
From CML to Process Algebras

Flemming Nielson, Hanne Riis Nielson
Computer Science Department, Aarhus University

Ny Munkegade, DK-8000 Aarhus C, Denmark

e-mail:{fnielson,hrnielson}@daimi.aau.dk

March 1993

Abstract

Reppy’s language CML extends Standard ML of Milner et al. with
primitives for communication. It thus inherits a notion of strong poly-
morphic typing and may be equipped with a structural operational
semantics. We formulate an effect system for statically expressing the
communication behaviours of CML programs as these are not other-
wise reflected in the types.

We then show how types and behaviours evolve in the course of
computation: types may decrease and behaviours may loose alterna-
tives as well as decrease. It will turn out that the syntax of behaviours
is rather similar to that of a process algebra; our main results may
therefore be viewed as regarding the semantics of a process algebra
as an abstraction of the semantics of an underlying programming
language. This establishes a new kind of connection between “rea-
listic” concurrent programming languages and “theoretical” process
algebras.

1

1 Introduction

One trend in the research on process algebras is to extend them with “higher-
order” features somewhat analogous to the “higher-order” role that functions
play in functional languages. Some approaches allow passing labels or ports,
e.g. [13], whereas others allow passing processes, e.g. [21, 23]. Sometimes
this leads to hybrid calculi that contain the syntax of a process algebra as
well as that of the λ-calculus, e.g. [5, 14, 9]. Putting more emphasis on the
functional features, another approach is to extend a “realistic” functional
language with primitives for communication. Good examples include CML
[18, 19, 13] and Facile [7] but also Concurrent Clean [16] may be viewed in
this way. We refer to [10] for a much more detailed survey of some of these
issues.

We follow the latter approach and base ourselves on Reppy’s language CML.
It is an extension of Standard ML with primitives for communication; among
other things this allows channels to be created and processes to be forked and
then processes may send and receive values over channels. Since CML is an
extension of Standard ML it inherits a notion of strong typing unlike some
other approaches. However, the types are very close to those of Standard ML
and therefore do not contain much information about the communication
that takes place during computation. Following [14, 9] we believe that it
is desirable with some type-like “formula” that gives a concise summary of
the possible communication behaviours. Our approach deviates from [14, 9]
in separating the type and communication information by using the notion
of effect system previously developed for functional languages, e.g. [11, 20].
Section 2 gives a presentation of this system.

Both [19] and [1] give a structural operational semantics for CML. As is usual
the types do not influence the semantics but for the purpose of proofs it may
be desirable to label the transition relation with additional book-keeping
details (and to retain some type information in the expression). The main
difference between [19] and [1] is that the latter is a traditional operational
semantics whereas the former uses the notion of “evaluation context” in
order to present the rules more concisely and in order to facilitate proofs.
In Section 3 we present a definition close to that of [19] but with additional
book-keeping details; in keeping with tradition the types and behaviours do
not influence the semantics.

2

The impact of the operational semantics on types and behaviours emerges
when showing “subject reduction” and related results. Actually, types may
decrease in the course of computation and this phenomenon also arose in [3]
in the context of modelling object-oriented programming. In a similar way
the behaviours may decrease in the course of computation but additionally
certain alternatives may disappear due to the choices made during computa-
tion. It is instructive to regard this combined decreasing and disappearance
of behaviours as an operational semantics for behaviours. Since behaviours
syntactically resemble process algebras (e.g. the one in [8]) this suggests
the viewpoint that the semantics of a process algebra is an abstraction of
the semantics of an underlying programming language. This is quite unlike
previous attempts to relate languages like CML to process algebras where
programs from CML are directly translated into primitives of some given
process algebra or vice versa. Section 4 provides the precise formulations of
the results we have to offer as well as overviews of the proofs.

We finish with prospects for future research and concluding remarks in Sec-
tion 5. In Appendix A we briefly discuss variations on the system presented
here and in Appendix B we provide full details of the proofs.

2 CML with Behaviours of Communication

We follow [19, 1] in embedding the essential features of CML into a small frag-
ment of Standard ML. For simplicity we restrict the attention to a monomor-
phic fragment and we take care to structure the syntax in a way that facili-
tates adding new constructs as the need arises.

The syntax of expressions e ∈ Exp and weakly1 evaluated expressions w ∈
Exp is given by:

e :: = w | e1 e2 | let i = e1 in e2 | rec i0(i1) : t⇒ e
| if e then e1 else e2 : t

w ::= c : t | i | fn i : t⇒ e | · · ·

They are defined by mutual recursion and include constants with an explicit

1This terminology is consistent with the weak normal forms of [17].

3

monotype, identifiers2 i ∈ Ident (unspecified), function abstraction, applica-
tion, let-abstraction but without any polymorphism, recursive definitions,
and conditional with an explicit monotype indicating the type of the re-
cursive function. In the next section we shall need to introduce additional
weakly evaluated expressions corresponding to the intermediate results that
arise during computation.

The syntax of constants c ∈ Const is given by:

c ::= () | true | false | n
| pair | fst | snd
| nil | cons | hd | tl | isnil
| send | receive | choose | noevent
| wrap | sync | fork | channel

This includes the element () of the unit type, the booleans true and false,
and numerals n ∈ Num (unspecified). For products we write pair e1 e2 for
(e1, e2) in order to reduce the amount of syntactic sugar and we then use fst
and snd to select components. Similarly for lists we write cons e1 (· · · (cons
en nil) · · ·) for [e1, · · · , en] and we select components using hd and tl and
test for emptiness using isnil.

Turning to the concurrency primitives we may send values over channels,
receive values over channels, choose between a list of computations (and
writing noevent for choose nil), and modify a value that is communicated
by applying a function to it. Actually, these primitives construct “delayed”
communications that may be enacted using synchronization. Finally, we may
fork a new process to the pool of processes and we may allocate a new free
channel for communication.

For types t ∈ Type we take:

t ::= unit | bool | int | tv | t1 × t2 | t list
| t1 →b t2 | t chan r | t com b

2It is customary to take w ::= i rather than e ::= i but for the purposes of this section
this does not matter. Since we only rewrite closed expressions in the next section it also
does not matter for the remainder of the paper.

4

As in Standard ML we have three base types, type variables tv ∈ TyVar (e.g.
τ, τ ′, τ1) and products and list. Concerning functions we use a superscript
behaviour b ∈ Beh for indicating the communication that will take place
when the function is executed; the precise details follow shortly. Much as
in CML we have a type for channels over which values of a given type may
be communicated; to allow some separation among the identity of channels
we indicate the specific region where the channel is allocated. For regions
r ∈ Reg we take:

r := i | r1 + r2 | rv

A region will describe a non-empty set of “program points” and we shall
occasionally need region variables rv ∈ RegVar (e.g. ρ, ρ′, ρ1) However, it
would be possible to dispense with regions throughout without invalidating
the results of the paper. Also as in CML we have a type for a “delayed”
communication yielding a result of a certain type; unlike CML we have added
a behaviour for indicating the communication that will take place when the
“delayed” commununication is enacted.

Finally, behaviours b ∈ Beh are given by:

b ::= ε | r!t | r?t | t chan r | t fork b
| b1; b2 | b1 + b2 | rec bv. b | bv

The behaviours include primitive constructs for describing “no communica-
tion”, sending a value of some type over a channel allocated in a certain
region, receiving a value, allocating a channel, and forking a new process of
a given type and with a given behaviour when executed. We use semi-colon
to express that one behaviour takes place before another and we use plus
to express that either the first behaviour takes place or the second does.
For recursive functions we need a behaviour rec bv. b for expressing a be-
haviour that is as given by b provided that recursive calls are as given by
bv ∈ BehVar (e.g. β, β′.β1).

Example 2.1: The map function for mapping a function down a list of
elements may be defined by:

rec map f ⇒ fn xs ⇒ if isnil xs then nil

else cons (f (hd xs)) (map f (tl xs))

5

where we have dispensed with the “: t” at a number of places. Its overall
type is

(int→ε bool)→ε intlist→ε boollist

A parallel version may be defined by:

rec mappar f⇒ fn xs⇒ if isnil xs then nil

else let ch = channel ()
in fork (fn d ⇒ sync

(send (ch, f (hd xs))));
let ys = mappar f (tl xs)
in sync (wrap (receive ch,

fn y⇒ cons y ys))

where we write (e1, e2) for pair e1 e2 and e1; e2 for snd(e1, e2) . Its overall
type is

(int→ε bool)→ε int list→b bool list

where b =rec β. ε+((bool chan m); (bool fork m!bool); β; (m?bool)) and
where we assume that the region corresponding to the channel is m. 2

Well-typing

We shall say that an expression e has type t and behaviour b, written

tenv ` e | t & b,

whenever the type of e is t in the usual sense and evaluation of e gives rise
to the communication behaviour b. As usual tenv is a type environment, i.e.
a finite list of pairs of identifiers and types, giving the types of free variables;
since CML is an eager language there is no effect associated with accessing an
identifier and therefore the type environment does not contain any behaviour
component (except embedded within the types). For constants our syntax

6

prescribes an explicit monotype to be given; we use the polytypes of Figure 1
to restrict the choice of monotypes. Only three primitives involve functions
with a non-trivial behaviour: sync for enacting a “delayed” computation,
fork for forking a new process and channel for allocating a new channel.

The details of the type inference for expressions are given by the axioms
and rules of Figure 2. We already explained the axioms for identifiers and
constants. For function abstraction the resulting type and behaviour in-
dicate that no communication takes place when constructing the function
abstraction but only when the function is executed. For application the
overall behaviour expresses eager left-to-right evaluation: first the expres-
sion in function position in evaluated to a function abstraction, then the
argument is evaluated and finally the function is applied to the argument.
We do not require equality between the type of the actual parameter and
the type of the formal parameter but merely that the type of the actual pa-
rameter is a sub-type of the type of the formal parameter. As illustrated in
Appendix A this is useful for allowing a function expressing mild restrictions
on the argument, e.g. that it only communicates over channels in certain
regions, to be applied to a concrete argument with a very specific commu-
nication behaviour. The definition of the sub-typing relation is given below.
The rule for let-abstraction is rather straightforward. The rule for recursive
functions is much as the rule for function abstraction except that we need to
extend the type environment with assumptions about the recursive function
and we only require the type and behaviour of the body to be sub-types and
sub-behaviours of the corresponding parts of the assumptions. The above
example illustrates that rec-behaviours may be “deeply” nested within the
type of the recursive function3. Finally, the rule for conditional allows the
types of the branches to be dissimilar and only requires them to be sub-types
of a common type. To require equality would invalidate the subject reduction
property proved in Section 4.

Fact 2.2: (Unique Typing) If tenv ` e | t1 & b1 and tenv ` e | t2 & b2 then
t1 = t2 and b1 = b2 2

This is a consequence of not having an explicit subsumption rule but instead
integrating it with the other rules.

3In the notation of Figure 2 there need not be any occurrences of rec in b even though
there may be occurrences in t.

7

Figure 1: Types of Primitives

From a pragmatic point of view it might be better to add the “rearrangement”
rule

tenv ` e | t1 & b1

tenv ` e | t2 & b2
lf t1 ≡ t2 and b1 ≡ b2

where ≡ are the equivalences introduced shortly. Then Fact 2.2 should be
changed to use ≡ instead of =. This would allow to prove that in the se-
quential subset of CML all behaviours may be taken to be ε.

Sub-typing

Since types involve regions as well as behaviours the sub-typing relation must
involve a sub-region relation and a sub-behaviour relation. These relations

8

may be defined by axioms and inference rules and have some important
similarities (as well as important differences). To save repetition and to help
demonstrating that they constitute the “right” collection we shall organize
their presentation with diligence.

Figure 2: Type Inference

We begin with regions. Intuitively, r1 ≤ r2 is to mean that the set of iden-
tifiers listed in r1 is a subset of those listed in r2. Formally, this may be
axiomatized as shown in Figure 3. The first 5 axioms and rules simply state
that ≤ is a preorder and that ≡ is the associated equivalence. The last 4
axioms and rules state that + is a least upper bound operator (modulo the
equivalence). The two axioms involving ≤ are standard but the inference
rule and the axiom involving ≡ are usually replaced by a rule that allows one
to infer r1 + r2 ≤ r from r1 ≤ r and r2 ≤ r. Luckily, the two formulations
are equivalent in the presence of the other rules and axioms but we prefer
the choice made since the structural rule is typical of the rules we shall need
for behaviours and types. The notion of polarity is explained below.

Turning to types we once more need to state that ≤ is a preorder and ≡
is the associated equivalence. The details of this are as for regions and
are therefore not repeated in Figure 4. Next comes a structural rule for
each type constructor. To summarize these succinctly we use the notion of
polarity. There are three polarities: ⊕ for a covariant or monotonic position,

9

ª for a contravariant or antimonotonic position and ¯ for a mixed co- and
contravariant position. The examples given in Figures 3 and 4 should make
the intention clear4. The definitions are in good accord with the literature
on sub-typing.

Many of the rules and axioms for behaviours in Figure 5 follow the pattern
seen already. On top of this we have distribution laws for ‘ + , and for ‘; we
have an associative law and two axioms stating that ε is a neutral element.
For recursion we have axioms for α-conversion, one-level unfolding and a
simple structural rule.

Figure 3: Coercion Rules for Regions

3 Dynamic Semantics of CML

We now present a structural operational semantics for the eager left-to-right
evaluation of CML. The formulation is close in spirit to [19] and amounts
to the definition of three transition relations: one for sequential evaluation,
one for concurrent evaluation and to handle the sync operator we also need

40ne can be more formal as follows. Write t[⊕]t′ for t ≤ t′, t[ª]t′ for t′ ≤ t, and t[¯]t′

for t ≡ t′. A type constructor ϕ has polarity ϕ(p1, . . . , pn) if and only if the structural
inference rule says that ϕ(t1, . . . , tn)[⊕]ϕ(t′1, . . . , t

′
n) follows from t1[p1]t1, . . . , tn[pn]t′n.

10

Figure 4: Coercion Rules for Types

a transition system for matching the communications against one another.
Some differences include the treatment of δ-reduction and the choice of book-
keeping details5 that label the transition relations and the expressions.

Sequential evaluation

We begin with the sequential evaluation of expressions. This encompasses all
features of CML except the channel, fork and sync primitives; these were
the primitives listed in Figure 1 that did not have an ε-behaviour associated
with the function space. The definition of the transition relation is given in
Figure 6 and makes use of a number of auxiliary concepts. A central concept
is that of an evaluation context E. It may be defined inductively by:

E ::= [] | E e | w E | let i = E in e | if E then e1 else e2 : t

Here [] is an empty context or a “hole”; so in general E describes an ex-
pression with precisely one hole in it. We then write E[e] for the expression
that is like E except that the hole is replaced by e. The definition of E is
responsible for enforcing the eager left-to-right evaluation. As an example
consider application, i.e. e1 e2. The presence of E e means that the function
part, i.e. e1, may always be evaluated whereas the presence of w E means

5For the purposes of this section it would be straightforward to simplify the amount
of book-keeping details, but in the next section we would then have a rather cumbersome
task of re-introducing them or else inventing other mediating concepts.

11

Figure 5: Coercion Rules for Behaviours

that the argument part, i.e. e2, may only be evaluated after the function
part has been (weakly) evaluated (e.g. to a function abstraction).

Most of the axioms of Figure 6 are now straightforward. The first axiom
expresses the one-level unfolding of a (type correct) recursive definition. For
this we make use of the standard notation e1[e2/i] for substituting e2 for all
free occurrences of i in e1; when doing so care must be taken to rename bound
identifiers in e1 so as to avoid the capture of free identifiers in e2. Comparing
with the E[e] notation we could thus write E[e/[]] for E[e] but in this case
the definition of E ensures that there is no risk of capturing free identifiers
in e. The second axiom is β-reduction and the use of w, rather than e, in
the argument position ensures that we obtain call-by-value semantics. The
third axiom is consistent with the view that let i = e1 in e2 is semantically
equivalent to (fn i ⇒ e2) e1. The fourth axiom is actually an abbreviation
for two axioms describing the evaluation of the conditional depending on the

12

outcome of the text.

The fifth axiom describes the δ-reductions for the primitive constructs of
CML. The details are listed in Figure 7 and once again make use of a number
of auxiliary concepts. To record the piecemeal evaluation of constants, as in
the intended reduction sequence

pair (1 + 2)(3 + 4)→+ pair 3 (3 + 4)→
〈pair 3〉(3 + 4)→+ 〈pair 3〉 7→
〈pair 3 7〉

we need to extend the syntax of weakly evaluated expressions with new “con-
stants” 〈pair 3〉 and 〈pair 3 7〉. Formally, we proceed as follows. Let c be one
of the constants of Figure 1 and let n be maximal such that TypeOf(c) may
be written as t′1 →ε . . .→ε t′n+1 where we have dispensed with the universal
quantifiers. For each monotype instance t = t1 →ε . . .→ε tn+1 of TypeOf(c)
we then add the weakly evaluated constants 〈c : tw1〉, . . . , 〈c : tw1 . . . wn〉 to
the syntax of weakly evaluated expressions, i.e.

w ::= . . . | 〈c : tw1〉 | . . . | 〈c : tw1 . . . wn〉

We also add a new typing rule:

tenv ` c | t1 →ε · · · →ε tn+1&ε tenv ` w1 | t−1 &ε · · · tenv ` wi | t−i &ε

tenv ` 〈c : t1 →ε · · · →ε tn+1w1 · · ·wi〉 | ti+1 →ε · · · →ε tn+1&ε

where i ≤ n and t−j ≤ tj for j ≤ i

Returning to Figure 7 most of the δ-“rules” are rather straightforward. A
small notational point is that it might have been preferable to use curried
constants as this would allow writing e.g. 〈wrap : tw1w2〉 instead of the more
cumbersome 〈wrap : t′〈pair : t′′w1w2〉〉; in examples we shall sometimes
use this more readable notation and also dispense with the ‘ : t′. It is
worth pointing out that we deviate from [19] in not making a meta-syntactic
distinction between weakly evaluated expressions of type t com b and those
not of a type on this form; we simply use the meta-variable w whereas [19]
uses ev and v. More importantly we deviate form [19] in not requiring δ→

13

to be total, e.g. we allow that we have no δ-“rule” for hd nil. We regard it
overly restrictive to exclude this situation and instead introduce a new set δ6→
for characterizing the dynamically stuck configurations. It may be defined
by

(hd :t, nil) ∈ δ6→
(tl :t, nil) ∈ δ6→

Figure 6: Sequential Evaluation

and so allows to distinguish between the situations (3 + true) 6→ that should
have been caught by the type system and (hdnil) 6→ that cannot be expected
to be caught by any decidable type system. — Alternatively, one could mask
the dynamically stuck configurartions using non-termination, e.g. to impose
(hd : t, nil, hd : t nil) ∈ δ→; this is essentially the approach of [15, Chapter
6].

Concurrent evaluation

The transition relation for concurrent evaluation is given in Figure 8. Con-
figurations have the form

cenv, PP

where cenv is a channel environment and PP is a process pool. More pre-
cisely, a process pool PP is a partial function from process identifiers pi ∈

14

Figure 7: Tabulation of (e1, e2, e3) ∈ δ→

PIdent (e.g. p− 0, p− 1, . . .) to the expression residing there. When writ-
ing a process pool PP ′ in the form PP [pi1 7→ e1] . . . [pin 7→ en] we take it
for granted that all of dom(PP), {pi1}, . . . , {pin} are mutually disjoint. The
channel environment cenv is much like the type environment and so asso-
ciates channel identifiers ci ∈ CIdent (e.g. c− 0, c− 1, . . .) with the type of
values that may be communicated over the channel. We assume that the sets
Ident, PIdent and CIdent are mutually disjoint. Also we formally regard
a channel environment as a list of pairs of identifiers and types; as for the
type environments we may then extract a partial function by mapping an
identifier to the type of its rightmost occurrence. The advantage of this view
will only show up in later proofs. The fact that we use a channel environment
rather than just a set of previously allocated channels, is an example of the

15

book-keeping details present in the semantics. (If we were to use a set we
would have to regard channel identifiers as constants, i.e. having an explicit
type attached to each occurrence, and we would then need to formulate that
all occurrences have the same type attached; this would turn out to be a
more clumsy variation on the approach taken.)

The first axiom embeds sequential evaluation within concurrent evaluation.
There is no explicit mentioning of the evaluation context since this is all
taken care of in Figure 6. For book-keeping purposes the transition relation
is labelled with the process executing and an indication of the communication
behaviour; this will be useful in formulating and proving the results of the
next section. Next we have axioms for those primitives of Figure 1 that were
not dealt with in the definition of sequential evaluation. For channel alloca-
tion we use the channel environment to make sure that we do not re-allocate
an already allocated channel. To record the allocation the channel environ-
ment is extended; for book-keeping purposes it turns out to be helpful for the
next section that also the type is recorded and we do this by means of the
channel environment. The behaviour labelling the arrow will be a monotype
instance of ∀τ.∀ı.τ chan ı. The third axiom deals with process creation and
is rather similar in spirit to the axiom for channel creation. The behaviour
labelling the arrow will be a monotype instance of ∀τ.∀β.τ fork β. The
fourth axiom takes care of communication among different processes. (That
they are indeed different follows from the syntactic conventions mentioned
above.) The formulation makes use of a transition system for expressing
when two “delayed” communications match and for calculating the respec-
tive outcomes as well as indications of the communication behaviour. One of
the behaviours labelling the arrow will be a monotype instance of ∀ρ.∀τ.ρ!τ
and the other will be a monotype instance of ∀ρ.∀τ.ρ?τ .

Matching

The transition system for matching is given in Figure 9. The first axiom
collects the values communicated between primitive send and receive con-
structs. The next two rules take care of the situation where the communi-
cation taking place in the first position amounts to choosing between several
possibilities. The subsequent rule allows modifying the local version of the
value communicated; it does not affect the value communicated as can be

16

Figure 8: Concurrent Evaluation

seen from the fact that only the value in one of the components is being
modified. On top of this we would need the symmetric system of one axiom
and three rules but to conserve space we follow [19] in “cheating” by adding
the final “restructuring rule”; this has the moderately undesirable effect of
adding “non-structural” rules.

Finally, we note that it would be possible to add additional rules to the
transition system for concurrent evaluation. Assuming that there is some
distinguished start process p-0 then the axiom

cenv & PP [pi 7→ w]⇒ cenv & PP if pi 7→ p-0.

would describe the garbage collection of processes that have finished execu-
tion. In a similar way one could add an axiom for reclaiming channels no
longer in use.

17

4 Deriving a Process Algebra from CML

We now show to which extent the types and behaviours are preserved or
modified in the course of computation.

Figure 9: Matching

Sequential Correctness

It is natural to restrict the attention to closed expressions, i.e. expressions
with no free identifiers, because the definition of evaluation context is such
that we never pass inside the scope of any defining occurrence for identifiers.
However, we will have to allow that the expressions include channel identifiers
that have been allocated in previous concurrent transitions. So we shall
regard an expression e as being closed when cenv ` e | t&b for some cenv, t
and b.

Proposition 4.1

If cenv ` e | t & b and e→ e′ then there exists t− ≤ t and b− ≤ b such that
cenv ` e′ | t− & b−. 2

Before approaching the proof it may be instructive to demonstrate why it
would be too demanding to require that t− = t or b− = b. For types suppose

18

that t− < t is given and that c : t− is a constant; then (fn x : t⇒ x)(c : t−)
has type t but it evaluates to c : t− that has type t−. For behaviours simply
note that if true then e1 else e2 has behaviour ε; (b1 + b2) and that it
evaluates to e1 that has behaviour b1.

To conduct the proof we need several auxiliary results. The first lemma
relates substitution to the use of the type environment. For the formulation
recall that we regard type environments as lists of pairs (of identifiers and
types) from which a partial function (from identifiers to types) can readily
be recovered.

Lemma 4.2

If i /∈ dom(tenv2), cenv ` e0 | t0 & ε and cenv, tenv1, [i 7→ t0], tenv2 ` e | t& b
then cenv, tenv1, tenv2 ` e[e0/i] | t & b, i.e. the overall type and behaviour
is unchanged under the substitution. 2

The proof is by induction on the typing inference for e and may be found in
Appendix B. A simple consequence of this lemma is that if an identifier is
not free in the expression then it may be removed from the type environment
(as then substitution with respect to that identifier has no effect).

The second lemma may be read as saying that type and behaviour infer-
ence acts monotonically in the type environment as well as in the type
and behaviour of subexpressions. To obtain a concise formulation we write
tenv1 ≤ tenv2 whenever tenv1 and tenv2 have equal length and pairs (i1, t1)
and (i2, t2) in corresponding positions satisfy i1 = i2 and t1 ≤ t2.

Lemma 4.3

If cenv ` e0 | t0 & b0, cenv ` e′0 | t−0 & b−0 and cenv, tenv ` e[e0/i] | t & b
and also t−0 ≤ t0, b

−
0 ≤ b0 and tenv− ≤ tenv; then there exists t− ≤ t and

b− ≤ b such that cenv, tenv− ` e[e′0/i] | t− & b−. 2

The proof is by induction on the syntax of the expression e and may be
found in Appendix B. In a sense the lemma is two results in one, but to
be economical in the proof effort it is advantageous to prove them jointly.
So we shall sometimes feel free to use the lemma without any substitution.
(To make this formally correct simply use a trivial substitution where i is
a “fresh” identifier that is not free in e.) The lemma has also the following
important consequence:

19

Corollary 4.4

If cenv ` e0 | t0 & b0, cenv ` e′0 | t−0 & b−0 and cenv ` E[e0] | t & b and
also t−0 ≤ t0 and b−0 ≤ b0; then there exists t− ≤ t and b− ≤ b such that
cenv ` E[e′0] | t− & b−. 2

Proof Simply use the fact that E[e] equals (E[i])[e/i] when i does not occur
in E. 2

One can now prove Proposition 4.1 by induction, i.e. case analysis, on the
inference e→ e′; we refer to Appendix B for the details.

Matching Correctness

The transition relation for concurrent evaluation utilizes the transition rela-
tions for sequential evaluation and for matching. It is therefore convenient
to formulate the correctness of matching before considering the correctness
of concurrent evaluation.

Proposition 4.5

If cenv ` w1 | (t01 com b01) & ε, cenv ` w2 | (t02 com b02) & ε and

(w1, w2) ; (e1, e2) : (b1, b2)

then there exists t−01, t
−
02, b

′
1 and b′2 such that

cenv ` e1 | t−01 & b′1 with b1; b
′
1 ≤ b01

cenv ` e2 | t−02 & b′2 with b2; b
′
2 ≤ b02

and where t−01 ≤ t01 and t−02 ≤ t02.

Furthermore, one of b1 and b2 may be written r1!t1 and the other r2?t2 where
t1 ≡ t2 and r1 and r2 have a lower bound, i.e. ∃r0 : r0 ≤ r1 ∧ r0 ≤ r2. 2

The proof is by induction on the transition relation for matching and may
be found in Appendix B.

20

Concurrent Correctness

So far we have not extended the notion of well-typing to the configurations
of the concurrent transition relation and our first task is to remedy this.
To this end we shall need a partial function PT of process types : it maps
process identifiers pi ∈ PIdent to types. Similarly, we shall need a partial
function PB of process behaviours: it maps process identifiers to behaviours.
Intuitively, a process pool PP is correct with respect to PT and PB if
each process, PP (pi), has type and behaviour given by PT (pi) and PB(pi),
respectively. It may be instructive to think of one of the process identifiers,
e.g. p-0, as indicating the initial process whose final result is the overall result
presented to the user, but this will have little impact on the development.

Formally, the correctness of PP with respect to PT and PB is written

` cenv, PP | PT & PB

and is given by

dom(PP) = dom(PT) = dom(PB)∧
∀pi ∈ dom(PP) : cenv ` PP (pi) | PT (pi) & PB(pi)

If we were to admit axioms for reclaiming unused processes we should instead
require that dom(PP) ⊆ dom(PT) = dom(PB). Also it would be possible to
add the condition that all of dom(PP), dom(PT) and dom(PB) are finite and
non-empty sets, but again this would have little impact on the development.

Our main result about concurrent evaluation is the following proposition that
gives information about the evolution of types and behaviours. A concise
formulation requires some additional notation. We allow writing ~b for b as
well as b1, b2 and similarly ~pi for pi as well as pi1, pi2. When writing {~pi} this
then stands for {pi} or {pi1, pi2}, respectively. When P is a partial function
from process identifiers we write P\{~pi} for the restriction Pd(dom(P)\{~pi})
of P to the subset dom(P)\{~pi} of dom(P). This notation applies to process
pools, process types and process behaviours. For process types PT and PT ′

we write

PT ′[~pi] ≤ PT [~pi]

21

for

{~pi} ⊆ dom(PT ′) ∧ ∀pi ∈ {~pi}∩ dom(PT) : PT ′(pi) ≤ PT (pi)

This takes care of the situation where new processes are created.

Proposition 4.6

If ` cenv, PP | PT & PB and cenv, PP ⇒~b
~pi
cenv′, PP ′ then there exists

PT ′ and PB′ such that

• if ~b = t0 chan i0 then cenv′ = cenv[ci 7→ t0 chan i0] for some ci /∈
dom(cenv); otherwise cenv′ = cenv,

• if ~b = t0 fork b0 and ~pi = pi1, pi2 then PT ′(pi2) ≤ t0,

• PP ′ \ {~pi} = PP \ {~pi},

• PT ′ \ {~pi} = PT \ {~pi} and PT ′[~pi] ≤ PT [~pi],

• PB′ \ {~pi} = PB \ {~pi}

as well as ` cenv′, PP ′ | PT ′&PB′. 2

The proof is by cases on the rule used for the concurrent transition and
may be found in Appendix B. It makes use of the following generalization of
Corollary 4.4:

Lemma 4.7

If cenv ` e0 | t0 & b0, cenv ` e0 | t′0 & b′0, cenv ` E[e0] | t & b and also t′0 ≤ t0
and b•; b′0 ≤ b0; then there exists t′ and b′ such that cenv ` E[e′0] | t′ & b′ and
also t′ ≤ t and b•; b0 ≤ b. 2

The proof is by induction on the structure of E and may be found in Ap-
pendix B.

Process Algebras

The statement of Proposition 4.6 (as opposed to its proof) does not convey

much information about the relationship between PB[~pi],~b and PB′[~pi]. This

22

will be rectified now and our main tools will be two transition relations: one
for the evolution of individual behaviours and one for the evolution of process
behaviours.

The transition relation for individual behaviours takes the form

b1 7−→a b2

and says that the behaviour b1 ∈ Beh evolves to b2 ∈ Beh while performing
the action a. It is possible to identify actions and behaviours, i.e. to use a ∈
Beh, but it may be more informative to be more restrictive. To this end we
define actions a ∈ Act by:

a ::= ε | r!t | r?t | t chan r | t fork b

The details of the transition system are given in Figure 10. The first axiom
simply records the effect of performing an individual action. Then we have a
rule that allows evolution of actions to take place in more elaborate contexts.
The next rule is patterned after a structural rule

b1 ≡ b1 b
′
1 7−→a b′2 b

′
2 ≡ b2

b1 7−→a b2

as might be found in the π-calculus [13]. However, because of our use of
sub-typing we find that we need a stronger rule and to obtain this we replace
≡ by 7−→ε and add three more axioms. The first says that ≡ is contained
in 7−→ε and the final two allow to discard possible behaviours. (Actually
b1 + b2 7−→ε b2 is derivable from the remaining axioms and rules.)

It is important that we have:

Lemma 4.8

The statement b1 7−→a b2 is equivalent to the statement a; b2 ≤ b1. 2

Proof: The implication from left to right may be established by induction
on the inference tree for b1 7−→a b2: that a; b2 ≤ b1 holds is clear for the
axioms and is maintained by the rules. For the converse implication assume
that a; b2 ≤ b1. It follows that a; b2 + b1 ≡ b1 and hence

23

b1 7−→ε a; b2

From a, 7−→a ε we next get

a; b2 7−→a ε; b2

and since ε; b2 ≡ b2 we then have

ε; b2 7−→ε b2

Putting this together we have

b1 7−→a b2

as desired. 2

Figure 10: Evolution of behaviours

The transition relation for process behaviours takes the form

PB =⇒~b
~pi
PB′

24

Figure 11: Evolution of process behaviours

and says that the process behaviour PB evolves to the process behaviour
PB′. Regarding process behaviours as a process algebra this transition re-
lation then gives the operational semantics of terms in the process algebra.
The details of the transition system are given in Figure 11 and make use of
the transition relation for individual behaviours.

Our main result linking CML with Behaviours to a process algebra is the
following:

Proposition 4.9

The statement of Proposition 4.6 may be extended with the following condi-
tion:

• PB =⇒~b
~pi
PB′

(using the notation of Proposition 4.6). 2

The proof simply amounts to inspecting the proof of Proposition 4.6 and
checking that the process behaviour PB′ constructed there satisfies the new
claim.

25

5 Conclusion

We started our work with an existing programming language. The first step
was to “extend the type system” with additional information about some of
the phenomena that take place during execution; our approach was to define
the syntax of behaviours based on the notion of effect systems [11]. The
second step was to (re-)define an operational semantics in such a way that
the newly added information does not influence the semantics, yet enough
information is retained that it meaningfully describes the result of one step
of evaluation. The third step was to prove this formally in the form of
“subject reduction” and related results. In the course of this development
the behaviours took on a life of their own: they were equipped with an
operational semantics designed to make “subject reduction” both informative
and provable, and the operational semantics was very close to the semantics
of process algebras.

We believe that the main impact of this approach is not confined to the
study of CML or similar languages. Rather one may ask in general for
a programming language (with communication): how does the associated
process algebra look. And conversely for an existing process algebra one
may ask: for what kind of languages is this an appropriate process algebra.
Questions like this may provide further insights into the role of operators
in process algebras, e.g. the possibility of implementing an operator like
‘+’ of CCS, because the perspective is beyond that of merely translating
between the syntax of a programming language and the syntax of a process
algebra. Also studies of the process algebra may provide valuable information
when reasoning about programs in the language. In particular “negative”
information can be carried over: we may for example conclude that a program
definitely deadlocks whenever its behaviour has this property.

In our future work we hope to perform a deeper study of the relationship
between the semantics of the programming language and the semantics (and
syntax) of the process algebra. Our work will be guided by the following
slogans:

• a process algebra is an abstract interpretation of (the effect system of)
a programming language with communication;

• the “propositions as types” correspondence generalizes to a “processes

26

as behaviours” correspondence.

We believe that we have already demonstrated that a process algebra is an
abstraction of a programming language; whether this is describable as an
abstract interpretation remains to be seen.

Acknowledgements

This work is part of the DART-project supported by The Danish Research
Councils. Discussions with Uffe Engberg and Mads Tofte have been most
helpful.

References

[1] D. Berry, R. Milner, D.N. Turner: A semantics for ML concurrency
primitives. Proceedings of POPL’92, ACM Press, 1992, pages 119-129.

[2] L. Cardelli, G. Longo: A Semantic Basis for Quest. Journal of Functional
Programming 1 4, 1991, pages 417-458.

[3] G. Castagna, G. Ghelli, G. Longo: A Calculus for Overloaded Functions
with Subtyping. Proceedings of the 1992 ACM Conference on Lisp and
Functional Programming, ACM Press, 1992, pages 182-192.

[4] M. Coppo, M. Dezani: A new type assignment for λ-terms. Archive.
Math. Logik 19, 1978, pages 139-156.

[5] C. Crasemann: πλ-Kalküle für Prozesse und Funktionen. Ph.D.-Thesis,
Christian-Albrechts-Universität zu Kiel, 1992.

[6] B.A. Davey, H.A. Priestly: Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

[7] A. Giacalone, P. Mishra, S. Prasad: Operational and Algebraic Seman-
tics for Facile: A Symmetric Integration of Concurrent and Functional
Programming. Proceedings of ICALP ’90, SLNCS 443, pages 765-780,
1990.

27

[8] K. Havelund, K.G. Larsen: The Fork Calculus. To appear in Proceedings
of ICALP ’93, 1993.

[9] H. Hüttel, K.G. Larsen: A Dynamic Type System for Higher-Order
Processes. Manuscript, 1992.

[10] J.J.-Levy, B. Thomsen, L. Leth, A. Giacalone: Esprit Basic Research
Action 6454— CONFER: CONcurrency and Functions: Evaluation and
Reduction. EATCS Bulletin No. 48, 1992, pages 88-106.

[11] J.M. Lucassen, D.K. Gifford: Polymorphic Effect Systems. Proceedings
of POPL’88, ACM Press, 1988, pages 47-57.

[12] R. Milner, M. Tofte, R. Harper: The Definition of Standard ML. MIT
Press, 1990.

[13] R. Milner: The Polyadic π-Calculus: A Tutorial. Report ECS-LFCS-
91-180, Laboratory for Foundations of Computer Science, University of
Edinburgh, 1991.

[14] F. Nielson: The Typed Lambda-Calculus with First-Class Processes.
Proceedings of PARLE’89, Springer Lecture Notes in Computer Science
366, 1989, pages 357-373.

[15] F. Nielson, H.R. Nielson: Two-Level Functional Languages. Cambridge
University Press, 1992.

[16] E.G.J.M.H. Nocker, J.E.W. Smetsers, M.C.J.D. van Eekelen, M.J. Plas-
meijer: Concurrent Clean. Proceedings of PARLE’91, SLNCS 506, pages
202-219, 1991.

[17] C. Reade: Elements of Functional Programming. Addison-Wesley, 1989.

[18] J.H. Reppy: CML: A Higher-order Concurrent Language. Proceedings of
the ACM SIGPLAN ’91 Conference on Programming Language Design
and Implementation, ACM Press, 1991, pages 293-305.

[19] J.H. Reppy: Higher-Order Concurrency. Ph.D.-Thesis, Report 92-1285,
Department of Computer Science, Cornell University, 1992.

[20] J.-P. Talpin, P. Jouvelot: The Type and Effect Discipline. Proceedings
of LICS’92, 1992, pages 162-173.

28

[21] B. Thomsen: A Calculus of Higher Order Communicating Systems. Pro-
ceedings of POPL’89, ACM Press, 1989, pages 143-154.

[22] B. Thomsen: Plain CHOCS. Report DOC 89/4, Imperial College, Uni-
versity of London, 1989.

[23] B. Thomsen: Calculi for Higher Order Communicating Systems. Ph.D.-
Thesis, Imperial College, University of London, 1990.

29

A Variations on the subtyping

The main idea behind the ordering t1 ≤ t2 on types is that t2 is more permis-
sive than t1 in the communications being allowed but that the “underlying”
types t1 and t2 must be equal. This is illustrated in the following example.

Example A.1

Consider the following fragment of a program:

(fn f : unit →bf unit ⇒ · · ·)
(rec g x : unit →bf unit ⇒
let y = sync (receive ach)

in let z = sync (send (pair bch y))

in if · · · then g () else ())

We shall assume that ach has type int chan a and bch has type int chan

b and then the remaining type information should be clear from the context.
Here g is a concrete program that a number of times will receive an integer
over ach and then retransmit it over bch. Its type is g: unit →bg unit

where

bg = recβ. a?int; b!int; (β + ε)

Similarly (fn f : unit →bf unit ⇒ · · ·) is some module that requires
that the argument obeys a certain protocol. This protocol says that the
only communications allowed are the input of integers over some channel in
region a and the output of integers over some channel in region b. This may
be described more formally by

bf = recβ. (a?int;β)+ (b!int;β) + ε

We would then like to show that

unit →bg unit ≤ unit →bf unit

corresponding to the fact that g obeys the protocol of f. Using the rules of
Figure 4 this amounts to showing bg ≤ bf . 2

30

The axioms and rules of Figure 5 do not suffice for proving this. This suggests
adding a ”contraction rule”

b1 ≤ b[bv 7→ b1] b[bv 7→ b2] ≤ b2

b1 ≤ b

if b guards bv and bv is positive in b.

This generalizes a rule from [2] and is explained in the sequel. A behaviour
variable is positive in a behaviour if all occurrences have positive polarity in
the sense of Section 3. This is a standard concept and we shall not go deeper
into it here although some care is called for due to presence of recursion.
Intuitively, a behaviour b guards a behaviour variable bv if each “path” from
the “beginning” of b to bv must pass through a non-empty behaviour. The
precise details are more subtle than in CCS because bv does not occur guarded
in b = b′; bv if we have b′; b′ ≡ b′ (as when b′ = ε). We shall not go further into
this here but only show that with the above rule we can solve the problem of
Example A.1. We should add that the theoretical development of this paper
is fairly robust under the addition of new axioms and rules.

Example A.2

We now show bg ≤ bf where bg and bf are as in Example A.1. For this define

b = a?int; b!int; (β + ε).

Since bg = recβ.b it is evident that

bg ≤ [β 7→ bg]

using the axiom for the one-level onfolding of rec. Although we have not
defined “positive” and “guards” formally it should be immediate that β is
“positive” in b and that b “guards” β. Using the contraction rule above it
then suffices to show

b[β 7→ bf] ≤ bf

For this we abbreviate a?int to A and b!int to B. We then have

31

b[β 7→ bf] ≡ A;B; (bf + ε)
≤ A;B; bf + A;B; (ε+ A; bf +B; bf)
≡ A;B; bf + A;B; bf
≡ A;B; bf
≤ A; (A; bf +B; bf + ε)
≡ A; bf
≤ A; bf +B; bf + ε
≡ bf

and the result follows.

By contrast, if b′g = a?int;b!bool and we were to show b′g ≤ bf then no con-
traction rule would be needed: just use the axiom for the one-level unfolding
of rec twice and then some simple axioms. 2

Coarsening the structure

Early on we said that we intended to deviate from [14] in keeping the depen-
dencies between individual communications. However, suppose that now we
want to coarsen the structure of behaviours such that these distinctions no
longer can be made. One possibility is to add the axioms

b1 + b2 ≡ b1; b2

rec bv.b ≡ b
bv ≡ ε

The first expresses that we no longer distinguish between choice and sequenc-
ing. The next two axioms have the effect of removing the “rec bv.” binder
as well as behaviour variables; for closed behaviours this would be equivalent
to the axiom rec bv. b ≡ b[bv 7→ ε].

An alternative presentation of the same idea is to translate the behaviours
b ∈ Beh to a simpler structure of behaviours b′ ∈ Beh’ given by:

b′ ::= ε | r!t | r?t | t chan | t fork b′ | b′1 ∪ b′2

Here (b1 + b2)
′ = (b1; b2)

′ = b′1 ∪ b′2, (rec bv. b)′ = b′ and bv′ = ε. Comparing
with the approach of [14] we have now lost the dependency between commu-

32

nications and b′1∪ b′2 expresses that each of b′1 and b′2 may be performed zero,
one or many times and in arbitrary order. This is the same interpretation of
the union operator ∪ as in [14].

However, we still deviate from [14] in keeping behaviours and effects separate.
To mimic the development in [14] more closely we may translate types t ∈
Type and behaviours b ∈ Beh into so-called behaviour types [[t]], [[b]], bt ∈
BehTyp given by

bt ::= unit | bool | int | bt1 × bt2 | bt list
| bt1 → bt2 | bt chan r | ε | r!bt | r?bt
| fork bt | bt1 ∪ bt2

Most translations are fairly simple structural definitions. Some of the more
interesting ones are:

[[t1 × t2]] ≡ [[t1]]× [[t2]]
[[t1 →b t2]] ≡ [[b]] ∪ ([[t1]]→ [[t2]])
[[t chan r]] ≡ [[t]] chan r
[[t com b]] ≡ [[t]] ∪ [[b]]

[[r!t]] ≡ r![[t]]
[[t chan r]] ≡ [[t]] chan r
[[t fork b]] ≡ fork ([[t]] ∪ [[b]])

[[b1; b2]] ≡ [[b1]] ∪ [[b2]]

The resulting system is pretty close in spirit to [14] and the remaining dif-
ferences are due to the differences between the underlying languages (CML
versus TPL of [14]).

B Proofs of main results

Proof of Lemma 4.2

We proceed by induction on the typing inference for e. So we must consider
each axiom and rule of Figure 2 as well as the rule added in Section 3.

33

Constants. Then e is a constant and e[e0/i] equals e. The result is then
immediate.

Identifiers. Then we have two cases. If e is an identifier different from i the
result follows as for constants. If e is identical to i then t = t0 and b = ε.
But e[e0/i] equals e0 and by assumption cenv ` e0 | t & b. To obtain the
desired result we modify the proof tree for cenv ` e0 | t & b as follows: each
node must be of the form6

cenv, tenv ` e1 | t1 & b1

and we replace it by

cenv, tenv1, tenv2, tenv ` e1 | t1 & b1

obtaining the desired proof tree for cenv, tenv1, tenv2 ` e0 | t & b.

Abstraction. Then e must be of the form fn i1 : t1 ⇒ e1 and t = t1 →b1 t2
and b = ε. We have two cases. If i is different from i1 then the induction
hypothesis is applicable to

cenv, tenv1[i 7→ t0], tenv2[i1 7→ t1] ` e1 | t2 & b1

and yields

cenv, tenv1, tenv2[i1 7→ t1] ` e1[e0/i] | t2 & b1

from which the desired

cenv, tenv1, tenv2 ` e[e0/i] | t & b

follows because e[e0/i] equals fn i1 : t1 ⇒ (e1[e0/i]).

The second case is when i is identical to i1. Then e[e0/i] equals i and from

cenv, tenv1[i 7→ t0], tenv2 ` e | t & b (?)

6Here we make use of the fact that type environments are lists rather than functions.

34

we must infer

cenv, tenv1, tenv2 ` e | t & b.

We do this by modifying the proof tree for (?) as follows: each node must be
of the form

cenv, tenv1[i 7→ t0], tenv2, tenv ` e2 | t3 & b2

and we replace it by

cenv, tenv1, tenv2, tenv ` e2 | t3 & b2

This is valid since i ∈ dom(tenv) whenever i is free in e2.

Application. Then e must be of the form e1e2. Inspecting the proof tree we
must have premisses of the form

cenv, tenv1[i 7→ t0], tenv2 ` e1 | t1 →b3 t & b1

cenv, tenv1[i 7→ t0], tenv2 ` e2 | t−1 & b2

with t−1 ≤ t1 and b = b1; b2; b3. The induction hypothesis is applicable and
yields

cenv, tenv1, tenv2 ` e1[t0/i] | t1 →b3 t & b1

cenv, tenv1, tenv2 ` e2[t0/i] | t−1 & b2

from which the desired result follows.

Let-abstraction. This case follows using combinations of the techniques from
abstraction and application; this should not be surprising because in the ab-
sence of polymorphism the expression (fn i1 : t1 ⇒ e1)e2 is rather equivalent
to let i1 = e2 in e1.

Recursion. Then e must be of the form rec i0(i1) : t⇒ e1 and t = t1 →b1 t2
and b = ε. If i0, i1 and i are all different we proceed as follows. Inspection of
the proof tree reveals a premiss of the form

35

cenv, tenv1[i 7→ t0], tenv2[i0 7→ t][i1 7→ t1] ` e1 | t−2 & b−1

where t−2 ≤ t2 and b−1 ≤ b1. Applying the induction hypothesis we obtain

cenv, tenv1, tenv2[i0 7→ t][i1 7→ t1] ` e1[e0/i] | t−2 & b−1

and this yields

cenv, tenv1, tenv2 ` rec i0(i1) : t⇒ e1[e0/i] | t & b

which is indeed the desired result.

If i equals one or more of i0 and i1 then e[e0/i] equals e. We then prove the
desired result as in the similar case for abstraction.

Conditional. This case follows using the techniques from application; this
should not be surprising because for the purposes of type inference the ex-
pression if e′ then e1 else e2 : t behaves as the nested application (cond:
t′) e′ e1 e2.

Weakly evaluated constants. Given our decision to take w ::= i rather than
e ::= i in the syntax this is not a trivial case because identifiers may occur in
weakly evaluated expressions of the form 〈c w1 . . . wm〉. However, the proof
may be conducted using the techniques from application. 2

Proof of Lemma 4.3

We proceed by induction on the syntax of the expression e; this includes the
syntactic category of weakly evaluated expressions.

Constants. Then e is of the form c : t and b = ε. It follows that e[e0/i] and
e[e′0/i] both equal c : t and the result is then straightforward: let t− = t and
b− = b.

Identifiers. We have two cases. If the expression e is different from the
identifier i then e[e0/i] and e[e′0/i] both equal e and we have t = tenv(i) and
b = ε. By taking t− = tenv−(i) and b− = b the result is then straightforward.

The other case is when e is identical to i. Then e[e0/i] equals e0. From the
assumption

36

cenv ` e0 | t0 & b0

we may obtain

cenv, tenv ` e0 | t0 & b0

by modifying the proof tree in the manner demonstrated in the proof of
Lemma 4.2. Since we also have

cenv, tenv ` e0 | t & b

it follows from Fact 2.2 that t = t0 and b = b0. Since e[e′0/i] equals e′0 we
obtain

cenv, tenv ` e[e′0/i] | t−0 & b−0

by performing a simple modification of the proof tree. Taking t− = t−0 and
b− = b−0 then gives the desired result.

Abstraction. Then e must be of the form fn i1 : t1 ⇒ e1 and t = t1 →b1 t2
and b = ε. We have two cases. If i is identical to i1 then both e[e0/i] and
e[e′0/i] equal e. Inspection of the proof tree for cenv, tenv ` e | t & b then
reveals a premiss

cenv, tenv[i1 7→ t1] ` e1 | t2 & b1

The induction hypothesis is applicable because e1 equals e1[e0/j] for a fresh
identifier j and yields

cenv, tenv−[i1 7→ t1] ` e1 | t−2 & b−1

for t−2 ≤ t2 and b−1 ≤ b1. It follows that

cenv, tenv− ` e | t− & b−

37

with t− = t1 →b−1 t−2 and b− = ε.

The other case is when i is different from i1. Inspection of the proof tree for
cenv, tenv ` e[e0/i] | t & b then reveals a premiss

cenv, tenv[i1 7→ t1] ` e1[e0/i] | t2 & b1

The induction hypothesis is applicable and yields

cenv, tenv−[i1 7→ t1] ` e1[e
′
0/i] | t−2 & b−1

for t−2 ≤ t2 and b−1 ≤ b1. It follows that

cenv, tenv− ` e[e′0/i] | t− & b−

with t− = t1 →b−1 t−2 and b− = ε.

Application. Then e must be of the form e1 e2. Inspecting the proof tree for
e[e0/i] we find premisses of the form

cenv, tenv ` e1[e0/i] | t1 →b3 t & b1

cenv, tenv ` e2[e0/i] | t−1 & b2

with t−1 ≤ t1 and b = b1; b2; b3. The induction hypothesis is applicable and
yields

cenv, tenv− ` e1[e
′
0/i] | t+1 →b−3 t− & b−1

cenv, tenv− ` e2[e
′
0/i] | t−−1 & b−2

for t+1 ≥ t1, b
−
3 ≤ b3, t

− ≤ t, b−1 ≤ b1, t
−−
1 ≤ t−1 and b−2 ≤ b2. Since t−−1 ≤ t+1 it

follows that

cenv, tenv− | e[e′0/i] | t− & b−

with b− = b−1 ; b−2 ; b−3 . This shows the desired result.

Let-abstraction. Then e must be of the form let j = e1 in e2. As in
the proof of Lemma 4.2 this case utilizes combinations of the techniques

38

from abstraction and application. The additional complication is that the
substitution into e1 may present a new modification of the type environment
for e2. We have two cases. If the identifiers i and j are distinct then inspection
of the proof tree for e[e0/i] reveals premisses of the form

cenv, tenv ` e1[e0/i] | t1 & b1

cenv, tenv[i1 7→ t1] ` e2[e0/i] | t & b2

with b = b1; b2. Applying the induction hypothesis to the first inference yields

cenv, tenv− ` e1[e
′
0/i] | t−1 &b−1

where t−1 ≤ t1 and b−1 ≤ b1. Applying the induction hypothesis to the second
inference yields

cenv, tenv−[i1 7→ t−1] ` e2[e
′
0/i] | t− & b−2

with t− ≤ t. Taking b− = b−1 ; b−2 this yields

cenv, tenv− ` e[e′0/i] | t− & b−

which is the desired result.

The second case is when i and j are identical. As was illustrated for abstrac-
tion it is straightforward to modify the above proof so as to apply in this
case: we still have to substitute in e1 but should not do so in e2.

Recursion. Then e must be of the form rec i0(i1) : t⇒ e1 and t = t1 →b1 t2
and b = ε. We have two cases. If i equals one or more of i0 and i1, then
e[e0/i] and e[e′0/i] both equal e. Inspection of the proof tree for e[e0/i] then
reveals a premiss

cenv, tenv[i0 7→ t][i1 7→ t1] ` e1 | t−2 & b−1

where t−2 ≤ t2 and b−1 ≤ b1. The induction hypothesis is applicable (because
e1 equals e1[e0/j] for a fresh identifier j) and yields

39

cenv, tenv−[i0 7→ t][i1 7→ t1] ` e1 | t−−2 & b−−1

for t−−2 ≤ t−2 and b−−1 ≤ b−1 . It follows that

cenv, tenv− ` e | t & b

since t−−2 ≤ t2 and b−−1 ≤ b1.

The other case is when i0, i1 and i are all different. Inspection of the proof
tree for e[e0/i] then reveals a premiss

cenv, tenv[i0 7→ t][i1 7→ t1] ` e1[e0/i] | t−−2 & b−−1

where t−2 ≤ t2 and b−1 ≤ b1. The induction hypothesis is applicable and yields

cenv, tenv−[i0 7→ t][i1 7→ t1] ` e1[e
′
0/i] | t−−2 & b−−1

for t−−2 ≤ t−2 and b−−1 ≤ b−1 . It follows that

cenv, tenv− ` e[e′0/i] | t & b

because e[e0/i] equals rec i0(i1) : t⇒ (e1[e0/i]).

Conditional. As in the proof of Lemma 4.2 this case follows using the tech-
niques from application.

Weakly evaluated constants. As in the proof of Lemma 4.2 this case follows
using the techniques from application. 2

Proof of Proposition 4.1

We proceed by induction on the inference e → e′, i.e. by case analysis
according to Figure 6.

Recursion. The inference e→ e′ must have the form

E[e1]→ E[e2[e1/i0]]

40

where e1 and e2 are given by

e1 = rec i0(i1) : t1 →b1 t2 ⇒ e0

e2 = fn i1 : t1 ⇒ e0

Since the proof tree for cenv ` E[e1] | t & b follows the syntax of E[e1] it is
possible to identify the node corresponding to the hole in E. It must have
the form

cenv, tenv ` e1 | t′1 & b′1

with tenv being empty because the definition of the evaluation context is
such that the hole is never in the scope of any binding occurrence of an
identifier. The premiss of this node must be

cenv[i0 7→ t1 →b1 t2][i1 7→ t1] ` e0 | t−2 & b−1

for t−2 ≤ t2 and b−1 ≤ b1. This then shows that t′1 = t1 →b1 t2 and b′1 = ε.

In the case where i0 is distinct from i1 we may use Lemma 4.2 to obtain a
proof

cenv[i1 7→ t1] ` e0[e1/i0] | t−2 & b−1

from which

cenv ` e2[e1/i0] | t1 →b−1 t−2 & ε

is immediate. But by Corollary 4.4 and t1 →b−1 t−2 ≤ t1 →b1 t2 and ε ≤ b′1
there exist t− ≤ t and b− ≤ b such that

cenv ` E[e2[e1/i0]] | t− & b−

and this is the result.

In the case where i0 is identical to i1 we have that e2[e1/i0] equals e2. From
the typing of e0 we may then obtain

41

cenv[i0 7→ t1 →b1 t2] ` e2 | t1 →b1 t−2 & ε

and by straightforward modification of the proof tree we obtain

cenv ` e2 | t1 →b−1 t−2 & ε

As before Corollary 4.4 then gives the desired result.

Application (β-reduction). The inference e→ e′ must have the form

E[(fn i : t1 ⇒ e0)w]→ E[e0[w/i]]

Inspection of the proof tree for cenv ` e | t & b once more identifies a node

cenv ` (fn i : t1 ⇒ e0)w | t2 & b1

corresponding to the hole in E. It must have premisses

cenv ` (fn i : t1 ⇒ e0) | t1 →b1 t2 & ε (?)
cenv ` w | t−1 & b2

where t−1 ≤ t1 and b′1 = ε; b2; b1. To see that b2 = ε we use:

Fact B.1 If cenv, tenv ` w | t & b and w is a weakly evaluated expression
then b = ε. 2

Proof A simple induction over weakly evaluated expressions. 2

Inspection of the proof tree (?) reveals a premiss

cenv[i 7→ t1] ` e0 | t2 & b1

and by Lemma 4.3 (with a trivial substitution) this yields

cenv[i 7→ t−1] ` e0 | t−2 & b−1

for t−2 ≤ t2 and b−1 ≤ b1. Using Lemma 4.2 we then obtain

42

cenv ` e0[w/i] | t−2 & b−1

Since t−2 ≤ t2 and b−1 ≤ b1 ≤ ε; ε; b1 ≤ b′1 the desired result then follows from
Corollary 4.4.

Let-abstraction. This case is slightly simpler than the one for application but
we shall nonetheless provide the details. The inference e→ e′ must have the
form

E[let i = w in e0]→ E[e0[w/i]]

Inspection of the proof tree for e once more identifies a node

cenv ` let i = w in e0 | t2 & b′1

corresponding to the hole in E. It must have premisses

cenv ` w | t1 & ε
cenv[i 7→ t1] ` e0 | t2 & b2

where b′1 = ε; b2 and we have used Fact B.1. Using Lemma 4.2 we obtain

cenv ` e0[w/i] | t2 & b2

and since t2 ≤ t2 and b2 ≤ ε; b2 ≤ b′1 the desired result follows from Proposi-
tion 4.4.

Conditional. The inference e→ e′ must have the form

E[if w then e1 else e2 : t0]→ E[e1]

where, without loss of generality, we assume that w = true. Inspection of
the proof tree for cenv ` e | t & b once more identifies a node

cenv ` if w then e1 else e2 : t0 | t0 & b0

corresponding to the hole in E. It must have premisses

43

cenv ` w | bool & ε
cenv ` e1 | t1 & b1

cenv ` e2 | t2 & b2

where t1 ≤ t0, t2 ≤ t0, b0 = ε; (b1 + b2) and we have used Fact B.1. Applying
Corollary 4.4 to cenv ` e1 | t1 & b1 we then get the desired result because
t1 ≤ t0 and b1 ≤ b1 + b2 ≤ ε; (b1 + b2) ≤ b0.

Application (δ-reduction). The inference e→ e′ must have the form

E[w1 w2]→ E[w3]

where (w1, w2, w3) ∈ δ→(see Figure 7). Inspection of the proof tree for cenv `
e | t & b once more identifies a node

cenv ` w1w2 | t2 & b0

corresponding to the hole in E. It must have premisses

cenv ` w1 | t1 →b1 t2 & ε
cenv ` w2 | t−1 & ε

where t−1 ≤ t1 and b0 = ε; ε; b1 and we have used Fact B.1. To obtain the
desired result using Corollary 4.4 it suffices to find t−2 and show

cenv ` w3 | t−2 & ε
t−2 ≤ t2
b1 ≡ ε

as then ε ≤ ε; ε; b1 ≤ b0.

This may be achieved by inspection of Figure 7. We only consider two typical
cases. The case where

w1 = pair : t3 →ε t4 →ε t3 × t4
w2 = w
w3 = 〈w1w2〉

44

is typical of the case where weakly evaluated expressions are constructed. In
this case t1 = t3, b1 = ε, t2 = t4 →ε t3×t4 and taking t−2 = t2 gives the desired
result. The other case where

w1 = fst : t3 × t4 →ε t3
w2 = 〈pair : t′3 →ε t′4 →ε t′3 × t′4 wa wb〉
w3 = wa

is typical of the case where weakly evaluated expressions are taken apart. In
this case t1 = t3 × t4, b1 = ε, t2 = t3, t

−
1 = t′3 × t′4 and it follows that t′3 ≤ t2.

From cenv ` w2 | t−1 & ε we then get cenv ` wa | t
′−
3 & ε where t

′−
3 ≤ t′3 and

we have used Fact B.1. Taking t−2 = t−3 then gives the desired result. 2

Proof of Proposition 4.5

We proceed by induction on the transition relation for matching.

The axiom for send and receive. In this case

w1 = 〈send : (t11 →ε t1 com b1)〈pair : t12 ci w〉〉
w2 = 〈receive : (t21 →ε t2 com b2)ci〉

where it is essential that the two occurrences of ci are indeed the same channel
identifier. It is immediate from the typing rule for weakly evaluated constants
that t1 = t01, t2 = t02, b1 = b01 and b2 = b02. Furthermore, b1 may be written
r1!t1 and b2 may be written r2?t2. Finally, write cenv(ci) = t0 chan r0.

Turning the attention to w and ci of w1 it follows from

cenv ` w1 | (t01 com b01) & ε

that

cenv ` w | t−01 & ε
cenv ` ci | (t′01 chan r−1) & ε

45

for some t−01 ≤ t01, t
′
01 ≡ t01 and r−1 ≤ r1. (The detailed argument observes

that t11 must have the form (t1 chan r1) × t1 with b1 as above, and hence
t12 must have the form t3 →ε t4 →ε t3 × t4 with t3 ≤ t1 chan r1 and t4 ≤ t1,
and hence cenv ` ci | t−3 & ε and cenv ` w | t−4 & ε for some t−3 ≤ t3 and
t−4 ≤ t4.)

Turning the attention to ci of w2 it follows from

cenv ` w2 | (t02 com b02) & ε

that

cenv ` ci | (t′02 chan r−2) & ε

for some t′02 ≡ t02 and r−2 ≤ r2. By the typing axiom for identifiers it follows
that t′01 = t0 = t′02 and r−1 = r0 = r−2 . A consequence of this is that t01 ≡ t02

Taking

t−02 = t−01, b
′
1 = ε and b′2 = ε

we then get

cenv ` w | t−01 & b′1 with b1; b
′
1 ≤ b01

cenv ` w | t−02 & b′2 with b2; b
′
2 ≤ b02

and we also have t−01 ≤ t01 and t−02 ≤ t02 (since t−02 = t−01, t
−
01 ≤ t01, t01 ≡ t02).

Furthermore, b1 = r1!t1 and b2 = r2?t2 with t1 ≡ t2 and ∃r : r ≤ r1 ∧ r ≤ r2.

The rule for choosing heads. In this case

w1 = 〈choose : t11〈cons : t12 w11 w12〉〉

It is immediate from the typing rule for weakly evaluated constants to infer
from

cenv ` w1 | (t01 com b01) & ε

46

that

cenv ` w11 | (t′01 com b′01) & ε

for some t′01 ≤ t01 and b′01 ≤ b01.

By assumption

(w11, w2) ; (e1, e2) : (b1, b2)

and the induction hypothesis gives t
′−
01 ≤ t′01, t

′−
02 ≤ t02, b

′
1 and b′2 such that

cenv ` e1 | t
′−
01 & b′1 with b1; b

′
1 ≤ b′01

cenv ` e2 | t−02 & b′2 with b2; b
′
2 ≤ b02

By taking t−01 = t
′−
01 it is immediate that

cenv ` e1 | t−01 & b′1 with b1; b
′
1 ≤ b01

cenv ` e2 | t−02 & b′2 with b2; b
′
2 ≤ b02

and that also t−01 ≤ t01 and t−02 ≤ t02

The rule for choosing tails. In this case

w1 = 〈choose : t11〈cons : t12 w11 w12〉〉

and much as before

cenv ` 〈choose : t11 w12〉 | (t01 com b01) & ε

(except that there is no need to consider t′01 ≤ t01 and b′01 ≤ b01). By
assumption

(〈choose : t11 w12〉, w2) ; (e1, e2) : (b1, b2)

and the induction hypothesis gives t−01 ≤ t01, t
−
02 ≤ t02, b

′
1 and b′2 such that

47

cenv ` e1 | t−01 & b′1 with b1; b
′
1 ≤ b01

cenv ` e2 | t−02 & b′2 with b2; b
′
2 ≤ b02

This is indeed the desired result.

The rule for wrap. In this case

w1 = 〈wrap : t11〈pair : t12 w11 w12〉〉

The type t11 must be of the form

t11 = (t3 com b3)× (t3 →b4 t4)→ε (t4 com (b3; b4))

and from

cenv ` w1 | (t01 com b01) & ε

it follows that t01 = t4 and b01 = b3; b4. It further follows that

cenv ` w11 | (t−3 com b−3) & ε

cenv ` w12 | (t+3 →b−4 t−4) & ε

for some t−3 ≤ t3, b
−
3 ≤ b3, t

+
3 ≤ t3, b

−
4 ≤ b4 and t−4 ≤ t4.

By assumption

(w11, w2) ; (e1, e2) : (b1, b2)

and the induction hypothesis yields t−−3 ≤ t−3 , t
−
02 ≤ t02, b

−′
3 and b′2 such that

cenv ` e1 | t−−3 & b−
′

3 with b1; b
−′
3 ≤ b−3

cenv ` e2 | t−02 & b′2 with b2; b
′
2 ≤ b02

It then follows that

cenv ` w12 e1 | t−4 & (b−
′

3 ; b−4) with b1; b
−′
3 ; b−4 ≤ b−3 ; b−4

48

and taking t−01 = t−4 and b′1 = b−
′

3 ; b4 we have

cenv ` w12 e1 | t−01 & b′1 with b1; b
′
1 ≤ b01

cenv ` e2 | t−02 & b′2 with b2; b
′
2 ≤ b02

as well as t−01 ≤ t01 and t−02 ≤ t02

The rule for rearranging the components. This case is straightforward (due
to the symmetrical formulation of the proposition). 2

Proof of Lemma 4.7

We proceed by induction on the structure of the evaluation context E.

The case E ::= []. This is immediate since t = t0 and b = b0 and we may
therefore take t′ = t′0 and b′ = b′0.

The case E ::= E0 e. Inspection of cenv ` E[e0] | t & b reveals premisses of
the form

cenv ` E0[e0] | t1 →b3 t & b1

cenv ` e | t−1 & b2

where t−1 ≤ t1 and b = b1; b2; b3. From the induction hypothesis we get

cenv ` E0[e
′
0] | t+1 →b−3 t− & b′1

where t+1 ≥ t1, b
−
3 ≤ b3, t

− ≤ t and b•; b′1 ≤ b1. Taking t′ = t− and b′ =
b′1; b2; b3 we then have

cenv ` E0[e
′
0]e | t− & b′

as well as the desired t′ ≤ t and b•; b′ ≤ b.

The case E ::= w E0. Inspection of cenv ` E[e0] | t & b reveals premisses of
the form

49

cenv ` w | t+1 →b2 t & ε
cenv ` E0[e0] | t1 & b1

where t+1 ≤ t1 and b = ε; b1; b2 and we also used Fact B.1. From the induction
hypothesis we get

cenv ` E0[e
′
0] | t−1 & b′1

where t−1 ≤ t1 and b•; b′1 ≤ b1. Taking t′ = t and b′ = ε; b′1; b2 we then have

cenv ` wE0[e
′
0] | t′ & b′

as well as the desired t′ ≤ t and b•; b′ ≤ b.

The case E ::= let i = E0 in e. Inspection of cenv ` E[e0] | t & b reveals
premisses of the form

cenv ` E0[e0] | t1 & b1

cenv[i 7→ t1] ` e | t & b2

where b = b1; b2. From the induction hypothesis we get

cenv ` E0[e
′
0] | t−1 & b′1

with t−1 ≤ t1 and b•; b′1 ≤ b1. From Lemma 4.3 we get

cenv[i 7→ t−1] ` e | t− & b2

where t− ≤ t and b−2 ≤ b2. Taking t′ = t− and b′ = b′1; b
−
2 we then have

cenv ` let i = E0[e
′
0] in e | t′ & b′

as well as the desired t′ ≤ t and b•; b′ ≤ b. (Note that the “decrease” in
behaviour may apparently take place “deeply embedded” in the behaviour
rather than only at the front!)

The case E ::= if E0 then e1 else e2 : t. (Note that no confusion arises from
using the type t here.) Inspection of cenv ` E[e0] | t & b reveals premisses
of the form

50

cenv ` E0[e0] | bool & b1

cenv ` e1 | t1 & b2

cenv ` e2 | t2 & b3

where t1 ≤ t, t2 ≤ t and b = b1; (b2 + b3). From the induction hypothesis we
get

cenv ` E0[e
′
0] | bool & b1

where b•, b′1 ≤ b1 because the condition t4 ≤ bool is equivalent to t4 = bool.
Taking t′ = t and b′ = b′1; (b2 + b3) we then have

cenv ` if E0[e
′
0] then e1 else e2 : t | t & b′

as well as the desired t′ ≤ t and b•; b′ ≤ b. 2

Proof of Proposition 4.6

The proof is by cases on the rule used for the concurrent transition.

Sequential evaluation. In this case we have ~b = ε and ~pi = pi for some pi ∈
PIdent and

PP ′ = PP [pi 7→ PP ′(pi)]
cenv′ = cenv
PP (pi)→ PP ′(pi)

From cenv ` PP (pi) | PT (pi) & PB(pi) and Proposition 4.1 we get t′ ≤
PT (pi) and b′ ≤ PB(pi) such that cenv ` PP ′(pi) | t′ & b′. Taking

PT ′ = PT [pi 7→ t′]
PB′ = PB[pi 7→ b′]

all conditions are satisfied.

Channel allocation. In this case we have ~b = b = t0 chan i0 and ~pi = pi for
some pi ∈ Pident and

51

PP ′ = pp[pi 7→ PP ′(pi)]
cenv′ = cenv[ci 7→ t0 chan i0]
PP (pi) = E[channel : (unit→b t)()]
PP (pi) = E[ci]

where ci /∈ dom (cenv) and t = t0 chan i0. From

cenv ` E[channel : (unit→b t) ()] | PT (pi) & PB(pi)

we immediately get

cenv′ ` E[channel : (unit→b t) ()] | PT (pi) & PB(pi)

and it is immediate that

cenv′ ` channel : (unit→b t) ()] | t & ε; ε; b
cenv′ ` ci | t & ε

Using Lemma 4.7 we then get t′ and b′ such that

cenv′ ` E[ci] | t′ & b′

and where t′ ≤ t and b; b′ ≤ PB(pi). Taking

PT ′ = PT [pi 7→ t′]
PB′ = PB[pi 7→ b′]

all conditions are satisfied.

Process creation. In this case we have ~b = b = t0 fork b0 and ~pi = pi1, pi2
for some pi1, pi2 ∈ PIdent and

PP ′ = PP [pi1 7→ PP ′(pi1)][pi2 7→ PP ′(pi2)]
cenv′ = cenv
PP (pi1) = E[fork :(t→b unit)w]
PP ′(pi1) = E[()]
PP ′(pi2) = w ()

52

where pi2 6∈ dom(PP) and t = unit→b0 t0. From

cenv ` E[fork :(t→b unit)w] | PT (pi1)&PB(pi1)

we get

cenv ` fork : (t→b unit)w] | unit & ε; ε; b

and hence

cenv ` w | unit→b−0 t−0 & ε

where b−0 ≤ b0 and t−0 ≤ t0 and we have used Fact B.1. Since

cenv ` () | unit &ε

we get t′ and b′ from Lemma 4.7 such that

cenv ` E[()] | t′ & b′

and where t′ ≤ PT (pi1) and b; b′ ≤ PB(pi1). Taking

PT ′ = PT [pi1 7→ t′][pi2 7→ t−0]
PB′ = PB[pi1 7→ b′][pi2 7→ ε; ε; b−0]

all conditions are satisfied.

Synchronization. In this case we have ~b = b1, b2 and pi = pi1, pi2 for some
pi ∈ PIdent and

PP ′ = PP [pi1 7→ PP ′(pi1)][pi2 7→ PP ′(pi2)]
cenv′ = cenv
PP (pi1) = E1[sync : (t1 com b1 →b1 t1)w1]
PP (pi2) = E2[sync : (t2 com b2 →b2 t2)w2]
PP ′(pi1) = E1[e1]
PP ′(pi2) = E2[e2]
(w1, w2) ; (e1, e2) : (b1, b2)

53

For j ∈ {1, 2} we have

cenv ` Ej[sync : (tj com bj →bj tj)wj] | PT (pij) & PB(pij)

and get

cenv ` sync : (tj com bj →bj tj)wj | tj & ε; ε; bj

and hence

cenv ` wj | t−j com b−j & ε

where t−j ≤ tj and b−j ≤ bj and we have used Fact B.1.

Proposition 4.5 then gives t′′1, t
′′
2, b
′′
1 and b′′2 such that for j ∈ {1, 2} we have

cenv ` ej | t′′j&b′′j

with t′′j ≤ t−j and bj; b
′′
j ≤ bj. Using Lemma 4.7 we then get t′1, t

′
2, b
′
1 and b′2

such that for j ∈ {1, 2} we have

cenv ` Ej[ej] | t′j & b′j

with t′j ≤ PT (pij) and bj; b
′
j ≤ PB(pij). Taking

PT ′ = PT [pi1 7→ t′1][pi2 7→ t′2]
PB′ = PB[pi1 7→ b′1][pi2 7→ b′2]

all conditions are satisfied (and b1 and b2 are as stated in Proposition 4.5).
2

54

