
Accepted for publication in the Proceedings of the Third International
Workshop on Conditional Term Rewriting Systems, Pont-á-Mousson, France,
8 - 10 July 1992, Lecture Notes in Computer Science, 656, Springer-Verlag,
1993.

Citations of this work should refer to the Proceedings, not to this preprint.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Instructive Example: Is Induction Safe for Functional Pro-

gram Verification? . 2
1.3 Overview of the Paper . 5

2 Basic Notions and Notations 6

3 Equational Definitions over Predefined Algebras as Enrich-
ments 8
3.1 Algebraic Semantics of Enrichments 8
3.2 Consistency of Enrichments 10
3.3 Proving Consistency of the Instructive Example 11

4 “Safe” Semantics of EDPA 12
4.1 Restricted Rewriting and Equality 13
4.2 Sufficient Conditions of Safe-Consistency 16

5 Relations with Other Approaches 18

Bibliography 20

Consistency and Semantics of Equational
Definitions over Predefined Algebras

Valentin Antimirov∗

Computer Science Department, Aarhus University, Aarhus DK-8000, Denmark
email : anti@daimi.aau.dk

Anatoli Degtyarev
Department of Cybernectics, Kiev University, 252127, Kiev, Ukraine

email : caphedra%105.icyb.kiev.ua

January 1993

Abstract
We introduce and study the notion of an equational definition over

a predefined algebra (EDPA) which is a modification of the notion of
an algebraic specification enrichment. We argue that the latter is not
quite appropriate when dealing with partial functions (in particular,
with those defined by non-terminating functional programs), and sug-
gest EDPA as a more adequate tool for specification and verification
purposes. Several results concerning consistency of enrichments and
correctness of EDPA are presented. The relations between EDPA and
some other approaches to algebraic specification of partial functions
are discussed.

1 Introduction

1.1 Motivation

Algebraic specification and term-rewriting methods seem very convenient to
use in the following wide-spread situation: given a set A of data with several

∗On leave from the V. M. Glushkov Institute of Cybernetics, Kiev, Ukraine;

1

predefined functions g1, . . . , gk on it, one needs to define (sometimes con-
structively) a set of new functions on A (a “specification” or “programming”
stage) and to analyse their logical properties (a “verification” stage).

A standard algebraic specification approach to this task would consist of
two steps:

i) to consider the set A with g1, . . . , gk as an algebra A, and to specify it
as an abstract data type - an initial model of some basic specification
SPA;

ii) to construct an enrichment SP ′ = SPA+(F,R) of the basic specification
where a set of new axioms R (together with those of SPA) are supposed
to define the meaning of the new function symbols f ∈ F .

This construction was introduced long ago (cf., e.g. [GTW78]) and is
known to work quite well when all the functions to be defined in this way
are total. It is possible in this case to find a so-called conservative (i.e. suffi-
ciently complete and consistent) enrichment SP ′ which has “practically the
same” initial model as the predefined algebra A, and therefore the standard
interpretation of F , defined by the initial model of SP ′, unambiguously de-
fines also a corresponding interpretation fA of each f ∈ F on A. This allows
to make use of equational logic (with induction), as well as of various auto-
mated deduction procedures based on term-rewriting technique for proving
logical properties of functions fA.

In this paper we intend to generalize this approach to the case of partial
functions over a predefined algebra - the case which is known to be of big
importance for practical applications of algebraic specifications. To illustrate
that the task is not trivial and to point out some subtle problems one should
expect on this way, let us consider an example.

1.2 Instructive Example: Is Induction Safe for Func-
tional Program Verification?

Consider the following functional program for integer division of natural num-
bers:

fun div : Nat, Nat− > Nat;

div(x, y) = if x < y then 0 else l + div(x− y, y), (1)

2

(here “−” denotes a natural minus, i.e. m− n = 0 for all m < n).
The program is not always terminating, still it can be used safely in a

context where it is supposed to be called with positive second argument.
Let’s try to define algebraic (not denotation!) semantics of (1) within the
“initial algebra approach” sketched above. For this purpose first we need
to specify the predefined algebra (of natural numbers) with all operations
involved in the program; let’s take the following specification: 1

spec NAT is

sorts Bool Nat

ops true fa1se : -> Bool .

ops 0 1 : -> Nat .

op suc_ : Nat -> Nat .

ops (_+_), (_-_) : Nat Nat -> Nat .

op _<_ : Nat Nat -> Bool .}

op if_then_else_ : Bool Nat Nat -> Nat .

vars x, y : Nat

eqs

[e1] 1 = suc 0 .

[e2] x + 0 = x .

[e3] x + suc y = suc(x + y) .

[e4] x < 0 = false .

[e5] 0 < suc x = true .

[e6] (suc x) < (suc y) = x < y .

[e7] x - 0 = x .

[e8] 0 - x = 0 .

[e9] (suc x) - (suc y) = x - y .

[e10] x - x = 0 .

[e11] if true then x else y = x .

[e12] if fa1se then x else y = y .

end

It is not difficult to check that NAT is indeed a correct specification of
natural numbers.

Now the enrichment DIV = NAT +({div}, (1)) is expected to define
semantics of div. Obviously, the enrichment is not sufficiently complete
(e.g., div(1, 0) isn’t equal to any natural number), still it is consistent. 2

1We use 0BJ-like syntax (cf. [GW88])
2The fact which is not so easy to prove! We shall return to it in Sect. 3.

3

For all pairs of natural numbers m, n (represented as canonical NAT-terms
0, suc0, suc(suc, 0), . . .), where n is not equal to 0, the ground term div(m,n)

can be reduced in DIV to some (uniquely defined) natural number. This
defines div(m,n) as a partial function on Nat (i.e., on the carrier of this sort
in the initial algebra of NAT).

So far so good, but a problem arises if we try to use the enrichment for
verification purposes. Suppose we have to prove the following correctness
condition for div:

0 < y => div(x ∗ y, y) = x. (2)

for all x, y : Nat, where ∗ denotes the multiplication operation which
should also be specified. Let’s add to NAT the following usual axioms for
multiplication:

op (_*_) : Nat Nat -> Nat .

eqs [e13] 0 * y = 0 . [el4] (suc x) * y = x * y + y .

(note, the enriched NAT is still correct) and try to prove (2) as a theorem
of DIV = NAT +({div}, (1)) using induction on the variable x. The basic
case, when x = 0, does not cause any difficulty, for

div(0 ∗ y,y) = div(0,y) = if 0 <y then 0 else . . . = 0

whenever the premise of (2) holds. Then, assuming (2) for x = x0, we need
to prove

0 < y => div((suc x0) ∗ y, y) = suc x0.

Simplifying the term div((sucx0) ∗ y, y) in DIV we obtain the expression
div((x0 ∗ y + y)− y, y) + 1; this could be simplified further to div(x0 ∗ y, y)
+1 = x0 + 1 = suc x0 (that would complete the proof) if we had the follow-
ing lemma:

(∀ x, y : Nat) (x + y)− y = x (3)

Well, the lemma can be easily proved in NAT by induction on the variable
y, so we are done. Or are we?

Once the lemma (3) has been obtained, one can use it for proving the
following “powerful” theorem:

(∀ x, y : Nat) x = y (4)

First, using the axioms el0, (1) and the lemma (3) one derives

4

0 = div(1, 0)−div(1, 0) = (1+div(l, 0))−div(1, 0) = 1 = suc(0);

then, using this with the basic axioms e4, e5, one gets true = false and
then proves (4) using e11, e12.

Now it is not a problem to prove (2) - as well as any other conditional
equation in DIV – but who would accept this as a verification of the program
(1)?

Of course, the point is that the enrichment of DIV by the lemma (3) is
inconsistent, in spite of the fact that (3) is an inductive theorem of NAT. So
one probably should prohibit to use it for proving theorems in DIV. But then
we may not use it for proving (2) too; so our first proof was not correct?

Putting off the answer to the end of the paper, let us here just note that
the example illustrates one of the main problem we are going to deal with:
how to formalise the algebraic semantics of equational definitions of (possibly
partial) functions over a predefined algebra within (some natural extension
of) the “initial algebra” approach so that one could use safely inductive
theorems of the predefined model for verification purposes.

1.3 Overview of the Paper

The example considered above gives rise to some general questions:

i) How to check consistency of (incomplete) enrichments?

ii) How to define an appropriate algebraic semantics of incomplete equa-
tional definitions like (1) ?

In our paper [AD92] we have already addressed the first question (in a
slightly more general framework of Horn-equational logic), and suggested a
model-theoretic technique for proving consistency of enrichments, as well as
some sufficient conditions of consistency.

In the present paper we are going to extend and improve those results,
as well as to suggest a very general approach to the problem formulated in
the second question above. Specifically, after brief overview of basic notions
and notations in Sect. 2, we shall introduce the notion of equational defi-
nition over a predefined algebra (EDPA), and study its semantics in Sect.
3. Using some model-theoretic technique, we shall demonstrate that a stan-
dard “free-extension” construction does not give appropriate semantics of
EDPA. Our Instructive Example will be used again to illustrate this point:

5

we shall prove that DIV is indeed a consistent enrichment of NAT, but the
equation (3) is not valid in its initial algebra. In Sect. 4 we shall develop
an approach that will allow to define a kind of “safe” semantics of EDPA.
The approach is based on the idea of “restrictions on substitutions” which
has also been exploited in several papers devoted to algebraic specifications
with partial functions [GDLE84, SNGM89] and term-rewriting systems over
built-in algebras [AB92]; in Sect. 5 we consider relations of our results with
these papers.

2 Basic Notions and Notations

In this section we briefly recall some standard notions and notations of alge-
braic specification and term-rewriting theory [EM85], [Wir90], [DJ90].

Given a set of sorts S, a many-sorted, or S-sorted signature Σ is a disjoint
union of sets Σw,s of function symbols (or f-symbols, for short) of type w → s
where w ∈ S∗, s ∈ S; constants are nullary functions of type → s.

The notions of Σ-algebra A, Σ-subalgebra B ⊂ A, Σ-congruence on A,
Σ-homomorphisms are supposed to be defined as usual [EM85, Wir90]; we
shall use S-indexed notations for denoting carriers As of sort s and Cartesian
products Aw = As1 × . . .× Asn (where w = s1 . . . sn).

Given an S-sorted set of variables X = ∪s∈SXs (a disjoint union), TΣ(X)
denotes the absolutely free Σ-algebra over X whose elements are Σ-terms;
then TΣ denotes the set (and the algebra) of ground Σ-terms (the latter is an
initial object in the category AlgΣ of all Σ-algebras). To avoid the “empty
sorts” problem, we consider in this paper only those signatures Σ for which
(TΣ)s, is non-empty for each s ∈ S.

An (algebraic) specification SP over a signature Σ is a pair (Σ, E) where
E is a set of axioms of SP which are universal quasi-equations (often called
conditional equations). Sometimes we shall restrict E to be a set of atomic
equations; then SP will be called as purely equational specification.

Given a specification SP = (Σ, E), Alg(SP) denotes the category of
all SP-algebras (also called models of SP), i.e. Σ-algebras satisfying all the
axioms in E. This category has the initial object I(SP); it can be represented
(up to isomorphism) as the quotient TSP = TΣ/≡E of the ground-term algebra
TΣ by the least Σ-congruence ≡E generated by E. The uniquely defined
homomorphism from I(SP) to a given SP -algebra is called initial.

Given two S-sorted signatures Σ, Σ′, a specification SP ′ = (Σ′, E ′) is

6

called an enrichment of SP = (Σ, E) if Σ′ ⊆ Σ (we also say that Σ′ is an
enrichment of Σ) and E ⊆ E ′; SP ′ can be presented in the form SP +(F,R)
or (Σ+F,E+R) where F = Σ′\Σ is the set of new f-symbols, and R = E ′\E
is a set of new axioms (then f-symbols and axioms of SP will be referred to
as “old”). This enrichment is called

- consistent (wrt. SP) if it satisfies the “no-confusion” condition, i.e. if the
restriction of the congruence ≡E+R to the set TΣ coincides with ≡E;

- complete (wrt. SP) if it satisfies the “no-junk” condition, i.e., if each
E ′-equivalence class [t′]E′ ∈ TSP ′ contains some ground Σ-term;

- conservative (wrt. SP) if it is both consistent and complete (wrt. SP).

We say that SP + (F,R) is a functional enrichment (or f-enrichment, for
short), if for some F -indexed family of (Σ + F)-terms rf the set R consists
of (oriented) equations of the form f(x) = rf where x is a list of distinct
variables including all those occurring in rf ; then the pair (F,R) (and R
itself) will be called a functional definition.

A forgetful functor from Alg(Σ+F) to Alg(Σ) maps each (Σ+F)-algebra
A′ to its Σ-reduct A = A′ |Σ which gets its carriers As, and interpretations of
function symbols fA (for all f ∈ Σ) from A′; then A′ is called an enrichment
of A by FA′ . The forgetful functor is known to map any SP ′-algebra to some
SP -algebra for any enrichment SP ′ = SP + (F,R); moreover, it has a left
adjoint functor (also called a free functor) which maps each SP -algebra A
to its free SP’-enrichment.

A Σ-reduct I(SP ′) |Σ of the initial algebra I(SP ′) will be also denoted
as IΣ(SP ′).

An algebraic specification SP = (Σ, E) can be considered as a termrewrit-
ing system (t.r.s. for short) [DJ90] through orienting of equations in E from
left to right. This t.r.s. defines the rewrite relation →E on Σ-terms; its sym-
metric (reflexive, transitive, reflexive transitive, symmetric reflexive transi-
tive) closure is denoted by ↔E (correspondingly by →=

E,→+
E,→∗E,↔∗E; the

latter is known to coincide with ≡E).
The t.r.s. is called normalising on some set of terms T if each term

t ∈ T has at least one normal form; it is called confluent if the composition
←∗E ◦ →∗E is included into →∗E ◦ ←∗E (where ←∗E denotes the converse to
→∗E).

We shall also use standard notations for a subterm t |π and a context t[]π
of a term t where π is some position in t (cf. [DJ90]); V(ε) denotes the set of

7

variables occurring in a syntactic object (a term, a formula, a set of those,
etc.) ε.

3 Equational Definitions over Predefined Al-

gebras as Enrichments

Given an S0-sorted signature Σ0, a Σ0-algebra A and a set of f-symbols
F such that Σ0 + F is an enrichment of Σ0 a triple (A, F, R) (denoted also
(F,R)A) where R is a set of oriented Σ0+F -equations, is called an equational
definition over A if the main f-symbol of the left-hand side of each e ∈ R
belong to F.

This gives only syntax; to define semantics of EDPA means to set a
correspondence between triples (A, F, R) and sets of partial functions

FA = {fA : Aw→̃As | f ∈ Fw,s}

Suppose SP = (Σ, E) is an algebraic specification of A in the sense that Σ
is a finite extension of Σ0 and the Σ0-reduct of I(SP) is isomorphic to A.
Then we say that the enrichment SP +(F,R) is an algebraic presentation of
EDPA (F,R)A.

We are going to define semantics of EDPA using their algebraic presen-
tations. For the sake of simplicity, we shall identify a predefined algebra A
with the initial algebra of its basic specification SP (forgetting about the
possible difference of their signatures).

3.1 Algebraic Semantics of Enrichments

Consider initial algebras I(SP) ∼= TΣ/≡E and I(SP ′) ∼= TΣ+F/≡E+R
of a given

specification SP = (Σ, E) and its enrichment SP ′ = SP + (F,R). They are
known to relate in the following way: there is a (unique) homomorphism h
from I(SP) to IΣ(SP ′) which maps an equivalence class [t]E ∈ TΣ/≡E to a
corresponding equivalence class [t]E+R ∈ TΣ+F/≡E+R

for each Σ-term t, i.e.,
h([t]E) = [t]E+R. This homomorphism is known to be injective (surjective)
iff the enrichment SP ′ is consistent (complete) wrt. SP .

The interpretation f I(SP
′) of a new f-symbol f ∈ F on I(SP ′) satisfies

the following equation:

f I(SP
′)([t′1]E+R, . . . [t

′
n]E+R) = [f(t′1, . . . tn)]E+R (5)

8

for all tuples of (Σ + F)-terms t′i, of appropriate sorts; the same equation
defines the interpretation of fon IΣ(SP ′) that gives a free SP ′-enrichment of
I(SP)

Now we need to define some basic interpretation FA of F on A, i.e. on
I(SP), such that the corresponding enrichment A′ = A + FA would be in
“good relations” with the set of axioms E + R (since we are going to use
them for reasoning about FA).

Whenever SP ′ is a conservative enrichment, the basic interpretation is
uniquely defined by (5) and gives a set of total functions FA. In order to
capture the case of partially defined functions over A, we should, at least,
drop the “no-junk” condition and consider incomplete enrichments.

Still it seems quite reasonable to impose the “no-confusion” requirement
on algebraic presentations, for in this case they would “preserve” the struc-
ture of A in the initial algebra I(SP ′): the homomorphism h : I(SP) →
IΣ(SP ′) would be injective and its image would be a Σ-subalgebra of IΣ(SP ′)
isomorphic to A. The following proposition shows how to obtain from this a
partial (Σ + F)-subalgebra of I(SP ′).

Proposition 1. Given a consistent enrichment SP ′ = SP + (F,R) of
SP = (Σ, E), there exists a set of partial functions

F I(SP) = {f I(SP) : I(SP)w→̃I(SP)s | f ∈ Fw,s}
defined as follows:

f I(SP)([t1]E, . . . [tm]E) = [f(t1, . . . tm)]E+R ∩ TΣ (6)

for all tuples t1, . . . tm of Σ-terms of appropriate sorts provided the right-hand
side is not the empty set, otherwise f I(SP)([t1]E, . . . [tm]E) is undefined.

Moreover, the enrichment of I(SP) with F I(SP) will be a partial (Σ+F)-
subalgebra of I(SP ′).

Proof. The correctness of (6), as well as the statement in whole follow from
the consistency condition: the initial homomorphism h is injective in this
case, so I(SP) is (isomorphic to) a Σ-subalgebra of IΣ(SP ′), and the equa-
tion (6) just defines the restriction of f I(SP) to I(SP) considered as a subset
of I(SP ′) . 2

As a matter of fact, this construction is quite similar to that in [Kre87]
which was intended to provide an approach to formalise partial functions

9

within “the simpler framework of total algebras and conventional specifi-
cations”. It does seem natural to take (6) as the definition of semantics of
(F,R)A. To explain why this would not be quite satisfactory, we need first to
address the problem of how to check the conditions when this definition can
be used, i.e. how to prove consistency of (possibly incomplete) enrichments.

3.2 Consistency of Enrichments

A general model-theoretic method for proving consistency of enrichments,
which does not impose any requirements on specifications involved, was in-
troduced in [GTW78] (cf. also [EM85]). It is based on the following sufficient
condition.

Fact 1. (a sufficient condition of consistency of enrichments)
An enrichment SP ′ = SP + (F,R) is consistent wrt. an algebraic
specification SP = (Σ, E) if there exists an algebra A ∈ Alg(SP’) such
that its Σ-reduct A|Σ is isomorphic to I(SP).

Thus, to prove consistency of SP ′ = SP + (F,R) it suffices to find some
interpretation of new function symbols f ∈ F on I(SP) satisfying (together
with the known interpretation of old symbols from SP) all axioms in R.

This technique can always be applied to complete enrichments, for in this
case the condition gets necessary. Occasionally, it can also be applied to some
incomplete enrichments, but not to all of them – e.g., this does not work for
the enrichment DIV considered in Sect. 1.2.

To overcome this disadvantage, we have obtained the following criterion
of consistency3:

Theorem 2. Given an algebraic specification SP = (Σ, E), an enrichment
SP ′ = SP + (F,R) is consistent iff there exists an algebra A ∈ Alg(SP’)
such that its Σ-reduct A|Σ contains a subalgebra isomorphic to I(SP).

Proof. If the enrichment is consistent, then the initial homomorphism h :
I(SP) → IΣ(SP ′) is an injection and its image gives a subalgebra isomor-
phic to I(SP). So we can take A = I(SP ′) in this case.

3Peter Padowitz pointed us out recently that he had obtained a similar criterion. How-
ever, his formulation and proof (cf. [Pad90, page 35, Corol. 3.15]) are based on so-called
canonical term structures and, in our opinion, are more complicated than ours.

10

For the converse, let the enrichment be inconsistent (so that h isn’t injec-
tive). Then for any A ∈ Alg(SP ′) the initial homomorphism k : I(SP) →
A |Σ is not injective since it can be (uniquely) factored into the composition
h′ ◦ h where h′ is the Σ-reduct of the initial homomorphism from I(SP ′) to
A. Thus A |Σ doesn’t contain a subalgebra isomorphic to I(SP) (since k is
the only homomorphism from I(SP) to A). 2

The corresponding technique for proving consistency of an enrichment
SP ′ = SP + (F,R) consists of the following steps:

1.) To construct an extension TCSP ∈Alg(SP) of the initial algebra TSP '
I(SP) by a set C of new “non-standard” elements (i.e., to extend the
interpretation of all basic operations g ∈ Σ to the carrier TSP ∪ C);

2.) To construct some interpretation of new function symbols F on TSP ∪
C such that the enrichment of TCSP with this interpretation would satisfy
all the axioms in R.

Theorem 2 guarantees that these steps can always be fulfilled whenever
the enrichment SP + (F,R) is consistent.

Let us apply this technique to confirm consistency of the enrichment DIV
from Sect. 1.2.

3.3 Proving Consistency of the Instructive Example

The initial algebra of the basic specification NAT from Sect. 1.2 is isomorphic
to a two-sorted algebra with carriers N of Nat (the set of natural numbers),
B = {true, false} of Bool and usual interpretation of all the operations. To
prove consistency of DIV=NAT+({div}, (1)), let’s construct the following
extension A of I(NAT) by one “non-standard” natural number c : Nat, i.e.
ABool = B, ANat = N ∪{c}. The extensions of all operations to ANat are
defined by the following equations:

sucA(c) = c;
+A(n,c) = +A(c, n) = +A(c,c) = c;
A(n′,c) = ∗A(c, n′) = ∗A(c,c) = c; ∗A(0,c) = ∗A(c, 0) = 0;
−A(n,c) = −A(c,c) = 0;−A(c, n) = c
<A (n,c)= true;<A (c, n) =<A (c,c) = false;
ifA(true,c, n) = c; ifA(true, n,c) = n;
ifA(false,c, n) = n; ifA(false, n,c) =c

11

for all n, n′ ∈ N, n′ > 0. It is easy to check by direct calculations that the
extensions of operations satisfy all the axioms of NAT, i.e. A ∈Alg(NAT). In
order to check the fact that I(NAT)⊂ A, one can observe that the enrichment
of NAT by a constant c : Nat and these equations forms a terminating
rewrite system - this just makes it possible to prove its consistency wrt.
NAT by methods suggested in [JK89, Kir92].

To complete the proof, we suggest the following interpretation of div on
A that satisfies (1):

divA(n, 0) = divA(c, n) =c;
divA(n,c) = 0; divA(c,c) = 1; divA(n, n′) = k

for all n, n′ ∈ N, n′ > 0 where k ∈ N is the quotient of integer division n
on n′.

Note that (3) is not valid in A (consider x = y = c), therefore it is also
not valid in I(DIV), since A is its surjective image. Thus we have proved
that a (rather ordinary) functional program can be consistent wrt. some
basic specification of a predefined model and inconsistent wrt. some of its
inductive consequences. That is why one couldn’t use induction (over pre-
defined model) for verification of functional programs (considered as EDPA)
if (6) was taken as the definition of semantics of EDPA. Let’s consider an
approach to overcome this problem.

4 “Safe” Semantics of EDPA

One can guess that the basic reason of inconsistency of some f-enrichment
SP ′ is the opportunity to substitute terms with new function symbols into
old axioms: eventually such a term can denote a “junk” (a non-reachable
value of IΣ(SP ′)) that extends the range of interpretation of variables in the
axioms and in inductive theorems of the basic specification SP = (Σ, E).

A natural idea, then, is to prohibit those substitutions. However, the
restriction would be too strong, because in this case all old operations would
get strict with respect to new terms: for instance, one couldn’t simplify the
term 0 + f(1) to f(1) using an old axiom 0 + x = x . The situation with
conditionals (if-then-else) would be even worse: e.g., the equation (1) would
define div as an empty function provided if-then-else was strict.

In [AD92] we have already shown how to solve the problem with condi-
tionals. Here we are going to suggest a more general solution that will allow

12

most of old functions (axiomatized in some “safe” way) to be non-strict. The
benefit of this approach is that it provides a wider class of possible opera-
tional semantics of predefined operations in EDPA (not only call-by-value).

4.1 Restricted Rewriting and Equality

In this section we consider purely equational specifications SP (of a prede-
fined Σ-algebra A) equipped with the following additional information: the
set X of all variables (used in axioms of SP) contains a distinguished subset
X+ of safe variables (then variables in X \X+ will be called unsafe). When
we need to reflect this information in the terminology and definitions, we
shall be using the notation Σ(X+) for a signature Σ.4

A Σ(X+)-equation e ∈ E will be called safe if it contains only safe vari-
ables (i.e., V(e) ⊂ X+). A substitution θ on TΣ+F (X) will be called safe if
it maps safe variables into Σ-terms (i.e., θ(X+) ⊂ TΣ(X+)).

Now we introduce the following relations that will serve for term rewrit-
ing and equational derivations with some restrictions on substitutions.

Definition 3. Given a basic specification SP = (Σ, E) and its enrich-
ment SP ′ = SP +(F,R), let→E: denote the following relation on TΣ+F (Y) :
t →E: t

′ holds if there exists an equation l = r ∈ E, a safe substitution
θ : X → TΣ+F (Y) and a position π such that t|π .

= θ(l) and t′
.
= t[θ(r)]π.

Then a restricted rewrite relation →E:R and a restricted equality =E:R (both
on TΣ+F (Y)) are defined as follows:

→E:R ⇀↽ →E: ∪ →R; t =E:R t
′ ⇀↽ t↔∗E:R t

′

It follows from the definition that the restricted equality =E:R is a con-
gruence on TΣ+F (Y) (included into that =E+R) This enables us to define a
quotient TΣ+F/=E:R

and to use its Σ-reduct (rather than IΣ(SP ′)) in the defi-
nition of semantics of EDPA. To provide correctness of this new construction,
an enrichment has to satisfy the “no-confusion” condition wrt. =E:R. This
is the matter of the next definition and proposition.

Definition 4. Given a specification SP = (Σ(X+), E), its enrichment
SP + (F,R) is said to be safe-consistent (wrt. SP) if t1 =E:R t2 implies

4This construction, as well as the terminology, is inspired by the approach to partial
functions suggested in [GDLE84] (cf. also a survey [Mos92]).

13

t1 =E t2 for any pair of ground Σ-terms t1, t2.

Proposition 5. Given a safe-consistent enrichment SP ′ = SP + (F,R)
of SP = (Σ(X+), E), there exists a set of partial functions

F I(SP) = {f I(SP) : I(SP)w→̃I(SP)s | f ∈ Fw,s}

defined as follows:

f I(SP)([t1]E, . . . [tm]E) = [f(t1, . . . tm)]E+R ∩ TΣ (7)

for all tuples t1 . . . tm of ground Σ-terms of appropriate sorts provided the
right-hand side is not the empty set, otherwise f I(SP)([t1]E, . . . [tm]E) is un-
defined. Moreover, the enrichment of I(SP) with F I(SP) will be a partial
subalgebra of TΣ+F/=E:R

2

We take (7) as the “generic” definition of semantics of an EDPA (F,R)A
presented by a safe-consistent enrichment (Σ(X+), E)+(F,R); the set X+ of
safe variables is a parameter of this definition. As far as safe-consistency is in
general weaker than consistency, this gives an opportunity to get a wider class
of correct EDPA which will include all functional definitions. The following
technical details are just steps toward this goal.

In what follows, we consider a specification SP = (Σ(X+), E) and its
enrichment SP ′ = SP + (F,R), where R is a rewrite system such that all
its left-hand sides contain some f ∈ F (this is a bit more general class of
enrichments than algebraic presentations of EDPA).

Definition 6. We say that the t.r.s. R respects the set of equations E
if the following inclusion holds:

↔E: ◦ →R ⊆ →=
R ◦ ↔∗E: .

Given a set of terms T ⊂ TΣ+F (X), we say that R respects E on T if the
same inclusion holds for restrictions of the relations involved on T .

Proposition 7. If the system R respects the set of equations E on T , then
for all t1, t2, t3 ∈ T there exists t4 ∈ T such that

i) if t1 ↔∗E: t2 →R t3 then t1 →=
R t4 ↔∗E: t3;

ii) if t1 ↔∗E: t2 →∗R t3 then t1 →∗R t4 ↔∗E: t3 .

14

Proof. (sketch).

i) By straightforward induction on the length of the derivation t1 ↔∗E: t2
ii) By straightforward induction on the length of the derivation t2 ↔∗R t3
using (i).

2

Now we formulate and prove the following fundamental property of the
restricted rewriting relation →R and the congruence =E:R.

Lemma 8. Suppose the system R is confluent and respects the set of equa-
tions E. Then the following inclusion holds:

=E:R ⊆ →∗R ◦ =E: ◦ ←∗R
(i.e., the relation →R is Church-Rosser modulo =E:.)

Proof. Let t =E:R t′ hold for some (Σ + F)-terms t, t′. The derivation
t↔∗E:R t

′ can be represented as a chain

t
.
= t0 ∼ t1 ∼ . . . ∼ tn

.
= t′, (8)

where each occurrence of ∼ denotes either →+
R,←+

R or ↔+
E:, and adjacent

occurrences are different. Due to Prop. 7 and the confluence of R, the
following transformation rules αi, i = 1, 2, 3 can be applied to the chain:

α1 : t1 ←+
R t2 →+

R t3 ⇒ t1 →∗R t4 ←∗R t3;
α2 : t1 ←+

E: t2 →+
R t3 ⇒ t1 →∗R t4 ←∗E: t3;

α3 : t1 ←+
R t2 →+

E: t3 ⇒ t1 →∗E: t4 ←∗R t3;

This system of rules is normalising on the set of chains of the form (8),
because each application of α1, α2 (of α1, α3) to the rightmost occurrence of
→+

R (the leftmost occurrence of ←+
R) reduces either the distance from that

occurrence to the left (right) end of the chain, or the number of those in the
chain. Therefore after a finite number of steps the chain (8) will get the form

t→∗R t1 ↔∗E: t2 ←+
R t
′, (9)

for some (Σ + F)-terms t1, t2. 2

15

Corollary 9. The enrichment SP +(F,R) of SP = (Σ, E)is safe-consistent
if R is confluent on TΣ+F and respects E on TΣ+F .

Proof. It suffices to observe that each derivation t1 ↔∗E:R t2, where the
outermost terms t1, t2 belong to TΣ, after transforming by αi to (9) will get
the form t1 ↔∗E: t2, because none rule from R can be applied to t1, t2. 2

This lemma (with the corollary) can be used for inventing various suffi-
cient conditions of safe-consistency (i.e., correctness of EDPA). We present
the corresponding results in the next subsection.

4.2 Sufficient Conditions of Safe-Consistency

First, we show how to obtain the following result (announced in [AD92])
about correctness of a wide class of functional definitions with non-strict
conditionals. To define this class, we suppose that the predefined algebra A
and its specification SP satisfy the following requirements:

1) They contain the sort Bool of boolean values with constants true and
false which are interpreted by two distinct values in ABool. (Other
total boolean operations may occur in A and SP too).

2) They contain the conditional functions if: Bool, s, s→ s for each sort
s with the usual axioms in SP :

if(true, x, y) = x; if(false, x, y) = y (10)

Let IF denote the set of equations (10) for all sorts; then the set of ax-
ioms of SP will be represented as IF∪E (where E is a set of other equations).

Theorem 10. Any functional enrichment SP + (F,R) of an algebraic spec-
ification SP = (Σ(X+), IF ∪ E) is safe-consistent provided all axioms in E
are safe.

Proof. (sketch) The system R is obviously confluent; thus, due to the lemma,
it suffices to check that R respects both E and IF on the set of ground
(Σ + F)-terms.

The first fact is easy to prove by case analysis of possible overlappings
of applications of →R at a position π1, and ←E: or →E: at a position π2 of

16

some (Σ + F)-term t in the derivation t1 ↔E: t →R t2 (since each e ∈ E is
safe, the only possible non-trivial case is when t|π2 is a subterm of t|π1). In
each case there exists a term t′ such that t1 →R t

′ ↔∗E: t2.
To prove that R respects IF , we need to add to the above one additional

case (since variables in IF are not supposed to be safe): a derivation t1 ↔IF

t →R t2 where the arrow →R is applied at a position π1 of t, and the arrow
←IF (or →IF) is applied to a subterm t|π2 which contains the (Σ + F)-
subterm t|π1 . Again, one can show that in this case there exists a term t′

such that t1 →=
R t
′ ↔∗IF t2.

Thus the inclusion ↔E:∪IF ◦ →R ⊆ →=
R ◦ ↔∗E:∪IF ; holds, so the enrich-

ment SP + (F,R) is safe-consistent. 2

We also announce here the following theorem, which offers even more
general sufficient conditions of safe-consistency. Recall that an equation is
called left-linear (right-linear) if its left-hand (right-hand) side is linear; it is
called linear if it is both left- and right-linear.

Theorem 11. Any f-enrichment SP + (F,R) of an algebraic specification
SP = (Σ(X+), E) is safe-consistent provided all non-linear axioms in E are
safe. 2

This theorem gives the corresponding specialisation of (7) which provides
correctness of any functional EDPA wrt. a wide class of basic specifica-
tions. Using this, we can suggest the following solution of the puzzle with
verification given in Sect. 1.2: to make NAT “safe” for (1), as well as for
any functional definition, it suffices to mark the variables in the non-linear
axioms elO, el4 as safe. The same should be done with all non-linear in-
ductive theorems of NAT, in particular – with the lemma (3). This makes it
impossible to deduce the contradiction (4), but allows to use the lemma for
proving the correctness condition (2).

However, we don’t know at the moment the most general (syntactical)
conditions that would provide the widest class of basic specifications “safe”
for an arbitrary functional enrichment; this is one of interesting questions for
further research.

17

5 Relations with Other Approaches

As we have already mentioned, the idea to impose restrictions on substi-
tutions of new terms into old axioms in order to treat partial functions in
algebraic specifications properly is not new . For instance, it was used in the
fifth chapter of [SNGM89] within the framework of order-sorted equational
logic [GM89], as well as in [AB92]. Let’s recall the corresponding construc-
tion of [SNGM89] called there stratification.

Suppose a basic specification SP = (Σ, E) with an S-sorted signature Σ
is to be enriched by a set F of some (possibly partial) functions. Then one
should proceed as follows.

First, Σ should be extended by a set of new sorts and declarations: for
each basic sort s ∈ S its error supersort s? should be introduced (i.e., s is
a subsort of s?), and each old function symbol g ∈ Σ of type s1, . . . , sn → s
gets an additional declaration

g : s?
1, . . . , s

?
n → s? .

Then, if one was going to specify a new (partial) function f ∈ F of type
s1, . . . , sn → s, one actually should introduce the following declaration:

f : s?
1, . . . , s

?
n → s? (11)

and a set of corresponding axioms R.
As a consequence, any term of the form f(t1, . . . , tn) will have the sort s?

even in the case when each ti has the sort si. Since none of the axioms of
SP contains variables of the error supersorts, it is impossible to substitute
terms with new function symbols into them; so the corresponding congruence,
specified by SP + (F,R) in this way, is just our “restricted equality” =E:R

constructed when all basic axioms are safe.5

However, as we have pointed out in Sect. 4, this approach is very re-
strictive since it makes all the old functions strict wrt. new terms. This, for
instance, makes it impossible to use non-strict conditionals and functional
definitions like the program (1) (e.g., if-then-else was modeled by an aux-
iliary strict function in examples of stratified specifications in [SNGM89]).

5to be very precise, we should also add here that all variables in new axioms e ∈ R
should be of “questioned” sorts, for otherwise the congruence will be even weaker then
=E:R; still the latter would be even “better” for consistency.

18

Our theorems 10 and 11 show that actually this is not necessary for consis-
tency. To reformulate our results for order-sorted specifications, let’s intro-
duce the following construction: given an old axiom e ∈ E, let e? denote its
“sort-lifted” version - the result of substitution x : s? instead of x : s for each
x ∈ V(e); let E? denote the set {e? | e ∈ E}.

Proposition 12. Let an f-enrichment SP + (F,R) of SP = (Σ, E) be
obtained by stratification (where all new function symbols f ∈ F are declared
as in (11)), and let E1 ⊂ E be a subset of linear equations. Then the en-
richment SP + (F,R + E?

1) is consistent. 2

In particular, one can get non-strict conditionals by adding IF ? - the set
of sort-lifted versions of usual (linear!) axioms IF .

Thus, following [GM87], we can add one more problem (let us call it the
“functional enrichment consistency” problem) to the long list of those solved
by order-sorted algebra.

Still the stratification construction is not the only possible way to repre-
sent our “safe” semantics of EDPA. Another possibility (which seems simpler
and more convenient for this specific task) is to make use of algebras with
Okay predicates - the specification framework introduced in [GDLE84] and
developed further in [ANK90]. Algebraic specifications in this approach make
explicit syntactical distinction between safe/unsafe variables, functions and
terms; this gives a direct way to implement the restrictions on substitutions
and to represent EDPA (cf. more details in [AD92]).

Acknowledgements:

We thank Natalya Soboleva for helpful technical assistance, and Michael
Rusinowitch for careful reading this paper and useful remarks.

The first author is much obliged to Peter Mosses for valuable remarks on
the text of the paper, as well as for permanent help and encouragement. He
would like to thank Helene Kirchner for discussing some interesting examples
concerning this work. He also acknowledges the financial support of the
Danish Natural Sciences Research Council, grant No 11-9479.

19

References

[AD92] Antimirov V., Degtyarev A. Consistency of equational enrichments.
In A. Voronkov, editor, Logic Programming and Automated Reasoning.
International Conference LPAR ’92. LNCS 624, pp. 393-402, Springer-
Verlag, 1992.

[ANK90] Antimirov V., Naidich D., Koval V.: Partial Functions in simula-
tion: formal models and calculi. In Proc. IMA CS European Simulation
Meeting, pp.143-148, Esztergom, Hungary, 1990.

[AB92] Avenhaus J., Becker K.: Conditional rewriting modulo a built-in
algebra. Technical report (SEKI Report SR-92-11), 1992, 23p.

[DJ90] Dershowitz N., Jouannaud J.-P. Rewrite systems. In J.van Leeuwen,
A.Meyer, M.Nivat, M.Paterson, and D.Perrin editors, Handbook of The-
oretical Computer Science, volume B, chapter 6, Elsevier Sci. Pub, 1990.

[EM85] Ehrig H., Mahr B. Fundamentals of algebraic specification 1: Equa-
tions and Initial Semantics. Number 6 in EATCS Monographs on The-
oretical Computer Science. Springer-Verlag, 1985.

[GDLE84] Gogolla M., Drosten K., Lipeck U., Ehrich H.-D. Algebraic and
operational semantics of specifications allowing exceptions and errors.
Theoretical Comp. Sci., 34:289-313, 1984.

[GM87] Goguen J., Meseguer J. Order-sorted algebra solves the constructor
selector, multiple representation and coercion problems. In Proc. Second
Symposium on Logic in Comp. Sci., pp. 18-29, IEEE Comp. Society
Press, 1987.

[GM89] Goguen J., Meseguer J. Order-sorted algebra 1. SRI International,
Technical Report SRI-CLS-89, July 1989.

[GTW78] Goguen J., Thatcher J., Wagner E. An initial algebra approach to
the specification, correctness and implementation of abstract data types.
In Current trends in programming methodology, volume IV, pp.80-149,
Prentice-Hall, 1978.

[GW88] Goguen J., Winkler T. Introducing OBJ3. Technical report SRI-
CSL-89-10, Comp. Sci. Lab., SRI International, 1988.

20

[JK89] Jouannaud J.-P., Kounalis E. Automatic proofs by induction in the-
ories without constructors. Information and Computation, 82, 1:1-33
1989.

[Kir92] Kirchner H. Proofs in parameterized specifications. Technical report
(extended version) CRIN 91-R-045.

[Kre87] Kreowski H.-J. Partial algebras flow from algebraic specifications.
In ICALP’871 Proc. Int. Coll. on Automata, Languages, and Program-
ming, LNCS 267, pp. 521-530, Springer-Verlag, 1987.

[Mos92] Mosses P. The Use of Sorts in Algebraic Specifications. In Michel
Bidoit and Christine Choppy, editors, Recent Trends in Data Type Spec-
ification. LNCS 655, Springer-Verlag, 1992.

[Pad90] P. Padawitz. Horn logic and rewriting for functional and logic pro-
gram design. Report MIP-9002, Universität Passau, 1990.

[SNGM89] Smolka J., Nutt W., Goguen J., Meseguer J. Order-sorted equa-
tional computation. In H.Äit-Kaci and M.Nivat, editors, Resolution of
Equations in Algebraic Structures, pp. 297-367, Academic Press, New-
York, 1989.

[Wir90] Wirsing M. Algebraic specification. In J. van Leeuwen, A. Meyer
M. Nivat, M. Paterson, and D. Perrin editors, Handoook of Theoretical
Computer Science, volume B, chapter 13. Elsevier Sci. Pub., 1990.

21

