

The Complexity of Finding Replicas Using
Equality Tests∗†

Gudmund Skovbjerg Frandsen

Peter Bro Miltersen

Sven Skyum

Computer Science Department, Aarhus University

Abstract

We prove (for fixed k) that at least 1
k−1

(n2) − O(n) equality tests and
no more than 2

k
(n2) + O(n) equality tests are needed in the worst case to

determine whether a given set of n elements contains a subset of k identical
elements. The upper bound is an improvement by a factor 2 compared to
known results. We give tighter bounds for k = 3.

1 Introduction

When given n elements it is often possible to sort them according to bit
string representation and hence decide which elements are identical in
time O(n logn).

However, Campbell and McNeill [2] mention applications, where an
equivalence relation is available, but it can not be extended to a total
order on the bit representation. We mention one of their many examples.
Consider a database of faces obtained by electronic scanning from differ-
ent angles, where two images are equivalent if they represent the same
person. If we want to verify that a set of images contains no duplicates,
we may let a human being look at all possible image pairs, but it would
seem to be of little help to sort the images according to bit representation.
∗This research was supported by the ESPRIT II BRA Programme of the EC under contract

7141 (ALCOM II) and by CCI-Europe.
†Accepted for presentation at MFCS’93.

1

This type of problem motivates the study of a computational model,
where the only allowed operation is an equality test on pairs. We define
two complexity measures:

Definition 1.1 (Existence) For 2 ≤ k ≤ n, let E(k, n) denote the min-
imum number of equality tests that an algorithm must use in the worst
case, to determine whether there exists k identical elements in a list of n
elements.

Definition 1.2 (Classification) Similarly, define C(k, n) to be the min-
imum number of equality tests that an algorithm must use in the worst
case to find a representative for and the cardinality of each equivalence
class with at least k members in a list of n elements.

Clearly, E(2, n) = C(2, n) = (n2). This corresponds to the situation
in the example above. If there are no duplicate images, that fact can be
known to the algorithm only after comparison of all pairs.

However, the problem becomes nontrivial for k > 2. When checking
the existence of triplicates, it is not necessary to compare all pairs of
elements. We have managed to prove that 7

12(n2) − O(n) ≤ E(3, n) =
C(3, n) ≤ 3

5(n2) + 1. This result determines the fraction of pairs that must
be compared in the worst case up to 3

5 − 7
12 = 1

60.
For general k the literature contains a single result, C(k, n) ≤ 2bnkcn

[2]. We have improved this result by almost a factor 2, and obtain
C(k, n) ≤ (1 + bnkc)n. We have also found a general lower bound. Our
results amount to 1

k−1(n2) − n
2 ≤ E(k, n) ≤ C(k, n) ≤ 2

k(n2) + 3n
2 , i.e. we

determine the fraction of pairs that must be compared to within a factor
less than 2. It is obvious that E(k, n) ≤ C(k, n), but we have not been
able to prove that E(k, n) = C(k, n) in general. Similarly, it is a triv-
ial observation that C(k, n) is nonincreasing in k, but we have no such
monotonicity knowledge of E(k, n).

Earlier special results have focused on determining a majority element,
and the exact complexity E(dn+1

2 e, n) = C(dn+1
2 e, n) = b3

2(n − 1)c was
found independently by several people [3, 4]. The interest in deciding
the existence of a majority element was motivated by the design of fault
tolerant computer systems where a majority of single processors must
agree on the output [6]. The linear result is also interesting in a model
where the elements are ordered [5].

In a restricted version of the majority problem, it is known in advance
that there are precisely two distinct equivalence classes. It requires and

2

suffices to make n − B(n) equality tests to find a representative of the
larger class, when n is odd (B(n) denotes the number of ones in the
binary representation of n) [7].

We have divided our results into two sections. In the first of these,
we present our results for the special case k = 3, and in the last section
we present our results for the general case.

2 The Complexity of Finding Triplicates

We start by proving that finding the cardinality of all equivalence classes
with at least three elements is no harder that determining whether any
such class exists. We continue by presenting and analysing a simple
algorithm that determines the existence of a triplicate element.

The main result of this section is a lower bound for the same prob-
lem, where the proof uses an adversary argument combined with a graph
theoretic view on the problem.

Theorem 2.1
E(3, n) = C(3, n)

Proof. Given n, let A be an algorithm that decides whether there exists
3 identical elements in an input consisting of n elements, using E(3, n)
equality tests in the worst case.

A can be regarded as a black box that once in a while poses an equality
query. When fed the proper answers, it will eventually tell whether the
input contains 3 identical elements or not. Since A never poses more than
E(3, n) queries it probably does some very efficient accounting inside the
black box. Without knowledge of the nature of this internal accounting,
we can nevertheless use A to construct an algorithm B that uses at most
E(3, n) equality queries to decide the cardinality of each equivalence class
containing three or more elements and B will find a representative for each
such class. Hence, the existence of B implies the theorem.

B starts the black box A. Each time A wants to know whether two
elements x, y are identical then B makes the corresponding equality test,
but B sometimes supplies a wrong answer to the black box A. B’s strategy
for deciding whether to supply A with the correct or the wrong answer
is the following:

1. If the correct answer is “ 6=” then this answer is passed on to A.

3

2. If the correct answer is “=” then B’s action depends on the infor-
mation A has received through earlier queries. If A when combining
the correct answer “=” with old information may deduce the ex-
istence of 3 or more identical elements then B supplies the wrong
answer “ 6=” to A. Otherwise B gives A the correct answer “=”.

When A stops, it must possess enough (possibly false) information to
deduce that there are not three identical elements in the input. We claim
that B at this point in time possesses enough (correct) information to
determine all equivalence classes with three or more elements.

Let X = {x1, . . . , xl} be an equivalence class, l ≥ 3. If A poses a
query of the form xi?z, where z 6∈ X, then A receives the correct answer
“6=” according to B’s strategy, i.e. every equivalence class known to A
is a subclass of a true equivalence class. Since l ≥ 3, A must make at
least one query of the form xi?xj. Without loss of generality, we may
assume that the first such query is x1?x2. According to B’s strategy,
A receives the correct answer “=”. Since A eventually concludes that
X ′ = {x1, x2} is a maximal equivalence class, then A must pose queries
to reveal the relation between X ′ and any other equivalence class that it
knows of. Since the class division known to A is a refinement of the true
class division, B will through these queries obtain full knowledge of X.
2

Theorem 2.2

E(3, n) ≤ d 3
10
n(n− 1)e ≤ 3

5

 n

2

 + 1

Proof. We describe an algorithm that takes as input a list of elements
and determines whether three of them are identical. The algorithm has
two phases.

In the first phase, we take the input elements one by one and insert
them in the smaller one of two sets Ui, (i = 1, 2) such that we keep the sets
equal sized, |U1| = |U2|+ δ, where δ ∈ {0, 1}. We do not make any cross
comparisons of U1 and U2, and hence we have no knowledge of U1 ∩ U2.
Each Ui is maintained as the disjoint union of two subsets: Ui = Si ∪Di,
Si∩Di = ∅, where Si are the elements that have been seen only once, and
Di are the elements that we have seen twice. When inserting an element
e into Ui, we first compare e to Si. If e ∈ Si then we move e from Si to

4

Di. Otherwise we compare e to Di. If e ∈ Di then we have seen e thrice
and the algorithm halts, otherwise e was not in Ui and is inserted into Si.

If the algorithm finishes the first phase without halting, we must com-
pare U1 to U2 in the second phase. We need not make a complete pairwise
comparison. If there is three identical elements then there is a represen-
tative in D1 ∪D2. Hence it suffices to compare S1 to D2, D1 to D2 and
D1 to S2.

To prove the upper bound, we need to make a count of the number
of equality tests that the algorithm uses in the worst case. Let si = |Si|
and ui = |Ui|. In phase one we may count the comparisons made when
inserting into the two Ui’s separately for each i. The worst sequence
of events consists in first inserting ui distinct elements into Ui followed
by the insertion of ui − si duplicates. This uses a maximum number of
comparisons ui

2

 +
 ui + 1

2

−
 si + 1

2

 = u2
i −

 si + 1
2

 .
In phase two we need to make at most u1u2 − s1s2 comparisons.

We may express the total number of comparisons made in terms of
s = s1 + s2 only, when using that u1 − u2 = δ (δ ∈ {0, 1}) and u1 + u2 =
1
2(n+ s):

u1u2 − s1s2 + ∑2
i=1[u2

i −
 si + 1

2

]

= (u1 + u2)2 − u1u2 − 1
2s(s+ 1)

= − 5
16s

2 + (3
8n− 1

2)s+ 3
16n

2 + 1
4δ

2

The latter expression takes its maximum for s = 1
5(3n−4) and the integral

part of the maximum expression value is at most d 3
10n(n − 1)e, which is

an upper bound for E(3, n). 2

Theorem 2.3

E(3, n) ≥ 7
24
n2 −O(n) =

7
12

 n

2

−O(n)

Proof. We prove this lower bound by means of an adversary argument.
The adversary maintains a complete graph on n vertices, corresponding
to the n elements that the algorithm may compare pairwise in queries.

5

Initially, all edges in the graph are black. When answering a query
(x?y) the adversary paints the corresponding edge (x, y) green if the an-
swer given is x = y and otherwise the edge is painted red.

The adversary will always give answers that are consistent with no
triple of elements being identical, i.e. the green edges will form a match-
ing. On the other hand the information will for quite some time be
consistent with the existence of three identical elements, i.e. the graph
contains a 3-clique with no red edges for a long time.

The adversary will maintain a partition of the vertices in two classes,
the green vertices G and the red vertices R. A vertex with an adjacent
green edge is green and all other vertices are red.

In describing the adversary strategy, we need only consider the case,
where the algorithm queries the relation (x?y) for a black edge (x, y). If
there would arise a clique of size n

3 with all vertices and edges red in case
the edge (x, y) were painted red, then the adversary answers equal and
otherwise it answers distinct.

The strategy preserves the following invariants:

1. Let C be a maximum size clique with all vertices and edges being
red. Let c = |C|. It is always the case that c < n/3 and if G 6=
∅ then c ≥ n/3 − 2. (To see the latter inequality, observe that
immediately following the latest green-painting of an edge, c ≥
n/3− 2).

2. Let γ and ρ be the number of green and red edges respectively and
let r be the number of red vertices. Then the number of distinct
queries answered by the adversary is γ + ρ and γ = 1

2(n− r).

We want to compute a lower bound for the number of queries made
by an algorithm that verifies the nonexistence of three identical elements.
Hence, it suffices to compute a lower bound for γ+ρ when every 3-clique
in the graph contains a red edge and the graph satisfies the invariants
above. Clearly, γ ≤ n/2 and since we want to prove a lower bound that
hides linear terms under O-notation, we ignore γ and concentrate on ρ.

We shall find the number of red edges as a sum of four numbers, and
for counting purposes we will regard a matched pair of green vertices as
a supervertex.

1. Each pair of green supervertices are connected with a red edge, i.e.
ρ1 = 1

2γ(γ − 1).

6

2. Each red vertex is connected to each green supervertex with a red
edge, i.e. ρ2 = rγ.

3. We have not counted all red edges incident to green vertices. Two
green super vertices may be connected by up to 4 red edges, and a
red vertex and a green supervertex may be connected by 1 or 2 red
edges. Our adversary strategy guarantees the existence of at least
n/3− 2 “extra” red edges for each green edge, i.e. ρ3 ≥ (n3 − 2)γ.

4. Finally, we count the red edges connecting red vertices. Note that
the clique of red vertices contains only red and black edges, and
each 3-clique in it must have at least one red edge. If x is a red
vertex then let Nb(x) (Nr(x)) denote all the red vertices that are
connected to x by a black (red) edge. Observe that Nb(x) must
form a clique of red edges only, since we could otherwise find a
3-clique with black edges only. ¿From the invariant, we therefore
know that |Nb(x)| ≤ c, and consequently |Nr(x)| ≥ r − 1 − c. If x
lies in the clique C then we know in addition that |Nr(x)| ≥ c− 1.
We may combine this information and obtain for x ∈ C: |Nr(x)| ≥
max(r− 1− c, c− 1) ≥ 1

2[(r− 1− c) + (c− 1)] = r
2 − 1. Adding up,

we get ρ4 ≥ 1
2[c(r2 − 1) + (r − c)(r − c− 1)].

We may eliminate low order terms from the bound of ρ to obtain:

ρ = ∑4
i=1 ρi

≥ 1
2γ(γ − 1) + rγ + (n3 − 2)γ + 1

2[c(r2 − 1) + (r − c)(r − c− 1)]
= 1

2γ
2 + rγ + n

3γ + 1
2r

2 + 1
2c

2 − 3
4rc−O(n)

We would like to eliminate c from this bound. From the invariant, we
know that n

3 − 2 ≤ c < n
3 , provided that γ > 0. If γ = 0, then r = n

and we find that ρ ≥ 1
2c

2 − 3n
4 c + n2

2 − O(n). For c < n
3 the value of

this expression is bounded from below by the value at c = n
3 , which is

11
36n

2 − O(n). Hence, if γ = 0 then the algorithm has used at least as
many equality tests as claimed in the statement of the theorem (11

36 >
7
24).

In the following, we assume that γ > 0, which enable us to express the
bound on ρ in terms of r only when using c = n

3 −O(1) and γ = 1
2(n− r):

ρ ≥ 1
8(n− r)2 + 1

2r(n− r) + n
6 (n− r) + 1

2r
2 + 1

18n
2 − 1

4rn−O(n)
= 1

8r
2 − n

6r + 25n2

72 −O(n)

This expression takes its minimum value at r = 2n
3 , where the value is

7
24n

2 −O(n), which is a lower bound for E(3, n).

7

The analysis of our adversary strategy is optimal, in the sense that the
algorithm in the proof of theorem 2.2 uses at most 7

24n
2 +O(n) equality

tests, when run against the adversary.
The essence of the adversary strategy is to answer “ 6=”, when there

would otherwise arise a red clique of size n
3 . The choice of n

3 gives the best
lower bound among all possible fixed fractions of n. Hence, a significantly
different adversary strategy is required for a possible improvement of the
lower bound. 2

3 The Complexity of Finding Replicas in
General

We present a general lower bound with a simple proof that is based on
Turan’s theorem. The main result of this section is an efficient algorithm
for the general case. The analysis of the algorithm is based on a rather
intricate amortization argument.

Theorem 3.1

E(k, n) ≥ n

2
(

n

k − 1
− 1) + k − 2 ≥ 1

k − 1

 n

2

− n

2

Proof. We rephrase our problem as a graph problem, and use an adversary
argument combined with a result from extremal graph theory to prove
the lower bound.

Observe that E(k, n) is the minimum number of probes into the inci-
dence matrix for a transitive graph G that will decide whether G contains
a k-clique.

Our adversary strategy is the following: When an algorithm asks for
an entry in the incidence matrix, we let the adversary answer that the
edge is not present. So the algorithm will obtain information that is
always consistent with the graph having no k-clique, but for quite some
time the information will also be consistent with the graph having a k-
clique. We need a lower bound on the number of probes for which the
information remains nonconclusive. It is implied by the following result:

Fact 3.2 (Consequence of Turan’s theorem [1, p. 293]) Let tq(n)
= (n2)−∑q−1

i=0 (ni2), where ni = bn+i
q c. Every graph with n vertices and more

than tk−1(n) edges contains a k-clique.

8

The adversary strategy combined with the fact gives us the following
lower bound:

E(k, n) ≥
 n

2

− tk−1(n).

When letting r = n− (k − 1)b n
k−1c, we may compute

E(k, n) ≥ ∑k−2
i=0

 ni
2

= (k − 1− r)

 n−r
k−1
2

 + r

 n−r
k−1 + 1

2

= (n−r)(n−(k−1−r))

2(k−1)
≥ n

2 (n
k−1 − 1)

The lower bound can be increased with k−2, if the adversary changes
its strategy just before giving conclusive information. The adversary may
then answer equal to at least k − 2 queries without letting the algorithm
resolve the situation. 2

Theorem 3.3

C(k, n) ≤ (bn
k
c+ 1)n ≤ 2

k

 n

2

 +
3
2
n

Proof. Let l = bnkc, i.e. n
l+1 < k ≤ n

l . We shall describe an algorithm
that receives at most ln “6=”-answers to equality queries. This implies
the theorem, since by proper accounting the algorithm will have complete
information if it receives n− 1 “=”-answers to equality queries.

The algorithm works in two phases. In the first phase, the algorithm
finds up to l elements satisfying that any equivalence class with at least
k elements must have a representative among these l elements. In the
second phase the abundance of the l candidates are checked.

In the first phase the algorithm inserts the elements one by one into
a sequence of buckets B1, B2, . . . , Bm, where m is initially 0 and increases
according to need. All elements in a single bucket are identical and if the
elements of two distinct buckets Bi,Bj are identical then their indices are
at least l + 1 apart, |i − j| ≥ l + 1. All buckets are nonempty, but only
the first l buckets may contain two or more elements. Formally, if si is
the number of elements in Bi, one of which is xi, then we maintain the
following invariants:

si ≥ 1 for 1 ≤ i ≤ min(l,m)

9

si = 1 for l < i ≤ m
1 ≤ |i− j| ≤ l implies that xi 6= xj

When considering an unused element z we test whether it is identical to
any of x1, x2, . . . , xf , where f = min(l,m). There are three cases:

1. If z = xi, i ≤ f then we add z to Bi (the invariants still hold).

2. If m < l and z is distinct from all of x1, x2, . . . , xm then we insert
a new bucket Bm+1 containing the single element z (invariants are
preserved).

3. If m ≥ l and z is distinct from all of x1, x2, . . . , xl, the action is
more complicated. This time we shift all buckets one up, and insert
a new first bucket containing the single element z. At this point
there may be more than one element in the updated Bl+1-bucket,
which is not allowed according to the invariant. Exceeding elements
from Bl+1 are removed and inserted in a new first bucket following
yet another shift. This continues until the invariant is satisfied.
Formally, if si ≥ 2 for all 1 ≤ i ≤ l then let r = 0 otherwise let r be
maximum such that 1 ≤ r ≤ l and sr = 1. If x′i, s

′
i,m

′ refers to the
updated sequence of buckets then we have

(a) m′ = m+ l − r + 1.

(b) x′i+l−r+1 = xi and s′i+l−r+1 = 1 for r ≤ i ≤ m.

(c) x′i+l−r+1 = xi and s′i+l−r+1 = si for 1 ≤ i ≤ r − 1.

(d) x′i+l−r = z and s′i+l−r = 1.

(e) x′i−r = xi and s′i−r = si − 1, for r + 1 ≤ i ≤ l.

One may check that this action preserves the invariants.

We have not quite finished the description of the first phase. When
comparing z to x1, x2, . . . , xf , the comparison order is irrelevant, if no
equality is found. However, if equality is found, it will be essential to the
later complexity analysis that the following comparison order has been
used: We compare z to an element of a larger bucket before comparing
to an element of a smaller bucket, and among equal sized buckets, we
compare z to an element from a bucket with small index before comparing
z to an element from a bucket with large index. We stop comparing once
equality is found.

10

Before describing the exact actions taken in the second phase, we
make the following observation:

Let l ≤ e ≤ m. Then the buckets Be+1, Be+2, . . . , Bm each contain
exactly one element, and there are at least l buckets between two
buckets with identical elements according to the invariant. This
implies that if the listed buckets contain q ≥ 1 copies of a specific
element z, then m−e ≥ (q−1)(l+1)+1, or equivalently φ(e, q) ≥ 0
where φ is defined as φ(e, q) = m− e− (q − 1)(l + 1)− 1.

Observe that φ(e+(l+1), q−1) = φ(e, q) and φ(e+1, q) = φ(e, q)−1.
We may now determine the number of copies of z (if it is at least q)
in Be+1, . . . , Bm as follows: While φ(e, q) ≥ 0 and e < m compare
z to xe+1. If z = xe+1 then xe+2, . . . , xe+(l+1) are all distinct from z

and we increment e by l + 1 and decrement q by one, which leaves
φ(e, q) unchanged. If z 6= xe+1 then we increment e by one and
leave q unchanged, which decrements φ(e, q) by one.

The sketched algorithm determines whether there are q copies of z
in Be+1, . . . , Bm, and if so the algorithm finds the exact number of
copies. It receives at most max(0, φ(e, q)+1) = max(0,m−e− (q−
1)(l + 1)) “6=”-answers.

This observation implies that we need only check the abundance of the
elements in the first f buckets for f = min(l,m), since an element z
distinct from all of x1, x2, . . . , xl can only occur in k copies or more if
φ(l, k) ≥ 0, i.e. if n ≥ m ≥ k(l + 1), which is contradictory to the
definition of l.

We check the abundance of each of the f candidates x1, x2, ..., xf in
turn. Let us consider the checking of an arbitrary one of these, z = xi.
By the invariant, we know that there are precisely si copies of z in the
buckets B1, . . . , Bl+i. Hence, if m ≤ l+ i then we are done and otherwise
we check whether there are at least k − si copies of z in the buckets
Bl+i+1, . . . , Bm using the algorithm described in the observation.

We have now presented the algorithm and argued its correctness. We
need still analyse its complexity. We argued earlier that it suffices to show
that the algorithm never makes more than l · n comparisons that result
in the answer “6=”. We compute the cost of the algorithm separately for
the two phases:

Let C1 be the number of “6=”-answers that the algorithm receives
when inserting the first v elements during the first phase, and let C2 be

11

the number of “6=”-answers that the algorithm receives during the second
phase, if it was executed directly following insertion of the first v elements
in the first phase.

Let m, si denote the values taken by these variables following the
insertion of the first v elements. Let f = min(l,m), let t = ∑f

i=1 si, let

F =
∑

1≤i<j≤f
min(si, sj)

and let
G = #{(i, j)|1 ≤ i < j ≤ f and si < sj}.

Then we have

Lemma 3.4
C1 ≤ vl − tl − (f2) + 2F +G

Lemma 3.5 If f < l then C2 = 0 and if f = l then

C2 ≤ tl + (f2)− 2F −G

We note that the total cost of the algorithm is C1 + C2 ≤ ln by the
lemmas. Hence the theorem follows, when we have proved the lemmas:

Proof of lemma 3.4. We prove the inequality by induction on v. If
v = 1 then t = v = f = 1 and the statement reduces to C1 ≤ 0, which is
true.

Assume that the inequality describes a correct upper bound for C1.
When inserting the (v+1)’th element z, the algorithm distinguishes three
cases. We will argue that the invariant is preserved in each case. In
the following we let unprimed variables refer to the situation before the
insertion of z and we let primed variables refer to the situation after the
insertion:

1. z is added to Bi. Let J1 = {j|1 ≤ j ≤ f and si < sj} and let
J2 = {j|1 ≤ j < i and si = sj}. By the comparison order, used
by the algorithm, z is found distinct to other elements in precisely
#J1 + #J2 comparisons, before the insertion into Bi. We note that
v′ − t′ = v − t, f ′ = f , F ′ = F + #J1 and G′ ≥ G + #J2 − #J1.
Hence, C ′1 satisfies the stated inequality.

2. m < l and z is found distinct from all of x1, . . . , xf . We get f “6=”-
answers. v′ − t′ = v − t = 0, f ′ = f + 1, F ′ = F + f and G′ = G.
Hence, C ′1 satisfies the inequality in this case too.

12

3. m ≥ l and z is distinct from all of x1, . . . , xl. We get l “6=”-answers.
Let r be defined as in the description of the algorithm. v′ = v + 1,
t′ = t− r, f ′ = f = l and 2F ′ +G′ ≥ 2F +G− (l − r)r. Hence, in
all three cases C ′1 satisfies the inequality of the lemma.

Proof of lemma 3.5. The case of f < l is trivial, hence we assume
that f = l. By the observation in the description of the second phase, we
know that

C2 ≤ ∑f
i=1 max(0, φ(l + i, k − si) + 1)

= ∑f
i=1 max(0,m− l − i− (k − si − 1)(l + 1))

= ∑f
i=1 max(0, v − t− i− (k − si − 1)(l + 1))

= ∑f
i=1 max(0, v − k(l + 1)− t− i+ (si + 1)(l + 1))

≤ ∑f
i=1 max(0,−1− t− i+ (si + 1)(l + 1))

= ∑f
i=1 max(0, sil + (l − i)− (t− si))

= ∑f
i=1 max(0, sil + (l − i)− ∑

1≤j<i sj − ∑
i<j≤f sj)

≤ ∑f
i=1 max(0, sil + (l − i)
−∑

1≤j<i min(si, sj)− ∑
i<j≤f min(si + 1, sj))

= ∑f
i=1[sil + (l − i)
−∑

1≤j<i min(si, sj)− ∑
i<j≤f min(si + 1, sj)]

= tl + (f2) + f(l − f)− 2∑1≤i<j≤f min(si, sj)
−#{(i, j)|1 ≤ i < j ≤ f and si < sj}

The term f(l − f) disappears, since we have assumed l = f . We have
thus proved the lemma. 2

References

[1] Bollobás, B., Extremal Graph Theory. Academic Press, 1978.

[2] Campbell, D. and McNeill, T., Finding a majority when sorting is
not available. The Computer Journal 34 (1991) 186.

[3] Fischer, M. J. and Salzburg S. L., Solution to problem 81-5. Journal
of Algorithms 3 (1982) 376–379.

[4] Matula, D. W., An Optimal Algorithm for the Majority Problem.
Manuscript, Southern Methodist University, Texas, 1990.

[5] Misra, J. and Gries, D., Finding Repeated Elements. Science of
Computer Programming 2 (1982) 143–152.

13

[6] Moore, J., Problem 81-5. Journal of Algorithms 2 (1981) 208–209.

[7] Saks, M. E. and Werman, M., On Computing Majority by Compar-
isons. Combinatorica 11 (1991) 383–387.

14

