus suppose that the theorem
holds for all semigroups smaller than S. Now let us construct a data structure
for S ′-INFIX(n). By the decomposition lemma, there are three possible cases
for S.

• S ′ = {1S, a, a2, a3, . . . , ak = ak+1}. In this case the data structure is the
following one: an arrayA[1..n] containing the xi’s and a NEIGHBOUR(n)
structure containing the indices i for which xi 6= 1S. The change oper-
ation is O(log log n). For the infixi,j, we find the first k successors of i
(i inclusive) which are different from 1S. If all these occur before j, the
answer is ak, otherwise we can compute the product. The complexity
is O(log log n).

• For all a, b ∈ S, ab = a. In this case the data structure is again an
array A[1..n] containing the xi’s and a NEIGHBOUR(n) containing the

14

non 1S-indices. We compute the value of an infix by finding the first
non 1S-entry in the interval and returning this if it exists, returning 1S
otherwise.

• Otherwise S = V ∪T . By the induction hypothesis, we have structures
for V ′-INFIX(n) and T ′-INFIX(n) at our disposal. Now define

yi =

{
xi if xi ∈ V − T
1V otherwise

zi =

{
xi if xi ∈ T
1T otherwise

K = {i | xi ∈ T ∧ xi+1 /∈ T}

ui =

{
1T if i /∈ K∏i
j=k+1 xi where k = max{r | r < i, r ∈ K ∪ {0}}

We keep the zi’s and the ui’s in two T ′-INFIX(n) structures, the yi’s in
a V ′-INFIX(n) structure and the set K in a NEIGHBOUR(n) struc-
ture. In addition, we also keep the xi’s themselves in an array. It is
now possible to show that we can the maintain these structures during
changes of the xi’s and answer infix-queries on the xi’s by making a
constant number of calls to the substructures and a constant amount
of overhead. The details will appear in the full paper. 2

Non-commutative monoids containing groups

Theorem 10 If M is a monoid containing elements a,b such that

• 〈a〉 is a group with one-element 1a = ak.

• 1aba 6= ab1a

15

then in any implementation of M-WORD(n) on a machine with cell size B =
log n, some operation will require access to at least Ω(log n/log log n) cells
in the worst case.

Proof By a−i we mean the inverse of ai in the group 〈a〉. Thus, a−iai =
aia−i = 1a. With this in mind, for i ≥ 1, define ai = aiba−i. Let d ≥ 1
be minimal so that a1 = ad+1. Clearly, d ≤ k. Furthermore, ai 6= aj for
1 ≤ i < j ≤ d, since otherwise we would have a1 = ad+1+i−j. Finally,
d ≥ 2, since otherwise we would have aba−1 = a2ba−2 ⇒ 1aba = ab1a. We
now show how to implement Zd -PREFIX(n) using an implementation of M -
WORD(n). By the Fredman-Saks lower bound for this problem, we are done.
We are to maintain (x1, x2, x3, . . . , xn) ∈ (Zd)n . We do this by maintaining
(y1, y2, y3, . . . , yn) ∈Mn in an M -WORD(n)-structure while maintaining the
invariant yi = axi . We change xi to t by changing yi to at. Suppose now
we are to compute

∑j
i=1 xi mod d. Suppose the current value of xj is t.

We find the value w =
∏n
i=1 yi. We change yj to atbw−1 and find the value

w′ =
∏n
i=1 yi. This is now arba−r if and only if

∑j
i=1 xi ≡ r (mod d). After

this we change the value of yj back. 2

Regular languages

In this section, we discuss the connections between dynamic word problems
and the dynamic membership problem for regular languages. We will, with-
out loss of generality, restrict our discussion to regular languages over the
alphabet {0, 1}.

Let us first recall the following definition from the theory of formal
languages:

◦ 1 a b

1 1 a b
a a a b
b b a b

Figure 3: The syntactic monoid of {0, 1}∗0

Definition 11 Let L ⊆ {0, 1}∗ be a regular language and let A be the

16

minimal deterministic automaton for recognizing L with state set Q and
transition function δ : Q× {0, 1} → Q.

Given a string w = w1w2 . . . wn ∈ {0, 1}n, w induces a map φL(w) : Q→
Q defined inductively by

• φL(ε)(q) = q

• φL(w1 . . . wn)(q) = δ(φL(w1 . . . wn)(q), wn)

Note that φL is a morphism from the free monoid with generators 0 and
1 into the monoid of maps on Q. It is called the syntactic morphism of L.
The image of φL, i.e. φL({O, 1}∗) is called the syntactic monoid of L or ML.

Clearly, we can solve the dynamic membership problem for L by solving
ML-WORD(n). Thus, upper bounds on the complexity of the latter gives
upper bounds on the complexity of the former. For example, as a corollary
to Theorem 9, if L is a star free regular language, i.e. if L can be described
using the symbols ·,∪,−, ∅,∑∗, the dynamic membership problem for L can
be solved in timeO(log log n) on a random access machine, since the syntactic
monoid of a star free language is group free [3]. However, bounds obtained
in this way are not necessarily optimal as the following example tells us:

Let L = {0, 1}∗0. The dynamic membership problem for L can be solved
in constant time. However, the syntactic monoid of L is isomorphic to the
monoid in Figure 3, which is non-commutative so any B = 1 implementation
has complexity Ω(log n

log log n
).

It is interesting to note that a similar phenomenon arises when consider-
ing the parallel complexity of regular languages [6], a regular language may
be in AC0 even when the word problem for its syntactic monoid is not. In
the parallel case, however, the complexity of regular languages is now well
understood [3].

It would be nice to have a similar complete understanding of the dy-
namic complexity of regular languages recognition. However, we will settle
for the following theorem which gives a sufficient condition for a regular lan-
guage to be as hard as its syntactic monoid. We don’t know anything in
general about the complexity of languages violating the condition.

Theorem 12 Let L be a regular language. If there is an integer t, so that

17

φL({0, 1}t) = ML, then for any cell size B ≥ 1, if L-MEMBER can be im-
plemented with change and query having complexity f(n), where f(O(n)) =
O(f(n)), then ML-WORD(n) can be implemented with complexity O(f(n)).

Proof Let Q be the state set of the minimal automaton for recognizing
L. Let s be the initial state and let F be the set of accepting states. Let
U be a finite set of words, so that for all q ∈ Q there is a w ∈ U with
φL(w)(s) = q. Let V be a finite set of words, so that there for all p, q ∈ Q
with p 6= q is a word w ∈ V with φL(w)(p) ∈ F but φL(w)(q) /∈ F or vice
versa (since the automaton is minimal, we can find the sets U and V). For
each y ∈ML, let τ(y) be a word in {0, 1}t with φL(τ(y)) ∈ y.

We now construct a data structure for maintaining y = y1 . . . yn with
yi ∈ ML. We use |U | · |V | data structures for the dynamic language mem-
bership problem of L ∩ {0, 1}m for various values of m. More precisely, for
each pair (u, v) ∈ U × V , we maintain the membership in L of the string
uτ(y1)τ(y2) . . . τ(yn) v. We now show that if we know the membership of
each of these strings in L we know the value of y1 . . . yn. Recall that y is
a map from Q to Q so if we know y(q) for all q in Q, we know y. Recall
also that y(q) = φL(τ(y1)τ(y2) . . . τ(yn))(q). Given q, let u be a string with
φL(u)(s) = q, i.e. y(q) = φL(u τ(y1)τ(y2) . . . τ(yn))(s) Now the following pro-
cedure for determining y(q) suggests itself: Initially every p ∈ Q is a candi-
date for y(q). We now repeatedly pick a pair p1, p2 and eliminate one of them
by taking a string v with φL(v)(p1) ∈ F but φL(v)(p2) /∈ F and checking if
φL(u τ(y1)τ(y2) . . . τ(yn) v)(s) is in F , i.e. checking if u τ(y1)τ(y2) . . . τ(yn) v
is in L. 2

Note that in the example above, the condition in the theorem is violated,
since we have φL({0, 1}t) = {a, b} 6= ML for every value of t ≥ 1.

3 Conclusion and open problems

We have obtained a fairly good classification of the complexity of dynamic
word and prefix problems for a monoid M , based on algebraic properties of
M . The following problems remain.

• Close the gap between Ω(log n/log log n) and O(log n) for the case
B = 1. Is a further distinction between different monoids necessary or

18

can we get the same bounds for them all?

• For B = log n, get a Ω(log log n) lower bound on the word (or prefix)
problem for non commutative monoids.

• We have not yet classified theB = log n complexity of the word problem
for those non-commutative monoids which contains a non-trivial group,
and where for any such cyclic group 〈a〉 with one element 1a, 1aba =
ab1a for any b ∈M .

• Classify the complexity of the dynamic membership problem for regular
languages.

• Are there any formal links to parallel complexity? Some properties
seem to be the same, for instance the prefix problem for a monoid
M is in AC0 if and only if the monoid is group free, otherwise, if
polynomial size is to be obtained, depth Θ(log n/log log n) is sufficient
and necessary. Similarly, the dynamic prefix problem for cell size B =
log n is O(log log n) if and only if the monoid is group free, otherwise,
time Θ(log n/log log n) is sufficient and necessary. Other properties
are quite different, for instance, the B = 1 dynamic complexity of the
word problem for M does not seem to have much to do with its parallel
complexity.

Acknowledgements

The second author would like to thank Desh Ranjan and Shiva Chaudhuri
for helpful discussions.

References

[1] D. Angluin, L.G. Valiant: Fast Probabilistic Algorithms for Hamiltonian
Circuits and Matchings, J. Comput. System Sci. 18 (1979) 155-193.

[2] D.A. Barrington, Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1, J. Comput. System Sci. 38
(1989) 150-164.

19

[3] D.A. Mix Barrington, K. Compton, H. Straubing, D. Therien, Regular
Languages in NC1, J. Comput. System Sci. 44(1992) 478-499.

[4] D.A. Mix Barrington, D. Therien, Finite monoids and the fine structure
of NC1, J. Assoc. Comput. Mach. 35 (1988) 941-952.

[5] R.B. Boppana, M. Sipser: The Complexity of Finite Functions, in: J.
van Leuuwen, ed., Handbook of Theoretical Computer Science, Vol. A
(Elsevier, Amsterdam, 1990) 757-804.

[6] A.K. Chandra, S. Fortune, R. Lipton, Unbounded fan-in circuits and
associative functions, in: Proc. l9th ACM Symp. on Theory of Compting
(1987) 123-131.

[7] R.F. Cohen, R. Tamassia, Dynamic Expression Trees and their Applica-
tions, in Proc. 2nd Annual ACM-SIAM Symp. on Discrete Algorithms
(1991) 52-61.

[8] G.S. Frandsen, P.B. Miltersen, E.M. Schmidt, S. Skyum, Counting on a
1 bit machine, in preparation.

[9] M.L. Fredman: Observations on the complexity of generating quasi-Gray
codes, SIAM J. Comput. 7 (1978) 134-146.

[10] M.L. Fredman: The Complexity of Maintaining an Array and Comput-
ing its Partial Sums, J. Assoc. Comput. Mach. 29 (1982) 250-260.

[11] M.L. Fredman, M.E. Saks: The Cell Probe Complexity of Dynamic Data
Structures, in: Proc. 21st Ann. ACM Symp. on Theory of Computing
(1989) 345-354.

[12] M. Furst, J. Saxe, M. Sipser, Parity, circuits and the polynomial time
hierarchy, Math. Systems Theory 17 (1984) 13-27.

[13] J. H̊astad, Computational limitations for small depth circuits, (MIT
Press, Cambridge, MA, 1986).

[14] K. Krohn, J. Rhodes, Algebraic theory of machines. I. Prime decompo-
sition theorem for finite semigroups and machines, Trans. Am. Math.
Soc. 116 (1965) 450-464.

20

[15] P.B. Miltersen, On-line reevaluation of functions, Aarhus University
Tech. Report DAIMI PB-380.

[16] P.B. Miltersen, Combinatorial Complexity Theory, Aarhus University
Ph.D. Thesis, 1993.

[17] P. Van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of
an efficient priority queue, Math. Systems Theory 10 (1977) 99-127.

[18] S. Sairam, J.S. Vitter, R. Tamassia, A complexity theoretic approach to
incremental computation, in: Proc. 10th Ann. Symp. Theoretical Aspects
of Computer Science (1993) 640-649.

[19] A.C. Yao, Separating the polynomial-time hierarchy by oracles, in: Proc.
26th Ann. IEEE Symp. on Foundations of Computer Science (1985) 1-
10.

21

