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This is a draft version of a chapter for the Handbook of Logic and the Foundations of
Computer Science, Oxford University Press. It surveys a range of models for parallel com-
putation to include interleaving models like transition systems, synchronisation trees and
languages (often called Hoare traces in this context), and models like Petri nets, asyn-
chronous transition systems, event structures, pomsets and Mazurkiewicz traces where
concurrency is represented more explicitly by a form of causal independence. The pre-
sentation is unified by casting the models in a category-theoretic framework. One aim is
to use category theory to provide abstract characterisations of constructions like parallel
composition valid throughout a range of different models and to provide formal means for
translating between different models. It is very much a draft at present. In particular,
the “Notes” surveying related work are incomplete and the appendix on fibred categories
needs to be overhauled in the light of some slick proofs, provided by Bart Jacobs. It is
ragged in other places too. Constructive comments and corrections will be appreciated.

A knowledge of basic category theory is assumed, up to an acquaintance with the
notion of adjunction. A good reference is [18].
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Chapter 1

Introduction

The purpose of this work is to provide a survey of some of the fundamental models for
distributed computations, used and studied within theoretical computer science.

The general nature of such a model is a mathematical formalism in which to represent
and reason about the behaviour of distributed computational systems. The purpose of
such models is to provide a conceptual understanding of systems and their behaviour in
theory, and to contribute to the design and analysis methods applied in practice.

In the rich theory of sequential computational systems, several mathematical for-
malisms have been introduced and studied in depth, e.g. Turing Machines, Lambda
Calculus, Post Systems, Markov Systems, Random Access Machines, etc. One main re-
sult from this theory, is that these formalisms are all equivalent, in the sense that their
associated classes of behaviours in terms of input-output functions are all the same.

However, in real life, very few computational systems are sequential. On all levels, from
a small chip to a world-wide network, the computational behaviours are truly distributed,
in the sense that they may be seen as spatially separated activities accomplishing a joint
task. Secondly, many such systems are not really meant to terminate, and hence it makes
little sense to talk about their behaviours in terms of traditional simple input-output
functions. Rather, one is interested in the behaviour of such systems in terms of the often
complex patterns of stimuli/response relationships varying over time. Often such systems
are referred to as reactive systems.

Hence, in the study of reactive systems, one is forced to take a different and less
abstract view of behaviours than the traditional functional one. One needs a notion of
behaviour, expressing aspects of the patterns of actions, which a system is capable of
performing. Such aspects could include well-known phenomena like deadlock, mutual
exclusion, starvation, etc.

One may see the role of such models in computer science as providing the foundation
for the development of all other theoretical and practical research areas on distributed
computing. To give some examples, they are used to provide the semantics of process
description languages, and hence the basis of the many behavioural equivalences studied
in the literature on prscess calculi. They are used to give the formal definition of specifi-
cation logics, and hence the basis for work on verification of systems with respect to such
specifications. And given this, they are at the heart of the development of automated
tools for reasoning about distributed systems.

Numerous such models have been suggested and studied over the last 10-15 years.
Here we shall survey some of these, but we shall make no attempt to come even close
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6 CHAPTER 1. INTRODUCTION

to a complete survey. Rather, we have chosen to present in some detail a few carefully
selected models.

Common to all of these models, is that they rest on the important idea of atomic
actions, over which the behaviour of a system is defined. The models differ mainly with
respect to how detailed such behaviors of systems may be represented. Some models
are more abstract than others, and this fact is often used in informal classifications of
the models with respect to expressibility. One of our aims here is to present prime
representatives of these classes of models, covering the landscape of models from the
most abstract to the most concrete, and to formalise and study the exact nature of the
relationships between these models, representing fundamental abstraction steps. In other
words we would like to set the scene for a formal classificaion of models. Let us be more
specific.

Imagine a very simple distributed computational system consisting of three individual
components, each performing some independent computations, involving one (Sender)
occasionally sending messages to another (Receiver) via the third (Medium).

Sender +— Medium +«— Receiver

Imagine further modelling the behaviour of this system in terms of some atomic actions
of the individual components, and the two actions of delivering a message from Sender
to Medium, and passing on a message from Medium to Receiver. Obviously, having fixed
such a set of atomic actions, we have also fixed a particular physical level at which to
model our system.

One main distinction made in the classification of models is the one between the so-
called interleaving and noninterleaving models. The main characteristics of an interleaving
model is that it will abstract away from the fact that our system is actually composed
of three independently computing agents, and model the behaviour in terms of purely
sequential patterns of actions. Formally, the behaviour of our system will be expressed
in terms of some kind of nondeterministic merging or interleaving of the sequential be-
haviours of the three components. Prime examples of such models are Transition Systems
[15]], Synchronization Trees [21], Acceptance Trees [13], and Hoare Traces [10].

It is important to realise that in many situations this kind of abstraction is exactly
what one wants, and it has fully been demonstrated in the references above that many
interesting and important properties of distributed systems may be expressed and proved
based on interleaving models. The whole point of abstraction is, of course, to ignore
aspects of the system, which are of no relevance for the things you would like to reason
about.

However, there may be situations in which it could be important to keep informa-
tion about the fact that our system is composed of the three independently computing
components, a possibility offered by the so-called noninterleaving models, with Petri Nets
(1], Event Structures [37], and Mazurkiewicz Traces [20] as prime examples. One such
situation is that some behavioural properties may rest on the fact that each component
is a separate physical entity with its own progress of computation, typically so-called
liveness properties. Dealing with such properties in interleaving models is often handled
by some specific coding of the actions belonging to the components combined with some
logical assertions expressing progress assumptions for the system in question, i.e. handled
outside the actual model in an ad hoc fashion.




Another issue is how models deal with the concept of nondeterminism in computations,
distinguishing between so-called linear-time and branching-time models.

Imagine that in our system the Medium is actually erroneous, in the sense that deliv-
ering a message from the Sender may leave the Medium in either a normal state, having
acepted the message and ready for another delivery or a passing of a message to Receiver,
or a faulty state insisting on another delivery. A linear-time model will abstract away
from this possibility of restricted behaviour of the Medium (and hence from some possi-
bilities of deadlocks). Formally, these models typically express the total nondeterministic
behavior of our system in terms of the set of possible (determinate) “runs” of the system.
Prime examples are Hoare Traces, Mazurkiewicz Traces and Pomsets [27].

As indicated, in many situations a more detailed representation of when nondeter-
ministic choices are made during a computation is necessary, to express possible dead-
locks and other safety properties of systems. And this is possible to various degrees in
branching time models like Synchronization and Acceptance Trees, Petri Nets, and Event
Structures. Of course, the treatment of nondeterminism is particularly important for the
interleaving models, where also the notion of independent activities is expressed in terms
of nondeterminism.

Finally, yet a third distinction is made between models allowing an explicit represen-
tation of the (finite) states in the implementation of the components of our system, and
models abstracting away from such information focussing purely on behaviour in terms
of patterns of occurrences of actions during time. Prime examples of the first type are
Transition Systems and Petri Nets, and of the second type Trees, Event Structures and
Traces.

So, to sum up the seemingly confusing world of models for concurrency has some
structure in the form of a classification according to expressiveness, and one of our main
goals will be to formalise this structure. In the process we shall follow another central
theme of our chapter: the use of category theory as a convenient language for formalising
relationships and transfer of techniques among models.

The main idea is that each model will be equipped with a notion of (behaviour pre-
serving) morphism, making it into a category. As we shall see, it turns out that certain
types of adjunctions (reflections and coreflections) are just the right abstract way of ex-
pressing the fact that one model is embedded in (more abstract than) another, even when
the two models are expressed in very different mathematical terminologi. One part of the
adjunction will tell how to embed the more abstract model into the other, the other part
will formally abstract away from information, as indicated intuitively above.

Such categorical adjunctions not only provide an aid in the understanding of the
different models and their relationships, but also an important vehicle for the transfer of
techniques from one model to another. In this chapter we shall present a number of such
results, focussing on the role of models in giving formal semantics of process description
languages. We shall see how basic operations of such languages may be understood as
universal constructs (like product and coproduct) of our categories. Since such universal
constructs are defined up to isomorphism, this provides us with some general guidelines
and justification of the definition of operations. They come as universal constructs when
viewing models categorically, and not as arbitrary ad hoc definitions. And, importantly,
from this and general facts of category theory they may be transferred between models
via the established adjunctions.

Our goal is to survey a few but fundamental models for concurrency, and exploit the




8 CHAPTER 1. INTRODUCTION

use of category theory as a language for these models and their relationship.

A knowledge of basic category theory is assumed, up to an acquaintance with the
notion of adjunction. A good reference is [18]. The work uses a particular representation
of partial functions, the details and notation for which are found in Appendix B. One
warning as regards terminology: we use the term “coreflection” to mean an adjunction in
which the unit is a natural isomorphism. Similarly, “reflection” is used here to mean an
adjunction for which the counit is a natural isomorphism.




Chapter 2

Interleaving models

2.1 Transition systems

Transition systems are a commonly used and understood model of computation. They
provide the basic operational semantics for Milner’s Calculus of Communicating Systems
(CCS) and often underlie other approaches, such as that of Hoare’s Communicating Se-
quential Processes (CSP). The constructions on transition systems used in such methods
can frequently be seen as universal in a category of transition systems where the mor-
phisms can be understood as expressing the partial simulation (or refinement) of one
process by another. By “abstract nonsense” the universal properties will characterise the
constructions to within isomorphism. More strikingly, the same universal properties will
apply in the case of other models like Petri nets or event structures, which are seemingly
very different in nature.

2.1.1 A category of transition systems

Transition systems are a frequently used model of parallel processes. They consist of a set
of states, with an initial state, together with transitions between states which are labelled
to specify the kind of events they represent.

Definition: A transition system is a structure
(S,i, L, Tran)
where
o S is a set of states with initial state 1,
o [ is a set of labels, always assumed to not contain a distinguished symbol *,

e Tran C S x L x S is the transition relation.

This definition narrows attention to transition systems, which are extensional in that
they cannot have two distinct transitions with the same label and the same pre and post
states.
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Notation: Let (S,¢, L, Tran) be a transition system. We write

s 22— ¢

to indicate that (s, a,s’) € Tran.This notation lends itself to the familiar graphical nota-
tion for transition systems. For example,

¢
a
b
b
ou

represents a transition system which at the initial state ¢+ can perform either an a or a
b transition to enter the state s at which it can repeatedly perform a c transition or a b
transition to enter state u.

We occasionally shall write

s FA—
to mean there is no transition (s, a,s’). It is sometimes convenient to extend the arc-
notation to strings of labels and write

s —L— s,
when v = aqa; - - - a,, is a, possibly empty, string of labels in L, to mean

aj

s > 81 a2 5 o.. %n > Sp,
for some states s;,...,5,. A state s is said to be reachable when i —2— s for some string

v.
Definition: Say a transition system T' = (5,1, L, Tran) is reachable iff every state in S
is reachable from ¢ and for every label a there is a transition (s,a,s’) € Tran. Say T is
acyclic iff, for all strings of labels v, if s —*— s then v is empty.

It is technically convenient to introduce idle transitions, associated with any state.

Definition: Let T' = (S,¢, L, Tran) be a transition system. An idle transition of T
consists of (s,*,s) for s € S. Define

Tran, = TranU {(s,*,s) | s € S}.

Idle transitions play a role in the definition of morphism between transition systems.
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Definition: Let
To = (S0, to, Lo, Trang) and

Ty = (SlvilaLla Tm'ﬂl)

be transition systems. A morphism f : Ty — Tj is a pair f = (o, A) where
e 0:5 — 5
o \: Lo —, Ly are such that o(ig) = 7; and

(s,a,s") € Trang = (0(s), Ma),0(s") € Tran,,.

With the introduction of a idle transitions, morphisms on transition systems can be
described as preserving transitions and the initial state. Observe that morphisms between
labelled transition system can be characterised in a way which does not involve idle
transitions. According to this characterisation a morphism between two transition systems
To = (So, %0, Lo, Trang) and Ty = (51,11, L1, Tran;) consists of (o, \), where
o:8S0— 51 and X : Ly —, Ly, which satisfy

O'(io) = Z’i
(s,a,s") € Trang & A(a) defined = (o(s),\(a),0(s")) € Trany, and
(s,a,s") € Trang & A(a) undefined = o(s) = o(s').

As this characterisation makes clear, the intention behind the definition of morphism is
that the effect of a transition with label @ in 7; leads to inaction in T} precisely when
A(a) is undefined. In our definition of morphism, idle transitions represent this inaction,
a device which avoids the fuss of considering whether or not A(a) is defined. It is to be
stressed that an idle transition (s, *, s) represents inaction, and is to be distinguished from
the action expressed by a transition (s, a, s’) for a label a.

Morphisms preserve initial states and transitions and so clearly preserve reachable
states:

Proposition 1 Let (o,A) : Ty — Ty be a morphism of transition systems. Then if s is a
reachable state of Ty then o(s) is a reachable state of T;.

Transition systems with morphisms as defined form a category which will be the first
important category in our study:

Proposition 2 Transition systems with morphisms form a category in which the com-
position of two morphisms f = (o,A) : To — Ty and g = (o', N) : Ty — Ty is
gof =(oc'oo,NoA): Ty — T, and the identity morphism for a transition system
T has the form (1s,11) where 1s is the identity function on states and 1y, is the identity
function on the labelling set L of T'.

(Here composition on the left of a pair is that of total functions while that on the right is
of partial functions.)

Definition: Denote by T the category of labelled transition systems given by the last
proposition.
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2.2  Comnstructions on transition systems

The category of transition systems is rich in categorical constructions which furnish the
basic combinators for languages of parallel processes.

2.2.1 Restriction and relabelling

Restriction and relabelling are important operations on processes. For example, in Mil-
ner’s CCS, labels are used to distinguish between input and output to channels, connected
to processes at ports, and internal events. The effect of hiding all but a specified set of
ports of a process, so that communication can no longer take place at the hidden ports, is
to restrict the original behaviour of the process to transitions which do not occur at the
hidden ports. Given a transition system and a subset of its labelling set, the operation of
restriction removes all transitions whose labels are not in that set. In CCS, one can make
copies of a process by renaming its port names. This is associated with the operation of
relabelling the transitions in the transition system representing its behaviour.

Restriction and relabelling are constructions which depend on labelling sets and func-
tions between them. Seeing them as categorical constructions involves dealing explicitly
with functions on labelling sets and borrowing a couple of fundamental ideas from fibred
category theory. (In fact, restriction and relabelling arise as cartesian and cocartesian
morphisms respectively.) Consider restriction first.

Definition: Let 7" = (S,¢, L, Tran’) be a transition system. Let A : L < L' be an in-
clusion morphism. Define the restriction \*(T") to be the transition system (5,1, L, Tran)
with

Tran = {(s,a,t) € Tran' | a € L}.

The operation of restriction simply cuts out those transitions with labels not in the re-
stricting set. To understand it as a universal construction we observe that there is a
functor p : T — Set,, to sets with partial functions, which sends a morphism of tran-
sition systems (o,A) : T — 7" between transition systems T over L and 1" over L’ to
the partial function A : L —, L'. Associated with a restriction A*(7") is a morphism
f:X(T") — T, given by f = (15,)) where X is the inclusion map A : L — L'. In fact
the morphism f is essentially an “inclusion” of the restricted into the original transition
system. The morphism f associated with the restriction has the universal property that:

For any g : T — T' a morphism in T such that p(g) = A there is a unique
morphism A : T — A*(T") such that p(h) =1, and foh = g.

This says that the “inclusion” morphisms associated with restrictions are cartesian liftings
of inclusion maps between labelling sets. In fact, they are strong cartesian—see Appendix

A.

Proposition 3 Let A : L —, L’ be an inclusion. Let T" be a labelled transition system,
with states S. There is a morphism f : T' — T', given by f = (1s,\). It is strong
cartesian.
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The operation of relabelling is associated with a dual construction, that of forming
a cocartesian lifting. When X : L —, L' is total, the relabelling construction )\, takes a
transition system T' with labelling set L to A(7T'), the same underlying transition system
but relabelled according to .

Definition: Let T' = (5,1, L, Tran) be a transition system. Let A : L — L’ be a total
function. Define the relabelling \((T') to be the transition system (S, 1, L', Tran') where

Tran' = {(s, Ma),s") | (s,a,s’) € Tran}.

Letting the transition system T have states S, there is a morphism (15, A) : T — \(T).
Such a morphism is a cocartesian lifting of A in the sense that:

For any g : T' — 1" a morphism in T such that p(g) = X there is a unique
morphism h : \M(T') — T” such that p(h) = 1z, and ho f = g.

Proposition 4 Let A : L — L' be a total function. Let T be a labelled transition system,
with states S. There is a morphism f : T — \(T), given by f = (1s, ) which is strong
cocartestan—see Appendiz A.

Remark: In fact there are strong cartesian liftings for any A : L —, L' and any X' with
labelling set L', and the functor p : T — Set, is a fibration. It is also a cofibration, and
thus a bifibration, taking advantage of the fact that the relabelling construction can also
be defined when X is partial.

2.2.2 The nil transition system

The nil transition system

nil = ({},1,0,0),

the transition system consisting of a single initial state ¢, is initial and terminal in the
category of transition systems.

2.2.3 The product of transition systems

The product in the category of labelled transition systems is central to representing on
transition systems the parallel compositions of processes of languages, which like CCS,
CSP and Occam, communicate by events of synchronisation.

Definition: Assume transition systems To = (So, %0, Lo, Trang) and Ty = (81,21, L1, Tramny).
Their product To x Ty is (S, ¢, L, Tran) where

o § =35 x 81, with ¢ = (4,11), and projections pg : So x S; — So, p1 : So x Sy — Sy

o L:LO X*le
{(a,%) [ a € Lo} U{(,0) | b€ L1} U{(a,b) | a € Lo,b € L1},

with projections 7o, 71, and

e (s,a,s) € Tran, &
(po(s), mo(a), po(s')) € Tramg, & (pr(s), m(a), pr(s)) € Tran,.
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Define IIy = (po, 7o) and II; = (py,m).
Example: Let T and T3 be the following transition systems:

ToaT leT
© ©

where Ty has {a} and T has {b} as labelling set. The product of these labelling sets is

{a} Xk {b} = {(a7 *)? (aa b)) (*7 b)}

with projections Ag onto the first coordinate and \; onto the second. Thus Xo(a, *) =
Ao(a,b) = a and Ao(*,b) = *. Their product takes the form:

(*V [ (a,)

(a,b

. ) e
<axt%b>

©

Intuitively, transitions with labels of the form (a, b) represent synchronisations between
two processes set in parallel, while those labelled (a,*) or (%, b) involve only one process,
performing transitions unsynchronised with the other. Clearly, this is far too generous a
parallel composition to be useful as it stands, allowing as it does all possible synchroni-
sations and absences of synchronisations between two processes. However, a wide range
of familiar and useful parallel compositions can be obtained from the product operation
by further applications of restriction (to remove unwanted synchronisations and perhaps
disallow their absences) and relabelling (to rename the results of synchronisations). In
special cases, such as parallel compositions of versions of CSP, the construction can be
streamlined (see the section on “Parallel compositions”).

Proposition 5 Let Ty and Ty be transition systems. The construction Ty x T} above, is
a product in the category T, with projections Ilo = (po, o), I} = (p1,71). A state s is
reachable in Ty x Ty iff po(s) is reachable in Ty and py(s) is reachable in T;.

Although we have only considered binary products, all products exist in the category
of transition systems.

We remark that the product-machine contruction from automata theory arises as a
fibre product, viz. a product in a fibre. A fibre p='(L) consists of transition systems with a
common labelling set L, in which the morphisms are precisely those f for which p(f) = 1.

2.2.4 Parallel compositions

In the present framework, we do not obtain arbitrary parallel compositions as single
universal constructions. Generally they can be obtained as a result of first taking a
product of Ty and Ti, with labelling sets Lo, L; respectively, to give a transition system
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To x Ty with labelling set Lo x. Ly, then restricting by taking :*(7p x T3) for an inclusion
1S — LoXx,Ly, followed by a relabelling ri(:*(T5 x T1)) with respect to a total r : S —, L.
In this way, using a combination of product, restriction and relabelling we can represent
all conceivable parallel compositions which occur by synchronisation.

In general parallel compositions are derived using a combination of product, restriction
and relabelling. We can present the range of associative, commutative parallel compo-
sitions based on synchronisation in a uniform way by using synchronisation algebras. A
synchronisation algebra on a set L of labels (not containing the distinct elements *,0)
consists of a binary, commutative, associative operation e on L U {*,0} such that

ae0=0and (ap®a; =% & ap=a; = *)

for all a,ap,a; € LU{*,0}. The role of 0 is to specify those synchronisations which are not
allowed whereas the composition e specifies a relabelling. For a synchronisation algebra
on labels L, let Ao, Ay : L X« L —, L be the projections on its product in Set,. The
parallel composition of two transition systems T, T}, labelled over L, can be obtained as
ri*(To x T1) where ¢ : D — L X, L is the inclusion of

D={a€Lx,L|X(a)e)(a)#0}
determined by the 0-element, and r : D — L is the relabelling, given by
r(a) = Ao(a) ® A1(a)

fora € D.
We present two synchronisation algebras as examples, in the form of tables—more,
including those for value-passing, can be found in [32, 34].

Example: The synchronisation algebra for pure CCS: In CCS [22] events are labelled
by a,b,- -+ or by their complementary labels @, b, - - or by the label 7. The idea is that
only two events bearing complementary labels may synchronise to form a synchronisation
event labelled by 7. Events labelled by 7 cannot synchronise further; in this sense they
are invisible to processes in the environment, though their occurrence may lead to internal
changes of state. Alllabelled events may occur asynchronously. Hence the synchronisation
algebra for CCS takes the following form. The resultant parallel composition, of processes
p and ¢ say, is represented as plg in CCS.

o|* a @ b b T 0
x|* a @ b b T 0
ala 0 7 0 O 0 0
ala = 0 0 O 0 0
blb 0 0 0 7 0 0

Example: The synchronisation algebra for || in TCSP: In “theoretical” CSP—see [11,
6]—events are labelled by a,b,--- or 7. For one of its parallel composition (]|) events
must “synchronise on” a,b,---. In other words non-7-labelled events cannot occur asyn-
chronously. Rather, an a-labelled event in one component of a parallel composition must
synchronise with an a-labelled event from the other component in order to occur; the
two events must synchronise to form a synchronisation event again labelled by a. The
synchronisation algebra for this parallel composition takes the following form.
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e|x a b T 0
x| % 0 0 T 0
a|0 a 0 0 0
b0 0 b 0 0

2.2.5 Sums

Nondeterministic sums arise from coproducts. The category of transition systems has
coproducts:

Definition: The coproduct of transition systems
Let To = (So, 0, Lo, Trang) and Ty = (S1,11, L1, Trany) be transition systems. Define
To + T1 to be (S,1, L, Tran) where

o S =(Sox{i1})U({io} x S1) with ¢ = (40,71), and injections ing, in,
o L = LoW L, with injections 7o, 71

o
t € Tran &3(s,a,s") € Trang. t = (ino(s), jo(a),ine(s")) or

(s, a,s') € Tram. t = (inq(s), j1(a), in1(s)).

Proposition 6 Let Ty and T be transition systems. Then To + T, with injections
(tno, Jo), (tn1,J1), is @ coproduct in the category of transition systems.

A state s is reachable in a coproduct iff there is so reachable in Ty with s = ing(sg) or
there is sy reachable in Ty with s = inq(s1).

The coproduct is not quite of the kind used in modelling for example CCS. We look
to coproducts in the fibres.

Each fibre p~!(L) has coproducts for a labelling set L. Recall p~!(L) is that subcate-
gory of T consisting of transition systems over a common labelling set L with morphisms
those which project to the identity on L. In form they are very similar to coproducts of
transition systems in general-—they differ only in the labelling part.

Definition: The fibre coproduct of transition systems

Let To = (So, %0, L, Trany) and Ty = (51,41, L, Tran;) be transition systems over the
same labelling set L. Their fibre coproduct Tp +1 71 = (5,4, L, Tran) (note it is over the
same labelling set) where:
S = (So x {#1}) U ({70} x S1) with ¢ = (40,%1), and injections ing, 1ny, and

t € Tran <3(s,a,8") € Trang. t = (ing(s), a,ine(s’)) or
I(s,a,s’) € Tram. t = (in1(s), a,ini(s")).

Fibre coproducts give coproducts in the fibres.

Proposition 7 Let Ty and Ty be transition systems over L. The transition system To+
Ty with injections (10, 11) and (11,1z), as defined above, is a coproduct in the subcategory
of transition systems over L.
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Neither the coproduct or fibre coproduct of transition systems quite match the kind of
sums used in modelling processes, for example, in CCS. The coproduct changes the labels,
tagging them so they are disjoint, while the fibre coproduct, seemingly more appropriate
because it leaves the labels unchanged, assumes that the transition systems have the same
labelling set. A more traditional sum is the following:

Definition: Let Tp and 77 be transition systems over Ly and L; respectively. Define
To & T to be (5,1, Lo U Ly, Tran) where
S = (So x {#1}) U ({t0} x S1) with ¢ = (40,71), and injections ing,n;, and

t € Tran <3(s,a,s’) € Trang. t = (ino(s), a,ine(s’))
3(s,a,s") € Tram. t = (in1(s),a,iny(s"))

or

This sum can be understood as a fibre coproduct, but where first we form cocartesian
liftings of the inclusion maps into the union of the labelling sets. This simply has the
effect of enlarging the labelling sets to a common labelling set, their union, where we can
form the fibre coproduct.

Proposition 8 Let Ty and Ty be transition systems over Lo and Ly respectively. Let
gk : Ly — Lo U Ly be the inclusion maps, for k =0,1. Then

To® T1 = jorTo +(zoury) J11 11
Only coproducts of two transition systems have been considered. All coproducts exist
in fibres and in the category of all transition systems. Thus there are indexed sums of
transition systems of the kind used in CCS. The sum construction on transition systems
is of the form required for CCS when the transition systems are “nonrestarting”, i.e.

have no transitions back to the initial state. In giving and relating semantics we shall be
mindful of this fact.

Example: The fibred coproduct Ty +1 T} of

n () o
©

©

both assumed to have the labelling set L = {a, b}, takes the form:
L ]
(oA
v b
©

The sum can behave like Ty but then on returning to the initial state behave like 7j.
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2.2.6 Prefixing

The categorical constructions form a basis for languages of parallel processes with con-
structs like parallel compositions and nondeterministic sums. The cartesian and cocarte-
sian liftings give rise to restriction and relabelling operations as special cases, but the
more general constructions, arising for morphisms in the base category which are truly
partial, might also be useful constructions to introduce into a programming language.
This raises an omission from our collection of constructions; we have not yet mentioned
an operation which introduces new transitions from scratch. Traditionally, in languages
like CCS, CSP and Occam this is done with some form of prefixing operation, the effect
of which is to produce a new process which behaves like a given process once a specified,
initial action has taken place. For a transition system 1" = (5,1, L, Tran), the operation
of prefixing involves a choice of element ', for the new starting state, and an injective
function |—| on S making copies of the old states so that they are distinct from ¢/, i.e.
so that ¢/ # |s| for any s € S. This is achieved by, for instance, taking i’ to be § and
|s] = {s}. Prefixing on transition systems, is defined concretely by:

Definition: Let a be a label (not *). Define the prefiz aT = (5,4, L', Tran') where

§'={{s} s eS}u{d},
i =10,
L' = LU/{a},

Tran' = {({s},6,{s"}) | (s,0,5) € Tran} U{(0,q,{i})}.

Let (0,)) : To — 11 be a morphism of transition systems where A is a total function.

Define a(c, A) to be (¢/, X') where

oy 0 if s' =0,
"= {loty ite ()

Prefixing a(—) is a functor on the subcategory in which all functions on labelling
sets are total, and in particular between fibres p~1(L) — p~*(L U {a}). Because we
do not ensure that the prefixing label is distinct from the former labels, prefixing does
not extend to a functor on all morphisms of transition systems. The fact that functions
between labelling sets can be partial causes trouble; how should the prefixing operation
a(—) act on the unique morphism anil — nil ?

a if b=a,

and  \(b) = {)\(b) otherwise.

2.3 A process language

A process language Proc and its semantics can be built around the constructions on the
category of transition systems. Indeed the process language can be interpreted in all the
models we consider. Its syntax is given by

tu=mnil |at|to @ ti|toxti |t T A|t{E} |z |reca.t

where @ is a label, A is a subset of labels and = is a total function from labels to labels.
We have seen how to interpret most of these constructions in transition systems, which
in particular will yield a labelling set for each term. A restriction ¢ t A is understood to
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denote 1*(T"), given by the cartesian lifting of AN L — L with respect to the denotation
T of t, assumed to have labelling set L. This sensible also in the situation where the
labelling set L of ¢ does not include A. The denotation of t{=} is obtained from the
cocartesian lifting with respect to t of the function = : L — =L, so that ¢ with labelling
set L is relabelled by = cut down to domain L. The new construction is the recursive
construction of the form rec z.t, involving x a variable over processes. We insist that in
a recursive definition rec z.t the occurences of = in t are guarded in the sense that all
occurrences of z in t lie within a prefix term.

The presence of process variables means that the denotation of a term as a transition
system is given with respect to an environment p mapping process variables to transition
systems. We can proceed routinely, by induction on the structure of terms, to give an
interpretation of syntactic operations by those operations on transition systems we have
introduced, for example we set

[nil]p = nul, for a choice of initial transition systems
[to @ t1]p = [to] p ® [[t1]p, the nondeterministic sum of section 2.2.5

But how are we to interpret T[rec z.t]p, for an environment p, assuming we have an
interpretation T[t]p’ for any environment p'?

There are several techniques in use for giving meaning to recursively defined processes
and in this section we will discuss two. One approach is to use w-colimits with respect
to some suitable subclass of morphisms in the category of transition systems and use the
fact that the operations of the process language can be represented by functors which
are continuous in the sense of preserving w-colimits. For example, all the operations
needed to model Proc are continuous functors on the subcategory of transition systems
with monomorphisms—this subcategory has all w-colimits. However we can work more
concretely and choose monomorphisms which are inclusions. In this instance the general
method then becomes a mild generalisation of that of fixed points of continuous functions
on a complete partial order. The method is based on the observation that transition
systems almost form a complete partial order under the relation

(S,1, Lytran) Q (S, L' jtran) if SC S' & i =1 & L C L' & tran C tran’

associated with the existence of a morphism from one transition system to another based
on inclusion of states and labelling sets. Objects of the category of transition do not form
a set, but they do have least upper bounds of w-chains

Ihdh;d---47, 4 -+

of transition systems T, = (Sq, tn, Ly, trany,), for n € w; the least upper bound ¢, 75

is given simply by

U T, = (U Spyln, U L,, U tran,).

new ncw ncw new
There is no unique least element, but rather a class of minimal transition systems ({¢},1,0 §)
for a choice of initial state :. However this is no obstacle to a treatment of guarded re-
cursions based on the order Q.

First observe that each operation, prefixing, sum, product, restriction and relabelling

has been defined concretely, and in fact each operation is continuous with respect to <.
It follows that for an term ¢, and process variable z, that the operation F', given by

F(T) = T[tlplT/=],
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on transition systems is continuous. Moreover, if = is guarded in ¢, then for any choice
of transition system T, the initial state of F'(T') is the same, 1 say. Consequently, writing

I = ({i},7,0 0) we have

IQF(I)
and inductively, by monotonicity:
IQFIN) S F(NQ - Q)L

Write fiz(F') =ges Upe, F™(L). By the continuity of F' we see that fiz(F) is the <-least
fixed point of F'. In fact because F' is defined from a term in which z is guarded, we have:

Definition: For T' = (5,1, L,tran) a transition system, define R(T") to be the transition
system (5’,¢, L', Tran') consisting of states S’ reachable from 4, with initial state z, and
transitions Tran’ = Trann (S’ x L x S') with labelling set L’ consisting of those labels
appearing in Tran'.

Lemma 9 If T is a transition system for which T = R(F(T)), then T' = R(fiz(F)).

Proof: The proof of this fact depends on several subsidiary definitions and results which
we place in Appendix C. |

We can now complete our denotational semantics, the denotation T[rec x.t]p being
taken to be fiz(F') where F(T) = T[t]p[T/x].
Alternatively, we can give a structural operational semantics to our language on stan-

dard lines. In doing so it is useful to introduce a little notation concerning the combination
of labels. For labels a, b define

axb:{*lfa:b:*,

(a,b) otherwise

This notation along with the use idle transitions gives a single compact rule for product.
The transitions between states, identified with closed terms, are given by the following
rules:
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Operational semantics (version 1)

at >t 5t

t >t
to+ 1 — )

to = t)

—a——a
t0+t1—)t6

# * a # *

to S th Dt

to x t, X5 to x 1

t 3t c A t35t
a a =
ttA—=t A t{=} ‘-'(“Z t{=}

tlrecz.t/z] = ¢

a
recx.t — t'

a# x

A closed term ¢ determines a transition system with initial state ¢ consisting of all states
and transitions which are reachable from t.

Unfortunately the relationship between the transition systems obtained denotationally
and operationally is obscure. There are several mismatches. One is that the categorical
sum makes states of the two components of a sum disjoint, a property which cannot be
shared by the transition system of the operational semantics, essentially because of inci-
dental identifications of syntax. Furthermore, the transition system for recursive processes
can lead to transition systems with transitions back to the initial state. As we have seen
this causes a further mismatch between the denotational and operational treatment of
sums. Indeed the denotational treatment of recursive processes will lead to acyclic tran-
sition systems, which are generally not obtained with the present operational semantics.
Less problematic is the fact that from the very way it is defined the transition systems
obtained operationally must consist only of reachable states and transitions. This prop-
erty is not preserved by the categorical operation of restriction used in the denotational
semantics.

The denotational and operational approaches can be reconciled in a simple way. The
idea is to modify the operational semantics, to introduce new copies of states where they
are required by the denotational semantics. New copies of states are got by tagging terms
by 0, 1, or 2. States for the operational semantics are built from closed terms from the
syntax extended to include the clauses

to=e 1(0,2) | (1,2) | (2,8).

We call such terms tagged terms—note they include the ordinary terms.

The modified operational semantics for tagged terms is given by these rules:
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Operational semantics (version 2)
t =t

(n,t) = (n,t)

at >t t 5 ¢

b
tl
# * h—h b# *

to+11 > (1,2,)

to > th
2 a
to + 11 = (0,¢))

to-Sth t1 >

b
to Xty 25t x t)

t5 c A tS5t
a a’ —_
tTA=tTA t{E} -—(al t'{E}

tlrec z.t/z] = ¢'

rec z.t = (2,t')

a# x

The first rule expresses that a tagged term has the capabilities of the untagged term.
Notice that the former operational semantics is obtained by stripping away the tags, and
in fact such a relation is a bisimulation, in the sense of Milner and Park [22], between the
transition systems of the two forms of operational semantics.

Now we can establish a close correspondence between the operational and denotational
semantics.

Definition: Letting 7" be the transition system of the operational semantics, with initial
state a tagged term ¢, define
Op(t) = R(T).

Lemma 10 For any closed tagged term t, the transition system Op(t) is acyclic.

Proof: We show this by mapping tagged terms ¢ to | ¢ | in a strict order < (an irreflexive,
transitive relation) in such a way that

tSu&aZEs=|t|<|u]l. (1)

It then follows that —7 is irreflexive. The full proof, with the definition of <, is given in
Appendix C. |

Theorem 11 Lett be a closed term of the process language Proc. For any environment

p
Op(t) = R(T[t]p)-
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Proof: By structural induction we show if ¢ is a term with free variables zq,- -,z then
for all closed terms ty,-- -, t.

Op(tta/@y, - - -, tx/zi]) = R(T[t]p[Op(t1) /1, - -, Op(t)/ =)
Henceforth in this proof we will use vector notation, writing e.g. 7 for &1, -, zx and T/z

for Tl/:vl,- c ,Tk/wk.

The basis cases, when t is nil or a variable, hold trivially. The case where t is a
prefix uses acyclicity of the operational semantics in order to ensure disjointness of the
initial state, as does that of sum where, as we have seen, we require components are
non-restarting in order for the categorical sum to reflect that given operationally. The de-
notational and operational semantics of the operations product, restriction and relabelling
correspond closely making the proof simple in these cases. The only case of difficulty is
that where ¢ has the form rec y.u :

Assume rec y.u has free vars 7 and that 3 are closed terms to instantiate z. Writing

v = u[s/z], we observe that from acyclicity (lemma 10) it follows that
Op(rec y.v) = Op(virecy.v/y])
—the isomorphism acts so

recy.w > v[recy.v/y]
(2,r) +— .

Hence

1%

Op(vlrecy.v/y])
Op(u[s/z,recy.v/y])

R(T[u]p[Op(s)/z, Op(recy.v)/y])
by the induction hypothesis. Thus Op(rec y.v) = R(F(Op(rec y.v)) where

F(T) = T[ulp[Op(s)/z, T/y]-
But T[recy.u]p[Op(s)/z] = fiz(F), and so by lemma 9,
Op(rec yulsTa) = Op(rec y.v) = R(T[rec y.ul o[Oa)/]),

as required in this case for the induction.}

Op(recy.v)

e

2.4 An example

We will illustrate the different models on an example where the parallel composition is
given by the following synchronisation algebra: Labels have the form a?, a!, @ which intu-
itively can be thought of as representing receiving on channel a (a?), sending on channel a
(a!) and completed synchronisation on channel a (simply a). The synchronisation algebra
is given by the following table.

| x a? al a b7 B b

«| x a? al a b7 b b

a? | a? 0 0 0 0 0
alla a 0 0 O 0
0 0 0 0

al a 0 0
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The synchronisation algebra is like that for CCS, but instead of labelling successful syn-
chronisations by an anonymous 7 they retain some identity. We use || to denote its
associated parallel composition

We introduce an example which will reappear in illustrating all the different models.
In a form of process algebra it might be described by

SYS = (VM || VM'|| C) t {b,c,c1,ca,t}

where
VM = &?7d VM7t VM
VM' = c¢?7t! VM @ bnil
C = ¢! c?C®c!tnil

Intuitively, SYS consists of two vending machines VM, VM’ in parallel with a cus-
tomer C. The customer can insert a coin (cp!) to get coffee (c?7) repeatedly or insert a
coin (c¢1!) to get tea (t?) and stop. The vending machine VM can receive a coin (c37)
to deliver coffee (c!) or alternatively receive (c;?) to deliver tea (¢!). The other vending
machine VM’ is cheaper; it costs less (¢17) to deliver tea (t!), but it may breakdown (b).
A reasonable model for the system SY S is as the transition system derivable from the
operational semantics (version 1) of section 2.3, illustrated below:

Notice, in particular, the deadlock which can occur if the customer inserts coin ¢, in
machine VM. Notice too that the transition system does not capture concurrency in
the sense that we expect that a breakdown (b) can occur in parallel with the customer
receiving coffee (¢) and this is not caught by the transition system. This limitation of
transition systems can be seen even more starkly for the two simple terms:

abnil+banil a nil || b nil.

both of which can be described by the same transition system, viz.

This contrasts the interleaving model of transition systems with noninterleaving models
like Petri nets we shall see later, which represent independence of actions explicitly.
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2.5 Synchronisation trees

We turn to consider another model. It is our first example illustrating how different models
can be related through the help of adjunctions between their associated categories.

In his foundational work on CCS [21], Milner introduced synchronisation trees as a
model of parallel processes and explained the meaning of the language of CCS in terms
of operations on them. In this section we briefly examine the category of synchronisation
trees and its relation to that of labelled transition systems. This illustrates the method
by which many other models are related, and the role category theoretic ideas play in
formulating and proving facts which relate semantics in one model to semantics in another.

Example: We return to the example of 2.4. As a synchronisation tree SY S could be
represented by

0 <« b ® < t ® -« “ .T
Ca ¢ N
® ® .S
AR
. . . . .
C C
. .
S S

where the trees stemming from S and T are repeated as indicated. The synchronisation
trees is obtained by unfolding the transition-system of 2.4. Such an unfolding operation
arises as an adjoint in the formulation of the models as categories. In moving to synchro-
nisation trees we have lost the cyclic structure of the original transition system, that the
computation can repeatedly visit the same state. We can still detect the possibility of
deadlock if the customer inserts coin cs.

As we have seen, a synchronisation tree is a tree together with labels on its arcs.
Formally, we define synchronisation trees to be special kinds of labelled transition systems,
those for which the transition relation is acyclic and can only branch away from the root.

Definition: A synchronisation treeis a transition system (5,1, L, Tran) where
e every state is reachable,
o if s =— s, for a string v, then v is empty (i.e. the transition system is acyclic), and

0 s sl btus=2a=b& s =s".




26 CHAPTER 2. INTERLEAVING MODELS

Regarded in this way, we obtain synchronisation trees as a full subcategory of labelled
transition systems, with a projection functor to the category of labelling sets with partial
functions.

Definition: Write S for the full subcategory of synchronisation trees in T.

In fact, the inclusion functor S < T has a right adjoint ¢s : T — S which has the
effect of unfolding a labelled transition system to a synchronisation tree.!

Definition: Let T be a labelled transition system (S,¢, L, Tran). Define ts(T') to be
(S',4', L, Tran') where:

o The set S’ consists of all finite, possibly empty, sequences of transitions
(th ot 7tj>tj+17 e )tn-‘l)

such that ¢; = (s;-1,aj,s;) and tj41 = (8j,aj41,5j41) whenever 1 < 7 < n. The
element 7' = (), the empty sequence.

e The set Tran’ consists of all triples (u, a,v) where u,v € S" and u = (ug,...,ux),v =
(u1,...,uk, (s,a,s")), obtained by appending an @ transition to wu.

Define ¢ : S" — S by taking ¢(()) = ¢ and ¢((t1,--,t)) = Sn, Where t,, = (5,-1,an, Sn).

Theorem 12 Let T be a labelled transition system, with labelling set L. Then ts(T") is
a synchronisation tree, also with labelling set L, and, with the definition above, ($,1r) :
ts(T) — T is a morphism. Moreover ts(T),(¢,11) is cofree over T with respect to the
inclusion functor S — T, t.e. for any morphism f : V — T, with V a synchronisation
tree, there is a unique morphism g : V — ts(T') such that f = (¢,11) 0 g:

T (&11) ts(T)

N
1

Proof: Let T be a labelled transition system, with labelling set L. It is easily seen that
ts(T') is a labelled transition system with labelling set L and (¢,1;) : ts(T') — T is a
morphism. To show the cofreeness property, let f = (¢,A) : V — T be a morphism from
a synchronisation tree V. We require the existence of a unique morphism g : V' — ts(7')
such that f = (¢4,11)g. The morphism g must necessarily have the form g = (o4, A). The
map o7 is defined by induction on the distance from the root of states of V, as follows:
On the initial state iy of V, we take o1(iv) = (). For any state v’ for which (v, a,v’) is a
transition of V we take o1(v') = o(v) if A(a) = * and otherwise, in the case where A(a) is
defined, take o1(v') = o(v)((o(v), A(a),c(v")).

It follows by induction on the distance of states v from the root that o(v) = ¢o1(v),
and that (o1, A) is the unique morphism such that f = (¢,11)g. (For a very similar, but
more detailed, argument see [34].) ||

1Because we shall be concerned with several categories and functors between them we name the
functors in a way that indicates their domain and range.
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It follows that the operation ts extends to a functor which is right adjoint to the
inclusion functor from S to T and that the morphisms (¢,1z) : ts(T) — T are the
counits of this adjunction (see [18] Theorem 2, p.81). This makes S a (full) coreflective
subcategory of T, which implies the intuitively obvious fact that a synchronisation tree
T is isomorphic to its unfolding ts(7T') (see [18] p.88).

Like transition systems, synchronisation trees have been used to give semantics to
languages like CCS and CSP (see e.g. [21], [7]). Nondeterministic sums of processes
are modelled by the operation of joining synchronisation trees at their roots, a special
case of the nondeterministic sum of transition systems. We use X;¢;S; for the sum of
synchronisation trees indexed by ¢ € I. For the semantics of parallel composition, use is
generally made of Milner’s “expansion theorem” (see [21]). In our context, the expansion
of a parallel composition as a nondeterministic sum appears as a characterisation of the
product of synchronisation trees.

Proposition 13 The product of two synchronisation trees S and T of the form
S = Z a;S; and T = Z b]TJ

i€l JjedJ
is given by

SxT= E(ai’*)si x T + Z (a,—,bj)Si x T + Z(*, bJ)S x Tj.

i€l el jed J€J

Proof: The fact that the category of synchronisation trees has products and that they
are preserved by the unfolding operation ts is a consequence of the general fact that right
adjoints preserve limits. In particular, ts(S x7 T') is a product of the synchronisation
trees S and T above; the proof that products of trees have the form claimed follows by
considering the sequences of executable transitions of S x7 1]

The adjunction between transition systems and synchronisation trees is fibrewise in
that it restricts to adjunctions between fibres over a common labelling set. For this reason
its right adjoint of unfolding automatically preserves restriction, while its left adjoint, the
functor regarding a tree as a transition system, preserves relabelling (see Appendix A). As
the following example shows, right adjoints, such as the operation of unfolding a transition
system to a tree, do not necessarily preserve colimits like nondeterministic sums.

Example: Recall the fibred coproduct 7o 4+ T} of
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It is easily seen that ts(Tp 41 1) is not isomorphic to ts(To) +1, ts(71).

This section indicates how the coreflection between synchronisation trees and labelled
transition systems helps in formulating and proving the relationship between the different
models. For labelled transition systems and synchronisation trees general facts like the
existence of an adjunction or the preservation of cartesian morphisms by functors can be
brought to bear on proofs showing, for instance, how semantics is preserved in passing
from one model to another.

2.6 Languages

Synchronisation trees abstract away from the looping structure of processes. Now we
examine a yet more abstract model, that of languages where we further abstract away
from the nondeterministic branching structure of processes.

Definition: A language over a labelling set L consists of (H, L) where H is a non-empty
subset of strings L* which is closed under prefixes, i.e.if ag- - - a;—1a; € H thenag---a;-; €

H.

Thus for a language (H, L) the empty string () is always contained in H. Such lan-
guages were called traces in [10] and for this reason, in the context of modelling concur-
rency, they are sometimes called Hoare traces. They consist however of simply strings
and are not to be confused with the traces of Mazurkiewicz to be seen later.

Example: Refer back to the customer-vending machine example of 2.4. The semantics of
SY S as a language (its Hoare traces), loses the nondeterministic structure present in both
the transition-system and synchronisation-tree descriptions. The language determined by

SYS is

{()’ €1, €2, b’ Clta Ca2C, CZb, bc27 }

Lost is the distinction between for instance the two branches of computation ¢;b, one
which can be resumed by further computation and the other which deadlocks.

Morphisms of languages are partial functions on their alphabets which send strings in
one language to strings in another:

Definition: A partial function A : L —, L’ extends to strings by defining

0N {g(s)/\(a) if A(a) defined
A(s) if A(a) undefined

A morphism of languages (H,L) — (H',L’') consists of a partial function A : [ —, L’
such that Vs € H. \(s) € H'.

We write L for the category of languages with the above understanding of morphisms,
where composition is our usual composition of partial functions.
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Ordering sequences in a language by extension enables us to regard the language as a
synchronisation tree. The ensuing notion of morphism coincides with that of languages.
This observation yields a functor from L to S. On the other hand any transition system,
and in particular any synchronisation tree, gives rise to a language consisting of sequences
of labels obtained from the sequences of transitions it can perform. This operation extends
to a functor. The two functors form an adjunction from S to L (but not from T to L).

Definition: Let (H, L) be a language. Define Is(H, L) to be the synchronisation tree
(H,(), L,tran) where

(h,a,h') € Tran < h' = ha.
Let T = (S,1, L, Tran) be a synchronisation tree. Define sl(T") = (H, L) where a sequence
h € L* is in the language H iff there is a sequence, possibly empty, of transitions

al az ... 8n

1 > Sp

S1

in T such that » = ayas---a,. Extend sl to a functor by defining sl(o,A) = X for
(o0,A): T — T'" a morphism between synchronisation trees.

Theorem 14 Let (H, L) be a language. Then Is(H,L) is a synchronisation tree, with
labelling set L, and, 15, : sl o ls(H,L) — (H,L) is an isomorphism. Moreover sl o
Is(H,L),1r is cofree over (H,L) with respect to the functor sl : S — L, i.e. for any
morphism A : sl(T) — (H, L), with T a synchronisation tree, there is a unique morphism
g:T — Is(H, L) such that A\ =11 0 sl(g):
(H,L) 1 slols(H,L)
) atto)
sl(T)

Proof: Each state s of the synchronisation tree T is associated with a unique sequence

of transitions

a3 az .. An

) s Sy,

with s, = s. Defining o(s) to be A(a; - - - a,,) makes (o, \) the unique morphism ¢ : T —
Is(H, L) such that A = 11, 0 sl(g). I

This demonstrates the adjunction S — L with left adjoint s/ and right adjoint Is; the
fact that the counit is an isomorphism makes the adjunction a (full) reflection.

We can immediately observe some categorical constructions. The fibre product and
coproduct are simply intersection and union of languages over the same labelling set. The
product of two languages (Ho, Lo), (H1, L1) takes the form

(7?0_1H0 N %{lHl, LO X x Ll))

with projections 7o : Lo X« Ly —4« Lo and 71 : Lo X« Ly —, L1 obtained from the product
in Set,. The coproduct of languages (Ho, Lo), (H1, L1) is

GoHo U 71 Hy, Lo W Ly)

with injections jo : Lo — Lo W Ly,71 : L1 — Lo W Ly into the left and right component of
the disjoint union.

Let r : L — Set, be the functor sending a morphism A : (H, L) — (H', L') of languages
to A : L —, L'. The expected constructions of restriction and relabelling arise as (strong)
cartesian and cocartesian liftings.
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2.7 Relating semantics

We can summarise the relationship between the different models by recalling the coreflec-
tion and reflection:

T <« s € L
The functors shown are essentially full inclusions. They each have adjoints; the inclusion
of the coreflection has a right and that of the reflection a left adjoint. These functors from
left to right correspond respectively to losing information about the looping,and then in
addition the nondeterministic branching structure of processes.

Such categorical facts are useful in several ways. The coreflection between S and T
tells us how to construct limits in S from those it T. In particular, we have seen how
the form of products in S is determined by their simpler form in T. We regard synchro-
nisation trees as transition systems via the inclusion functor, form the limit there and
then transport it to S, using the fact that right adjoints preserve limits. The coreflec-
tion also provides clues as to the form of colimits in S because if they exist they will
be preserved by the left adjoint (the inclusion functor identifying a synchronisation tree
with a transition system). For example, the coproduct of trees is simply their coproduct
regarded as transition systems because the coproduct of such transition systems is itself
a synchronisation tree. Lemma 83 plays an important role in transporting cartesian and
cocartesian morphisms across a coreflection. It is important in showing how restriction
and relabelling are preserved. These mathematical facts are important at the level of
relating semantics of particular languages in different models.

Imagine giving semantics to the process language Proc of section 2.3 in any of the
three models. Any particular construct is interpreted as being built up in the same way
from universal constructions. For example, product in the process language is interpreted
as categorical product, and nondeterministic sum in the language as the same combina-
tion of cocartesian liftings and coproduct we use in transition systems. Constructions are
interpreted in a uniform manner in any of the different models. Prefixing for languages
requires a (straightforward) definition. Recursion requires a separate treatment. Syn-
chronisation trees can be ordered in the same way as transition systems. Languages can
be ordered by inclusion. In both cases it is straightforward to give a semantics. With
respect to an environment pg from process variables to synchronisation trees we obtain a
denotational semantics yielding a synchronisation tree

Stlps

for any process term ¢. And with respect to an environment py, from process variables to
languages the denotational semantics yields a language

Lt]pr
for a process term t. What is the relationship between the three semantics
T[], S[-], and L[-]?

Consider the relationship between the semantics in transition systems and synchonisation
trees. Letting p be an environment from process variables, to transition systems, the two
semantics are related by

ts(Tt]p) = S[t]tso p
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for any process term t. This is proved by structural induction on ¢. The cases where ¢
is a product or restriction follow directly from preservation properties of right adjoints.
The other cases require special, if easy, argument. For example, the fact that

tS(T[[to &, tl]]p = S{[to &) tll]ts op

depends on T[to]p, T[t1]p being nonrestarting, a consequence of acyclicity (lemma 10 )
shown earlier. The case of recursion requires the J-continuity of the unfolding functor
ts. A similar relationship,
sl(S[t]p) = L[t]slo p

for a process term t, and environment p to synchronisation trees, holds between the two
semantics in synchronisation trees and languages. This time the structural induction is
most straightforward in the cases of nil, nondeterministic sum and relabelling (because
of the preservation properties of the left adjoint sl). However, simple arguments suffice
for the other cases.

In summary, the preservation properties adjoints are useful directly in relating different
semantics. Less directly, a knowledge of what we can and cannot expect to be preserved
provides useful guidelines in itself. The failure of a general preservation property can
warn that the semantics of a construct can only be preserved in special circumstances.
For instance, we cannot expect a right adjoint like ¢s to always preserve a colimit, like
a nondeterministic sum. Accordingly, the semantics of sums is only preserved by ¢s by
virtue of a special circumstance, that the transition systems denoted are nonrestarting.
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Chapter 3

Noninterleaving models

All the models we have considered so far have identified concurrency or parallelism with
nondeterministic interleaving of atomic actions. We turn now to consider models where
concurrency is modelled explicitly in the form of independence between actions. In some
models, like Mazurkiewicz traces, the relation of independence is a basic notion while in
others, like Petri nets, it is derived from something more primitive. The idea is that if two
actions are enabled and also independent then they can occur concurrently, or in parallel.
Models of this kind are sometimes said to capture “true concurrency”, a convenient tag,
if a regrettably biased expression. They are also often called “noninterleaving models”
though this again is inappropriate; as we shall see, Petri nets can be described as forms
of transition systems. A much better term is “independence models” for concurrent
computation, though this is certainly not currently established. Because in such models
the independence of actions is not generally derivable from an underlying property of their
labels, depending rather on which occurrences are considered, we will see an important
distinction basic to these richer models. They each have a concept of events distinguished
from that of labels. Events are to be thought of as an atomic actions which can support
a relation of independence. Events can then bear the further structure of having a label,
for instance signifying which channel or which process they belong to.

A greater part of the development of these models is indifferent to the extra labelling
structure we might like to impose, though of course restriction and relabelling will depend
on labels. Our treatment of the models and their relationship will be done primarily for
the unlabelled structures. Later we will adjoin labelling and provide semantics in terms
of the various models and discuss their relationship.

3.1 Trace languages

3.1.1 A category of trace languages

The simplest model of computation with an in-built notion of independence is that of
Mazurkiewicz trace languages. They are languages in which the alphabet also possesses
a relation of independence. As we shall see this small addition has a striking effect in
terms of the richness of the associated structures. It is noteworthy that, in applications of
trace languages, there have different understandings of the alphabet; in Mazurkiewicz ’s
original work the alphabet is thought of as consisting of events, while some authors have
instead interpreted its elements as labels, for example standing for port names.

33
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Definition: A Mazurkiewicz trace language consists of (M, L,I) where L is a set, I C
L x L is a symmetric, irreflexive relation called the independence relation, and M is a
nonempty subset of strings L* such that

o prefiz closed: sa € M = s € M forall s € L*;a € L,
o [-closed: sabt € M & alb=> sbhat € M for all s,t € L*,a,b € L,

o coherent: sa € M & sbe€ M & alb=- sabe M for all s € L*,a,b € L.

The alphabet L of a trace language (M, L, I) can be thought of as the set of actions of
a process and the set of strings as the sequences of actions the process can perform. Some
actions are independent of others. The axiom of I-closedness expresses a consequence
of independence: if two actions are independent and can occur one after the other then
they can occur in the opposite order. The axiom of coherence is not generally imposed.
We find it convenient (though not essential), and besides, like I-closedness, it seems to
follow from an intuitive understanding of what independence means; it says if two actions
are independent and both can occur from the same state then they can occur one after
the other, in either order. Given that some actions are independent of others, it is to
be expected that some strings represent essentially the same computation as others. For
example, if @ and b are independent then both strings ab and ba represent the computation
of a and b occurring concurrently. More generally, two strings sabt and sbat represent the
same computation when a and b are independent. This extends to an equivalence relation
between strings, the equivalence classes of which are called Mazurkiewicz traces. There is
a preorder between strings of a trace language which induces a partial order on traces.

Definition: Let (M, L,I) be a trace language. For s,t € M define = to be the smallest
equivalence relation such that
sabt = sbat if alb

for sabt, sbat € M. Call an equivalence class {s}s, for s € M, a trace. For s,t € M define

s<t<« du. su=t.

Proposition 15 Let (M, L,I) be a trace language with trace equivalence =. If su € M
and s = s’ then s'u € M and su= s'u. The relation < of the trace language is a preorder.
Its quotient s /= by the equivalence relation = is a partial order on traces.

Example: The independence relation of Mazurkiewicz allows us to express the concur-
rency we remarked on earlier in example 2.4. By asserting that the independence relation
I is the smallest such that

blIc and b1 cy,
corresponding to the idea that a breakdown b can occur in parallel with the customer

receiving coffee, the language of example 2.6 collapses to give the following ordering < /=
on traces:
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X X
[ ] [} b > @
\
“\b .\{CQ C2
b
[ ] [ ] > @
\ z \
.X .x [# C
[ ] [ b > @
\ \ \
.XCZ Cy
b
. ] > @

{0}=

We have drawn the traces as points and drawn an arrow - from a trace {s}s to a trace
{sa}<. Although the potential concurrency of b and ¢, and b and ¢, is caught by the
independence relation, the trace language semantics like the language semantics before is
blind to the fact that the system can deadlock after the customer inserts a coin ¢;. To
make such a distinction we would have to distinguish the two occurrences of ¢, regarding
them as different events.

The partial order < /= of a trace language can be associated with a partial order of
causal dependencies between event occurrences. This structure will be investigated in the
next section.

Morphisms between trace languages are morphisms between the underlying languages
which preserve independence:

Definition: A morphism of trace languages (M, L,I) — (M', L', I') consists of a partial
function A : L —, L' which

o preserves independence: alb & M a) defined & A(b) defined = A(a)I'A(b) for all
a,be L,

e preserves strings: s € M = X(s) € M’ for all strings s.

It is easy to see that morphisms of trace languages preserve traces and the ordering
between them.

Proposition 16 Let A : (M, L,I) — (M',L',I') be a morphism of trace languages. If
s <t in the trace language (M, L,I) then A(s) s A(t) in the trace language (M', L', I').

Definition: Write TL for the category of trace languages with composition that of partial
functions.
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3.1.2 Constructions

We examine some categorical constructions on trace languages. The constructions gener-
alise from those on languages but with the added consideration of defining independence.

Let (Mo, Lo, Ip) and (M, Ly, I;) be trace languages. Their product is (M, L, I) where
L = Lo X, Ly, the product in Set., with projections mp : L —, Lo and 7y : L —, Ly, with

alb & (mo(a), mo(b) defined = mo(a)lomo(d)) &
(m1(a), 71(b) defined = m1(a)l1m1(D)),

and

M = 7?61M0 ﬂ%l_lMl

Their coproduct is (M, L,I) where L = Lo W L, the disjoint union, with injections jo :
Lo — L,j;: Lo — L, the relation I satisfies

alb @3&0, bo. CL()I()bO & a= jo(ao) & b= j()((lo) or
El(ll,bl. alllbl & a = jl(al) & b = jl(al)

and

M = joMo U 71 M.

What about restriction and relabelling? Restriction appears again as a cartesian
lifting of an inclusion between labelling sets. Its effect is simply to cut-down the language
and independence to the restricting set. However, the relabelling of a trace language
cannot always be associated with a cocartesian lifting. To see this consider a function
A : {a,b} — {c} sending both a,b to c. If a trace language T' has {a,b} as an alphabet
and has a,b independent then, A cannot be a morphism of trace languages, and hence
no cocartesian lifting of A with respect to the trace language 1'; because independence
is irreflexive, independence cannot be preserved by A. The difficulty stems from our
regarding the alphabet of a Mazurkiewicz trace language as a set of labels of the kind
used in the operations of restriction and relabelling.

Here it is appropriate to discuss an ambiguity in how to apply trace languages to the
modelling of parallel computation. In the literature one finds two ways in which to view
and use trace languages to model parallel processes.

One way is to use trace languages in the same manner as languages. This was implic-
itly assumed in our attempts to define the relabelling of a trace language. Then a process,
for example in CCS, denotes a trace language, with alphabet the labels of the process.
This regards symbols of the alphabet of a trace language as labels in a process algebras.
As we have seen in the treatment of interleaving models labels can be understood rather
generally; they are simply tags to distinguish some actions from others. However this gen-
eral understanding of the alphabet conflicts with this first approach. As the independence
relation is then one between labels, once it is decided that say ¢ and b are independent
in the denotation of a process then they are so throughout its execution. However, it is
easy to imagine a process where at some stage a and b occur independently and yet not at
some other stage. To remedy this some [?] have suggested that the independence relation
be made to depend on the trace of labels which has occurred previously. But even with
this modification, the irreflexivity of the independence relation means there cannot be
independent occurrences with the same label; in modelling a CCS process all its internal
7 events would be dependent!
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The other approach is to regard the alphabet as consisting, not of labels of the general
kind we have met in process algebras, but instead as consisting of events. It is the events
which possess an independence relation and any distinctions that one wishes to make
between them are then caught through an extra labelling function from events to labels.
True, this extra level of labelling complicates the model, but the distinction between
events and the labels they can carry appears to be fundamental. It is present in the other
models which capture concurrency directly as independence. This second view fits best
with that of Mazurkiewicz’s trace-language semantics of Petri nets. When we come to
adjoin the extra structure of labels, restriction will again be associated with a cartesian
lifting and relabelling will reappear as a cocartesian lifting.

There remains the question of understanding the order < / = of trace languages.
We shall do this through a representation theorem which will show that < /= can be
understood as the subset ordering between configurations of an event structure.

3.2 Event structures

There is most often no point in analysing the precise places and times of events in a
distributed computation. What is generally important are the significant events and
how the occurrence of an event causally depends on the previous occurrence of others.
For example, the event of a process transmitting a message would presumably depend
on it first performing some events, so it was in the right state to transmit, including the
receipt of the message which in turn would depend on its previous transmission by another
process. Such ideas suggest that we view distributed computations as event occurrences
together with a relation expressing causal dependency, and this we may reasonably take
to be a partial order. One thing missing from such descriptions is the phenomenon of
nondeterminism. To model nondeterminism we adjoin further structure in the form of a
conflict relation between events to express how the occurrence of certain events rules out
the occurrence of others. Here we shall assume that events exclude each other in a binary
fashion.

Definition: Define an event structure to be a structure (F, <,#) consisting of a set F,
of events which are partially ordered by <, the causal dependency relation, and a binary,
symmetric, irreflexive relation #C E x E, the conflict relation, which satisfy

{¢'| ¢ < e} is finite,
eHe <e"=e#e

for all e, e/, e” € E.
Say two events e, ¢’ € E are concurrent, and write e co e, iff ~(e < e’ or e’ < eore#
e'). Write W for # Ulg, i.e. the reflexive closure of the conflict relation.

The finiteness assumption restricts attention to discrete processes where an event
occurrence depends only on finitely many previous occurrences. The axiom on the conflict
relation expresses that if two events causally depend on events in conflict then they too
are in conflict.

Guided by our interpretation we can formulate a notion of computation state of an
event structure (£, <, #). Taking a computation state of a process to be represented by
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the set = of events which have occurred in the computation, we expect that
decrz&e<e=ecc

—if an event has occurred then all events on which it causally depends have occurred

too—and also that
Ve,e' € z.—(e # ¢')

—no two conflicting events can occur together in the same computation.

Definition: Let (E, <,#) be an event structure. Define its configurations, D(E, <, #),
to consist of those subsets z C F which are

o conflict-free: Ve,e' € z. (e # ¢') and
o downwards-closed: Ve,e'. ¢! <e€zxz=>¢e € z.

In particular, define [e] = {¢/ € E | ¢’ < e}. (Note that [e] is a configuration as it is
conflict-free.)
Write D°(E, <,#) for the set of finite configurations.

The important relations asociated with an event structure can be recovered from its
finite configurations (or indeed similarly from its configurations):

Proposition 17 Let (E,<,#) be an event structure. Then
o e<e & Ve eDUE,L,#). e €x=ecu.
o ct#e S Ve e DYE,<,#).ecx=c ¢u.

sccoe & dr,a' e DVE,<,#)ecz&ked¢r&ecr&edz &azUze€
DU(E,#,<).

Events manifest themselves as atomic jumps from one configuration to another, and
later it will follow that we can regard such jumps as transitions in an asynchronous
transition system.

Definition: Let (E,<,#) be an event structure. Let z, 2’ be configurations. Write
t—=2t—z' Sedz & =zU/ e}
Proposition 18 Two events ey, e1 of an event structure are in the concurrency relation

co iff there exist configurations z,xg, 1,2’ such that

xl

®
N
ZTge [ R0

PN

L]
T
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3.2.1 Domains of configurations

Viewing computation states as such subsets, progress in a computation is measured by
the occurrence of more events. Let z,y € D(FE) for an event structure E. If z C y then z
can be regarded as a subbehaviour of y. The relation of inclusion between configurations
is an information order of the sort familiar from denotational semantics, but special in
that more information corresponds to more events having occurred. It is easy to see that
the order (D(FE), C) has least upper bounds, when they exist, given as unions, and that
the order is a cpo with least element the empty set. The domains associated with event
structures turn out to be familiar. (Proofs of the following characterisations can be found
in [38].)

The simplest characterisation of the domains represented by prime event structures
starts by observing that an event e in an event structure corresponds to the configuration
[e]. Such elements are characterised as being complete primes and domains of configu-
rations have the property that every element is the least upper bound of these special
elements.

Definition: Let (D,C) be a partial order with least upper bounds of subsets X written
as | |X when they exist.

Say D is bounded complete iff all subsets X C D which have an upper bound in D
have a least upper bound | |X in D.

Say D is coherent iff all subsets X C D which are pairwise bounded (i.e. such that all
pairs of elements do, d; € X have upper bounds in D) have least upper bounds | |X in D.
(Note that coherence implies bounded completeness.)

A complete prime of D is an element p € D such that

pECUX =dzeX. pCx

for any set X for which | | X exists.
D is prime algebraic iff

z={pC z|pisacomplete prime},
for all x € L. If furthermore the sets
{pC q|p is a complete prime}

are always finite when ¢ is a complete prime, then D is said to be finitary.
If D is bounded complete and prime algebraic it is a prime algebraic domain.

Theorem 19 Let E be a event structure. The partial order (D(E),C) is a coherent,
finitary, prime algebraic domain; the complete primes are the set {[e]| | e € E}.

Proof: See [24]1

Conversely, any coherent, finitary, prime algebraic domain is associated with an event
structure in which the events are its complete primes.
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Theorem 20 Let (D,C) be a coherent, finitary, prime algebraic domain. Define (P, <
,#) to consist of P, the complete primes of D, ordered by

p<peply,

and with relation

p#P TP,
for p,p’ € P. Then (P,<,#) ts an event structure, with ¢ : (D,C) = (D(P, <, #), <)
giving an isomorphism of partial orders where
#(d) = {p C d | p is a complete prime} with inverse 0 : D(P,<,#) — (D,C) given by
0(z) = .

Proof: See [24]1

Event structures and coherent, finitary prime algebraic domains are equivalent; one
can be used to represent the other. Such domains are familiar in another guise. (Recall
that the dI-domains of Berry are distributive algebraic cpos in which every finite element
only dominates finitely many elements [5].)

Theorem 21 The finitary, prime algebraic domains are precisely the dI-domains of Berry.

Proof: See [38, 33].1

3.2.2 A category of event structures

We define morphisms on event structures as follows:

Definition: Let ES = (E,<,#) and ES' = (F', <', #') be event structures. A morphism
from ES to ES’ consists of a partial function n : £ —, F’ on events which satisfies

z € D(ES) =nz € D(ES) &
Veo,e1 € z. 1(eo),n(e1) both defined & n(eo) = n(e1) = eo = e;.

A morphism 5 : ES — ES' between event structures expresses how behaviour in £S
determines behaviour in ES’. The partial function 1 expresses how the occurrence of
events in ES imply the simultaneous occurrence of events in £.S’; the fact that n(e) = ¢’
can be understood as expressing that the event ¢’ is a “component” of the event e and,
in this sense, that the occurrence of e implies the simultaneous occurrence of e’. If two
distinct events in F.S have the same image in ES’ under 7 then they cannot belong to
the same configuration.

Morphisms of event structures preserve the concurrency relation. This is a simple
consequence of proposition 18, showing how the concurrency relation holding between
events appears as a “little square” of configurations.

Proposition 22 Let E be an event structure with concurrency relation co and E' an
event structure with concurrency relation co'. Letn : E — E' be a morphism of event
structures. Then, for any events ep,e; of F,

eo coe; & n(eo),n(e1) both defined = n(eo) co’ n(er).
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Morphisms between event structures can be described more directly in terms of the
causality and conflict relations of the event structure:

Proposition 23 A morphism of event structures from (E,<,#) to (E',<',#') is a par-
tial function n : E —,. E' such that

() 7(<) defincd = [1(e)] € nle] and

(ti)n(eo), n(e1) both defined & n(eo)W'n(er) = eoWey.

The category of event structures possesses products and coproducts useful in modelling
parallel compositions and nondeterministic sums.

Proposition 24 Let (Eo, <o,#0) and (E1,<1,#1) be event structures. Their coproduct
in the category E is the event structure (Eo W Ey, <,#) where

e < e &(Jeo, e 0 <o ey & jo(eo) = e & jolep) = ¢€') or
(Fer, 1. €1 <1 €1 & ji(er) = e & ju(e1) =€)

and
#=#0 U #1 U(joEo) x (11 1),

with injections jo : Eg — Fo W Ey, 71 + By — Eo W Ey the injections of Ey and Ey into
their disjoint union.

It is tricky to give a direct construction of product on event structures. However, a
construction of the product will follow from the coreflection from event structures to trace
languages (see corollary 37), and we postpone the construction till then.

3.3 [Event structures and trace languages

3.3.1 A representation theorem

Throughout this section assume (M, L,I) is a trace language. In this section we study
the preorder
s<te Ju. su=t

of a trace language and show that its quotient < / = can be represented by the finite
configurations of an event structure.

We use a, b,c,... for symbols in L and s,¢,u,... for strings in L*. Write N(b,s) for
the number of occurrences of b in the string s. We write a € s to mean @ occurs in s, i.e.
N(a,s) > 0. As an abbreviation, we write s/t if alb for every symbol ¢ in s and b in ¢.

Events of (M, L, I), to be thought of as event occurrences, are taken to be equivalence
classes of nonempty strings with respect to the equivalence relation ~ now defined.

Definition: The relation ~ is the smallest equivalence relation on nonempty strings such

that
sa ~ sba if bla, and

sa ~ ta if s=t

for sa, sba,ta € M.
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The next lemma yields an important technique for reasoning about trace languages.
Lemma 25 Suppose sa,ta € M.
—(alb) & sa ~ ta = N(b,s) = N(b,t).
Proof: Assume —(alb). It is sufficient to verify the lemma’s claim in the case of sa ~ ta
where either
(i) (t = sc and cla) or
(i) s = t.

If (i) then b # c (because one is independent of ¢ and one not) so N(b,t) = N(b,sc) =
N(b,s). If (ii) then N(b,s) = N(b,t) because the number of occurrences of a symbol is
invariant under =.}

As —(ala) the lemma in particular yields
sa ~ ta= N(a,s) = N(a,t)

for sa,ta € M. Thus different occurrences of the same symbol in a string of M are
associated with different events:

Proposition 26 Suppose soa,sia are prefizes of t € M such that spa ~ sja. Then
Spoad = $14.

We can now show how the preorder of trace languages coincides with the order of
inclusion on the associated sets of events:

Definition: Let s € M. Define the events of s, to be
ev(s) = {{u}~ | u is a nonempty prefix of s}.

Lemma 27 Let s,t € M.
s st ev(s) Cev(t).

Proof: “=”": We show the claim that, letting s,t € M,
s=t=ev(s)=ev(t),

from which “=" follows. It is sufficient to establish this claim for the case where s = uabv
and t = ubav with aIb. However, then

ev(s) = ev(u)U {{ua}~,{uab}.} U {{uabv'}. | v'is a nonempty prefix of v}
= ev(u)U {{uba}~, {ub}.} U {{ubav'}. | v’ is a nonempty prefix of v}
= ev(t).

“&": This is proved by induction on s. The basis s = () is obvious. Assume ev(s) C
ev(t) where s = s'a and, inductively, that s’ < ¢, i.e. s'u/ = ¢ for some u'. Because
{s'a}~ € ev(s) certainly {s'a}. € ev(t) = ev(s'u'). It follows that u' = ugau; for some
o, uy such that s'a ~ s'upa. (We cannot have {s'a}. € ev(s’) by proposition 26 above.)

We must have ugla as otherwise there would be b € ug with ~(b/a) and N(b,s) <
N(b, s'ug) contradicting lemma 25. Hence t = s'upau; = s'augu; making s'a < ¢. This
proves the induction step. |
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The next lemma shows that incompatibility between traces stems from a lack of inde-
pendence between events.

Lemma 28 Let s,t € M.
Ju € M. ev(u) = ev(s) U ev(t)

uf
Vv e M,a,be L. {va}. € ev(s) & {vb}~ € ev(t) = a(I U 1L)b.

Proof: “if”: This implication is proved by induction on t. The basis case when ¢t = () is
obvious. To prove the induction step assume ¢t = t'a € M and that

{va}~ € ev(s) & {vb}. € ev(t) = a =bor alb

for all v € M and a,b € L. Inductively we assume that there is v’ € M for which
ev(u') = ev(s) U ev(t'). If {t'a}. € ev(s) then ev(u') = ev(s) U ev(t'a) as required.
Assume otherwise that {t'a}. ¢ ev(s). By lemma 27, ¢ s v so t'w = u’ for some string
w. Assume w has the form b; ... b;. By lemma 27 and proposition 26, we necessarily have

{t'by...b;}~ € ev(s) for all 1 where 0 <1 < k. Let
U; = t,bl cae b,-a

for 0 < ¢ < k. We show by induction on ¢ that u; € M and w; ~ t'a. Certainly
this holds for the basis when ug = t'a. To establish the induction step assume ¢ > 0
and, inductively, that u;_y = t'by...b;_1a € M. Because {t'b;...b_1a}~ € ev(t) and
{t'by ... bi_1bi}~ € ev(s) by assumption we have a = b; or alb;.. However a # b; because
otherwise u; = ¢’y ...b;—1b; making {t'a}. € ev(s), contrary to our assumption. Now
that we know alb; the coherence axiom on trace languages ensures

U; = t’bl coobi1ba e M.

In addition
U; = tlbl e bi_lbia ~ f/bl e bi_la = Uj—1 ~~ t'a,.

Thus by induction we have established that
u; € M and u; ~ t'a
for 0 <1 < k. In particular
up = t'by...bya =v'a € M and u ~ t'a.
It follows that

ev(ug) = ev(u)U{{t'a}~}
ev(s)Uev(t) U {{t'a}.}
ev(s) U ev(t'a).

We can thus maintain the induction hypothesis whether or not {ta}. € ev(s). This
establishes the “if” direction of the lemma by induction.
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“only if”: Assume that ev(u) = ev(s) U ev(t) for s,t,u € M and that the “only” if
direction fails to hold. Le. suppose {va}. € ev(s), {vb}~ € ev(t) a # b and —(alb) for
v € M and a,b € L. Then either v = upauibus with va ~ upa and vb ~ ugauib, or the
symmetric case with ¢ and b interchanged. In the former case we observe that

N(a,v) = N(a,uo) asva ~ upa by lemma 25,
< N(a,uoauy).

But N(a,v) = N(a,upau;) as vb ~ ugau1b by lemma 25. This, and the similar contradic-
tions obtained in the symmetric case, demonstrate the absurdity of our supposition, and
thus the “only if” direction of the lemma. |

Remark The abovelemma impliesthat the preorder < satisfies a finite form of coherence
in the sense that any pairwise bounded finite subset has a least upper bound. The
coherence axiom on trace languages was essential in proving the “if” direction of the
equivalence. Without the coherence axiom, a finite form of bounded completeness can
be demonstrated, i.e. a finite set with an upper bound has a least upper bound. More
precisely it can be shown without use of the coherence axiom that

ssu&tsu= Jv,w usvw & ev(v) = ev(s)Ueuv(t)
for all s,t,u € M, from which the finite form of bounded completeness follows.
The following lemma says that each event has a <-minimum representative.

Lemma 29 For all events e there is sa € e such that

Yta € e. sa < ta.

Proof: We use a characterisation of ~ in the proof. Define
sa <1 taiff (t=sb& bla)or s=t

for sa,ta in M. Take ~1=g.5<1 U <7'. Then it is easily seen that ~= (~1)*
Let e be an event. Choose sa a <-minimal element of e. We show by induction on k
that
sa(~1)fta = sa < ta (1)

for ta € e. As ~=(~1)* the lemma follows.
The basic case, where k& = 0, holds trivially. Assume inductively that (1) holds for k.
If sa(~1)**'ta then sa(~;)*ua ~; ta for some ua € M. From the induction hypothesis
we obtain
sa < ua.

If ua <5 ta then (¢t = ub & bla) for some b or v = ¢, and in either case ua < ta giving
sa < ta, as required to maintain the induction hypothesis. The rub comes if ua(<;)"'ta
and this relation holds through u = tb and bla for some b. Gathering facts, we see

sa ~ tba and sa < tba with bla
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and that we require sa s ta.
By lemma 27 we get

ev(sa) C ev(tha) = ev(tab) = ev(ta) U {{tab}.}.

Thus if {tab}. ¢ ev(s) we obtain ev(sa) C ev(ta) and hence the required sa < ta, by
lemma 27.

We will show by contradiction that {tab}.. ¢ ev(s). Suppose otherwise, that {tab}. €
ev(s). Then

s = spbsy where sgb ~ tab.

Suppose ¢ € s; and —(clb). Then
N(e,t) > N(c,s0)

which is impossible. Consequently s;7/b. Thus sa = sgbsja ~ sgsiba ~ sgsia. The fact
that sgs1ab = sa contradicts the <-minimality of sa. From this contradiction we deduce
{tab}. ¢ ev(s) from which, as remarked, the required sa < ta follows. |

The minimum representatives are used in defining the event structure associated with
a trace language.

Definition: Let 7' = (M, L, I) be a trace language.
Define
tle(M,L,I) = (E, <, #)

where

e E is the set of events of (M, L, I),

o < is a relation between events e, e’ given by e < ¢ iff e € ev(s) where sa is a
minimum representative of e/, and

o the relation e#e’ holds between events iff
Jeo, €. eoftocy, & eo <e & ej < €
where, by definition,
eotfoey iff Fu,a,b. va € eg & vb € ey & —(a(lU1L)b).

Furthermore, define Ar : E — L by taking Ar({sa}.) = a. (From the definition of ~, it
follows that Ay is well-defined as a function.)

Proposition 30 Let T = (M, L,I) be a trace language. Then the structure tle(T) =
(E, <, #) given by definition 3.3.1 is an event structure for which

e<e ff Vse M. e €ev(s)=e€ev(s)
efte’  iff Vse M. e€ev(s)= e ¢ ev(s).

Proof: The required facts follow by considering minimum representatives of events.}




46 CHAPTER 3. NONINTERLEAVING MODELS

We now present the representation theorem for trace languages. We write (M /=, <
/=) for the partial order obtained by quotienting the preorder < by its equivalence =.

Theorem 31 Let T = (M, L,I) be a trace language. Let tle(T) = (E,<,#). There is
an order isomorphism

Ev:(M] =, S/Z)HDO(E,S,#)

where Ev({s}s) = ev(s).
Moreover, fors € M, z € D°(E,<,#) and a € L,

(Fe. ev(s) ~2— z in D°(E, <, #) & M(e) =a) & (sa € M & ev(sa) =z). (1)

Proof: Let s € M. By the “only if” direction of lemma 28 it follows that ev(s) is a
conflict-free subset of events. By lemma 29, ev(s) is downwards-closed with respect to
<. The fact that Ev is well-defined, 1-1, order preserving and reflecting follows from
lemma 27. To establish that Fv is an isomorphism it suffices to check Fv is onto. To this
end we first prove (1).

The “«” direction of the equivalence () follows directly, as follows. Assume sa € M,
and ev(sa) = z. Then taking e = {sa}< yields an event for which ev(s) —*— z and
Ar(e) = a. To show “=", assume ev(s) — = and Ar(e) = a. Let ta be a minimum
representative of the event e. As z is downwards-closed

ev(t) C ev(s).

Because z is conflict-free we meet the conditions of lemma 28 (“if” direction, with s for
s and ta for t) and obtain the existence of u € M such that

ev(u) = ev(s) Uev(ta) = z.

Hence s < u, i.e. sw = u for some string w. But ev(s) —%— ev(sw), so w must be ¢ with
sa € e,

Now a simple induction on the size of z € D(E, <, #) shows that there exists s € M
for which ev(s) = z. From this it follows that Ev is onto, and consequently that Ev is an
order isomorphism. |

The representation theorem for trace languages establishes a connection between trace
languages and the pomset languages of Pratt [27]. Via the representation theorem, each
trace of a trace language T = (M, L, I) corresponds to a labelled partial order of events (a
partially ordered multiset or pomset)—the partial order on events in the trace is induced
by that of the event structure and the labelling function is Az. The trace language itself
then corresponds to a special kind of pomset language; it is special chiefly because the
concurrency relations in the pomsets arise from a single independence relation on the
alphabet of labels, so consequently pomsets of traces have no autoconcurrency—no two
concurrent events have the same label. (See [?], [?] and [?] for more details.)

Via the representation theorem we can see how to read the concurrency relation of an
event structure in trace-language terms:
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Proposition 32 For a trace language T = (M, L, I) the construction tle(M, L, I) is an
event structure in which the concurrency relation satisfies

e co e iff va,vb€ M. va € e & vb € e & alb. (1)

Proof: We show (1).

“if”. Assume va € e,vb € ¢ with alb. Then certainly va,vb are compatible as traces
making —efte’. Moreover e, e’ ¢ ev(v) (by e.g. proposition 26) ensuring neither e < ¢’
nor ¢’ < e, whence e co €'.

“only if”: Assuming e co €’ there are distinct configurations = = ([e] \ {e}) U ([e/] \ {€'})

and z; = z U {e},zo = z U {e'},y = z U {e,€'}. From the representation theorem 31
there is v € M such that ev(v) = z. Assume Ar(e) = a and Ar(e’) = b. By (1) of the
representation theorem, as ¢ —£— z; we obtain va € M with ev(va) = z1. It follows

that va € e. Again by (1) of the representation theorem, this time because z; -=— y we
obtain vab € M with ev(vab) = y. It follows that vab € ¢’. Similarly, it can be shown
that vb € M and vb € ¢/. Because both vab and vb are representatives of the event ¢', it
follows directly that vb ~ vab. If =(alb) then lemma 25 would imply N(a,v) = N(a,va).
But this is clearly absurd, yielding aIb. We have produced the va,vb € M required.J

3.3.2 A coreflection

The representation theorem extends to a coreflection between the categories of event
structures and trace languages.

Definition: Let E be an event structure. Define et/(E) to be (M, E, co), where s =
ey...e, € M iff there is a chain

w_el.__yxl_ez_)x2..._e_ﬂ_)$n

of configurations of E.
Let 7 be a morphism of event structures 5 : £ — E'. Define etl(n) = 1.

Proposition 33 etl is a functor E — TL.

Proof: The only nontrivial part of the proof is that showing that n is a morphism from
etl(E) to etl(E') provided 5 is a morphism E — E’. However, this follows from the
proposition 22 and the observation that if a sequence of events s is associated with a
chain of configurations in F then 7(s) is associated with a chain of configurations in E’. |

The function Az, for T' a trace language, will be the counit of the adjunction.

Proposition 34 Let T = (M, L,I) be a trace language. Then,

Arcetlotle(T)—T

is @ morphism of trace languages.
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Proof: Let ejep - - e, be a string in the trace language et/ o tle(T"). Then there is a chain
of configurations of the event structure tle(T")

] W {61} - BN {61,62}”- n_, {61,62,‘-',6n}.

By repeated use of (1) in the representation theorem 31, we obtain that X}(elez ceeeq
M. If e co ¢, for events e, e/, then by proposition 32, it follows directly that Ar(e)/Ap(
Thus A : etl o tle(T) — T is a morphism of trace languages.|

) €
e').

/

Lemma 35 Let ES = (E,<,#) be an event structure, such that etl(ES) = (M, E, co).
Let )\ : etl(ES) — T" be a morphism in TL. If A(e) is defined then for all se,s'e € M

A(se) ~ A(s'e)
in T'=(M", L', I').

Proof: It suffices to consider the following two cases.

The first case is where we assume s = uege;v and s’ = uejeqv where u,v € E*, eg,e1 € F,
eo co ey in ES: In this case e and e; are independent in et/(ES). But then A(eo)/'A(e1) in
T' if both defined (from properties of morphisms in TL), and hence X(uegelv) ~ X(uel €oU)
in T'.

The second case arises when s = s’e’ for some e’ € F such that e co ¢’ in £S: In this case
e and ¢’ are independent in etl/(ES). But then A(e)I'A(e’) in T” if A(e’) is defined and
hence A(se) = A(s'e). |

Theorem 36 Let T' = (M',L',I') be a trace language. Then the pair etl o tle(T"), A,
is cofree over T' with respect to the functor etl. That is, for any event structure ES and
morphism X : etl(ES) — T’ there is a unique morphism 1 : ES — tle(1") such that
A = Ao etl(n).

Proof: Let ES = (E,<,#), tle(T") = (E',<',#') and etl(ES) = (M, E,co). Define
n:FE —*E by
NE if A(e) = *
n(e) = { {\(s€)}~, where se € M, if A(e) # *
It follows from lemma 35 that 7 is a well-defined partial function from F to E'. We need
to prove that

(a) 7 is a morphism ES — tle(1")
(b) A=Amon

(c) 7 is unique satisfying (a) and (b).
(a): To prove (a), that 7 is a morphism, it suffices by proposition 23, to prove (i) and (ii)
below.
(i) For every e € E, if n(e) is defined then [n(e)] C n([e])
Choose se € M such that the occurrences in s equal [e] (in ES). Assume z'a’ € M’ such
that
{z'a'} < {\(se)}~ in tle(T"). (%)

We have to prove the existence of ey € [e] in £ such that {z'a’}~ = n(ep). But from (*)
we may choose a minimal prefix soep of se such that z’a’ ~ A(spep), with eq € [e] from
which we conclude the desired property.
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(ii) For all ¢,¢’ € E. n(e)W'n(e’) = eWe'

Suppose —eWe' and n(e),n(e’) are both defined. There are essentially two cases to con-
sider, one where e co e’ and the other where e < €’ (or symmetrically ¢’ < e). Firstly
assume e co ¢’ in ES. Then

ele' in etl(ES) & se € M & se' € M,
for some s € M. Applying the morphism ), we obtain
Ae)I'A(e') in T & A(se) € M' & A(se') € M.

But now
n(e) con(e') in tle(T")

from proposition 32.
Secondly, assuming e < €’ in ES, there are s,s’ € E* such that

ses'e € M.

Applying A, )
A(ses'e’) € M.
Thus ) )
n(e) € ev(A\(ses'e’)) & n(e’) € ev(A(ses'e’)),

from which it follows that —n(e)#'n(e’) in tle(T”), by proposition 30. Furthermore, from
ses'e’ € M, we get n(e) # n(e'); the assumption n(e) = n(e’) implies A(e) = A(e'), but
A(se) ~ A(ses'e’) contradicts lemma 25. This completes the proof of (a).

(b): If A(e) =  then n(e) = *, so (A on)(e) = *. If A(e) defined then n(e) = {A(se)}~
for some se € M. This implies Arv(n(e)) = A(e) by the definition of A7v. Hence A = Apioy.
(c): We now show the uniqueness of 7. Assume 7’ is any morphism from E to tle(T),
such that A o’ = X. We want to show n(e) = n/(e) for all e € E. Let ¢ —5— 2 U {e}
in £S, and assume inductively that n and 7’ agree on all elements of z. Firstly, from the
assumption A\gv o' = X we get n'(e) defined iff A(e) defined (since Ar is total) and hence
iff n(e) defined. So, assume 7'(e) is defined and equal to ¢’. Then 7'(z) <— 7'(zU{e}) in
tle(T") (since n’ morphism) and Az:(e’) = A(e). However, from the representation theorem
for trace languages, it follows that there is exactly one event in tle(1") satisfying these

requirements—the one picked by 7, and hence n(e) = n'(e). 1

Corollary 37 The operation tle on trace languages extends to a functor, right adjoint
to etl, forming a coreflection between E and TL; the functor tle sends the morphism
A:T =T ton: tle(T) — tle(T") acting on events {sa}~ of tle(1") so that

e if AMa) undefined ,
n({sa}~) = {{j\(sa)}N if /\Ea% defined .

Proof: It follows from theorem 36 that tle extends to a functor, acting as described, so
that the pair of functors form an adjunction. From the proof of theorem 36, the unit of
this adjunction at ES is the morphism

n:ES — tleoetl(ES)
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given by n(e) = {se}~, where se is a possible sequence of events of ES. It is easy to see
that 7 is an isomorphism with inverse 7! : tle o et!(ES) — ES such that

n~ ({se}e) = el

The coreflection expresses the sense in which the model of event structures “embeds”
in the model of trace languages. Because of the coreflection we can restrict trace languages
to those which are isomorphic to images of event structures under et/ and obtain a full
subcategory of trace languages equivalent to that of event structures.

The existence of a coreflection from event structures to trace languages has the impor-
tant consequence of yielding an explicit product construction on event structures, which is
not so easy to define directly. The product of event structures £y and F; can be obtained
as

tle(etl(Fo) x etl(Er)),

that is by first regarding the event structures as trace languages, forming their product as
trace languages, and then finally regarding the result as an event structure again. That
this result is indeed a product of Ey and E; follows because the right adjoint tle preserves
limits and the unit of the adjunction is a natural isomorphism.
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3.4 Petri nets

Petri nets are a well-known model of parallel computation. They come in several variants,
and we choose one which fits well with the other models of computation we have described
(a good all-round reference is [1]). Roughly, a Petri net can be thought of as a transition
system where, instead of a transition ocurring from a single global state, an occurrence of
an event is imagined to affect only the conditions in its neighbourhood. The independence
of events becomes a derived notion; two events are independent if their neighbourhoods
of conditions do not intersect. As the definition of a Petri net (or simply net) we take:

Definition: A Petri net consists of (B, My, E, pre, post) where

B is a set of conditions, with initial marking My a nonempty subset of B,

E is a set of events, and

pre : E—Pow(B) is the precondition map such that pre(e) is nonempty for
alle€ E

post : E — Pow(B) is the postcondition map such that post(e) is nonempty
for all e € E.

A Petri net comes with an initial marking consisting of a subset of conditions which
are imagined to hold initially. Generally, a marking, a subset of conditions, formalizes a
notion of global state by specifying those conditions which hold. Markings can change as
events occur, precisely how being expressed by the transitions

M S M

events e determine between markings M, M’. In defining this notion it is convenient to
extend events by an “idling event”.

Definition: Let N = (B, Mo, E, pre, post) be as Petri net into events E.
Define F, = F'U {x}.
We extend the pre and post condition maps to * by taking

pre(¥) =0, post(x) = 0.

Notation: Whenever it does not cause confusion we write ‘% for the preconditions pre(e)
and e® for the postconditions, post(e), of e € E,. We write %e* for ‘e U e°.

Definition: Let N = (B, Mo, E, pre, post) be a net.
For M,M' C B and e € E,, define

MSMiffeCM&e CM & M\*e=M\e".

Say eg, e1 € E, are independent, and write egIyey, iff %e§ N*ef = 0.
A marking M of N is said to be reachable when there is a sequence of events, possibly
empty, e1, e2...e, such that

in V.




52 CHAPTER 3. NONINTERLEAVING MODELS

There is an alternative characterisation of the transitions between markings induced
by event occurrences:

Proposition 38 Let N be a net with markings M, M' and event e. Then

MSMff(1)eCM&e* n(M\*e)=0 and
(2)M' = (M \*e)Ue’.

Property (1) expresses that the event e has concession at the marking M, while prop-
erty (2) shows that the marking resulting from the occurrence of an event at a marking
is unique.

We illustrate by means of a few small examples how nets can be used to model nonde-
terminism and concurrency. We make use of the commonly accepted graphical notations
for nets in which events are represented by squares, conditions by circles and the pre and
post condition maps by directed arcs. The holding of a condition is represented by mark-
ing it by a “token”; the distribution of tokens changes as the “token game” expressed in
definition 3.4 takes place.

Example:
(1) Concurrency:

O—0—0
O—0—0

The events 1 and 2 can occur concurrently, in the sense that they both have concession
and are independent in not having any pre or post conditions in common.

(2)

Forwards conflict: Backwards conflict:

O O O
| ! /N
10 02 10 O2

NS T T
© © ©

Either one of events 1 and 2 can occur, but not both. This shows how nondeterminism
can be represented in a net.

(3) Contact:
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O—O0—0—0—0
1 2

The event 2 has concession. The event 1 does not—its post condition holds—and it can
only occur after 2.

Example (3) above illustrates contact. In general, there is contact at a marking M
when for some event e

e CM&e N(M\%)#0.
Definition: A net is said to be safe when contact never occurs at any reachable marking.
Many constructions on nets preserve safeness. As we shall see any net can be turned

into a safe net with essentially the same behaviour.

3.4.1 A category of Petri nets

As morphisms on nets we take:

Definition: Let N = (B, Mo, E,pre,post) and N' = (B', M{,pre/,post’) be nets. A
morphism (8,1) : N — N' consists of a relation § C B x B’, such that $° is a partial
function B’ — B, and a partial function  : £ — E’ and that

ﬁMO = 67
B = *p(e) and
Bet = nle)*

Thus morphisms on nets preserve initial markings and events when defined. A mor-
phism (3,n) : N — N’ expresses how occurrences of events and conditions in N induce
occurrences in N’'. Morphisms on nets preserve behaviour:

Proposition 39 Let N = (B, My, E,pre,post), N' = (B, M}, E',pre', post’) be nets.
Suppose (b,n) : N — N' is a morphism of net.

o f M-S M in N then BM ™S gM' in N'.
o If%etN®e; =10 in N then *n(e1)* N*nleg)* =0 in N'.
Proof: It is easily seen that
(e) = B'e and n(e)* = Be*

for e an event of N. Observe too that because °7 is a partial function, 8 in addition

preserves intersections and set differences. These observations mean that M () BM' in
N’ follows from the assumption that M = M’ in N, and that independence is preserved.
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Proposition 40 Nets and their morphisms form a category in which the composition of
two morphisms (Bo,m0) : No — Ny and (B1,m) : N1 — Ny is (810 Po,m1 0m0) : No — Ny
(composition in the left component being that of relations and in the right that of partial
functions).

Definition: Let N be the category of nets described above.

We examine some of the more important constructions in the category of nets. There
are several constructions on nets which achieve the behaviour required of a nondetermin-
istic sum of processes. We describe a coproduct in the category of nets.

Definition: Let Ny = (Bo, Mo, Eo, preg, posto) and Ny = (B, Ma, L1, prey, post;) be nets.
Define their sum Ng + N; to be (B, M, E, pre, post) where

B = M() X Ml U (B() \ M()) X (B] \Ml),
which is associated with relations jo € By X B, 71 C B; x B given by

bojoc < by € By U {x}. ¢ = (bo,b1)
bijic & by € Bo U {*}. ¢ = (bo, b1), and further
M = My x M,
E = EyW E;, adisjoint union associated with injections
wng : Lo — Li,iny : Ly — L, and finally
pre(e) = joopreg(eg) if e = tng(ep) and

pre(e) = jropre(er) if e = ini(ey).

The only peculiarity in this definition is the way in which the conditions of a sum are
built. However, note that the relation 8 in any morphism

(Bym): N — N

of nets N, N', with conditions B, B" and initial markings M, M’ respectively, corresponds
to a pair of functions

pr: (B'\M)— (B\ M) in Set,,
B°°: M' — M in Set.

Thus it is to be expected that the conditions of a coproduct of nets correspond to products
in Set, x Set. This remark handles the only obstacle in the proof of:

Proposition 41 The sum Ny 4+ N; above is a coproduct in the category of nets N with
injections (Jo,tno) : No — No + N1, (j1,tn1) : Ny — No + Ny
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Example: (1)

O—0—0
+
O—0—0
il

O]
(2)
O O
f f
O + O—0 = O
! N !
© O—0O

In general the sum of nets can behave strangely, and allow a mix of behaviours from
the two component nets. However, in the case where the component nets are safe, as
they are in the example above, their sum is safe too and has a behaviour which can be
described simply in terms of that of the components using the injection morphisms.

Lemma 42 Suppose No, N1 are safe nets. Then their sum No + Ni is safe. Moreover:

1. Two events e, e’ are independent in No + Ny iff
either

e = ing(eo) & €' = ing(ey) for events eg, e independent in Ny

or
e =iny(e1) & € =1inq(e;) for events ey, e} independent in N,

2. X is reachable & X < X'in Ny + N; iff

either
360,X0,X6. € = ino(eo) & Xo f(_)) X(I) & X = joX() & X/ = joXé n NO

or

361,X1,X{. € = inl(el) & X1 31) X{ &I X = lel & XI = ]1X{ n N1

Proof: (1) is obvious. The “if” direction of (2) follows as the injections are morphisms.
The “only if” direction follows by showing: if X, is a reachable marking of Ny and
joXo 5 X' in Ny + N; then either

(a) € = inl(el) & Xo = M() & X' = ]1X{ & Ml fi) X{

for some events e; and marking X{ of Ny , or

(b) € = ino(eo) & XI = ]oXcl, & Xo io> X(I) in No

for some event eg and marking X{ of Np.
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To show this, assume 70Xy = X' in Np + N; where Xj is a reachable marking of No.
Consider first the case where e = ini(e1). Because inq(e1) has concession at joXo

*ini(e1) € joXo

from which we see
°61 C M,

otherwise in;i(e;) would have a precondition of the form (,b;) which cannot be in the
image joXo of the marking X of Ny. Because, by assumption, we have some b, €°e; we
see that

Mo x {b1} C*ini(e1)

Because we now have

My x {bl} C 70Xo

it follows that My C X,. But Ny is safe so we must have My = Xo—otherwise a repetition
of the same “token game” which led from My to Xo, but this time starting from Xy, would
lead to contact. Letting X be the marking such that A 2, X;we calculate

X' =(joXo \* ini(e1)) Uini(er)®
=(Mo x M; \* inq1(e1)) Uiny(er)®
=(j1Mi \ jie1) U jre]
=71((M1\"e1) U €]
=51X]
This establishes (a) in the case where e = iny(e1) In the other case, where e = ing(eo), a
similar but easier argument establishes (b). An analogous result holds for N; in place of

Ny. The “only if” direction of (2) now follows.
Ny + Nj is readily seen to be a net. Suppose it were not safe. Then

e C X &e*N(X\%)#0

for some reachable marking X and event e of Ny + N;. Suppose e = ing(eg). Then by
the results above, without loss of generality, we can suppose that X = joX, for some
reachable marking X, of Np. By the definition of the pre and post conditions of events
of Ny + N; we then obtain

.60 Q Xo & 60. N (X() \ .eo) # (0,
contradicting the assumption that Ny is safe. ||

Definition: Let Ny = (Boy, Mo, Eo, preo, posty) and Ny = (By, My, Ey, prei, posty) be
nets. Their product No x Ny = (B, E, M, pre, post). It has events

E————EO X s El,

the product in Set, with projections 7o : £ —, Ey and m : £ —, E;. Its conditions
have the form B = By W B; the disjoint union of By and B;. Define pg to be the opposite
relation to the injection po°? : By — B. Define p; similarly. Take M = po®? My + p1°P M,
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as the initial marking of the product. Define the pre and postconditions of an event e in
the product in terms of its pre and postconditions in the components by

pre(e) = pg' [preo(mo(e))] + pi” [pres(mi(e))]
post(e) = pg’ [posto(o(e))] + p1” [posts(mi(e))]-

Proposition 43 The behaviour of a product of nets No x Ny is related to the behaviour
of its components Ny and Ny by

M- M inNox Ny iff (poM s poM' in Ny & pyM =& oy M" in Ny).

Proposition 44 The product Ny x Ny, with morphisms (po, o) and (p1,71), is a product
in the category of Petri nets.

Example: The product of two nets:

O O O O
S A
r r o)t I~
® O O O]

3.5 Asynchronous transition systems

Asynchronous transition systems deserve to be better known as a model of parallel compu-
tation. They were introduced independently by Bednarczyk in [4] and Shields in [28]. The
idea on which they are based is simple enough: extend transition systems by, in addition,
specifying which transitions are independent of which. More accurately, transitions are
to be thought of as occurrences of events which bear a relation of independence. This in-
terpretation is supported by axioms which essentially generalise those from Mazurkiewicz
trace languages.

Definition: An asynchronous transition system consists of (S, 1, E, I, Tran) where (5,1, E, Tran)
is a transition system, I C E?, the independence relation is an irreflexive, symmetric re-
lation on the set E of events such that

(1) e€ E=3s,s'€ S. (s,e,8') € Tran

(2) (s,e,s') € Tran & (s,e,8") € Tran= s’ = 5"

(3) eiles & (s,e1,81) € Tran & (s,e2,52) € Tran
= Ju. (81,€2,u) € Tran & (s2,e1,u) € Tran

(4) erley & (s,e1,81) € Tran & (s1,¢e2,u) € Tran
= Js3. (s, €2,82) € Tran & (sg,e1,u) € Tran




58 CHAPTER 3. NONINTERLEAVING MODELS

Axiom (1) says every event appears as a transition, and axiom (2) that the occurrence
of an event at a state leads to a unique state. Axioms (3) and (4) express properties
of independence: if two events can occur independently from a common state then they
should be able to occur together and in so doing reach a common state (3); if two inde-
pendent events can occur one immediately after the other then they should be able to
occur with their order interchanged.

Morphisms between asynchronous transition systems are morphisms between their
underlying transition systems which preserve the additional relations of independence.

Definition: Let T = (5,4, E,I, Tran) and 7" = (S',#, E',I', Tran') be asynchronous

transition systems. A morphism T — T" is a morphism of transition systems
(o,n):(S,i,E, Tran) — (S',1', E', Tran’)

such that
erles & nler),n(ez) both defined = n(e1)l'n(es).

Morphisms of asynchronous transition systems compose as morphisms between their un-
derlying transition systems, and are readily seen to form a category.

Definition: Write A for the category of asynchronous transition systems.

The category A has categorical constructions which essentially generalise those of
transition systems and Mazurkiewicz traces. Here are the product and coproduct con-
structions for the category A:

Definition: Assume asynchronous transition systems 7o = (So, ¢, Eo, lo, Trang) and
Ty = (S1,11, E1, 1, Trany). Their product To x Ty is (S, ¢, E, I, Tran) where (S,t, E, Tran)
is the product of transition systems (So, %0, Fo, Trang) and (51,11, E1, Trany) with projec-
tions (po,mo) and (p1,71), and the independence relation I is given by

alb < (mo(a), mo(b) defined = mo(a)lomo(d)) &
(m1(a), m1(b) defined = mi(a)lim1(b)).

Definition: Assume asynchronous transition systems To = (So, %0, Fo, Lo, Trang) and
Ty = (51,41, E1, [1, Trany). Their coproduct To+1T1 is (S, ¢, E, I, Tran) where (5,4, E, Tran)
is the coproduct of transition systems (.So, o, Fo, Trang) and (51,11, E1, Tran;) with injec-
tions (ino, jo) and (iny,J1), and the independence relation [ is given by

alb @(300, bo. a = jo(ao) & b= ]o(b()) & aglobo) or
(Ja1,b1. @ = ji(a1) & b= ji(b1) & a111by).

3.6 Asynchronous transition systems and trace lan-
guages

That asynchronous transition systems generalise trace languages is backed up by a straight-
forward coreflection between categories of trace languages and asynchronous transition
systems. To obtain the adjunction we need to restrict trace languages to those where
every element of the alphabet occurs in some trace (this matches property (1) required
by the definition of asynchronous transition systems).
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Definition: Define TL, to be the full subcategory of trace languages (M, E, I) satisfying

Ve € Fds. se € M.

A trace language forms an asynchronous transition system in which the states are
traces.

Definition: Let (M, E, I) be a trace language in TLg, with trace equivalence =. Define
tla(M,E,I) = (5,4, E, I, Tran) where

S = M/=
(t,e,t') € Tran & Fs,se € M.t = {s}s & t' = {se}=

Let n: (M,E,I) - (M',E',I') be a morphism of trace languages. Define tla(n) = (o,n)
where

a({s}=) = {7(s)}=.
(Note this is well-defined because morphisms between trace languages respect =—this
follows directly from proposition 16.)

Proposition 45 The operation tla is a functor TLo — A.
An asynchronous transition system determines a trace language.

Definition: Let T' = (5,1, E, I, Tran) be an asynchronous transition system. Define
atl(T) = (Seq, E, I) where Seq consists of all sequences of events, possibly empty, eje;. .. e,
for which there are transitions

(s,€1,51),(81,€2,82)y- -+, (Sn—1,€n, ) € Tran

Let (o,n) : T — T' be a morphism of asynchronous transition systems. Define atl(o,n) =
7.

Proposition 46 The operation atl is a functor A — TLy.

In fact the functors tla, atl form a coreflection:

Theorem 47 The functor tla : TLy — A is left adjoint to atl : A — TLy.
Let L = (M, E,I) be a trace language. Then atl o tla (M,E,I) = (M, E,I) and the
unit of the adjunction at (M, E,I) is the identity 15 : (M, E,I) — atl o tla(M, E, I).
Let T be an asynchronous transition system, with events E. Then (o,1g) : tla o
atl(T) — T is the counit of the adjunction at T, where o(t), for a tracet = {eres...e,} =,
equals the unique state s for which 1 —S1%2=tn g

Proof: Let L = (M, E,I) be a trace language in TLg and T' = (5,¢, E', I’, Tran’) be an
asynchronous system. Given a morphism of trace languages

n: L — atl(T)
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there is a unique morphism of asynchronous transition systems
(o,n): tla(L) = T

—the function ¢ must act so o(t), on a trace t = {eje3...€,}=, equals the unique state
s, for which there are transitions, possibly idle,

(iv 77(61)5 31)’ (317 77(62)7 52)> ceey (Sn—l)n(en): sn)

in T. That this is well-defined follows from 7' satisfying axiom 4 in the definition of
asynchronous transition systems. The stated coreflection, and the form of the counit,

follow. }

The coreflection does not extend to an adjunction from TL to A—TLg is a reflective
and not a coreflective subcategory of TL.

We note that a coreflection between event structures and asynchronous transition sys-
tems follows by composing the coreflections between event structures and trace languages
and that between trace languages and asynchronous transition systems. It is easy to
see that the coreflection from event structures E to trace languages TL restricts to a
coreflection to TLg. The left adjoint of the resulting coreflection, is the composition

E -—Eﬂ-—) TLO -j—lﬁ-—-) A.

A left adjoint of the coreflection can however be constructed more directly. The compo-
sition tla o etl is naturally isomorphic to the functor yielding an asynchronous transition
system directly out of the configurations of the event structure, as is described in the next
proposition.

Proposition 48 For ES = (E,<,#) an event structure, define
[(ES) = (D°(ES),0, E, co, Tran)

where the transitions between configurations, Tran, consist of (z,e,z') wheree ¢ = & 2’ =
zU {e}. Forn: ES — ES' a morphism of event structures, define I'(n) = (o,n) where
o(z) = nz, for © a configuration of ES. This defines a functor I' : E — A. Moreover, I'

s naturally isomorphic to tla o etl.

Proof: It is easy to check that I' is a functor. The representation theorem 31, and its
consequence, proposition 32, yield a morphism

(Ev™', A1) : T o tle(T) — tla(T),

of asynchronous transition systems, which can be checked to be natural in T'. Letting T
be the trace language etl/(ES), of an event structure ES, we obtain a morphism

(Ev™!, Aeugsy) : Totle o etl(ES) — tla o etl(ES),
natural in ES. The coreflection 37 ensures that the counit at et/(T)
Aet(s) : etl o tle o etl(ES) — etl(ES)

is an isomorphism. This makes the function A.4gs) a bijection, which together with
the bijection Ev given by the representation theorem 31, ensures (Ev!, A.y(gs)) is an
isomorphism, necessarily natural in FS. It composes with the natural isomorphism
P(ngs) : T(ES) — T o tle o etl(ES), where ngs : ES — tle o etl(ES) is the unit of

the coreflection at ES, to give the required natural isomorphism. |
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3.7 Asynchronous transition systems and nets

There is an adjunction between the categories A and N. First, we note there is an obvious
functor from nets to asynchronous transition systems.

Definition: Let N = (B, Mo, E,*( ),( )*) be a net. Define na(N) = (S,¢, E, I, Tran)
where

S = Pow(B) with ¢« = M,

erle; ey N'ey =0,

(M,e,M') € Tran& M = M'in N, for M, M' € Pow(B).
Let (8,n7) : N — N' be a morphism of nets. Define

na(B,n) = (o,7)
where o(M) = M, for any M € Pow(B).
Proposition 49 na s a functor N — A.

Proof: Letting N be a net, it is easily checked that na(/N) is an asynchronous transition
system: properties (1) and (2) of definition 3.5 are obvious while properties (3) and (4)
follow directly from the interpretation of independence of events e, e; as %} N*e} = 0.
Letting (8,n7) : N — N’ be a morphism of nets, proposition 39 yields that na(3,7) is a
morphism na(N) — na(N'). Clearly na preserves composition and identities.}

As a preparation for the definition of a functor from asynchronous transition systems
to nets we examine how a condition of a net N can be viewed as a subset of states and
transitions of the asynchronous transition system na(N). Intuitively the exztent |b| of
a condition b of a net is to consist of those markings and transitions at which b holds
uninterruptedly. In fact for simplicity the extent |b| of a condition b is taken to be a
subset of Tran,, the transitions (M,e, M’) and idle transitions (M,*, M) of na(/N); the
idle transitions (M, *, M) play the role of markings M.

Definition: Let b be a condition of anet N. Let Tran be the transition relation of na(N).
Define the extent of b to be

o] = {(M,e,M') € Tran, |be M & bec M & b¢*e}.

Not all subsets of transitions Tran, of a net N are extents of conditions of N. For
example, if (M, e, M') & |b| and (M’,*, M') € |b] for a transition M - M’ in N this means
the transition starts the holding of b. But then b € ¢* so any other transition P = P
must also start the holding of b. Of course, a condition cannot be started or ended by
two independent events because, by definition, they can have no pre- or postcondition in
common. These considerations motivate the following definition of condition of a general
asynchronous transition system.

Definition: Let T' = (5,1, F, I, Tran) be an asynchronous transition system. Its condi-

tions are nonempty subsets
b C Tran,

such that
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(1) (s,e,8') €b=(s,%,5) €b& (s,%,8)€Db
(2) (i) (s,e,8) €*b & (u,e,u') € Tran = (u,e,u’) €°b
(i) (s,e,s) € b* & (u,e,u') € Tran= (u,e,u’) € b*
where for (s,e,s’) € Tran we define

(s,e,8) €*bs (s,e,8) € b& (s,%,5) €b,
(s,e,8") €b* & (s,%,8) € b& (s,e,8') b and
°b* =°*bUb.

(3) (s,e1,8") € °b° & (u,eq,u’) € *b* = —eile;.

Let B be the set of conditions of T'. For e € E,, define

e* = {be B|3s,s. (s,e7s) e b},
‘e = {be B|3s,s. (s,e,8) €b’}, and

%® = %eUe".

(Note that *+* = 0.)
Further, for s € S, define M(s) = {b€ B | (s,*,s) € b}.

As an exercise, we check that the extent of a condition of a net is indeed a condition
of its asynchronous transition system:.

Lemma 50 Let N be a net with a condition b. Its extent |b] is a condition of na(N).
Moreover,

(I) (M,e,M") €*[b| & b€ e
(II) (M,e,M') € |b]* & bese.
whenever M = M' in N.
Proof: We first prove (I) (the proof of (II) is similar):

(Mye,M')e*|b] & (M,e,M') & |b] & (M',x,M") € |b]
& (beM&beM &bg*e)&be M
& (bgM&beM)or(be®e® & be M)
& bee',as M S M.

Using (I) and (II), it is easy to check that || is a condition of na(V). First we note
|b| is nonempty because it contains for instance ({b}, *, {b}). We quickly run through the
axioms required by definition 3.7:

(1) If (M,e,M") € |b| then b € M and b € M’ whence (M,*, M),(M',*, M') € [b].

(2) (i) If (M,e, M') € |b] then b € ¢*, by (I) “ =". Hence, if P 5 P’ by (I) “<” we
obtain (P, e, P') €*]b]. The proof of (2)(ii) is similar.
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(3) (i) If (M, e1, M"), (P, ez, P') €°|b| then b € e} and b € €3, by (I) applied twice. Hence

_‘61]62]

Definition: Let (o,7): T — T’ be a morphism between asynchronous transition systems
T =(S,i,E,1, Tran) and T" = (S',¢', E', I', Tran'). For b C Tran, define

(o,m) 7' = {(s,¢,8") € Tran. | (o(s),n(e),a(s")) € b}

Lemma 51 Let (o,n): T — T’ be a morphism between asynchronous transition systems.
Let b be a condition of T'. Then (o,n)"'b is a condition of T provided it is nonempty.
Furthermore,

(1) (o,n)7'be’e & be'n(e)
(2) (o,n)"bee’ & ben(e)

for any event e of T.

Proof: We show (1), assuming b C Tran, and an event e of T'. Observe

(s,e,s") € (o,7)7'b%, for some states s, s’
(5,%,5) € (0,m) b & (s,¢,') & (o,1) 7D
(o(s), %, 0(s)) € b & (o(s),n(e),(s")) € b
(o(s),n(e),o(s)) € b°

b )

€' n(e

The proof of (2) is similar. That (o,7)7'b is a condition of T', if nonempty, follows
straightforwardly from the assumption that b is a condition. |

Definition: Let T = (S,7, E, I, Tran) be an asynchronous transition system. Define
an(T) = (B, Mo, E,pre,post) by taking B to be the set of conditions of T, M, =
M(7), with pre and post condition maps given by the corresponding operations in T,
i.e. pre(e) =*e and post(e) = e* inT'. Let (o,7) : T — T" be a morphism of asynchronous
transition systems. Define an(o,n) = (3,7n) where for conditions b of 7" and ¥ of 1" we
take

bBY iff b= (o,n)7 V.

(Note that because of lemma 51,
baY iff O # b= (o,n)" b
where we only assume ¥ is a condition of 7".)

The verification that an(7) is indeed a net involves demonstrating that every event
has at least one pre and post condition. This follows from the following lemma which
indicates how rich an asynchronous transition system is in conditions (it says an arbitrary
pairwise-dependent set of events can be made to be both the starting and ending events
of a single condition):
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Lemma 52 Let T = (5,4, E,I, Tran) be an asynchronous transition system. Suppose
X C FE such that
€1, ez € X = —ejles.

Then, there is a condition b of T such that
X={e|bece'}& X={e|be e}

Proof: Define
b= {(s,e,s') € Tran. | e ¢ X}.

It is simply checked that b is a condition with beginning and ending events X. ]

Lemma 53 Let T = (S,i, E, I, Tran) be an asynchronous transition system. Then an(T)
is a net. Moreover,
61]62 :o 6; ﬂ.eg = @,

and

(s,e,8") € Tran= M(s) = M(s') in an(T).

Proof: For an(T) to be a net it is required that its initial marking and post conditions of
events be nonempty. However, taking b = Tran. yields a condition in the initial marking,
while for an event e, letting X be {e} in lemma 52 produces a pre and post condition of
e.

If e;]e; then axiom (3) in conditions (definition 3.7) ensures ‘e} N*ej = 0. Suppose
(s,e,8') € Tran. Then, letting B be the set of conditions of T,

¢ = {be B|(s,%,3)€b& (s,e,s) &b} CM(s),
e = {bec B (s,es)¢b& (s, x%5)e€b}CM(s'), and
M(s)\"e = {b€ B |(s,*,8)€b}\{be B|(s,%,5)€b& (s,e,5) ¢ b}
= eB|(ses) b}
— (e B (shes) €O\ B EB | (se8) £b& (55,5 € B}
= M(s')\e".

Thus M(s) = M(s'). 1

We illustrate how a net is produced from an asynchronous transition system. The
construction produces an awful lot of conditions, so in order to make the drawing of the
associated net more managable, we can only draw those conditions which are connected
in the sense of the following definition. The transitions and independence of the net are
determined by the connected conditions.

Definition: Say a condition b of an asynchronous transition system is connected iff there
are not conditions by, b; for which

bﬁb()Ub1&bonbll‘—‘®

Example: The asynchronous transition system
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® ® C

~

d

gives rise, under an, to the following net, where we only draw its connected conditions:

Lemma 54 an is a functor A — N.

EI—"O—*D
U—”—"’Om—*[}

Proof: The only difficulty comes in showing the well-definedness of an on morphisms. Let
(o,m): T — T’ be a morphism of asynchronous transition systems T' = (5,1, E, I, Tran),

= (§,¢,E" I', Tran'). We require that an(o,n) =4 (8,7) is a morphism of nets
an(T) — an(T"). Let an(T) = (B, Mo, E, pre, post), an(T') = (B', M§, E', pre’, post').

We see 3 preserves initial markings by arguing:

VeM, & (i) el
(o(2),*,0(1)) € ¥/

(2, * Z) € (a,n)7Y

B(b) € M.

teee

The fact that Be® =*n(e) and f%e = n(e)® follows directly from (1) and (2) of lemma 51.
1

In fact, an is left adjoint to na. Before proving this we explore the unit and counit of
the adjunction. The unit of the adjunction:
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Lemma 55 Let T be an asynchronous system. Defining oo(s) = M(s) for s a state of T
and letting 1 be the identity on the events of T, we obtain a morphism of asynchronous
transition systems

(00,1) : T — na o an(T).
Proof: That (0o, 1g) is a morphism follows directly from lemma 53. J

The counit:

Lemma 56 Let N = (B, My, E,*(),()°*) be a net. Let Tran be the transitions of na(N).
For b € B and ¢ C Tran,., taking

cfob des ¢ = ||
defines a relation between conditions of na(N) and B, such that
(Bo,1g) : anona(N) — N
is a morphism of nets.

Proof: By lemma 50, |b| is a condition of na(N) if b is a condition of /N. This ensures
that By is a relation between the conditions of na(N) and B. We should check (5o, 1£) :
anona(N) — N is a morphism of nets. Let M{ be the initial marking of anona(N): We
see for any b € B that

Bt (b) € My & (Mo, Mo) € B5"(b)
by the definition of an and na,
< b € My by the definition of .
From the equivalence .
o (b) € My < b€ M,
we deduce BoM, = M}, that By preserves initial marking. In addition Sy preserves pre
and post conditions of events from II, I of lemma 50. ||

Now we establish the adjunction between A and N in which an is left adjoint to na.

Lemma 57 Let T = (5,1, E, I, Tran) be an asynchronous transition system and N =
(B, Mo, E', pre, post) a net.
For a morphism of nets (8,n) : an(T) — N, defining o(s) = o M(s), fors € S,

yields a morphism of asynchronous transition systems
0(B,n) =aes (0,n) : T — na(N).
For a morphism of asynchronous transition systems (o,n): T — na(N), defining
cfbiff O # c = {(s,e,8') € Tran. | b € o(s) &b € o(s') & b &*n(e)*},
ytelds a morphism
‘P(U,U) =def (/8777) : an(T) — N.
Furthermore, o and ¢ are mutual inverses, establishing a bijection between morphisms

an(T) — N

and
T — na(N).
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Proof: First note 8(3,7n) and ¢(o,n) above are morphisms because they are the compo-
sitions
6(B,n): T 012) 1a o an(T) nelBy) na(N)

o(o,n): an(T »@1 4n 0 na(N) X80 N
n

with the “unit” and “counit” morphisms of lemmas 55, 56. We require that 8, ¢ form a
bijection.

Letting (o,7) : T — na(N), we require 6 o ¢(0,7) = (o,7). We know 0 o ¢(o,7) has
the form (o', 7). Writing (8,7) =4es ¢(0,n) we have 0'(s) = fo M(s) for any s € S. Now

note
Veo(s) & bV epfoM(s)
& Br() € M(s)
& (s,%,8) € B7(Y)
& b eo(s)

where the final equivalence follows from the definition of ¢, recalling (8,7) = ¢(o,7).
Thus ¢’ = o and hence 6 0 p(o,n) = (0,7).

To complete the proof, it is necessary to show ¢ o 6(8,7) = (B,7n) for an arbitrary
morphism (8,7) : an(T) — N. Then, write (8',7) =4y ¢ 0 0(B,7). To show p' = g,
consider an arbitrary (s,e,s’) € Tran.. Let b € B. For the definitions of 6 and ¢,

(s,e,8") € f'P(b) <> be BM(s) & be BM(s') & b ¢ n(e)°. (1)
Note that

be BM(s) & [B°(b) € M(s)
& (s,%,8) € fP(b).

Note too that, as (8,7) is a morphism,
be® n(e) & BP(b) e’
Hence, rewriting (1),
(s,e,8") € B7(b) & (s,%,5) € B7(b) & (', %,8") € (D) & BP(b) &° €.
However, under the assumption that (s,*,s) and (s/,*,s’) belong to 3°?(b) we have
B2(8) & ¢* & (s, ¢,) € B(b)
)

(Recall the definition of % and e® in an(T').
Thus
(s,e,8") € BP(b) & (s,e,8") € B (D).

Consequently, 8/ = 3, and we conclude ¢ 0 8(3,7) = (8,7). 1
Theorem 58 The functors an : A — N and na : N — A form an adjunction with

an left adjoint to na; the components of the units and counits of the adjunction are the
morphisms given in lemmas 55, 56.
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Proof: Let T be an asynchronous transition system and N a net. Let (oo,lg) : 7' —
naoan(T) be the morphism described in lemma 55. Let (¢,7) : T — na(/N) be a morphism
in A. Then, because of the bijection, ¢(o,7) is the unique morphism A : an(T") — N such
that

(o,m) = 8(h) = na(h) o (o0, 1)

—as remarked in the proof of lemma 57, 6(h) is this composition. ||

3.7.1 A coreflection

Neither A nor N embeds fully and faithfully in the other category. This accompanies
the facts that neither unit nor counit is an isomorphism (see [18] p.88); in passing from
a net N to an o na(NN) extra conditions are most often introduced; the net an o na(V)
is always safe, as we will see. While passing from an asynchronous transition system T
to na o an(T) can, not only blow-up the number of states, but also collapse states which
cannot be separated by conditions.

A (full) coreflection between asynchronous transition systems and nets can be obtained
at the cost of adding three axioms. Let Ag be the full subcategory of asynchronous
transition systems T = (S, ¢, E, I, Tran) satisfying the following:

Axiom 1 Every state is reachable from the initial state, i.e. for every s € S there is a
chain of transitions

(t,e1,81),(s1,€2,82), .-, (8p—1,€n,5) € Tran.

Axiom 2 M(u)= M(s) = u=s, for all s,u € S.

Axiom 3 ¢ C M(s) = 3s'. (s,e,8') € Tran, for all s € S,e € E.

Axioms 2 and 3 enforce two separation properties. The contraposition of Axiom 2 says
u#s= M(u)# M(s)

i.e. that if two states are distinct then there is a condition of T" holding at one and not
the other. In fact, Axiom 2 is equivalent to

uFts=db.be M(u) & b¢g M(s)

though we postpone the justification of this till after we have treated complementation of
conditions. We can recast Axiom 3 into one of the following form when it becomes more
clearly a separation axiom: If (u,e,u’) is a transition and s is a state from which there is
no e-transition then there is a condition b of 7' such that

be M(u) & (u,e,u’) b& b M(s).

Axioms 2 and 3 hold for any asynchronous transition system na(/N) got from a net N.
The proof that Axiom 3 holds uses the operation of complementation on conditions of an
asynchronous transition system. The properties of complementation are listed here:
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Proposition 59 Letb be a condition of an asynchronous transition system T = (S,4, E, I, Tran).
Define
b={(s,e,8) € Tran. | (s,e,s") € b& (s,*,3) € b& (s',%,5") & b}.

If nonempty, b is a transition of T. It has the following properties:

(s,%,8) €b & (s,%,s) &b, forany s € S,
be'e & beet&bd'e
bee* & be*e&bde foranye€ E.

Let (a,n) : T' — T be a morphism of asynchronous transition systems and b be a condition

of T. Then
(o,m) 7" = (0, n) 71

Proof: Let b be a condition of 7. We note the following facts:

(s,e,8") €* b (s,%,8) € b& (s',%,8) &b
(s,e,8") €b* & (s',%,5") &b
(s,%,8) € b& (s',%,8") €D

(s,e,8") € b* & (s,e,8") €D

(s,e,8") €D

t ¢ ¢

for any transition (s,e,s’) of T'.
We now show b is a condition of T':

(1) Suppose (s, e,s') € b. Then directly from the definition of b we see (s, *, s), (s', %, ') €
b.

(2) (i) Thus if (s, e, s') and (u,e,u’) are both transitions of T', because b is a condition,
we obtain using the facts above, that

(s,e,8) €°b & (s,e,8)€b & (s,e,8) ¢*b
& (u,e,u’) €0° & (u,e,u’) €°b
Aad

(u,e,u’) €.
The proof of (2)(ii) is similar.

(3) If (s,e1,8') € B & (u,ezu’) € b* then, by the facts above (s,e1,8') € *b* &
(u,ez,u’) € *b*. As bis a condition, —e;le;.

The stated properties of b are obvious from its definition and the facts above.
Letting (o,n) : T" — T be a morphism of asynchronous transition systems and b be a
condition of T', we see

(s,€,8) € (0,m) "D (0(s),n(e), 0(s")) € b & (0(s), %,0(s)) & b & (a(s),%,0(s")) £ b

©(s,¢,8") € (a,m)7101
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Suppose u, s are two distinct markings of a net N. Then certainly there is a condition
b of the net in one but not the other.

Suppose for instance b ¢ u and b € s. Then, from the way the extent of a condition
is defined, |b| ¢ M(u) and |b| € M(s). With complementation we can separate the other
way:

[6] € M(u), 8] ¢ M(s)

This justifies our earlier remark that that Axiom 2 is equivalent to the seemingly stronger
axiom:

u#s=3b.be M(u) & b¢ M(s).

We return to the verification that the asynchronous transition system na(N) of a net
N satisfies Axioms 2 and 3.

Proposition 60 Let N = (B, My, E, pre,post) be a net. Then na(N) satisfies the Az-
ioms 2 and 3 above.

Proof: If u,s are distinct states of na(N) they are distinct markings of NV and hence

only one contains a condition b. But then |b| can only be an element of one of M(u) and

M (s) which are therefore unequal. This demonstrates (the contraposition of) Axiom 2.
Now we show na(N) satisfies the contraposition of Axiom 3. Supposing v > u' and

s 72 in N, we are required to exhibit a condition ¢ of na(/NV) such that
c€®e & c¢ M(s).
There are two ways in which the marking s can fail to enable event e. Either
(i) pre(e) € s or
(ii) post(e) N (s\ pre(e)) # 0.
In the case of (i), there is a condition b € B of the net such that
bepre(e) & b ¢ s.

Hence

bl €%e & |b] ¢ M(s).
In the case of (ii), there is a condition b € B of the net such that

b€ post(e) & be s b¢ pre(e)

Hence

0] € e* & |b] € M(s) & [b] ¢ e°.
But then, taking the complement of |b],
[o] €% & [b] ¢ M(s),

by proposition 59.
In either case, (i) or (ii), we obtain a condition ¢ of na(N) for which

ce®e&cd M(s)l
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Recall a net is safe if for each reachable marking M and event e
eCM=e'N(M\e =0

As we now see, if T' is an asynchronous transition system which satisfies Axioms 2 and 3
then an(T) is safe. Consequently an o na(N) yields a safe net for any net V.

Proposition 61 Assume T = (5,1, E, I, Tran) is an asynchronous transition system sat-
isfying Azioms 2 and 8 above. Then

(s,e,s") € Tran< M(s) = M(s') in an(T)
for any s,s' € S and e € E. In addition, an(T') is a safe net.

Proof: By lemma 53,
(s,e,8") € Tran= M(s) > M(s') in an(T)
To establish the converse, with the assumption of Axioms 2 and 3, we first observe that
e C M(s) = 3s1. (s,e,81) € Tran

for s € S and e € E. Otherwise as there is some (u,e,u’) € Tran there would be a
contradiction of Axiom 3. Now, suppose M(s) = M(s'). Then ‘e C M(s) so (s,e,s1) €
Tran from some state s;. Thus M(s) <> M(s;) and now by Axiom 2 we deduce s’ = s,
and hence the converse M(s) = M(s') = (s,e,s’) € Tran.

It follows that any reachable marking of an(T') has the form M(s) for some s € S.
Assuming ‘e C M(s) there is as above, M(s) = M(s') for some transition (s,e,s’) of T'.
The two sets

e* = {be M(s') | (s,e,s") ¢ b},
M(s)\'e = {be M(s) | (s,e,s) € b}

are clearly disjoint. The net an(T') is therefore safe. |
Corollary 62 For any net N, the net an o na(N) is safe.

The coreflection between Ay and N is defined using a simple coreflection between the
full subcategory of A, consisting of objects, where all states are reachable, and A.

Definition: Let AR be the full subcategory of A consisting of asynchronous transition
systems (S, 1, F, I, Tran) satisfying Axiom 1, i.e. so that all states s are reachable.
Let R act on an asynchronous transition system T' = (S, ¢, E, I, Tran) as follows:

R(T) = (S',¢,E", I, Tran)
where

S’ consists of all reachable states of T
E' = {e€E|3s,s €8 (s,¢5)€ Tran}
I' = IN(E' xE
Tran’ = TranN(S'x E' x §').
For a morphism (o,n) : T — T' of asynchronous transition systems, define R(o,7) =

(o',n") where ¢’ and n' are the restrictions of o and 7 to the states, respectively events,

of R(T).
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We note that a morphism from an asynchronous transition system in which all states
are reachable is determined by how it acts on events:

Proposition 63 Suppose (o,n) and (¢',n) are morphisms T' — T" between asynchronous
systems where each state of T is reachable. Then o = o.

Proof: An obvious consequence of the determinacy property
(s,e,81) € Tran & (s, e, s3) € Tran = 51 = 9
of asynchronous transition systems. |

Proposition 64 The operation R is a functor A — AR which is right adjoint to the
inclusion functor T : AR — A. The unit of the adjunction at T € AR is the identity
on T, making the adjunction a coreflection. The counit at T € AR is given by (Js,JE) :
R(T) — T where js and jg are the inclusion maps on states and events respectively.
Moreover, R preserves Azioms 2 and 3 in the sense that if T satisfies Aziom 2 (or 3)
then R(T) satisfies Aziom 2 (or 3).

Proof: We omit the straightforward proof that R is a right adjoint to the inclusion of
categories with counit as claimed. Let j : R(T) — T be a component of the counit.
The transitions Tran' of R(T') are a subset of those of T'. If b is a condition of 7" then
3716 = bN Tran' is a condition of R(T") provided it is nonempty. Suppose s; and s, are
two distinct states of R(T"). If T" satisfies Axiom 2 then there is a condition b of 7" such
that one and only one of (s1,*,s1) € b, (s2,%*,s2) € b holds. But then j7'bis a condition
of R(T) separating s1, s;. Thus R preserves Axiom 2, and by a similar argument, Axiom

3.1

We show the adjunction, with an left adjoint to R o na, obtained as the composition
forms a coreflection. Its counit is given by the notion of reachable extent of a condi-
tion. This consists essentially of the reachable markings and transitions at which b holds
uninterruptedly.

Definition: Let N be a net. Let Tran, be the transitions, and idle transitions of R o
na(N). Define
16|% = 6| N Tran,.

Theorem 65 Defining nag = R o na, the composition of functors, yields a functor nag :
N — Ag which is right adjoint to ang : Ag — N, the restriction of an to Ay.
The unit at T = (S,1, E, I, Tran) € Aq is an isomorphism

(0,1g) : T — nago an(7T)

where o(s) = M(s) for s € S, making the adjunction a coreflection.
The counit at a net N is
(B,1g): anonag — N

where
cBb iff 0 #c = [b]*
between conditions ¢ of nao(N) and b of N.
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Proof: The adjunctions compose to give R o na : N — AR a right adjoint to Z o an :
A® — N. However, the image R o na(N) of a net N always satisfies Axioms 2 and 3
as well as 1. This is because na(N) satisfies Axioms 2 and 3, and R preserves these
axioms. Thus the adjunction cuts down to one where nag : N — Ay is right adjoint to
ang : Ap — N. It is an adjunction with unit at 7" = (5,1, E, I, Tran) € Ag a morphism
in Ao
(0,1) : T — nag o an(T)

where o(s) = M(s) for s € S. It remains to argue why (o,1g) : T — nag o an(T) is an
isomorphism.

States of nag o an(T') are reachable markings and its transitions are transitions of
the net an(7) from reachable markings. The independence relation for na o an(7") holds
between events ey, ey iff % N*e} = 0. From proposition 61, as T satisfies Axioms 2 and 3,

(s,e,8") € Tran & M(s) > M(s') in an(T).

It follows that all reachable markings of an(T") have the form M(s) for some s € S.
Because T' satisfies Axiom 2, s — M(s) is thus a bijection between S and states of
na o an(T). Thus for (o, 1E) to be an isomorphism it suffices now to show

erle; &%eyN®ey =10

for e1, ey € E. The “=” direction of the equivalence follows directly from (o, 1g) being a
morphism. To show the converse, “<” direction, suppose —e;/e; and apply lemma 52 to
{e1, €2} to obtain a condition in e} N*e}, which must therefore be non-empty. It follows
that (o,1g) : T = nag o an(T'). Hence the functors an, nao form a coreflection with ang
left adjoint to nao.

That the counit has the form claimed follows by composing the natural bijections of
the adjunctions given by proposition 64 and lemma 57.]

One consequence of the coreflection is that A has products and coproducts given by
the same constructions as those of A.

Proposition 66 The category Ao has products and coproducts which coincide with those
in the category A.

Proof: The product of nets in IN becomes the product in Ag of asynchronous transition
systems under nag. Its behaviour, which is described in proposition 43, ensures that its
image under nag coincides with the product in A.

The coproduct in A will be the coproduct in Ay provided it is the image to within
isomorphism of a net. However, if Ty, 77 are objects of Ag, then by lemma 42 their
coproduct in A is isomorphic to nao(an(Tp) + an(74))

The coreflection ang : Ag — N, nag : N — Ay cuts down to an equivalence of
categories by restricting to the appropriate full subcategory of nets.

Definition: Let Ny be the full subcategory on nets such that
b |p|"

is a bijection between conditions of NV and those of nag(V).
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Theorem 67 The functor an restricts to a functor ang : Ay — Ny. The functor R o na
restricts to a functor nag : No — Ag. The functors ang,nag form an equivalence of
categories.

Proof: Recall the coreflection of theorem 65: nag = R o na : N — Ay is right adjoint to
ang : Ap — N, the restriction of an to Ay. The counit of the coreflection, at a net IV,

(8,1E) : ang o naog(N) — N

has ¢f@b iff ¢ = |b|F, between condition. This is an isomorphism iff if N € Ny. We thus
obtain an equivalence of categories.]

Nets in Ny are saturated with conditions in the sense that they have as many con-
ditions as is allowed by their reachable behaviour and independence (regarded as an
asynchronous transition system). Nets in No cannot however have more than one copy of
a condition with particular starting and ending events (they are condition-estensional).
This is because:

Proposition 68 Let T be an asynchronous transition system for which each state is

reachable. If by, by are conditions of T' for which
.bl =° bz and b; = b;

then
b] = 62.

Proof: Suppose b =°byand b} = b3 for conditions by, b, of T'. Inductively along a chain
of transitions
(ia €1, 31)7 ('317 €2, 32)7 RN (3n~11 €n, Sn)

the membership of (s;_1, €;,3i) (or (s;,*,s;)) in by and in b, must agree. ||

If on the other hand an asynchronous transition system 7 has a state which is not
reachable then there will be distinct conditions of 7" with the same end points. Suppose T'
has states which are not reachable let Trang be all transitions, including idle ones, which
are not reachable. If b; is a condition, say consisting solely of reachable transitions of T,
then so is by = by U Trang a condition, necessarily distinct from by, but with %, =* b,and
b = bs.

We have already observed the coreflection from event structures E to asynchronous
transition systems A. In fact the coreflection cuts down to one between E and Ay.

Proposition 69 For any event structure E, the asynchronous transition system tla o
etl(E) is an object in Ag. Consequently, tla o etl cuts down to a functor E — Ag left
adjoint to the restriction of atl o tle to Ay — E also forming a coreflection.

Proof: The functor tla o etl : E — A is left adjoint to atl o tle : A — E and forms a
coreflection. It suffices to show that tla o etl(E) is an object of A for any event structure
E. Let E be a event structure. Note that tlaoetl(E) is an asynchronous transition system
isomorphic to the asynchronous transition system with transitions z = z/, between finite
configurations of ¥, and independence relation co—see proposition 48. There are many
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ways of adjoining conditions to events of an event structure so as to produce a (safe)
net IV with reachable transition and independence relations isomorphic to that of the
configurations of F (see e.g. the construction of an occurrence net from an event structure
in [24])(see e.g. the construction of an occurrence net from an event structure in [24]).
Hence by theorem 65, nag(/N), and so the isomorphic tla o etl(E), belong as objects to
Aol

3.8 Semantics

In this section we show how to extend the models to include labels so that they can be
used in giving semantics to process languages such as that of section 2.3. The denotational
semantics involves a use of direct limits to handle recursively defined processes. The direct
limits are with respect to embedding morphisms in the various categories. In many cases
they can be replaced by a simpler treatment based on inclusion morphisms. We conclude
by giving an operational semantics which is equivalent to a denotational semantics using
labelled asynchronous transition systems. As will be seen the operational semantics is
obtained by expanding the rules of section 2.3, which generate the transitions, to include
extra rules which express the independence between transitions.

3.8.1 Embeddings

The non-interleaving models, nets, asynchronous transition systems, trace languages and
event structures support recursive definitions. The idea of one process approximating
another is caught in the notion of an embedding, a suitable kind of monomorphism with
respect to which the categorical operations we have seen are continuous, in the sense
of preserving w-colimits. This means that solutions of recursive definitions can be con-
structed as described for instance in [3]. Recall the least fixed point fiz F' of a continuous
functor F': X — X, on a category X with all w-colimits and initial object I, is constructed
as the colimit of

145 )0 prpy 2O D0 papy 2O
where the morphism ! : I — F(I) is determined uniquely by the initiality of I.

In fact, for all models but nets, it suffices to restrict to inclusion-embeddings, embed-
dings based on inclusions, which form a large complete partial order. Fortunately the
embeddings appropriate for different models are all related to eachother. In the case of
event structures the embeddings have already been introduced and studied by Kahn and
Plotkin under the name rigid embeddings (see [14, 37]).

Petri nets: We first consider embeddings between nets. These are simply monomor-
phisms in the category IN.

Definition: An embedding of nets consists of a morphism of nets
(/37 77) : NO - Nl

such that 7 is an injective function and B is surjective, in the sense that for any condition
by of Ny there is a condition b; of N; for which by 8 b;.
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Example: Injection functions of a sum such as

are examples of embeddings between nets. The need to include such injections, is a
chief reason for allowing that part of a net-morphism which relates conditions to not be
injective. (Note too there is no projection morphism sending e; to eg and e; to undefined.)

Net embeddings are complete with respect to w-colimits. They have an initial object
the net consisting of a simple marked conditions (which coincides with the initial object
in the fuller category N). The existence of w-colimits is shown explicitly in the following
construction:

Proposition 70 Let

No (Brm)_, N, (B2ym2) ... _(Bramr) N, (Br1smesr) o ... (T)

be an w-chain of embeddings between nets Ny = (By, My, Ex, preg, posty), for k € w.
Define N = (B, M, E, pre, post) where:

e B consists of w-sequences
(bo, by, ...y bgy. )

where by € By U {*} such that by = %, (bry1) for all k € w, with the property that
by, € By, for some m € w; the initial marking M consists of all such sequences for

which bo € Mo.
e I consists of w-sequences
(e0y€1y---y€hy---)

where e € Ey U {*} such that e; # * implies nry1(ex) = exy1 for all k € w, with the
property that e, € E,, for some m € w.

e the maps pre: E — Pow(B) and post : E — Pow(B) satisfy

b€ pre(e) &Vk € w. (ex # * = (br # * & by € preg(ex)))
b € post(e) ©Vk € w. (ex # * = (b # * & by € posty(er))),

where we use eg and by for the k-th components of the sequences e and b respectively.

Then N is a net. For eachk € w, the pair fi, = (Y, €x) consisting of a relation vy C B X By,
such that
b & ¢ = by
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and a function € : Exy — E such that
() =ee e =¢

is an embedding of nets fr : Ny — N. Furthermore, N and the collection of embeddings
fr, k € w, is a colimit of the w-chain (1).

Asynchronous transition systems: An embedding between asynchronous transition
systems consists of a monomorphism which reflects the independence relation.

Definition: An embedding of asynchronous transition systems consists of a morphism
(o,m) : To = Th,

between asynchronous transition systems 7y and 77 with independence relations Iy, I3
respectively, such that o and n are injective and

1(eo),n(e1) defined & n(eo)f1n(e1) = eo Io €1
for any events eg, €1 of Tp.

Proposition 71
(t) If f : No — Ny is an embedding of nets, then na(f) : na(No) — na(Ny) is an
embedding of asynchronous transition systems. Moreover, na preserves w-colimits of em-

beddings.

(it) If g : To — Ty is an embedding of asynchronous transition systems, then an(g) :
an(Tp) — an(Th) is an embedding of nets. Moreover, an preserves w-colimits of embed-
dings.

The operations on asynchronous transition systems we have seen are all continuous
with respect to an order based on embeddings which are inclusions:

Definition: Let Ty = (So, %0, Eo, lo, trang) and Ty = (51, 41, Ei, I;, tran,) be asynchronous
transition systems. Define To QT3 iff Sop C S1, Eo C E; and (0, 7) is an embedding where
o is the inclusion Sy — S and 7 the inclusion Ky — FEj.

Asynchronous transition systems have w-colimits of embeddings. In particular, if
To<d-.-<A7T, -

is an w-claim of asynchronous transition systems T}, = (Sy, in, En, I, tran,,), it has a least

(U Sn %0, U E., U I, U tran,)

new n€w nEw new

upper bound

which is not only an w-colimit in the category of inclusion-embeddings, but also in the
category of embeddings. The situation restricts to asynchronous transition systems in
Ay; they are closed under least upper bounds of w-chains under 4.

Trace languages: Embeddings on asynchronous transition systems induce embeddings
on trace languages via the identification tla:
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Definition:
An embedding of trace languages consists of a morphism 7 : 7' — T of trace languages
T,T', with independence relations I, I’ respectively, such that 7 is injective and

n(a),n(b) defined & n(a)l'n(b) = alb, for alla,bc E.
Let T = (M,E,I),T"= (M', E', I') be trace languages. Define T' <1 T" iff

MC M
E CE'and
alb< alb, foralla,be E.

Again, embeddings and inclusion-embeddings have colimits of w-chains which in the
case of inclusion embeddings are given by unions. The functors atl and tla are continuous
with respect to inclusion-embeddings.

Event structures: To treat recursively defined event structures we use a notion of
embedding equivalent to that of the rigid embeddings of Kahn and Plotkin (see [14, 37]).
Note that in the case of event structures (though not for the other models of this section)
embeddings are always associated with projection morphisms in the opposite direction.
When the embeddings are inclusions they amount to a substructure relation on event
structures.

Definition:

An embedding of event structures consists of a morphism 5 : ES; — ES; between
event structures ESo, E£S; where 7 is injective and such that its opposite, the partial
function 7°?, is a morphism of event structures n°? : ES; — E.Sp.

Let ESo = (Eo, <o, #0), £S1 = (E1, <1, #) be event structures. Define £S, < ES; iff
EO g El)

Ve€ Fr1.e <pep & e < e,

for all eg € Ep, and
e Fo € iff e##; ey,

for all e, e’ € Ey.

The Q order on event structures is a special case of the order on trace languages:

Proposition 72

(i) If ESQAES' for event structures ES, ES’, then etl(ES)<etl(ES'), for the associated

trace languages. Moreover, etl preserves w-colimits of inclusion-embeddings.

(i) If T Q1T", for trace languages T, T", then tle(T) < tle(T"), for the associated event
structures. Moreover, tle preserves w-colimits of inclusion-embeddings.




3.8. SEMANTICS 79

3.8.2 Labelled structures

For noninterleaving models of concurrency like event structures, we distinguish between
events, which carry the independence structure, and labels of the kind one sees in process
algebras, whose use is to specify the nature of events. The denotation of a process, for
example from the process language Proc, will most naturally be a labelled structure. The
models we consider possess a set of events to which we can attach a labelling function.
The sets of events an object X in a typical category X of structures (for example, X could
be the category of event structures) is given by a functor £ : X — Set,.. This permits
us to adjoin labelling sets to several different categories of models in the same way, using
the following construction:

Definition: Let £ : X — Set, be a functor from a category X. Define £(X) to be the
category consisting of

objects (X,1: E(X) — L) where X is an object of X and [ is a morphism in Set,
morphisms pairs (f,A) : (X,[: E(X) —» L) —» (X',I': E(X') —» L') where f : X — X' in
X and A : L — L' in Set satisfy

o E(f)= Aol

with composition defined coordinatewise, i.e. (f',A") o (f,A) = (f" o f, A\ o)) provided
f'o fand X o\ are defined.

To understand how this construction is used, take X to be one kind of model, say event
structures, so X 1s E. Then understanding F to be the forgetful functor to sets of events
and partial functions, has the effect of adjoining to event structures extra structure in the
form of total labelling functions on events: the objects of the category L(E) are labelled
event structures (£S,[: E — L) where ES is an event structure and [ is a total function
from its events E to a set of labels L; morphisms (ES,!{: E — L) — (ES",I': E' — L)
are pairs (,A), with n : ES —. ES’ a morphism of event structures, and A : L —, L’
such that I'onp = Aol

Products and coproducts in L(E) are obtained from the corresponding constructions
in the unlabelled category because of the following general facts:

Proposition 73 Let E : X — Set, be a functor from a category X. Assume X has
products. Then, a product of (Xo,lo : E(Xo) — Lo) and (X1,l1 : E(X1) — Ly) in L(X)
is given by (X,!: E(X) — L) with projections (10, Ao), (171, A1), where

o X is a product of Xo, Xy in X with projections ng : X — Xo,m1: X = X,
o L is a product of Lo, L1 in Set, with projections Ao : L — Lo, A1 : L — L4

o [ = (loo E(no),l1 0 E(m)) : E(X) — L is the unique mediating morphism to the
product L such that Ao ol =1p0 E(no) and Ay ol =130 E(n).

Proposition 74 Let E : X — Set, be a functor from a category X. Assume X has
coproducts preserved by E. Then, a coproduct of (Xo,lo : E(Xo) — Lo) and (Xy,1; :
E(X1) — Lq) in L(X) s given by (X, : E(X) — L) with injections (no, Xo), (71, A1),

where
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o X is a coproduct of Xo, X1 in X with injections no: Xo — X,m1 : X1 — X
o L is a coproduct of Lo, Ly in Set, with injections A\g: Lo — L, A\ : L1 — L

o [ =[Xolo,\oly]: E(X) — L is the unique mediating morphism from the coproduct
E(X) such that Ao oly =10 E(no) and My oly = o E(n).

There is a functor p : £(X) — Set,; a morphism of labelled structures
(fLiN) (X, B(X)—> L) - (X,l': E(X") — L")
is sent to
AL —, L.

For any total function A : L — L’ in Set,, this functor does have a strong cocartesian
lifting of A with respect to any object (X, : E(X) — L) in £(X): it is given by the
morphism

(1x,\): (X, [: B(X)—> L) > (X, ol: E(X)— L)

in £(X). This yields a relabelling operation when X is specialised to one of the models.
For any of the models, there are also strong cartesian liftings of inclusions L «— L’
in Set, with respect to a labelled structure (X, : E(X) — L), though this requires an
argument resting on the fact that the categories of structures (without labels) that we
consider support an operation of restriction to a prescribed subset of events. For example,
given an event structure £S = (E', <', #') and a specified subset £ C E' there is an event
structure, the restriction of ES to E gives an event structure (Ey, <, #) as follows:

its set of events consists of £y = {e € E | Ve' < e.e' € E};
its causal dependency relation satisfies

e<e e ek &e< e

its conflict relation satisfies

efte' e, e € Ey & eft'e.

Generally, for the other models as well, restriction with respect to a subset of events can
be expressed as strong cartesian lifting. Let X be a category of structures, like event
structures, nets or asynchronous transition systems. Let Ex : X — Set, be the functor
yielding the event sets. Define a new category, called (X, Fx) consisting of

objects (X, E) where Ex(C) C E,

morphisms (f,7) : (X, E) — (X', E') where f : X — X' is a morphism in X and
n:E —, E'is a morphism in Set, such that
Ex(X)— E
Ex(f)l L
Ex(X") — E'

commutes. The composition (f,7) o (f’,n') is defined to be (f o f',n o n’).
noemn
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There is a clearly a functor ¢ : (X, Ex) — Set, taking a morphism (f,7n) : (X, E) —
(X',E') ton : E — E'. The categories we consider have operations of restriction on
events characterised as strong cartesian liftings of inclusions £ «— E’ with respect to the
functor ¢ and any object (X', E’) in (X, Ex). For such categories X, there is an operation
of restriction determined by subsets of labels on the labelled versions £(X). Recall the
functor p: £(X) — Set,; a morphism of labelled structures

(f,A) (X, Ex(X)—> L) - (X',l': Ex(X') — L")

1s sent to

AN:L—, L.

For any inclusion A : L — L’ in Set,, the functor p has a strong cartesian lifting of A
with respect to any object (X',I' : Ex(X') — L') in £(X): it is given by the morphism

(ryA): (X, 1: Ex(X)— L) > (X,I'": Ex(X') = L)
in £(X) where (r,7) is the strong cartesian lifting of the inclusion on event sets
n:{ee Ex(X') [ l'(e) € L} — Ex(X')

with respect to ¢ : (X, Ex) — Set,, and [ is the restriction of I’ to the events Fx(X)
of X. This yields a suitable restriction operation on £(X) when X is specialised to any
one of the models event structures, trace languages, Petri nets or asynchronous transition
systems.

To treat recursion on labelled structures we extend embeddings (and the special case
when they are inclusions) to labelled structures, such as £(E). A morphism of labelled
structures

(LN (X E—-L)—(X,I':E' - L
is taken to be an embedding (or an inclusion-embedding) if f : X — X' is an embedding
(or an inclusion embedding) and X is an inclusion of sets. The labelled structures have
colimits of w-chains formed from colimits of the unlabelled structures. In particular, a
chain

(XOaZO) S] ﬂ (Xnvzn) g
of labelled structures (X, [, : E, — L,), has least upper bound (U,eo Xn, Unew ln)- The

union e, I, has domain (J,¢, F, and codomain {J,¢,, Ln.

In section 2.3 we had to go to a little trouble to extend the restriction and relabelling
operations to all transition systems regardless of their labelling set. In general, a little
care is needed in making functors with respect to embeddings out of some of the opera-
tions. The operations of restriction and relabelling (— | A) and (—{Z}) yield functors on
categories of embeddings. Suppose there is an embedding f : X — X' between labelled
structures X, X’ with labelling sets L, L' respectively, necessarily related by an inclusion
L — L'. The structure X with labelling set L restricts to X | A associated with a
particular cartesian lifting

c: XTA—- X

of the inclusion L N A < L. Similarly, X’ is associated with the cartesian lifting

X' tA- X'
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of the inclusion L' N A « L'. Because ¢’ is strong cartesian there is a unique morphism
(FIA): XA X T A

projecting to the inclusion LNA < L'NA such that foc= ¢ o(f I A). This ensures that
(— I'A) is a functor from the subcategory with embeddings. Moreover, it can be checked
that, for each model, (f t A) is an (inclusion-)embedding provided f is. In a similar way
a relabelling function = is associated with cocartesian liftings X — X{Z} of L — ZL
for any structure X with labelling set L, and gives rise to a functor with respect to
embeddings. For all the models here, it is a straightforward matter to define a prefixing
operation on the various labelled structures so that it is continuous with respect to a
choice of embedding given. The labelled versions of continuous functors are continuous.

The various categories of labelled structures, such as L£(E) for example, provide a
semantics to the process language Proc interpreting constructions in the process lan-
guage as the appropriate universal construction, so abstractly this proceeds exactly as in
section 2.3.

3.8.3 Operational semantics
Transition systems with independence

The model of asynchronous transition systems is based on events which carry an inde-
pendence relation. The nature of these events can then be specified by a further level of
labelling. There is an alternative, more direct, presentation of (certain kinds of) labelled
asynchronous transition systems, got by extending transition sytems with an indepen-
dence relation on its transitions. Transition systems with independence are definable by
the techniques of structural operational semantics in a way which directly extends that
of section 2.3.

Definition: A transition system with independence is defined to be a structure
(S,1, L, Tran,I)

where (5,1, L, Tran) is a transition system and the independence relation I C Tran’® is an
irreflexive, symmetric relation, such that

(1) (s,a,81) ~ (s,a,82) = s1 = 52

(2) (s,a,81)I(s,b,s2) = Fu. (s,a,s1)1(s1,b,u) & (s,b,52)1(s3,a,u)

(3) (s,a,s1)I(s1,b,u) = 3ss. (s,a,51)I(s,b,s2) & (s,b,52)I(s2,a,u)
)

(4
(1)(s,a, s1) < (82, a,u)I(w,b,w') = (s,a,s1)](w,b,w')

(ii)(w, b,w)I(s,a,s1) < (s2,a,u) = (w,b,w')I(s2,a,u)

where the relation < between transitions is defined by

(s,a,s1) < (82,a,u) & (s,a,s1)I(s,b,s2) & (s,a,81)I(s1,b,u) & (s,b,82)1(s2,0a,u),
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and ~ is the least equivalence relation including <.

As morphisms on transition systems in with independence we take morphisms on the
underlying transition systems which preserve independence; composition is inherited from
that in T. We write TT for the category of transition systems with independence.

Thus transition systems with independence are precisely what their name suggests,
viz. transition systems of the kind used to model languages like CCS and CSP but with
an additional relation expressing when one transition is independent of another. The
axioms (2) and (3) describe intuitive properties of independence, similar to those we
have seen. The relation < expresses when two transitions represent occurrences of the
same event. This relation extends to an equivalence relation ~ between transitions; the
equivalence classes {(s,a,s’)}~, of transitions (s,a,s’), are the events of the transition
system with independence. Property (4) is then seen as asserting that the independence
relation respects events. Note that property (4) implies that if (s,a,s1) < (s2,a,u), t.e.

there is a “square” of transitions
U
]
/ X
S1 e ® So
©
3

with (s, a,s1) < (s2,a,u) & (s,a,s1)1(s,b,32) & (s,a,31)I(s1,b,u) & (s,b,32)[(sq,0a,u),

then we also have the independence
(s1,b,u)I(s2,a,u).

The first property (1) simply says that the occurrence of an event at a state yields a
unique state. Note that property (1) implies the uniqueness of the states, u and s,, whose
existence is asserted by properties (2) and (3) respectively.

In this way a transition system with independence can be viewed as an asynchronous
transition system in which the events are labelled, an event {(s, a, s') } . carrying the label
a. The resulting asynchronous transition system is eztensional in that it has the property
that

(1) for any label there is at most one event with that label involved in a transition
between two states.

It is special in another way too. An asynchronous transition system can be regarded as a
transition system with independence, in which the independence on transitions is induced
by that on its events. The asynchronous transition systems which result from transition
systems with independence have the special property that

(2) the map {(s,e,s’)}~ — e is a bijection.
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There is in fact an equivalence between the category of transition systems with inde-
pendence and the full subcategory of L(A) for which the objects are labelled transition
systems with the properties (1) and (2).

Let’s return to our example of 2.4. It is now an easy matter to extend the transition-
system semantics there to take account of independence. We simply specify which tran-
sitions are independent of which others. Copying the transition system of 2.4,

1. b 7.3
4
® < o~ °~ o) b >0
b t 51 0 2
T
[ ] [
5

we assert in addition the following independencies
(0,¢9,1)1(0,0,2), (1,¢,0)I(1,5,3), (0,6,2)1(0,cz,4)

which then generate others by the axioms in the definition of a transition system with
independence.

Operational rules

Transition systems with independence have the striking advantage that they are definable
by structural operational semantics in much the same way as transition systems, but with
the usual rules for transitions being supplemented by rules specifying the independence
relation between transitions.

To motivate the rules we first examine how the product lends itself readily to a pre-
sentation via rules of structural operational semantics. Assume Ty = (So, t0, Lo, Trang, o)
and Ty = (51,1, L1, Trany, I1) are transition systems with independence. Their product
To x T is (S, t, L, Tran, I) where (S,1, L, Tran) is the product of the underlying transition
systems (So, to, Lo, Trang), (51,11, L1, Tram ), with projections (po, 7o), (p1,71), and the
independence relation I on transitions is given by

(s,a,s)I(u,b,u’)iff
mo(a), mo(b) defined = (po(s), mo(a), po(s'))o(po(w), mo(b), po(u')) &
r1(a), m1(8) defined = (pu(s), (@), 1 () s (o1 (u), ma(b), ps ().
The characterisation of the independence relation can be simplified through the use of
idle transitions. An independence relation like I C Tran X Tran extends to a relation
1. C Tran, X Tran, in which
(s,a,s")(u,b,u') & a=*or b= x*or (s,a,s)(u,b,u).

An idle transition is thus always independent of any transition, idle or otherwise. Now
we have the simplification:

(s,a,s8) L (u,b,u’) iff
(Po(s), mo(a), po(s")) Lox(po(u), mo(b), po(u')) &
(p1(s), m(a), pr(s")) Lu(pa(w), m1(b), pr(w)).
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We have already seen rules to give the transitions of the product (section 2.3). To define
the product of transition systems with independence we adjoin the following rule, which
reformulates the condition for two transitions of a product to be independent:

(30>a0>36)]0*(u07 bO,“E})y (Slaabsll)ll*(ula bbu/l)
((80,81),&0 X ay, (8/0,8,1)),[*((?_1,0,’(1,1),50 X bl,(u,(); u’l))

Similarly, the fibre coproduct of transition systems with independence is given by the
fibre coproduct of the underlying transition systems together with an independence rela-
tion inherited directly from the components. This too can be expressed by simple rules,
which are essentially unchanged in the nondeterministic sum @, where we first enlarge
the labelling sets to their union and then form the fibre coproduct. Let T, and 73 be the
transition systems with independence above. Their sum T @ T3 consists of a transition
system, formed as the nondeterministic sum of their underlying transition systems asso-
ciated with injection functions ing, in; on states, together with an independence relation
satisfying

(s,a,s)I(u,b,u) iff
[3s0, s6, Uo, Ug.
s =1no(so) & s’ = ino(sy) & u = ino(uo) & u' = ing(ug) & (so,a, s4)Io(uo, b, up)] or

! !
[381, Sq, U, Uy

s=1ny(s1) & s’ =n1(s)) & u =inq(uq) & u' = ing(u)) & (s1,a,s7)]1(ug, b, uy)l.
Expressed by rules the condition on the independence relation becomes:

(30,0,86)10(%,5, ’LL{)) (317a75,1)11(u1?bv ull)
(1no(s0), a, ino(sp)) (ino(uo), by ino(ug))  (1na(s1), a,ima(s1)) 1 (sna(ua), by ina (uy))

As usual a restriction can be understood as a cartesian lifting of an inclusion mor-
phism on labelling sets; there is an obvious functor from TT to Set, projecting to the
labelling sets and the labelling functions between them. Letting 7' = (5,1, L, Tran, I) be
a transition system with independence, the restriction to a subset of labels A is

TtA=(S:L, Tran',I")

where L' = LN A, Tran' = TranN S x L' x S and I' = I N Tran x Tran. Although this
operation may change the ~ relation, increasing the number of events, it preserves the
axioms required of a transition system with independence. The rule in the operational
semantics for the independence relation of a restriction expresses that it is got simply by
cutting down the original independence relation.

Relabelling is associated with a cocartesian lifting of the relabelling function on la-
belling sets. In defining it we can take advantage of a unicity property of those transition
systems arising from the operational semantics:

Suppose s —2— s’ and s —2— s’ are transitions obtained from the operational
semantics (version 2) of section 2.3. Then a = b.

This property is easily observed to be preserved by the rules.
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Let T' = (S,¢, L, Tran,I) be a transition system with independence, assumed to satisfy
the unicity property

(s,a,s") € Tran & (s,b,s') € Tran = a = b.
For = : L — L' the relabelling
T{=} = (S,4, L', Tran, I'),
where Tran’ = {(s,b,s') | Ja. b = Z(a) & (s,a,s') € Tran} and
(s,a,8")I'(t,b,t") & Fa',b. a = Z(d) & b=Z¥) & (s,d',s)I'(t,V,1).

Because the transition system 7' satisfies the unicity property the construction T{Z}
yields a transition system with independence; without the assumption of unicity the new
relation I’, as defined, need not respect events, and a more complicated definition is
needed. Consequently in the operational semantics we can get away with a rule which
says the independence relation of the relabelled transition system is simply the image of
the original.

We obtain an operational semantics for Proc as transition system with independence
by extending version 2 of the rules of section 2.3 for the transitions between (tagged)
states by the following rules for the independence relation (also relating idle transitions):
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Rules for independence

(s,a,s)I(u,*,u)

(s,a,s)I(t,b,t)
((n,s),a,(n, ) I((n,1), b, (n,1))

Sum:
(s,a,s')I(s,b,s") (t,a,t')I(t,b,t")

(o600 MGaL60) 7 7 GoneLiGeLnLe) °7 07"

(s,a,s)(u,b,u’) W s (t,a,t)I(u,b,u)
(s®t,a,s")1((0,u),b,(0,u')) (s@t,a,t)I((1,u),b,(1,u))

uEt

Product:
(Sl>a17311)1(32)a2a3,2) (tlabl7tl1)j(t2>b27t,2)
(81 X tl,al X bl,Sll X tll)I(Sz X tz,az X 1)2,812 X t’2)

Restriction and relabelling:

(s,a,s')I(t,b,t) abe A (s,a,s")I(t,b,t)
(st Aya,s' 1 AYI(t T Ab,t tA) (s{=},2(a), s{E}DI({=},=(b),t"{=})
Recursion:
(t[rec z.t/z],a,s)I(t[rec z.t/z],b,u) (t[rec x.t/z],a,s)I(u,b,u) w % trec o.t/2]

(recz.t,a,(2,s))I(recz.t,b,(2,u)) (rec z.t,a,(2,8)I((2,u),b,(2,u"))

A closed term of Proc determines a transition system with independence consisting of
all those states and transitions forwards-reachable from it together with an independence
relation determined by the rules above. Notice there are no extra rules for prefixing be-
cause the transition immediately possible for a prefixed process is not independent to
any other. The rules for product, restriction and relabelling are straightforward reformu-
lations as rules of the requirements on their independence relations. The rules for sum
and recursion require further explanation. For a sum s @ ¢, taking the injection functions
ino,tny on states to satisfy, e.g.

ing(s) =s®t, and ing(u)=(0,u)ifuzs

we can understand the rules for sum, together with the rule for tagged terms, as saying
that independence for a sum is precisely that inherited separately from the components.
Because the transition system is acyclic (lemma 10), there is an isomorphism between the
transition systems reachable from rec z.t and its unfolding t[rec z.t/z] (this fact is used
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in the proof of theorem 11). The isomorphism is given by

recz.t > tlrecz.t/z]
(2,u) > u

The rules for recursively defined processes, with the final rule for tagged terms, ensure
that transitions reachable from rec z.t are independent precisely when their images under
this isomorphism are independent.

A denotational semantics where denotations are transition systems with independence
can be presented along standard lines; the categorical constructions defined above are used
to interpret the operations.

We have already discussed the categorical constructions in TI which are used to in-
terpret the operations of the process language. It remains to handle recursion. We define
an appropriate ordering, with respect to which all the constructions are continuous:

Definition: Let T = (5,7, L,tran,I) and T" = (S5',¢, L', tran’, I') be transition systems
with independence. Define 7' Q 7" iff

SCS with:=1, L CL, tran Ctran’ and
V(s,a,s'),(t,b,t) € tran. (s,a,s)I(t,b,t") < (s,a,s)'(t,b,t).

Now, as earlier in section 2.3 for straightforward transition systems, we can give deno-
tations to recursively defined processes. The result is that with respect to an environment
p assigning meanings to process variables as transition systems with independence, we can
give the denotation of a process term ¢ as a transition system with independence

TI[t]p.

The denotational semantics agrees with the operational semantics. The proof proceeds
analogously to that of theorem 11. Firstly, the following uniqueness lemma is shown:

Definition: For T' = (5,1, L, tran, I) a transition system with independence, define R(T')
to be (S’,1, L', Tran', I') consisting of states S’ reachable from 7, with initial state 7, and
transitions Tran’ = TranN (S’ x L x S') with labelling set L’ consisting of those labels
appearing in Tran’ and independence relation I' = I N (Tran’ x Tran').

Lemma 75 If z is guarded in t then
T = R(TI[t]p[T/z] = T = R(TI[rec z.t]p),
for any environment p.

The proof of this fact is quite involved, and the details are shown in Appendix C (b).
The second stage is to show:

Theorem 76 Lett be a closed process term. Then
Op(t) = R(TI[]p),

for an arbitrary environment p.
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Proof: The proof is by structural induction on terms ¢, with free variables z, that for all
closed terms 5 chosen as substitutions for the variables 7,

Op(t[s/z]) = R(TI[t]p[Op(s)/z]).

The operational rules have been chosen to make the cases of the induction straightforward
for all but that of recursive processes—recourse is made to lemma 10 expressing acyclicity
of the transition relation got operationally. The verification of the case of recursion
proceeds as in the proof of theorem 11, relying on the uniqueness lemma 75 above ]

The denotational semantics in TT is closely related to that in £(A) which we write
as A[t]p, for a term ¢ and an environment p interpreting variables in £(A). There is an
obvious functor from £(A) to TI (it is not adjoint to that functor identifying a transition
system with idependence with an equivalent labelled asynchronous transition system).
On objects it acts as follows:

Definition: Let T = (S,:, E,I, Tran,l : E — L) be an object of L(A). Define u(T) to
be (5,4, L, Tran', I') where

(s,a,8") € Tran' < Je. l(e) = a & (s,e,s') € Tran
(s,a,8)I'(t,b,t") < Jeg,e1. l(eg) = a & l(e1) = b & (s,e0,5")I(t,e1,t).

Theorem 77 Let t be a term of the process language Proc. For any environment p
interpreting process variables in L{A),

TI[](u o p) = u(A[p).

Proof: The operation u can be shown to be continuous with respect to the orderings <
and to preserve the operations of Proc. A structural induction on terms ¢ of Proc shows
that ‘

TI[t](u o p) = u(Aft]p),
for an environment p interpreting variables in £(A). The case where ¢t is a recursive

process relies on the fact that if F' and G are continuous functions on (large) cpo’s TI
and L£(A) respectively, ordered by <, such that

Fou=uo(
then, because u is continuous and preserves the bottom element,
fizF = u(fizG) 1

As we will see, the coreflections between categories of unlabelled structures extend to
categories of labelled structures. In particular, this yields a coreflection between L(E)
and L(A). Because this coreflection cuts down to one between L(E) and TI it follows
that they induce the same semantics in labelled event structures.

Open problem: I suspect but don’t yet have a proof that the semantics in TI is equiv-
alent to one in terms of labelled asynchronous transition systems in Ay, and thus one
whose behaviour is induced by a net. Certainly the operation u does not stay within A,
in general (here TI is identified with its equivalent subcategory in £(A)).
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3.9 Relating models

Earlier in section 3.8.2, it was seen how to attach labels to events of structures in a uniform
way. In relating semantics in terms of the different models, we shall also wish to extend
functors between categories of models to functors between their labelled versions. For this
we use the fact that the functors of interest are accompanied by natural transformations,
so that a general scheme described in the following definition applies.

Definition: Let E¢ : C — Set, and Ep : D — Set, be functors (taking structures to

their underlying event sets).
Suppose F' : C — D is a functor and ¢ : Ep o F' — E¢ is a natural transformation
with morphisms in Set,q. Define the functor L(F, @) : L(C) — L(D) to act on objects so

(C,1: Ec(C)— B)— (F(C),lo¢c : Epo F(C)— B)

and on morphisms so
(£, 2) = (F(f), M)
where (f,\) : (C,1: Ec(C) — B) — (C",l': E¢(C") — B').

Under reasonable conditions the labelling operation £(—) preserves adjunctions, core-
flections and reflections:

Lemma 78 Let Eg : C — Set, and Ep : D — Set, be functors.

Suppose F': C — D is a functor and ¢ : Ep o F' — E¢ is a natural transformation.
Suppose G : D — C is a functor and v : E¢c o G — Ep is a natural transformation.
Suppose there is an adjunction with F' left adjoint to G, with unit n and counit c.

If, for any C € C,D € D,

1Eo(c) = ¢c 0 YRy © Ec(ne) and Ep(ep) = vp 0 $a(p), (1)

then the functors L(F,¢) : L(C) — L(D) and L(G,v) : L(D) — L(C) form a fibrewise
adjunction with L(F, ¢) left adjoint to L(G,~y) and unit and counit given as follows: the
unit at (C,1: Ec(C) — L) 1s (n¢,11); the counit at (D,l : Ep(D) — L) is (ep,11). If,
in addition, the adjunction between F' and G is a coreflection or reflection, then L(F, )
and L(G,~) form a coreflection or reflection respectively.

Proof: By [18] Theorem 2 p.81, the adjunction between C and D, is determined by the
functors F, G, the natural transformations 7, € and the fact that the compositions

G(D) 2, gFa(D) £k, G(D),
F(C) £lel, FGF(C) <22 F(C)

are identities. The condition (1) is sufficient to ensure that these facts lift straightfor-
wardly to the labelled categories and functors, determining an adjunction with unit and
counit as claimed. The unit and counit are vertical, making the adjunction fibrewise.
Given their form, they become natural isomorphisms if 5 or € are; the property of being
a coreflection or reflection is preserved by the construction.j
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This lemma enables us to transport the adjunctions that exist between categories of
unlabelled structures to adjunctions between the corresponding categories labelled struc-
tures. The role of the natural transformations is to relate the event sets of the image of
a functor to the event set of the original object. We are only required to check that the
natural transformations, tracking the functors in the labelling category Set,, relate well
to the unit and counit, in the sense of (1) above.

As an example we consider how to extend the coreflection between event structures
and trace languages to labelled versions of these structures using lemma 78. The role of
the natural transformations in the lemma is to relate the event sets of the image of a
functor to the event set of the original object, as can be seen by considering the functor

tle : TL — E.

Let Epp : TL — Set, be the forgetful functor from trace languages to their alphabets.
Let Eg : E — Set, be the forgetful functor from event structures to their sets of events.
A component of the counit of the coreflection between E and TL maps the events of a
trace language to its alphabet. It yields a natural transformation v : Fg o tle — FEgpp.
A trace language T = (M, A, I) with labelling [ : A — L can now be sent to the event
structure tle(T") with labelling lo~yr : £ — L. This extends to a functor L(tle,v) :
L(TL) — L(E). The functor et/ : E — TL does not change the set of events and we
associate it with the identity natural transformation 1 : Erp 0 etl — Eg. These choices of
natural transformations to associate with the functors et/ and tle ensure that condition
(1) of lemma 78 hold. To see this, we use the fact that

€c(k) © etl(nE) = Leu(m)

obtains for counit ¢ and unit 5 of the adjunction, for any £ € E. Thus applying the
functor Erp, we get

Err(ecumy) o Err(etl(ng)) = Ero(lous))-

But now, recalling how Erp and etl act, we see

€(E) ©NE = 1E,

i.e. that the first half of (1) holds. The remaining half of (1) reduces to an obvious
equality. We conclude by lemma 78 that

L(etl,1): L(E) — L(TL)

forms a coreflection, with right adjoint £(tle,v). The coreflection E — TL cuts down to
one E — TLg, which extends to labelled structures.

So, in particular, we can lift the coreflection between event structures and trace lan-
guages to labelled versions of these structures. In a similar, but much easier manner, we
can lift the adjunctions and coreflections

N A - coref TL, = coref E

coref coref

Ao
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to the categories of labelled structures. Lemma 78 requires that each functor is associated
with a natural transformation relating the events of the image to those originally. In most
cases the functors leave the event sets unchanged, which makes the identity natural trans-
formations the evident associates of the adjoint functors and the verification of condition
(1) of lemma 78 a triviality. One exception is right adjoint of the coreflection from TLg to
E, dealt with in section 3.8.2. Another is the functor nag : N — Ay which has the effect
on event sets of reducing them to those events which are reachable. Accordingly, when
extending this functor to labelled structures we take the natural transformation associ-
ated with nao to have components the inclusion of the events of nag(N) in those of a net
N. A straightforward application of lemma 78 lifts the coreflection between asynchronous
transition systems and nets to labelled structures. We obtain:

L(A) - coref £(TLo) coref L(E

Thus we can use the preservation properties of adjoints to relate constructions, and thus
semantics, across different categories of labelled structures.
It remains to relate the interleaving and noninterleaving models of concurrency. Recall

we have:
T <« s € L

In particular, when we move to the models with explicit independence, what is the ana-
logue of the reflection between languages and synchronisation trees? One analogue is a
reflection between Mazurkiewicz trace languages and labelled event structures. In this
case the alphabet of a trace language is to be thought of as consisting of labels (not
events), and to achieve the adjunction the event structures are labelled by sets with an
independence relation. More precisely, the labelling function sends concurrent events
to independent labels, and independence is respected by the morphisms, in forming the
category L1(E).

ref

S~

coref coref

Li(B) —_pp

The right adjoint of the reflection, regarding a trace language as a labelled event structure,
is provided by the representation theorem, theorem 31. The two left adjoints identify a
synchronisation tree with a labelled event structure, and a language with a trace lan-
guage; in both cases the original labelling set becomes a set with empty independence
relation. Details can be found in [40], an expanded version this account. Because objects
in TL possess an independence determined by the labels they are not so appropriate as
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denotations of processes like those described by the language Proc. As we have seen,
trace languages can be understood as very special pomset languages. A similar result,
but covering a wider class of pomset languages, appears in [30].

There are several candidates for the generalisation of transition systems: labelled
Petri nets, labelled asynchronous transition systems, transition systems with indepen-
dence. However there are not coreflections from transition systems T to the categories of
labelled nets or asynchronous transition systems. There are not for the irritating reason
that, unlike transition systems, these two models allow more than one transition with the
same label between two states. This stops the natural bijection required for the “inclu-
sion” of transition systems from being a left adjoint. One way to repair this is to extend T
to allow more than one transition with the same label between two states; there are then
coreflections to labelled Petri nets, labelled asynchronous transition systems, labelled Petri
nets, labelled asynchronous transition systems. Another way is to insist that labelled asyn-
chronous transition systems be extensional, by replacing them, for instance, by a suitable
category of transition systems with independence—see section 3.8.3. A pleasing picture
extending the reflections is obtained by choosing transition systems with independence
in which the labelling sets also carry an independence relation respected by the mor-
phisms. The category TI; consists of objects (S, 4, L, Tran, I, I) where (S, 1, L, Tran, Ir)
is a transition system with independence and I is an independence relation on L, with
the property that if two transitions are independent according to It then then their labels
are also independent according to I. An event structure in £;(E) can be identified with
such a transition system; its transitions are z —*— z’ where * —%— z’, for a pair of
configurations z,z’ and an event e labelled by a. (More details are to be found in [40].)

T coref S- ref L
coref coref coref
T, < r(E) —r
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Chapter 4

Notes

Labelled transition systems were studied early by Keller in [?]. The use of labelled tran-
sition systems is central to the work on CCS [22], processes of which are first given
a semantics as labelled transition systems on which equivalences, like bisimulation, are
then defined. The labelled transition systems are defined in a syntax directed way using
Plotkin’s structural operational semantics [25]. CSP and its theoretical variant TCSP
have most commonly been attributed with a failure-set semantics. However this can be
regarded as an equivalence on a more basic labelled-transition-system semantics (as has
been done, for example, in [6, ?]). They can also be used in the semantics of languages
with value-passing such as OCCAM (see e.g. [?]). The “partial simulation” or “refine-
ment” morphisms we define on transition systems seem to have been discovered several
times. Their relevance to languages like CCS and CSP was first pointed out in [34]. Here
we have assumed each transition system has one and only one initial state. A similar
theory can be developed with a set of initial states, the interpretation being that initially
one and only of the initial states holds, though it is not determined which (a notable
difference is that then the coproduct amounts to just disjoint juxtaposition).

Synchronisation algebras were used largely for the purpose of generality in [32]. They
can be regarded as generalising Milner’s monoids of actions [?] by allowing asynchrony
between processes (however, here we are on sticky ground, as Milner’s monoids are open to
different interpretations). A similar idea appeared independently in the work of Bergstra
and Klop [?].

Synchronisation trees appeared early on in the work of CCS [21]. We use the term in
a more general sense, of trees in which arcs are labelled by actions which may be, but are
not exclusively, CCS actions.

It is fairly common to see languages, or sets of sequences of states, used to give
semantics to parallel processes. The expression “Hoare traces” often turns up in this
context stemming from Hoare’s article [10] though the idea did not originate there, for
example appearing in the early work on path expressions [17].

One omission from our categorical explication of models is a treatment of hiding,
in which certain specified actions are made internal. In the case of languages, such an
operation of hiding is achieved by Ai; even when A is partial, and taken to be undefined
on the actions to be hidden, it has cocartesian liftings. But this operation does not
seem to capture hiding correctly on the branching structures of transition systems and
synchronisation trees. Prefixing might also be expected to play a deeper role categorically
than it does at present.
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An early reference for Mazurkiewicz traces is [?], though the material can also be found
in [20]. Mazurkiewicz traces are generally defined a little differently. In particular it is
not usual to insist on the coherence axiom in their definition. As remarked, Mazurkiewicz
traces correspond to labelled partial orders of events, christened pomsets (partially or-
dered multisets) by Pratt (though note that far from all pomsets can be obtained in this
way). Consequently Mazurkiewicz trace languages correspond to special kinds of pomset
languages (see [?], [?] for a characterisation).

Event structures were introduced in [24] and their theory developed, including the
modelling of higher types in [31] (representing Berry’s bidomains [5]). Event structures can
have a general, and not just a binary conflict, so they represent precisely the dI-domains of
Berry (not just the coherent ones)—see e.g. [37]. Event structures bear the same relation
to dI-domains as do information systems to Scott domains. The characterisations of the
domains of configurations as prime algebraic appear in [24] and [31], and the realisation
that prime algebraicity amounts to precisely distributivity in [38], [33]. The difficulty
in defining operations like products and parallel compositions on event structures of the
form (F, <,+#) has encouraged the use of more general event structures with which it
is easier to give semantics to parallel programming languages, or even languages with
higher types (see [37, 38]. Provided the more general event structures have dI-domains
as domains of configurations an event structure of the form (FE, <, #) can always be
extracted. This line has been followed in [32, 37, ?]. The method is similar to that
of using another model like trace languages, asynchronous transition systems or Petri
nets to give a semantics, from which an event-structure semantics is then induced by the
coreflection. The first event-structure semantics of TCSP appears in the masters’ thesis
of Fogh [?], under supervision of Nielsen. Event-structure semantics for CCS/TCSP-like
languages was made systematic in [32], which exploited a new definition of morphism—
that which appears here. A variation on the idea appears in the “flow event structures”
of Boudol and Castellani [?]; however in order that parallel compositions can be defined
correctly within them requires an extra axiom [?], the preservation of which necessitates
an unusual treatment of restriction, one where the events to be restricted away are made
self-conflicting instead of removed.

The relationship between event structures and Mazurkiewicz trace languages seems
first to have been made explicit in [?]. However, the proof of the representation theorem
here appears to be new. The coreflection from event structures to trace languages is
shown in [4].

The study of pomsets as a model of computation has been most famously advocated by
Pratt in a series of papers beginning with [27]. Labelled partial orders of events appeared
earlier in the study of concurrency (e.g. [?], [?]). The relation between pomsets and
Mazurkiewicz traces is studied in e.g. [?] and [?]. More on the categorical relationship of
pomsets to the models here can be found in [30].

A good reference on Petri nets is [1]. The version of Petri nets we describe can be
found in the paper [20] of Mazurkiewicz. They are more general than condition-event
systems because they allow an event to occur even when there is a condition which is
simultaneously a pre and post condition. There is a well-known technique known as
“complementation” for making a non-safe net safe. It is interesting that this construction
comes out of the adjunction between nets and asynchronous transition systems. There are
several versions of morphism on nets in the literature, some more deserving of attention
than others. The original definition by Petri [?] seems to have been motivated by graph-
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theoretic considerations—Petri’s morphisms do not respect the behaviour of nets. One
limitation of the morphisms of nets used here is that they do not allow all of the folding
maps (e.g. from an unfolding to the original net) one might like. A solution is to take
morphisms in which the relation between conditions is more general than the opposite of
a partial function. It appears, though has not yet been checked, that the coreflection here
generalises to safe nets when £ is a relation [37, 36]—in addition to the reachability and
separation axioms asynchronous transition systems are further required to satisfy

erley = s, 51, 82. (s,e1,51), (s, e2,52) € tran

(independence means concurrency), while in forming the left adjoint, conditions of an
asynchronous transition are taken to be connected subsets of transitions (with idling
transitions). To some extent the ideas presented here generalise to nets in which events
can fire and markings hold with multiplicities [39], though at present it is not known
how to link up with other models via adjunctions. Recently categories of Petri nets have
been shown to form a model of Girard’s linear logic, offering an interpretation of the
logical operations of linear logic as operations on nets and of proofs as kinds of simulation
morphisms like those here (see [?]).

Asynchronous transition systems are due to Bednarczyk [4] and Shields [28] who dis-
covered them independently. Bednarczyk’s thesis [4] contains the definition of the cate-
gory of asynchronous transition systems and the coreflections with event structures and
Mazurkiewicz traces. As has been pointed out when presented as transition systems with
independence, they are amenable to the same techniques (e.g. definition by structural
operational semantics) as ordinary transition systems. Alternatively, asynchronous tran-
sition systems can be arise directly through operational semantics, but where instead of
just labels, transitions carry more complicated information from which event names and
independence can be extracted (see [?, 19] for two examples of this approach). The use of
asynchronous transition systems in semantics is often less clumsy than that of nets, which
can be extracted afterwards via the adjunction with nets—though sometimes care must
be taken to show that the constructions used stay within Ay. They are a special case
of the “geometric” transition systems proposed by Pratt in [?]. The adjunction between
asynchronous transition systems and nets is new. It can be viewed as a extension of the
adjunction between elementary nets and elementary transition systems in [7].
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Appendix A

Fibred categories

Our presentation relies on some basic notions from fibred category theory originating in
the work of Grothendieck [?], and Bénabou [2].

Definition: Let p: X — B be a functor.

A morphism f : X — X' in X is said to be cartesian with respect to p if for any
morphism ¢ : ¥ — X’ in X such that p(g) = p(f) there is a unique morphism h : Y — X
such that p(h) =1 and foh =g.

A cartesian morphism f : X — X’ in X is said to be a cartesian lifting of the morphism
p(f) in B with respect to X'.
Say p: X — B is a fibration if

e every morphism A : B — B’ in B has a cartesian lifting with respect to any X’ such
that p(X’) = B’, and

e any composition of cartesian morphisms is again cartesian.

A morphism f: X — X' in X is said to be vertical if p(f) = 1,(x).

Often p is called the projection, B the base category, and each subcategory p=!(B) of
X, which is sent to the subcategory consisting of the identity morphism on an object B
of B, the fibre over B.

A fibration can also be presented a little differently. A morphism f: X — X’ in X is
said to be strong cartesian with respect to a functor p : X — B ifforanyg:Y — X' in X
and morphism A : p(Y') — p(X) in B for which p(f)oA = p(g) there is a unique morphism
h:Y — X such that p(h) = A and foh = g. It is not hard to show that strong cartesian
morphisms compose and that any strong cartesian morphism is cartesian. Moreover in a
fibration any cartesian morphism is strong cartesian (again not hard to show). Hence a
fibration can alternatively be defined as a functor p : X — B for which each morphism
in the base category possesses a strong cartesian lifting (without needing the further
requirement that cartesian maps compose).

Definition: Let p : X — B be a functor. It is a cofibration if p°? : X? — B% is a
fibration. A morphism f : X — X’ in X is said to be cocartesian with respect to p if
f°P is cartesian in the fibration; the morphism f is a cocartesian lifting of p(f). (Call
f strong cocartesian if f° is strong cartesian.) We say p is a bifibration if it is both a
fibration and cofibration.
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The fibrations and cofibrations we consider come equipped with a particular choice
of cartesian and cocartesian liftings. In more detail the fibrations p : X — B will be
such that, for any A : B — B’ in B and X’ € p~!(B’) there will be defined a specific
construction A*(X’) and cartesian lifting ¢(A, X’) : A*(X’) — X’ of A. Such a function
c making a choice of cartesian liftings for a fibration is called a cleavage. The fibration
ensures that two cleavages are the same to within vertical isomorphism; if ¢()A, X’) and
(X, X') are two choices for the cartesian lifting of A with respect to X’ then there is a
unique vertical isomorphism @ such that ¢/(A, X') = ¢(\, X") 00. A cleavage for a fibration
specifies a functor between fibres extending the construction A* on objects. The functor
X p~Y(B') — p~}(B) for each morphism A : B — B’ is defined as follows:

Let ¢’ : X, — X| be a morphism in the fibre p~!(B’). The cleavage specifies cartesian
morphisms

c(A, Xp) : A*(Xg) — X and (A, X7) = A (X)) — X].
As the morphism ¢(), X7) is cartesian, the composition ¢’ o ¢(A, X§) factors as ¢(A, X{)og
for some unique g : A*(Xo) — A*(X1), such that p(¢g) = 1. We extend \* to act on
morphisms like ¢’ by taking A\*(¢’) = ¢. It can be checked that we obtain a functor in this
way.

Establishing that a functor is a fibration can be aided by the following observation,
which is not hard to show: a functor p: X — B is a fibration with cleavage c if ¢(A, X")
is cartesian for A : B — B’ in B and X’ € p~!(B’) and moreover that the composition
of cartesian morphisms given by ¢ is cartesian (the composition need not however be
precisely that cartesian lifting given by c).

Similarly, a cofibration p : X — B with an explicit choice of cocartesian liftings
d(X,)) : X = M(X), for a morphism A : B — B’ in B and object X € p~1(B), yields a
functor A : p~1(B) — p~1(B’) extending the construction \i(X) on objects X. In general,
a function like d providing a choice of cocartesian liftings will be called a cocleavage of
the associated cofibration. For any A : B — B’, the cofibration p and its cocleavage d
determine a functor A : p~!(B) — p~!(B’) which acts on morphisms as follows:

There are cocartesian morphisms

d(Xo,/\) . XD - /\I(Xo) and d(Xl,)\) : X1 — /\I(Xl)

As d(Xo,\) is cocartesian, any morphism ¢ : Xo — X; in p~!(B) determines a unique
morphism ¢’ : M(Xo) — A(X;) in p~'(B’) such that d(X1,)) 0 g = ¢’ 0 d(Xo,A). This
morphism ¢’ we take as the value of Ai(g). In showing that a functor p : X — B is
a cofibration with cocleavage d it is sufficient to show that d(X,)) is cocartesian for
A: B —, B'in B and X € p~}(B) and moreover that the composition of cocartesian
morphisms given by d is cocartesian.

It follows from the next result, that the two functors A and A* between fibres, arising
from a morphism A in the base category of a bifibration, are adjoint to each other.

Lemma 79 Suppose p : X — B s a bifibration. Let A : A — B be a morphism in B.
Functors Ay : p~'(A) — p~}(B) determined by a cocleavage for p and \* : p™'(B) —
p~1(A) determined by a cleavage for p form an adjunction between fibres in which A is
left adjoint to A*.

Proof: Assume p: X — B forms a bifibration, i.e. it is simultaneously a fibration and
cofibration. Let A : A — B be a morphism in the base category B.
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Let X € p~}(A) and Y € p~}(B). Write 7 : \*(Y) — Y for the cartesian lifting of A
with respect to Y given by the cleavage for the fibration. Write [ : X — A (X) for the
cocartesian lifting of A with respect to X given by the cocleavage for the cofibration.

Given a vertical morphism f : AMi(X) — Y, the fact that r is cartesian entails the
existence of a unique vertical morphism ¢(f) : X — A*(Y') such that

rod(f)=fol.

The additional fact that [ is cocartesian ensures ¢ is a bijection from morphisms \(X) —
Y in p~1(B) to morphisms X — A*(Y) in p~*(A).

To show A is left adjoint to A\* we require that the bijection ¢ satisfies the following
naturality conditions (see [18] p.79):

(i) d(ko f) = A"(k)o¢(f), (i) ¢(f o M(h)) = ¢(f) o h,

forall f: M(X)—=Y,k:Y —>Y inp(B)and h: X' — X in p~1(A).
In showing (i), let ' : A*(Y’) — Y’ be the cartesian lifting of A with respect to Y’
given by the cleavage. From the definition of the functor \* we see

r'oX*(k)=kor.

From the definition of ¢, we see

rog(f)=fol

Hence
r"o(MN(k)o¢(f) =korod(f)=Fkofol
Furthermore, A*(k) o #(f) is vertical because both A*(k) and ¢(f) are. But ¢(ko f) is

defined to be the unique vertical morphism such that
r'odlkof)=kofol
Hence ¢(k o f) = A*(k) o ¢(f), so fulfilling (i).

The argument for (ii) is analogous. Let I’ : X' — A(X') denote the cocartesian lifting
of )\ given by the cocleavage. From the definition of A as a functor, we get

M(R)ol'=1loh
From the definition of ¢, we have

ro¢(f)=fol.

Combining these facts we obtain

ro(¢(f)oh)= foloh=(foA(h))ol

Clearly ¢(f) o h is vertical. The definition of ¢ characterising ¢(f o A;(h)) as the unique
vertical morphism ¢ such that r o g = (f o A{(h)) o I’ implies the naturality condition (ii).
We conclude that A is left adjoint to A*. |1

Suppose p : X — B is a fibration. The following result shows how products in X are
related to fibre products (i.e. products in a fibre). Say a category has I-products, for a
set I, if it has all products of size I.
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Lemma 80 Assume p : X — B is a fibration. Assume the base category B and the
fibres p~(B), for B in B, have I-products. Assume functors \* : p~*(B') — p~'(B), for
A: B — B’ in B, determined by a cleavage for p, preserve products. Then the category
X has I-products given in the following way:

Let X; € p™Y(B;) fori € 1. Let B,\; : B — B; fori € I, be a product in B. Let
¢ @ ANX;) — Xi be the cartesian liftings of A; given by the cleavage. Let X, q; where
i € I, be a product of the objects \}(X;), where 1 € I, in the fibre p™*(B). Then X, ¢;0q;
fori €1, is a product in X.

Proof: Under the assumptions stated, we prove that X with projections ¢; 0 ¢;, for: € I,
is a product.

Suppose X' € p~!(B') and f; : X' — X, are morphisms in X for all ¢ € I. Projecting
to the base category we obtain a family of morphisms p(f;) : B’ — B;, fori € I, in B. As
B, )\; where1 € I, is a product in B there is a unique A : B’ — B such that

p(fi) = Ao A

for all ¢ € 1.
Associated with A are the cartesian liftings

d; s NAH(X;) = A(X;) forie ]
and
d: (X)) - X

specified by the cleavage of the fibration. For all ¢ € I, the definition of how A* acts on
morphisms gives

di o A*(qi) = giod. (1)

For each 1 € I the composition ¢; o d; : A*X;(X;) — X, of cartesian morphisms is itself
cartesian. Hence for each 7 the morphism f; factors as

cod;o fl=f; (2)
for a unique vertical morphism f! : X’ — A*A*(X;). But, by assumption A\* preserves
products so M*(X) with projections A*(¢;), for ¢ € I, is a product in p~'(B’). Thus there
is a unique morphism f’: X’ — A*(X) in p~!(B’) such that

AN(gi)o ['=fi (3)
for all € I. Hence we obtain a morphism f = do f': X’ — X for which

c;ogof=coqgodof by definition
=c;0d; 0o X (g)o f by (1)
=cod;of! by (3)
=fi  by(2)

for all z € 1.
Indeed morphisms ¢ : X' — X are uniquely determined by the property that

ccogog=1fi forall €1 (4)




103

Assume g satisfies property (4). As d is cartesian, g factors as
g=dog (5)
for a vertical ¢’ : X' — A*(X). Now, for each ¢ € I,

ciodio(AN(g)og)=ciogodoyg by (1)
=ciogog by (5)
=fi by (4)

But recall (2) which says: for each ¢
c;odiofi=f; (2)

for a unique vertical morphism f! : X' — A*A*(X;). Hence A*(¢;) og’ = f! for all i € I.
The fact that A*(X), A*(¢;) for 7 € I, is a product in p~(B’) ensures ¢’ = f’ and so that
g=1

We conclude that X, with projections ¢; 0 ¢; for ¢ € I, is a product in X. This case is
typical and shows that X has products generally. ||

There is of course a dual result for coproducts and a cofibration.
We are also concerned with functors F' : X — Y between fibrations p : X — B and
g :'Y — B. The functors will preserve the base category in the sense that

go F' =p.

Such functors are said to be cartesian when they preserve cartesian morphisms. As
the next lemma shows, this property will be automatic for right adjoints of fibrewise
adjunctions, i.e. those which cut down to adjunctions between fibres over common objects
in the base category. A dual result holds for left adjoints and cofibrations.

Definition: Suppose p: X — B and ¢ : Y — B and that functors L : X — Y and
R:Y — X form an adjunction with L left adjoint to R. The adjunction is said to be
fibrewise, with respect to p and ¢, iff go L = p and po R = ¢ and each component of
the counit ey : LR(Y) — Y is vertical, for Y € Y, i.e. ¢(ey) = 1lyy) (or equivalently,
components of the unit are vertical).

Lemma 81 Suppose p : X — B and ¢ : Y — B and that functors L : X — Y and
R:Y — X form a fibrewise adjunction with L left adjoint to R. Then the right adjoint

R preserves strong cartesian morphisms, and cartesian morphisms.

Proof: We only show strong cartesian morphisms are preserved—showing the preserva-
tion of cartesian morphisms is similar.

Suppose f : Y — Y’ is strong cartesian and ¢(f) = A : B — B’. We need that
R(f): R(Y) — R(Y") is strong cartesian over p(R(f)) = A. Let ¢’ : X — R(Y") be such
that p(¢') = N :B” — B"and X = Ao X" for A" : B” — B. We are required to show

Ag": X - RY). p(¢")=N"& ¢ = (R(f)) o g". ().
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Let

¢: LR(Y)—Y and €¢:LR(Y') - Y’

be components of the counit of the adjunction. Consider the morphism ¢ o (L(g')) :

L(X) —Y'. Wehave
g(¢' o (L(g"))) = q(¢) 0 ¢(L(g")) = 1p o p(g') = A"
As f: Y — Y' is strong cartesian there is a unique k : L(X) — Y with ¢(k) = A\ and
fok=¢o(Ly)).
Now by the cofreeness of ¢ : LR(Y') — Y, there is a unique ¢” : X — R(Y’) such that
co (L(g") = k.

Also
p(g") = ¢L(g") = 15 0 (¢L(g")) = q(eo (L(g"))) = q(k) = X".

From the naturality of the adjunction we have
o (LR(f)) = f oe.
Using this fact we obtain
€ o L((R(f)) 0 g") =¢' o (LR(f)) o (L(g"))

=foeo(L(g")
=f (o] k
=€ o (L(g))-
But € : LR(Y)' — Y is cofree, so by the accompanying uniqueness property we get
g = (B(f))og".

Thus we have fulfilled the existence part of the requirement ().
To show uniqueness, assume also that

g1: X = R(Y) & p(g1) = X" & ¢' = (R(f)) 0 91.

Then
€o(L(g")) =€ o L(R(f)ogq)
=€ o (LR(f)) o (L(¢1))
=foeo(L(g1)) by naturality of the adjunction.
Recall
¢o(L(g)) = fok=foeo(L(g").
Thus

fol(eo(Lgr))) = foleo(L(g"))

But f is strong cartesian so € o (L(g1)) = € o (L(g")). Finally by the cofreeness of ¢ we
obtain g; = ¢, as required for the uniqueness part of (). I
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Note that lemma 81 does not state that the left adjoint L preserves cartesian mor-
phisms. Nor does it entail that the right adjoint R preserves cocartesian morphisms, and
these are not true in general. For instance, they do not hold for the coreflection between
synchronisation trees and transition systems.

In the case where the adjunctions form coreflections (or reflections) there are further
useful results. Recall, for us a coreflection is understood to be an adjunction in which the
unit is a natural isomorphism. We state the results only for coreflections, though we will
occasionally refer to the dual results for reflections.

Lemma 82 Suppose p : X — B and ¢ : Y — B and that functors L : X — Y and
R:Y — X form a fibrewise coreflection with L left adjoint to R. Let f : X — X' be a
morphism in X. If L(f) is strong cocartesian (respectively cocartesian) with respect to q
then f is strong cocartesian (respectively cocartesian) with respect to p.

Proof: We show that L reflects cocartesian morphisms—the proof that it reflects strong
cocartesian morphisms is essentially the same.

Let f: X — X' be a morphism in X. Assume L(f) is cocartesian with respect to
g. In order to show f is cocartesian assume f' : X — X" is a morphism of X for
which p(f') = p(f). Because L(f) : L(X) — L(X') is cocartesian there is a unique
g:L(X")— L(X")in Y such that

go L(f) = L(f").
We require the existence of a unique 2 : X’ — X" in X satisfying

hof=f". (1)
Suppose h : X' — X" in X satisfies h o f = f'. Then
L(h)o L(f) = L(f")
where
L(h) =g,

by the cocartesian nature of L(f). Because of the unit of the adjunction is a natural
isomorphism, say with components

n': X' - RL(X"),
77// . X/I N RL(X”)’

we see
n"oh=RL(h)on = R(g)on
and so
h=n"""0oR(g)or"

Thus supposing A : X’ — X" in X satisfies ho f = f" implies b = n"~1 0 R(g) o ’. This
ensures the uniqueness of h satisfying (f). Moreover, taking k to be 5”"! o R(g) o n’ it
follows from the unit being a natural isomorphism that () holds.]
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The next result is useful for pulling the property of being a fibration or cofibration
across an coreflection from X to Y. It describes how to construct cartesian and cocartesian
liftings in X from those in Y. The lemma and its proof apply equally well to cartesian
and cocartesian, or strong cartesian and cocartesian morphisms.

Lemma 83 Suppose p: X — B and ¢ : Y — B and that functors L : X — Y and
R :Y — X form a fibrewise coreflection with L left adjoint to R. Let n and € be the
unit and counit respectively of the adjunction. Let the map f — f from morphisms
f:LX)—=Y inY to morphisms f : X — R(Y) in X be the natural bijection of the
adjunction.

(1) If q is a fibration then so is p. Moreover, if ¢ : Y — L(X) is a (strong) cartesian
morphism with respect to q, then d =4¢5 % 0 R(c) : R(Y) — X 1s (strong) cartesian with
respect to p; the (strong) cartesian morphism d is the unique morphism R(Y) — X such
that L(d) = coey.

(2) If q 1s a cofibration such that for all (strong) cocartesian morphisms L(X) — Y with
respect to q, for X € X, Y € Y, the component ey : LR(Y) — Y is an isomorphism then
p is a cofibration. Moreover, if ¢ : L(X) — Y is (strong) cocartesian with respect to g
and ¢y : LR(Y) — Y is an isomorphism then ¢ : X — R(Y') is (strong) cocartesian with
respect to p.

Proof: (1) If ¢: Y — L(X) is (strong) cartesian such that ¢(c) = A, then by lemma 81,
R(c) : R(Y) — RL(X) is (strong) cartesian with respect to p : X — B. But nx : X =
RL(X), the unit of the coreflection at X is a vertical isomorphism, so the composition
d =aqes Nx%' © R(c) : R(Y) — X is a (strong) cartesian morphism such that p(d) = A.
The alternative characterisation of d follows from the coreflection. From the adjunction
we have erx) o L(nx) = lpx). But the adjunction is a coreflection, making nx an
isomorphism, so er(x) = L(nx'). Thus

L(d) = L(nx") o LR(c) = erx) o LR(c).
However, as ¢ is a natural transformation,
erx) 0 LR(c) = coey.

Because of the coreflection, L is faithful (and full) so d : R(Y) — X is unique such that
L(d) = CO¢y.

Assume that ¢ is a fibration. Let A : B — B’ be a morphism in the base category B.
Let X € X with p(X) = B'. As ¢1is a fibration, there is a is strong cartesian ¢ : ¥ — L(X)
such that g(c) = A. As above, there is a strong cartesian morphism d : R(Y) — X with
p(d) = A. Hence p: X — B is a fibration.

(2) Let X € X, Y € Y have the property that

c: L(X)—-Y
is (strong) cocartesian with respect to ¢q. The counit at Y,
ey : LR(Y)=2Y
is assumed to be a vertical isomorphism. By cofreeness, there is a unique morphism

¢: X — R(Y)
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in X such that
c=c¢€o L(¢).

But then L(¢) = ey’ oc a composition of a vertical isomorphism with a (strong) cocartesian
morphism. Hence L(é) is itself (strong) cocartesian. Now by lemma 82 it follows that ¢
is (strong) cocartesian too.

It follows that if ¢ is a cofibration such that for all (strong) cocartesian morphisms
L(X) — Y with respect to ¢ the component ey : LR(Y) — Y is an isomorphism then p
is a cofibration.}
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Appendix B

A basic category

We shall work with a particular representation of the category of sets with partial func-
tions. Assume that X and Y are sets not containing the distinguished symbol *. Write
f:X —,Y for afunction f: XU {*} — Y U{*} suchthat f(x) = . When f(z) = *, for
r € X, wesay f(z) is undefined and otherwise defined. We say f : X —. Y is total when
f(z) 1s defined for all z € X. Of course, such total morphisms X —, Y correspond to the
usual total functions X — Y, with which they shall be identified. For the category Set,,
we take as objects sets which do not contain *, and as morphisms functions f : X —, Y,
with the composition of two such functions being the usual composition of total functions
(but on sets extended by *). Of course, Set, is isomorphic to the category of sets with
partial functions, as usually presented.

We remark on some categorical constructions in Set,. A coproduct of X and Y in
Set, is the disjoint union X WY with the obvious injections. A product of X and Y in
Set, has the form X x,Y =

{(z,#) |z e X}U{(x,y) [y eY}U{(z,y) [z € X,y €Y}

with projections those partial functions to the left and right coordinates.
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Appendix C

Operational semantics—proofs

Here we provide the proofs required in showing the equivalence between the denotational
and operational semantics of the process language in terms of transition systems of sec-
tion 2.3 (part (a)) and, by a slightly more general argument, section 3.8.3 (part (b)). Both
parts rely on acyclicity of the transition relation got via the operational semantics.
Lemma 10 For any closed tagged term ¢, the transition system Op(t) is acyclic.

Proof: We show this by mapping tagged terms ¢ to | ¢ | in a strict order < (an irreflexive,
transitive relation) in such a way that

tSu&aZxs=>|t|<lul. (1)

It then follows that —* is irreflexive.

Define <C w X w by taking (m,n) < (m/,n') & m<m'or (m=m'&n >n'). (In
other words < is the lexicographic combination of < and > on integers.) The relation <
is a strict order. For ¢ a closed tagged term, define

| t |= (tag(t),size(t))

where the functions tag and size are defined by the following structural inductions:

tag(nil) = tag(z)=0 size(nil) = size(z) =0

tag(at) = tag(t) size(at) = 1+ suze(t)

tag(to® t1) = min(tag(to), tag(ty)) size(to®ty) = 1+ size(to)+ size(tr)
tag(to X t1) = tag(to) + tag(t1) size(to X t1) = 1+ size(lo) + size(tr)
tag(t t A) = tag(t{Z}) = tag(t) size(t 1 A) = size(t{Z}) = 1+ size(t)
tag(recz.t) = tag(t) size(recz.t) = 14 size(t)

tag((l,t)) = 14 tag(t). size((n,t)) = 14 size(t)

The rules for operational semantics can be shown to preserve property (1) above, which
hence holds of all derivable transitions. For example, considering the rule for recursion,

assume
| tfrecz.t/z] | < | t']|.

holds of the transition t[rec z.t/z] % t' in its premise if a # *. It follows that
tag(tlrec z.t/z] < tag(t').
Clearly tag(t) < tag(t[rec z.t/z]) so

tag(rec z.t) = tag(t) < | + tag(t') = tag((2,t)).
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Hence
|recz.t| < |(2,t)].

holds of the transition rec z.t = (2,¢').}

(a). A uniqueness property of guarded recursions in
T

The proof rests on the definition of a family of functors (—)®*), for k € w, “projecting”
a transition system to the transition system consisting of that part reachable within &
steps.

Definition: Let T' = (S,1, L, tran) be a transition system. Define T'*) to be (5',1, L', tran’)
where S’ is the subset of states S reachable by & or less transitions from ¢, Tran’ is the
subset of transitions Tran which are reachable by k or less transitions and L’ is the subset
of labels a € L for which there is a transition (s, a, s’) € tran’.

Let f = (o,)) : Ty — Ty be a morphism of transition systems. Define f*), for k € w,
to be (o', \') where o’ is the restriction of o to the states of T{¥ and X' is the restriction

of A to the labels of To(k).

Lemma 84 Suppose T, are transition systems for n,m € w with the property that
Tom I T when n < n' and m < m'.
Then the set {Tpm | n,m € w} has a least upper bound

U Tom=U(U Tom) = U (U Tom) = U Tnn.

n,mew nEw mew meEw nEw nEw
Proposition 85

1. For each k € w,(—=)® is a functor on the category T of transition systems; it
restricts to an endofunctor on the subcategory where all morphisms are monics.

2. Let T be a transition system. Then T®) Q T, fork € w. If k < [ then TH 9 7O,
For k,l € w, (T") = Tmin(kd) - Recalling the operation R of section 2.3, taking
the reachable part of a transition system, we have

R(T) = |J TW.

k€w
3. The operations (—)*), for k € w, and R are continuous with respect to <.

Proof: (1) As morphisms preserve or collapse transitions, it follows that a morphism
f : Ty — Ty restricts to a morphism f®*) : Ték) — Tl(k). The operation (—)) clearly
preserves identities and composition. It is easily checked that these facts also hold when
restricting attention to monomorphisms.

(2) is obvious.

(3) From the definition of (—)®), for k € w, it is easily seen that it is continuous. To
show R is continuous suppose

To<d---QAT, .-
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is a chain of transition systems. Then

R(UnTrn) = Ur(UnT0)® by the definition of R
= UsU. T by continuity of (=)
= U, U T, by lemma 84
= U, R(T%) by the definition of R.1

Say an operation F' on transition systems is definable if it acts on 7" so that
F(T) = T[t]p[T /<]

for some choice of process term ¢ and variable z. Any operation F' definable in the process
language is <J-monotonic and continuous and has the property that

(F(T)® = (F(TW))®. (1)
This follows by structural induction from facts such as
(T x U)(k) = (T(k) X U(k))(k)

about the basic operations. A prefixing operation a(—) has the stronger property that,
for k > 0,
(a(T)® = (ao(T*))H).

It follows that an operation F' defined by a guarded recursion satisfies

(F(T))W) = (F(TED))® (2)

for k¥ > 0. All the operations extend to functors with respect to monomorphisms on
transition systems. These facts extend to morphisms. A functor F' defined by a guarded
recursion has the property that

(F()H® = (F(FHD)® (3)

on monomorphisms of transition systems f.

Definition: We will call a functor F' on the category of transition systems with monomor-
phisms guarded when it satisfies (2) and (3) above.

Now we can complete the proof of lemma 9:
Lemma 9 If F' is defined from a guarded recursion we have:

T =RoF(T)= T = R(fiz(F)).

Proof: Any functor definable in the process language is <d-continuous. In particular, we
remark that such a guarded F' has the property that

(fiz(F))™ = (FH1))™ (4)
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for all k,n € w for which k > n. This is obviously so for n = 0 when (fiz(F))° =1 =
(F*(I))©, where I is the transition system consisting of a single initial state. Assume (4)
as induction hypothesis. We deduce, assuming k > n + 1, that

(FRD)D = (F(FFY(I)))+D
= (F((F¥YI))™))+1)  as F is guarded
= (F((fiz(F))™)+)  from the induction hypothesis as k —1 > n
= (F(fiz(F)))n+D) as F'is guarded
1),

= (fiz(F))*

We conclude (4) holds for general n € w, with & > n, by induction.
With the help of an observation we can simplify the proof notationally. For an oper-
ation F' definable in the process language

RoF=RoFoR. (5)
To see this, reason, for an arbitrary transition system 7', that

RoFoR(T) = RoF(UpT®) by definition of R,

Uk R o F(T™%) by continuity of R and F|
Ue U (F(T®))(™ by definition of R,

Uk (F(T®))®) by lemma 84

G(EI)® by ()

Ro F(T) by definition of R

Il

il

Il

It follows that

R(fiz(F)) = R(Un F"(1))

U. R F(I)

Un(R o F)"R(I) by repeated use of (5)
Un(R o F)™(I)

= fiz(RoF).

1l

Hence, writing G = R o F, we can restate the goal of our proof (in the statement of the
theorem) as

T~GT) =T fiz(G) (1)

where we have G is <-continuous and guarded (i.e. satisfies (2) and (3)), because these
properties are assumed of F' and inherited by G.
To prove (1), assume T = G(T') and let

0:GT)=T
name the isomorphism. It is also convenient to let u be the unique morphism
u:l —T.

By induction on u we show

(G™ ()™ (GMD))™ — (G(T))™
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is an isomorphism. The basis case amounts to showing u(®) : I©© — T'©) is an isomorphism
which is trivially so as each transition system consists only of a single initial state. Notice

that
G @) = (GG (w))
= (G((G™(u))M))m+D),

because G is guarded. From the fact that G and (=) are functors and so preserve
isomorphism, we now see that (G (u))("+1) being an isomorphism follows inductively
from (G™(u))(™ being an isomorphism.

Let 6, be the isomorphism

(06 G(8) 0+ 0 GE=(0)) : GMT) - T
for n € w. The fact that (=) is a functor ensures (™ is also an isomorphism
G"(T)(”) — T

for n € w. As remarked in (4) above, (fiz(G))™ = (G™(I))™). Thus we obtain isomor-
phisms

bn =des (0n 0 (G™M(w))™ : (fiz(G))™ — T™
for n € w. These are consistent in the sense that
¢n = ¢§le21}

for n € w, as we will now show.
Let j be the monomorphism associated with I <IG(I). Applying G™ followed by (—)™,
we obtain an inclusion morphism

(G (5)™ = (Gm (1) — (G™H(1))™.

But now by (4),
(@GN : (fiz(G)™ — (fiz(G))™

which being an inclusion morphism must be the identity, i.e.

(Gn(j))(n) - l(fix(G))(ﬂ)-

Certainly we have

u=00G(u)oj,
which may be depicted by the following commuting diagram:

I % T
7l 16
an Y G

Hence, for n € w, applying the functors G* and (~)™ | we obtain

(@ (@) =(G O o (G™+(w)™ o (G*())
(@O o (G (w))™

f
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It follows that

bu = (6n0 Gr(u)™
00+ 0 GU=D(0) o (G7(9))(") o (G ()"
)

(041 0 G (w))(**+D)(™) by proposition 85

I
N N N

|
©-
3
+
—

It follows that
¢ = U én

new

is an isomorphism fiz(G) — T']

(b). A uniqueness property of guarded recursions in
TI

This part of the Appendix is dedicated to showing the following uniqueness property of
the semantics of the process terms as transition systems with independence:
Lemma 75 If z is guarded in a process term ¢, then

T =2 R(TI[t]p[T/z]) = T = R(TI[rec z.t]p),

for any environment p assigning transition systems with independence to process variables.

The proof closely follows the lines of Appendix C (a), but where the extra axioms
required by transition systems with independence complicate the basic definitions. Again,
a key idea is that of a functor (—)*) “projecting” a transition system this time with
independence, to that part of it which is reachable within k& steps. The simple definition
used in part (a) is not satisfactory here however because, as it stands, it generally does
not yield a transition system with independence T*) such that 7%) < T, from one 7.
To obtain a suitable generalisation we take T'*) to be the <-least transition system
with independence which includes that part of T reachable within k steps and for which
T® QT.

Proposition 86 (i) Let T be a transition system with independence. There is a <-
least transition system with independence T™) such that T®) I T and T® includes
all those transitions and states reachable within k steps.

(ii) Suppose (o,)) : T — T" is a morphism in TI then (o, \)¥) =4, (o', \) : T —
T'*) is a morphism in TI where o’ is the restriction of o to the states of T*) and X
the restriction of \ to the labels of T®. This makes (—=)%) a functor on TT which
moreover restricts to a functor on the subcategory of monics.

Proof: (i) Let T be a transition system with independence (S, ¢, L, Tran, I). For k € w, take
To to be (So,t, Lo, Trang, Ip) consisting of states So and transitions Trang of T' reachable
within k steps with Lo all labels appearing in Trany and Iop = I N Tmn% (In general Tg
will not be a transition system with independence.) Refer to the axioms on transition
systems with independence. Because of axiom (1), axioms (2) and (3) entail 7" satisfies:

(2) (s,a,s")I(s,b,s;) implies there are unique transitions (s1,b,u), (s2,a,u) € Transuch
that (s, a,s1)I(s1,b,u) & (s,b,32)1(sg,a,u).
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(3)’ (s,a,s1)I(s1,b,u) implies there are unique transitions (s, b, sz), (s2,a,u) € Transuch

that (s,a,s1)I(s,b,s2) & (s,b,52)1(s2,a,u).

Inductively close Ty up under those unique states and transitions required of the inde-
pendence relation by (2)" and (3)'—at each stage take the independence relation to be
the restriction of that of T'. This inductive construction yields T®*) the <-least transition
system with independence—axioms (2) and (3) are ensured by the construction while (1)
and (4) clearly hold—which includes T and gives T*) Q T

(ii) It is clear that if f : " — T" is a morphism in T1T then so is fE . T®E S T for k € w.
We further require that the restriction, f(*), of f to T®) has its image in 7"*¥). Consider
the inductive definition of 7)., Because morphisms in TI preserve or collapse transitions
to idle transitions, and furthermore preserve the independence of transitions any stage in
inductive construction of T has its image under f within the corresponding stage in the
inductive construction of 7"%)). The remaining properties are clear. |

Proposition 86 provides the appropriate definition of the family of functors (—)®) :
TI — TI with which to generalise the argument of part (a). (This really is a generalisation
once we regard an ordinary transition system as having an empty independence relation.)

Say an operation F' on transition systems with independence is definable if it acts on
T so that

F(T) = TI[t]p[T /]

for some choice of process term ¢t and variable z. Any such definable operation is <-
continuous. It will also satisfy

(F(T)W = (FT™)® for k € w,

—just as in part (a). However, now the proof of this fact is more intricate. In particular,
it requires that we show

(T x U)(k) — (T(’“) % U(k))(k),

for transition systems with independence 7' and U. As T < T and U < U, by

monotonicity we deduce
(T(k) % U(k))(k) (T x U)(k).

For the converse inclusion, we remark that
TOxUB QT xU

and, moreover, that T(*) x U*) includes that part of T x U reachable within k steps. But
by proposition 86(i), this entails

(T x U)E < T7® U

and hence that
(T x U)® < (T® x g,

As in part (a),
(a(T))®) = (a(TE-D))

so that any operation F' defined by a term in which the variable is guarded satisfies

(F(T))® = (F(T*D)),
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for k > 0. Given f : T — T amorphism in TI, for k € w, the morphism f*) : T() — 7(¥)
is the restriction of f to the states and labels of T(*). It follows a functor F' definable by

a process term satisfies
(F(NH® = (FFO))H,

on monics f, for k € w, and when associated with a guarded variable
(F()® = (F(E))H.

We can now proceed as in part (a), reading “transition system with independence”
instead of “transition system”; the proofs of proposition 85 and lemma 9 are sufficiently
abstract to apply equally well in the more general situation of transition systems with
independence. This furnishes a proof of the uniqueness property of guarded recursions in

TIL
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