
Exact Calculation of the Product of the

Hessian Matrix of Feed-Forward Network

Error Functions and a Vector in O(N)

Time

Martin M�ller�

Computer Science Department

Aarhus University

DK-8000 �Arhus, Denmark

Abstract

Several methods for training feed-forward neural networks require second order

information from the Hessian matrix of the error function. Although it is possible

to calculate the Hessian matrix exactly it is often not desirable because of the

computation and memory requirements involved. Some learning techniques does,

however, only need the Hessian matrix times a vector. This paper presents a

method to calculate the Hessian matrix times a vector inO(N) time, whereN is the

number of variables in the network. This is in the same order as the calculation of

the gradient to the error function. The usefulness of this algorithm is demonstrated

by improvement of existing learning techniques.

1 Introduction

The second derivative information of the error function associated with

feed-forward neural networks forms an N �N matrix, which is usually re-
ferred to as the Hessian matrix. Second derivative information is needed

in several learning algorithms, e.g., in some conjugate gradient algorithms

�This work was done while the author was visiting School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA.

1

[M�ller 93a], and in recent network pruning techniques [MacKay 91], [Hassibi 92].

Several researchers have recently derived formulae for exact calculation of

the elements in the Hessian matrix [Buntine 91], [Bishop 92]. In the gen-
eral case exact calculation of the Hessian matrix needs O(N 2) time- and

memory requirements. For that reason it is often not worth while explicitly

to calculate the Hessian matrix and approximations are often made as de-
scribed in [Buntine 91]. The second order information is not always needed

in the form of the Hessian matrix. This makes it possible to reduce the
time- and memory requirements needed to obtain this information. The

scaled conjugate gradient algorithm [M�ller 93a] and a training algorithm

recently proposed by Le Cun involving estimation of eigenvalues to the
Hessian matrix [Le Cun 93] are good examples of this. The second order

information needed here is always in the form of the Hessian matrix times

a vector. In both methods the product of the Hessian and the vector is
usually approximated by a one sided di�erence equation. This is in many

cases a good approximation but can, however, be numerical unstable even

when high precision arithmetic is used.
It is possible to calculate the Hessian matrix times a vector exactly

without explicitly having to calculate and store the Hessian matrix itself.

Through straightforward analytic evaluations we give explicit formulae for
the Hessian matrix times a vector. We prove these formulae and give an

algorithm that calculates the product. This algorithm has O(N) time- and
memory requirements which is of the same order as the calculation of the

gradient to the error function. The algorithm is a generalized version of

an algorithm outlined by Yoshida, which was derived by applying an auto-
matic di�erentiation technique [Yoshida 91]. The automatic di�erentiation

technique is an indirect method of obtaining derivative information and

provides no analytic expressions of the derivatives [Dixon 89]. Yoshida's
algorithm is only valid for feed-forward networks with connections between

adjacent layers. Our algorithm works for feed-forward networks with arbi-

trary connectivity.
The usefulness of the algorithm is demonstrated by discussing possible

improvements of existing learning techniques. We here focus on improve-

ments of the scaled conjugate gradient algorithm and on estimation of eigen-
values of the Hessian matrix.

2

2 Notation

The networks we consider are multilayered feed-forward neural networks

with arbitrary connectivity. The network @ consist of nodes nlm arranged in
layers l = 0; . . . ; L. The number of nodes in a layer l is denoted Nl. In order

to be able to handle the arbitrary connectivity we de�ne for each node nlm
a set of source nodes and a set of target nodes.

Sl
m = fnrs 2 @j There is a connection from nrs to n

l
m; r < l; 1 � s � Nrg(1)

T l
m = fnrs 2 @j There is a connection from nlm to nrs; r > l; 1 � s � Nrg

The training set accociated with network @ is

f(u0ps; s = 1; . . . ;N0; tpj; j = 1; . . . ; NL); p = 1; . . . ; Pg (2)

The output from a node nlm when a pattern p is propagated through the

network is

ulpm = f (vlpm) , where v
l
pm =

X

nr
s
2Sl

m

wlr
msu

r
ps + wl

m; (3)

and wlr
ms is the weight from node nrs to node nlm. wl

m is the usual bias of
node nlm. f(vlpm) is an appropriate activation function, e.g., the sigmoid.

The net-input vlpm is chosen to be the usual weighted linear summation of
inputs. The calculations to be made could, however, easily be extended to

other de�nitions of vlpm. Let an error function E(w) be

E(w) =
PX

p=1

Ep(u
L
p1; . . . ; u

L
pNL

; tp1; . . . ; tpNL
) ; (4)

where w is a vector containing all weights and biases in the network, and

Ep is some appropriate error measure associated with pattern p from the

training set.
Based on the chain rule we de�ne some basic recursive formulae to cal-

culate �rst derivative information. These formulae are used frequently in

the next section. Formulae based on backward propagation are

@vhpi

@vlpm
=

X

nr
s
2T l

m

@vhpi

@vrps

@vrps

@vlpm
= f 0(vlpm)

X

nr
s
2T l

m

wrl
sm

@vhpi

@vrps
(5)

@Ep

@vlpm
=

X

nr
s
2T l

m

@Ep

@vrps

@vrps

@vlpm
= f 0(vlpm)

X

nr
s
2T l

m

wrl
sm

@Ep

@vrs
(6)

3

3 Calculation of the Hessian matrix times a

vector

This section presents an exact algorithm to calculate the vector Hp(w)d,

where Hp(w) is the Hessian matrix of the error measure Ep, and d is a
vector. The coordinates in d are arranged in the same manner as the

coordinates in the weight-vector w.

Hp(w)d =
d

dw
(dT

dEp

dw
) =

d

dw
(dT

NLX

j=1

@Ep

@vLpj

dvLpj

dw
) (7)

=
NLX

j=1

@2Ep

(@vLpj)
2
(dT

dvLpj

dw
)
dvLpj

dw
+
@Ep

@vLpj
(
d2vLpj

dw2
d)

=
NLX

j=1

(f 0(vLpj)
2
@2Ep

(@uLpj)
2
+ f 00(vLpj)

@Ep

@uLpj
)(dT dv

L
pj

dw
)
dvLpj

dw
+
@Ep

@vLpj
(
d2vLpj

dw2
d);

The �rst and second terms of equation (7) will from now on be referred

to as the A- and B-vector respectively. So we have

A =
NLX

j=1

(f 0(vLpj)
2
@2Ep

(@uLpj)
2
+f 00(vLpj)

@Ep

@uLpj
)(dT

dvLpj

dw
)
dvLpj

dw
and B =

NLX

j=1

@Ep

@vLpj
(
d2vLpj

dw2
d):

(8)
We �rst concentrate on calculating the A-vector.

Lemma 1 Let 'l
pm be de�ned as 'l

pm = d
T dvl

pm

dw
. 'l

pm can be calculated by

forward propagation using the recursive formula

'l
pm =

P
nr
s
2Sl

m
(dlrmsu

r
ps+wlr

msf
0(vrps)'

r
ps)+ dlm ; l > 0 ; '0

pi = 0 ; 1 �

i � N0.

Proof. For input nodes we have '0

pi = 0 as desired. Assume the lemma is

true for all nodes in layers k < l.

'l
pm = d

T
dvlpm

dw
= d

T (
X

nr
s
2Sl

m

d

dw
(wlr

msu
r
ps) +

dwl
m

dw
)

=
X

nr
s
2Sl

m

(wlr
msf

0(vrps)d
T dv

r
ps

dw
+ dlrmsu

r
ps)+ dlm =

X

nr
s
2Sl

m

(dlrmsu
r
ps + wlr

msf
0(vrps)'

r
ps) + dlm

2

4

Lemma 2 Assume that the 'l
pm factors have been calculated for all nodes

in the network. The A-vector can be calculated by backward propagation

using the recursive formula

Alh
mi = �lpmu

h
pi; Al

m = �lpm ,

where �lpm is

�lpm = f 0(vlpm)
P
nrs2T

l
m
wrl
sm�

r
ps ; l < L ;

�Lpj = (f 0(vLpj)
2 @2Ep

(@uLpj)
2 + f 00(vLpj)

@Ep

@uLpj
)'L

pj ; 1 � j � NL:

Proof.

Alh
mi =

NLX

j=1

�Lpj
@vLpm

@wlh
mi

= (
NLX

j=1

�Lpj
@vLpj

@vlpm
)uhpi) �lpm =

NLX

j=1

�Lpj
@vLpj

@vlpm

For the output layer we have ALh
ji = �Lpju

h
pi as desired. Assume that the

lemma is true for all nodes in layers k > l.

�lpm =
NLX

j=1

�Lpj
@vLpj

@vlpm
=

NLX

j=1

�Lpjf
0(vlpm)

X

nrs2T
l
m

wrl
sm

@vLpj

@vrps

= f 0(vlpm)
X

nrs2T
l
m

wrl
sm(

NLX

j=1

�Lpj
@vLpj

@vrps
) = f 0(vlpm)

X

nrs2T
l
m

wrl
sm�

r
ps

2

The calculation of the B-vector is a bit more involved but is basicly con-
structed in the same manner.

Lemma 3 Assume that the 'l
pm factors have been calculated for all nodes

in the network. The B-vector can be calculated by backward propagation

using the recursive formula

Blh
mi = �lpmf

0(vhpi)'
h
pi + �lpmu

h
pi ; Bl

m = �lpm

where �lpm and �lpm are

�lpm = f 0(vlpm)
P
nrs2T

l
m
wrl
sm�

r
ps ; l < L ; �Lpj =

@Ep

@vLpj
; 1 � j � NL:

�lpm =
P
nrs2T

l
m
(f 0(vlpm)w

rl
sm�

r
ps+(drlsmf

0(vlpm)+wrl
smf

00(vlpm)'
l
pm)�rps) ; l <

L ;

5

�Lpj = 0 ;1 � j � NL

Proof. Observe that the B-vector can be written in the form

B =
NLX

j=1

@Ep

@vLpj
(
d2vLpj

dw2
d) =

NkX

j=1

@Ep

@vLpj

d'L
pj

dw
:

Using the chain rule we can derive analytic experessions for �lpm and �lpm.

Blh
mi =

NLX

j=1

@Ep

@vLpj

@'L
pj

@wlh
mi

=
NLX

j=1

@Ep

@vLpj
(
@'L

pj

@'l
pm

@'l
pm

@wlh
mi

+
@'L

pj

@vlpm

@vlpm

@wlh
mi

)

=
NLX

j=1

@Ep

@vLpj
(
@'L

pj

@'l
pm

f 0(vhpi)'
h
pi +

@'L
pj

@vlpm
uhpi)

So if the lemma is true �lpm and �lpm are given by

�lpm =
NLX

j=1

@Ep

@vLpj

@'L
pj

@'l
pm

; �lpm =
NLX

j=1

@Ep

@vLpj

@'L
pj

@vlpm

The rest of the proof is done in two steps. We look at the parts concerned
with the �lpm and �lpm factors separately. For all output nodes we have

�Lpj =
@Ep

@vLpj
as desired. For non output nodes we have

�lpm =
NLX

j=1

@Ep

@vLpj

X

nrs2T
l
m

@'L
pj

@'r
ps

@'r
ps

@'l
pm

=
NLX

j=1

@Ep

@vLpj
f 0(vlpm)

X

nrs2T
l
m

wrl
sm

@'L
pj

@'r
ps

= f 0(vlpm)
X

nrs2T
l
m

wrl
sm

NLX

j=1

@Ep

@vLpj

@'L
pj

@'r
ps

= f 0(vlpm)
X

nrs2T
l
m

wrl
sm�

r
ps

Similiarly is �Lpj = 0 for all output nodes as desired. For non output nodes
we have

�lpm =
NLX

j=1

@Ep

@vLpj

X

nrs2T
l
m

(@'
L
pj

@vrps

@vrps

@vlpm
+
@'L

pj

@'r
ps

@'r
ps

@vlpm
)

=
NLX

j=1

@Ep

@vLpj

X

nrs2T
l
m

(f 0(vlpm)w
rl
sm

@'L
pj

@vrps
+ (drlsmf

0(vlpm) + wrl
smf

00(vlpm)'
l
pm)

@'L
pj

@'r
ps

)

=
X

nrs2T
l
m

(f 0(vlpm)w
rl
sm

NLX

j=1

@Ep

@vLpj

@'L
pj

@vrps
+ (drlsmf

0(vlpm) + wrl
smf

00(vlpm)'
l
pm)

NLX

j=1

@Ep

@vLpj

@'L
pj

@'r
ps

)

=
X

nrs2T
l
m

(f 0(vlpm)w
rl
sm�

r
ps + (drlsmf

0(vlpm) + wrl
smf

00(vlpm)'
l
pm)�rps)

6

The proof of the formula for Bl
m follows easily from the above derivations

and is left to the reader. 2

We are now ready to give an explicit formula for calculation of the Hes-
sian matrix times a vector. Let Hd be the vector Hp(w)d.

Corollary 1 Assume that the 'l
pm factors have been calculated for all nodes

in the network. The vector Hd can be calculated by backward propagation

using the following recursive formula

Hdlhmi = �lpmf
0(vhpi)'

h
pi + (�lpm + �lpm)u

h
pi ; Hdlm = �lpm + �lpm ,

where �lpm, �
l
pm and �lpm are given as shown in lemma 2 and lemma 3.

Proof. By combination of lemma 2 and lemma 3. 2

If we view �rst derivatives like @Ep

@ulpm
and @Ep

@vlpm
as already available infor-

mation, then the formula for Hd can reformulated into a formula based
only on one recursive parameter. First we observe that �lpm and �lpm can be
written in the form

�lpm =
@Ep

@vlpm
(9)

�lpm = f 0(vlpm)
X

nrs2T
l
m

(wrl
sm�

r
ps + drlsm

@Ep

@vrps
) + f 00(vlpm)'

l
pm

@Ep

@ulpm

Corollary 2 Assume that the 'l
pm factors have been calculated for all nodes

in the network. The vector Hd can be calculated by backward propagation

using the following recursive formula

Hdlhmi =
@Ep

@vlpm
f 0(vhpi)'

h
pi + lpmu

h
pi ; Hdlm = lpm ,

where lpm is

lpm = f 0(vlpm)
P
nrs2T

l
m
(wrl

sm
r
ps + drlsm

@Ep

@vrps
)+ f 00(vlpm)'

l
pm

@Ep

@ulpm

Lpj = (f 0(vLpj)
2 @2Ep

(@uLpj)
2 + f 00(vLpj)

@Ep

@uLpj
)'L

pj

7

Proof. By corollary 1 and equation 9. 2

The formula in corollary 2 is a generalized version of the one that Yoshida
derived for feed-forward networks with only connections between adjacent
layers. An algorithm that calculates

PP
p=1Hp(w)d based on corollary 1

is given below. The algorithm also calculates the gradient vector G =
PP
p=1

dEp

dw.

1. Initialize.

Hd = 0; G = 0

Repeat the following steps for p = 1; . . . ; P .

2. Forward propagation.

For nodes i = 1 to N0 do: '
0
pi = 0.

For layers l = 1 to L and nodes m = 1 to Nl do:

vlpm =
P
nrs2S

l
m
wlr
msu

r
ps + wl

m ; ulpm = f (vlpm),

'l
pm =

P
nrs2S

l
m
(dlrmsu

r
ps + wlr

msf
0(vrps)'

r
ps) + dlm.

3. Output layer.

For nodes j = 1 to NL do

�Lpj =
@Ep

@vLpj
; �Lpj = 0 ; �Lpj = (f 0(vLpj)

2 @2Ep

(@uLpj)
2 + f 00(vLpj)

@Ep

@uLpj
)'L

pj:

For all nodes nrs 2 SL
j do

HdLrjs = HdLrjs + �Lpjf
0(vrps)'

r
ps + �Lpju

r
ps ; HdLj = HdLj + �Lpj ;

GLr
js = GLr

js + �Lpju
r
ps ; GL

j = GL
j + �Lpj.

4. Backward propagation.

For layers l = L� 1 downto 1 and nodes m = 1 to Nl do:

�lpm = f 0(vlpm)
P
nrs2T

l
m
wrl
sm�

r
ps ; �lpm = f 0(vlpm)

P
nrs2T

l
m
wrl
sm�

r
ps,

�lpm =
P
nrs2T

l
m
(f 0(vlpm)w

rl
sm�

r
ps + (drlsmf 0(vlpm) + wrl

smf
00(vlpm)'

l
pm)�rps).

For all nodes nrs 2 Sl
m do

8

Hdlrms = Hdlrms + �lpmf
0(vrps)'

r
ps + (�lpm + �lpm)u

r
ps ; Hdlm =

Hdlm + �lpm + �lpm ;

Glr
ms = Glr

ms + �lpmu
r
ps ; Gl

m = Gl
m + �lpm.

Clearly this algorithm has O(N) time- and memory requirements. More
precisely the time complexity is about 2.5 times the time complexity of a
gradient calculation alone.

4 Improvement of existing learning techniques

In this section we justify the importance of the exact calculation of the
Hessian times a vector, by showing some possible improvements on two
di�erent learning algorithms.

4.1 The scaled conjugate gradient algorithm

The scaled conjugate gradient algorithm is a variation of a standard con-
jugate gradient algorithm. The conjugate gradient algorithms produce
non-interfering directions of search if the error function is assumed to be
quadratic. Minimization in one direction dt followed by minimization in
another direction dt+1 imply that the quadratic approximation to the error
has been minimized over the whole subspace spanned by dt and dt+1. The
search directions are given by

dt+1 = �E
0

(wt+1) + �tdt ; (10)

where wt is a vector containing all weight values at time step t and �t is

�t =
jE

0

(wt+1)j
2 � E

0

(wt+1)
TE

0

(wt)

jE 0(wt)j2
(11)

In the standard conjugate gradient algorithms the step size �t is found by
a line search which can be very time consuming because this involves several
calculations of the error and or the �rst derivative. In the scaled conjugate
gradient algorithm the step size is estimated by a scaling mechanism thus
avoiding the time consuming line search. The step size is given by

�t =
�dTt E

0

(wt)

dTt st + �tjdtj2
; (12)

9

where st is
st = E

00

(wt)dt: (13)

�t is the step size that minimizes the second order approximation to the
error function. �t is a scaling parameter whose function is similar to the
scaling parameter found in Levenberg-Marquardt methods [Fletcher 75]. �t
is in each iteration raised or lowered according to how good the second order
approximation is to the real error. The weight update formula is given by

4wt = �tdt (14)

st has up til now been approximated by a one sided di�erence equation of
the form

st =
E

0

(wt + �tdt) � E
0

(wt)

�t
;0 < �t � 1 (15)

st can now be calculated exactly by applying the algorithm from the last
section. We tested the SCG algorithm on several test problems using both
exact and approximated calculations of dTt st. The experiments indicated a
minor speedup in favor of the exact calcuation. Equation (15) is in many
cases a good approximation but can, however, be numerical unstable even
when high precision arithmetic is used. If the relative error of E

0

(wt) is "
then the relative error of equation (15) can be as high as 2"

�t
[Ralston 78]. So

the relative error gets higher when �t is lowered. We refer to [M�ller 93a]
for a detailed description of SCG. For a stochastic version of SCG especially
designed for training on large, redundant training sets, see also [M�ller 93b].

4.2 Eigenvalue estimation

A recent gradient descent learning algorithm proposed by Le Cun, Simard
and Pearlmutter involves the estimation of the eigenvalues of the Hessian
matrix. We will give a brief description of the ideas in this algorithmmainly
in order to explain the use of the eigenvalues and the technique to estimate
them. We refer to [Le Cun 93] for a detailed description of this algorithm.
Assume that the Hessian H(wt) is invertible. We then have by the spec-

tral theorem from linear algebra that H(wt) has N eigenvectors that forms
an orthogonal basis in <N [Horn 85]. This implies that the inverse of the

10

Hessian matrix H(wt)
�1 can be written in the form

H(wt)
�1 =

NX

i=1

eie
T
i

jeij2�i
; (16)

where �i is the i'th eigenvalue of H(wt) and ei is the corresponding eigen-
vector. Equation (16) implies that the search directions dt of the Newton
algorithm [Fletcher 75] can be written as

dt = �H(wt)
�1G(wt) = �

NX

i=1

eie
T
i

jeij2�i
G(wt) = �

NX

i=1

eTi G(wt)

jeij2�i
ei ; (17)

where G(wt) is the gradient vector. So the Newton search direction can be
interpreted as a sum of projections of the gradient vector onto the eigenvec-
tors weighted with the inverse of the eigenvalues. To calculate all eigenval-
ues and corresponding eigenvectors costs in O(N3) time which is infeasible
for large N. Le Cun et al. argues that only a few of the largest eigenval-
ues and the corresponding eigenvectors is needed to achieve a considerable
speed up in learning. The idea is to reduce the weight change in directions
with large curvature, while keeping it large in all other directions. They
choose the search direction to be

dt = �(G(wt) �
�k+1

�1

kX

i=1

eTi G(wt)

jeij2
ei) ; (18)

where i now runs from the largest eigenvalue �1 down to the k'th largest
eigenvalue �k. The eigenvalues of the Hessian matrix are the curvatures in
the direction of the corresponding eigenvectors. So Equation (18) reduces
the component of the gradient along the directions with large curvature.
See also [Le Cun 91] for a discussion of this. The learning rate can now
be increased with a factor of �1

�k+1
, since the components in directions with

large curvature has been reduced with the inverse of this factor.
The largest eigenvalue and the corresponding eigenvector can be esti-

mated by an iterative process known as the Power method [Ralston 78].
The Power method can be used successively to estimate the k largest eigen-
values if the components in the directions of already estimated eigenvectors
are substracted in the process. Below we show an algorithm for estimation
of the i'th eigenvalue and eigenvector. The Power method is here combined
with the Rayleigh quotient technique [Ralston 78]. This can accelerate the

11

process considerably.
Choose an initial random vector e0i . Repeat the following steps for m =
1; . . . ;M , where M is a small constant:

emi = H(wt)e
m�1
i ; emi = emi �

Pi�1
j=1

eT
j em

i

jejj2 ej

�mi = (em�1

i)Tem
i

jem�1

i j
2

; emi = 1

�mi
emi :

�Mi and eMi are respectively the estimated eigenvalue and eigenvector. The-
oretically it would be enough to substract the component in the direction
of already estimated eigenvectors once, but in practice roundo� errors will
generally introduce these components again.
Le Cun et al. approximates the term H(wt)e

m
i with a one sided di�er-

encing as shown in equation (15). Now this term can be calculated exactly
by use of the algorithm described in the last sections.

5 Conclusion

This paper has presented an algorithm for the exact calculation of the
product of the Hessian matrix of error functions and a vector. The product
is calculated without ever explicitly calculating the Hessian matrix itself.
The algorithm has O(N) time- and memory requirements, where N is the
number of variables in the network.
The relevance of this algorithm has been demonstrated by showing possi-

ble improvements in two di�erent learning techniques, the scaled conjugate
gradient learning algorithm and an algorithm recently proposed by Le Cun,
Simard and Pearlmutter.

Acknowledgements

It has recently come to the authors knowledge that the same algorithm has
been derived independently and at approximately the same time by Barak
Pearlmutter, Department of Computer Science and Engineering Oregon
Graduate Institute [Pearlmutter 93]. Thank you to Barak for his nice and
immediate recognition of the independence of our work.
I would also like to thank Wray Buntine, Scott Fahlman, Brian Mayoh

and Ole �sterby for helpful advice. This research was supported by a

12

grant from the Royal Danish Research Council. Facilities for this research
were provided by the National Science Foundation (U.S.) under grant IRI-
9214873. All opinions, �ndings, conclusions and recommendations in this
paper are those of the author and do not necessarily reect the views of the
Royal Danish Research Council or the National Science Foundation.

References

[Bishop 92] C. Bishop (1992), Exact Calculation of the Hessian

Matrix for the Multilayer Perceptron, Neural Compu-
tation, Vol. 2, pp. 494-501.

[Buntine 91] W. Buntine and A. Weigend (1991), Calculating Sec-

ond Derivatives on Feed-Forward Networks, submitted
to IEEE Transactions on Neural Networks.

[Le Cun 91] Y. Le Cun, I. Kanter, S. Solla (1991), Eigenvalues of

Covariance Matrices: Application to Neural Network

Learning, Physical Review Letters, Vol. 66, pp. 2396-
2399.

[Le Cun 93] Y. Le Cun, P.Y. Simard and B. Pearlmutter (1993),
Local Computation of the Second Derivative Informa-

tion in a Multilayer Network, in Proceedings of Neural
Information Processing Systems, Morgan Kau�man,
in print.

[Dixon 89] L.C.W. Dixon and R.C. Price (1989), Truncated New-

ton Method for Sparse Unconstrained Optimization

Using Automatic Di�erentiation, Journal of Optimiza-
tion Theory and Applications, Vol. 60, No. 2, pp. 261-
275.

[Fletcher 75] R. Fletcher (1975). Practical Methods of Optimization,
Vol. 1, John Wiley & Sons.

[Hassibi 92] B. Hassibi and D.G. Stork (1992), Second Order

Derivatives for Network Pruning: Optimal Brain Sur-

geon, In Proceedings of Neural Information Processing
Systems, Morgan Kau�man.

13

[Horn 85] R.H. Horn and C.A. Johnson (1985), Matrix Analysis,
Cambridge University Press, Cambridge.

[MacKay 91] D.J.C. MacKay (1991), A Practical Bayesian Frame-

work for Back-Prop Networks, Neural Computation,
Vol. 4, N0. 3, pp. 448-472.

[M�ller 93a] M. M�ller (1993), A Scaled Conjugate Gradient Algo-

rithm for Fast Supervised Learning, Neural Networks,
in press.

[M�ller 93b] M. M�ller (1993), Supervised Learning on Large Re-

dundant Training sets, International Journal of Neural
Systems, in press.

[Pearlmutter 93] B.A. Pearlmutter (1993), Fast Exact Multiplication by

the Hessian, preprint, submitted.

[Ralston 78] A. Ralston and P. Rabinowitz (1978), A First Course

in Numerical Analysis, McGraw-Hill Book Company,
Inc.

[Yoshida 91] T. Yoshida (1991), A Learning Algorithm for Multilay-

ered Neural Networks: A Newton Method Using Auto-

matic Di�erentiation, In Proceedings of International
Joint Conference on Neural Networks, Seattle, Poster.

14

