
The correctness of an Optimized Code
Generation

Torben Poort Lange
Computer Science Department

Aarhus University

November 1992

Abstract

For a functional programming language with a lazy standard se-
mantics, we define a strictness analysis by means of abstract interpre-
tation. Using the information from the strictness analysis we are able
to define a code generation which avoids delaying the evaluation of the
argument to an application, provided that the corresponding function
is strict.

To show the correctness of the code generation, we will adopt the
framework of logical relations and define a layer of predicates which
finally will ensure that the code generation is correct with respect to
the standard semantics.

1 Introduction

When generating code for a lazy functional programming language one often
is interested in getting the most efficient code, that is avoiding expensive
instructions. Consider as an example the application of a function f to an
argument x. If we do not know whether the argument will be used by f ,
we must enclose the code for x with a delay closure (also called thunk), thus
delaying the evaluation of x until needed by f . However, if an analysis shows

1

that the argument sooner or later will be evaluated, we might as well evaluate
it before calling the function f , so that we can avoid the generation of a delay
closure at all.

The information needed can be obtained from a strictness analysis [1, 6, 11],
which we will define for the language. The code generation to be defined will
then use this information to improve the code.

To prove the correctness of the code generation, we define a standard seman-
tics to capture the meaning of expressions. We will then define a layer of
admissible predicates that ensure that the strictness analysis is correct and
that the code generated behaves as expected.

Section 2 will introduce our programming language, Section 3 defines the
interpretations, Section 4 describes the framework for correctness, Section
5 proves the correctness of the strictness analysis and Section 6 proves the
correctness of the code generation. Finally, Section 7 concludes with some
references to related work.

This paper is an extended abstract of my M.Sc.-thesis [13], which is based
on the work [16] and [18] by Hanne Riis Nielson and Flemming Nielson.

Familiarity with basic domain theoretic aspects (lattices, partial orders, chains)
is assumed, as well as elementary concepts from the lambda calculus and
combinatory logic.

2 The Language

The functional language will consist of a traditional typed lambda calculus
to express entities of compile-time and a typed combinatory logic to express
entities of run-time. Underlining will be used to denote run-time objects.

Example The expression e of type t1 → t2 will be a compile-time function
from t1 to t2, whereas e′ of type t′1→t′2 will be a run-time function from t′1 to
t′2. When generating code we will consider expressions of the latter type. ¥

The types are defined as

t ::= Ai | t× t | t→ t | Ai | t×t | t→t

2

where Ai are some ground types, e.g. Bool and Int.

The syntax of expressions is

e ::= xi[t] | fi[t] | 〈e, e〉 | fst e | snd e | λxi[t].e | e(e) |
fix [t] e | if e then e else e | Fi[t] | Id[t] | 2[t](e, e)
Tuple[t](e, e) | Fst [t] | Snd[t] | Cond[t](e, e, e) |
Apply[t] | Curry[t]e | Fix [t]e

where fi[t] denotes a primitive function such as subtraction (–[Int× Int→
Int]) or testing for zero (iszero[Int → Bool]), or constants such as integers
(7[Int]).

The combinators are closed lambda expressions and the following informal
definitions clarify our intentions:

∗[Int× Int→ Int] ≡ λ〈x1, x2〉.x1 ∗ x2

2[(t0→t2)→ (t1→t0)→ (t1→t2)] ≡ λf.λg.λx.f(g x)

Tuple[(t0→t1)→ (t0→t2)→ (t0→t1×t2)] ≡ λf.λg.λx.〈f x, g x〉

Apply[((t1→t2)×t1)→t2] ≡ λ〈f, x〉.(f x)

Curry[((t0×t1)→t2)→ (t0→(t1→t2))] ≡ λf.λx.λy.f〈x, y〉

The use of combinators will prove useful when defining an interpretation for
expressions.

Example The MirandaTM-like factorial function

fac n= 1, if n = 0

= n ∗ fac(n - 1), otherwise

with the argument n supplied at run-time is written

fac = fix (λf.Cond(Iszero, 1, 2(∗, Tuple(Id, 2(f, 2(–, Tuple(Id, 1)))))))

where we dispense with types for readability. ¥

3

3 Parameterized Semantics

As we want to interpret the language in different ways, it is convenient to
parameterize the semantics upon an interpretation of the basic ingredients.

If t is a compile-time type then [[t]](I) will be the interpretation of t, where
I is a function which interprets the run-time types. We have

[[Ai]](I) = Ai

[[t1 × t2]](I) = [[t1]](I)× [[t2]](I)
[[t1 → t2]](I) = [[t1]](I)→ [[t2]](I)
[[t1→t2]](I) = I(t1→t2)

where Ai will be the flat domain of a base type, × forms the cartesian product
and → forms the continuous function space.

The interpretation of expressions is defined in much the same way. To handle
variables we need an environment env, so some illustrative clauses are

[[xi[t]]](I) = λenv.env(xi[t])
[[λxi[t].e]](I) = λenv.λv.([[e]](I)env[vxi[t]])
[[fi[t]]](I) = λenvI(fi[t])
[[2[t](e1, e2)]](I) = λenv.I(2[t])([[e1]](I)env)([[e2]](I)env)

It should be clear how to extend this definition to the whole language.

3.1 The Standard Semantics S

This interpretation must capture the intuitive notion about the types and
expressions in our language. We define

S(Ai) = Ai

S(t1×t2) = (S(t1)× S(t2))
S(t1→t2) = (S(t1)→ S(t2))

and use lifting to distinguish between e.g. the undefined pair and the pair of
undefined elements.

4

To relate elements from a domain D with bottom element ⊥D and domain
D⊥ with bottom element ⊥ we define up : D → D⊥ and dn : D⊥ → D by

∀d ∈ D : up(d) = d

∀d ∈ D⊥ : up(d) =

{
⊥D if d = ⊥
d, otherwise

The interpretation of expressions is mostly rather straightforward. Some ex-
amples are

S(∗[t]) = up(λx.x1 ∗ x2 where (x1, x2) = dn(x))

S(2[t]) = λg1.λg2.

{
up(λx.dn(g1)(dn(g2)(x))), if g1 6= ⊥ ∧ g2 6= ⊥
⊥, otherwise

S(Cond[t]) = λg1.λg2.λg3.


up(λx.


dn(g2)(x), if dn(g1)(x) = true
dn(g3)(x), if dn(g1)(x) = false
⊥, if dn(g1)(x) = ⊥

),

if g1 6= ⊥ ∧ g2 6= ⊥ ∧ g3 6= ⊥
⊥, otherwise

For the fix [(t→ t)→ t] operator we must restrict ourself to the cases where
t does not contain any underlined type constructor (t is pure), where t has
the form t1 × t2 but is not pure, and finally where t has the form t1→t2 (t
is a frontier type). The missing case is when t = t1 → t2 but not pure. In
this case there does not exist a general definition, but by making restrictions
(e.g. on the well-formedness rules) we can avoid this type [15].

We define

S(fix [(t→ t)→ t]) = λG.
⊔
n≥0 Gn(⊥), if t is pure

S(fix [(t→ t)→ t]) = λG.(G1, G2(G1)), if t = t1 × t1 and not pure

where G1 = S(fix [(t1 → t1)→ t1])(λx1.w1 where (w1, w2) = G(x1, G2(x1)))
G2 = λx1.S(fix [(t2 → t2)→ t2])(λx2.w2 where (w1, w2) = G(x1, x2))

The latter definition arises from a version of Bekič’s Theorem [2, 18].

To motivate the missing definition for frontier types t = t1→t2, consider
the expression λG. tn≥0 Gn(⊥) which is the natural definition to use for

5

S(fix [(t → t) → t]). However, when G belongs to [[(t1→t2) → (t1→t2)]](S)
it is likely that G(⊥) = ⊥ as we have made the interpretation strict in
⊥ ∈ [[t1→t2]](S), so that tn≥0G

n(⊥) = G(⊥) = ⊥ which is undesirable.
Instead, let us use the element up(⊥) just above the bottom element ⊥ and
define

S(fix [(t→ t)→ t]) = λG. tn≥1 Gn(up(⊥)), if t = t1→t2

which is well-defined as G(up(⊥)) = ⊥ implies G(⊥) = ⊥ and S(fix [(t →
t)→ t]) = ⊥, and G(up(⊥)) A ⊥ implies that (G(up(⊥)))n≥1 is a chain.

Example The interpretation of fac by S is Example The interpretation of
fac by S is

[[fac]](S) = λenv.
⊔
n≥1

(λf .up(λx.

{
1, if x = 0
x ∗ dn(f(x− 1), if x 6= 0

}
))n(λx.⊥)

if S(Iszero[t]) = up(λx.x = 0) and S(1[t]) = up(λx.1). ¥

3.2 The Strictness Analysis A

The strictness analysis will be formulated as an abstract interpretation [1, 6].
All ground types will be interpreted by the domain ({0,1},v) with 0 v 1,
so we have

A(Ai) = {0,1}
A(t1×t2) = (A(t1)×A(t2))⊥
A(t1→t2) = (A(t1)→ A(t2))⊥

The interpretation of expressions is rather standard [1, 6, 11, 16] (with respect
to our domains), and for a few illustrative combinators and operators we have

A(∗[t]) = up(λa.a1 u a2 where (a1, a2) = dn(a))

A(2[t]) = λs1.λs2.


up(λa.dn(s1)(dn(s2)(a))),

if s1 6= ⊥ ∧ s2 6= ⊥
⊥, otherwise

6

A(Cond[t]) =

λs1.λs2.λs3.


up(λa.

{
dn(s2)(a) t dn(s3)(a), if dn(s1)(a) = 1
⊥ if dn(s1)(a) = 0

}
),

if s1 6= ⊥ ∧ s2 6= ⊥ ∧ s3 6= ⊥
⊥, otherwise

A(fix[(t→ t)→ t]) = λF.
⊔
n≥1 F n(up(⊥)), ift = t1→t2

Example If A(Isxero[t]) = up(λa.a) and A(1[t]) = up(λa.1) we get

[[fac]](A) = λenv.up(λa.a)

so that fac indeed is a strict function. ¥

3.3 The Code Generation C

The code to be generated will be for a stack based machine. The stack
contains base values such as booleans and integers, pairs of the form 〈v1, v2〉,
thunks {C, v} to postpone the actual evaluation of C with v on the top of the
stack, and closures {C; v} to represent functions as data objects. We define
Val to be the set of all stack values.

The instructions to manipulate the stack are

ins ::= const b | sub | mult | iszero | enter | switch |
branch(C ,C) | tuple | fst | snd | curry(C) | apply |
delay(C) | resume | callrec(l ,C) | call l | rec

b ::= true | false | 0 | 1 | 2 | · · ·

The instruction sequence C is a member of Code, the set of all possible
mstructlon sequences:

Code = {i1 : i2 : . . . : ik | k ≥ 1, ij is an instruction for 1 ≤ j ≤ k} ∪ {ε}

7

The symbol ε ∈ Code denotes the empty instruction sequence.

The operational semantics is defined by the relation 7→ on configurations.
Some example transitions are

(const b : C, v : ST) 7→ (C, b : ST)
(sub : C, 〈v1, v2〉 : ST) 7→ (C, v1 − v2 : ST)
(enter : C, v : st) 7→ (C, v : v : ST)
(switch : C, v1 : v2 : ST) 7→ (C, v2 : v1 : ST)
(branch(C1, C2) : C, true : ST) 7→ (C1 : C, ST)
(branch(C1, C2) : C, false : ST) 7→ (C2 : C, ST)
(tuple : C, v1 : v2 : ST) 7→ (C, 〈v1 : v2〉 : ST)
(delay(C ′) : C, v : ST) 7→ (C, {C ′, v} : ST)
(resume : C, {C ′, v} : ST)) 7→ (C ′ : resume :C, v : ST)
(resume :C, v : ST) 7→ (C, ST), if v is not a thunk
(callrec(l, C ′) : C, ST) 7→ (C ′[callrec(l, C ′)/l] : C, ST)

The instruction sequence C[C ′/l] is C where every instruction “call l” with
a free label “l” is substituted with the instruction sequence C ′.

Example If

C = enter:call 1:resume:tuple:mult
C ′ = resume:iszero

then C[C ′/l] = enter : resume : iszero : resume : tuple : mult but C[C ′/2] =
C as the label 2 does not occur in C.

Furthermore, callrec(1, C)[C ′/1] = callrec(1, C) as the label in the in-
struction “call 1” in C becomes bound, and callrec(2, C)[C ′/1] =
callrec(2, C[C ′/1]) as the label 1 in C is still free. ¥

With execution sequences we mean sequences of the form

∆ = (C0, ST0) 7→ (C1, ST1) 7→ · · · 7→ (Ci, STi) 7→ · · ·

which may be finite or infinite. We will write ∆(i) for (Ci, STi) and ∆(i . . .)
for the sub-sequence (Ci, STi) 7→ (Ci+1, STi+1) 7→ · · ·. Furthermore, let us
for every l ∈ {∗, ω,∞} ∪ IN define

8

ExSeq(∗) = {∆ | ∆ is finite}
ExSeq(ω) = {∆ | ∆ is infinite}
ExSeq(∞) = {∆ | ∆ is finite or infinite}
ExSeq(m) = {∆ ∈ ExSeq(∗) | the length of ∆, #∆, is m}
ExSeq(l, C) = {∆ ∈ ExSeq(l) | ∃ST : ∆(0) = (C, ST)}
ExSeq(l, C, v) = {∆ ∈ ExSeq(l) | ∆(0) = (C, [v])}

Example The instruction sequence C= enter : const 3 : switch : tuple : sub
and the stack ST = [7] initiates the execution sequence

∆ = (enter : const 3 : switch : tuple : sub, [7]) 7→
(const 3 : switch : tuple : sub, [7, 7]) 7→
(switch : tuple : sub, [3, 7]) 7→
(tuple : sub, [7, 3]) 7→
(sub, [(7, 3)]) 7→
(ε, [4])

so that ∆ ∈ ExSeq(5) ⊆ ExSeq(∗) and ∆(5) = (ε, [4]).

Since we want to generate code for run-time functions, i.e. expressions of type
t1→t2, it is natural to expect C(t1→t2) = Code⊥. (The bottom element ⊥ is
necessary to make Code a domain.) However, when coming to recursion we
need fresh variables for the labels, so let us instead generate relocatable code,
that is code from the domain RelCode = IN → Code⊥ with the ordering v
defined by

RCl v RC2 ⇐⇒ ∀d ∈ IN : RC1(d) = ⊥ ∨RC1(d) = RC2(d)

The type part of the code generation then is

C(t1→t2) = [[t1→t2]](A)× RelCode

so that the results from the strictness analysis A are available.

In generating code we will observe two conditions:

A: The code makes no assumptions about whether the initial value on top
of the stack is a thunk or not.

9

B: If the execution of the code terminates then the top of the stack will
never be a thunk, and except for the top value, the stacks in the initial
and final configurations will be the same.

When expressing correctness of the code generation with respect to the stan-
dard semantics we will show that these conditions are observed.

Consider the clause for ∗[t]:

C(∗[t]) = (A(∗[t]), λd.resume:enter:snd:resume:switch:
fst:resume:tuple:mult)

The first resume instruction is due to condition A, and the mult instruction
ensure that we do not leave a thunk on the stack (condition B), so that it
is not necessary to terminate the instruction sequence with an additional
resume instruction. This is similar to a code generation with no strictness
analysis [18].

When looking at 2[(t0→t2)→ (t1→t0)→ (t1→t2)] we can use the strictness
information to generate slightly better code:

C(2[t]) = λ(s1, RC1).λ(s2, RC2).(s, RC)

where s = A(2[t])(s1)(s2)

RC = λd.


{

RC2(d) : RC1(d), if dn(s1(⊥) = ⊥
delay(RC2(d)) : RC1(d), otherwise

}
,

if RC1(d) 6= ⊥ ∧RC2(d) 6= ⊥
⊥, otherwise

If the first argument expression to 2[t] is strict (i.e. dn(s1)(⊥) = ⊥), we can
dispense with the delay instruction, unlike in the simple code generation.

Concerning the fix [(t → t) → t] operator in the case of t = t1→t2, we
calculate the strictness information by ignoring the code, so that

C(fix [(t→ t)→ t]) = λF.(s, RC), if t = t1→t2

where s = tn≥1(λs′.(w1 where (w1, w2) = F (s′, ·)))n(up(⊥))

10

RC = λd.

{
callrec(d, Cd), if Cd 6= ⊥
⊥, otherwise

Cd = (w2 where (w1, w2) = F (s, λd′.call d))(d + 1)

The dot “·” in F (s′, ·) is a shorthand for the relocatable instruction sequence
λd.⊥. We will later see that s is independent of the actual choice of instruc-
tion sequence, so that any instruction sequence would be feasible.

Example If we define C(Iszero[t]) = (up(λa.a), λd.resume : iszero) and
C(1[t]) = (up(λa.1), λd.const1) we get

[[fac]](C) = λenv.(up(λa.a), λd.callrec(d, C))

where

C = enter:resume:iszero:

branch (const 1,
enter:delay(enter:delay(const 1):

switch:delay(resume):

tuple:C :call d):

switch:delay(resume):

tuple:C∗)
C = resume:enter:snd:resume:switch:fst:resume:tuple:sub

C∗ = resume:enter:snd:resume:switch:fst:resume:tuple:mult

Our analysis detects the strictness of subtraction, multiplication and the
recursive call, and we are thus able to avoid the generation of a delay in-
struction around the code for the first argument to all 2[t]-combinators. ¥

4 Correctness using Predicates

In order to express the correctness of the strictness analysis and the code
generation, we will adopt the framework of logical relations [20, 21] and
Kripke-logical relations [21, 22].

Definition 1 (From [17]) An indexed relation over the interpretations
I1, . . . , Im is a collection of relations

11

Rt : [[t]](I)× . . .× [[t]](Im)→ {true, false}

one for each type t. It is a logical relation if and only if

Rt1→t2(f1, . . . , fm) ≡ ∀(x1, . . . , xm) : Rt1(x1, . . . , xm)⇒
Rt2(f1(x1), . . . , fm(xm))

holds for all types t1 and t2.

A Kripke-indexed relation over a non-empty partially ordered set Ω and the
interpretations I1, . . . , Im is a collection of relations

R[Σ]t : [[t]](I1)× . . .× [[t]](Im)→ {true, false}

one for each type t, where

∀Σ′ w Σ : R[Σ]t(x1, . . . , xm)⇒ R[Σ′]t(x1, . . . , xm)

holds for all types t. It is a Kripke-logical relation if and only if it is a
Kripke-indexed relation and

R[Σ]t1→t2 (f1, . . . , fm) ≡
∀Σ′ w Σ : ∀(x1, . . . , xm) : R[Σ′]t1(x1, . . . , xm)⇒

R[Σ′]t2(f1(x1), . . . , fm(xm))

holds for all types t1 and t2.

When coming to the fix [t]-operator it is necessary to ensure the admissibility
of our predicates.

Definition 2 A predicate R on the domain D is admissible if

1. R(⊥) holds.

2. If (dn)n is a chain on D and R(dn) holds, then R(tn(dn)n) holds.

To show that the relations hold we will use the principle of structural induc-
tion.

Definition 3 (From [17]) An indexed relation R over I1, . . . , Im admit
structural induction whenever it satisfies, that if

12

Rt′([[φ]](I1), . . . , [[φ]]Im))

holds for all basic operators and combinators φ of type t’ occurring in an
expression e of type t, then

Rt([[e]](I1), . . . , [[e]]Im))

holds.

A Kripke-indexed relation R over Ω and I1, . . . , Im admit structural induc-
tion whenever it satisfies, that if

R[Σ]t′([[φ]](I1), . . . , [[φ]]Im))

holds for all Σ ∈ Ω and for all basic operators and combinators φ of type t’
occuning in an expression e of type t, then

R[Σ]t([[e]](I1), . . . , [[e]]Im))

holds.

We now have

Fact 4 (From [17]) Logical relations as well as Kripke-logical relations admit
structural induction.

This fact will be utilized in the following.

5 Correctness of the Strictness Analysis

To verify that the strictness information collected in C is correct with respect
to the standard semantics, we define two predicates: valAt for t run-time and
compAt for t compile-time. The definitions are quite straightforward:

valAt : [[t]](A)× [[t]](S)→ {true, false}

valAAi
(a, x) ≡ x 6= ⊥ ⇒ a = 1

13

valAt1×t2(a, x) ≡ x 6= ⊥ ⇒ (a 6= ⊥) ∧ valAt1(a1, x1) ∧ valAt2(a2, x2)
where (a1, a2) = dn(a), (x1, x2) = dn(x)

valAt1→t2(s, g) ≡ g 6= ⊥ ⇒ (s 6= ⊥) ∧ (∀a, x : valAt1(a, x)⇒
valAt2(dn(s)(a), dn(g)(x)))

We see that ∀a : valAt(a,⊥) and ∀x : valAt(>, x) both hold, i.e. every
abstract value describes the semantic value ⊥ and every semantic value is
described by the top element of the appropriate abstract domain.

compAt : [[t]](C)× [[t]](S)→ {true, false}

compAAi
(x, y) ≡ x = y

compAt1×t2((x1, x2), (y1, y2)) ≡ compAt1(x1, y1) ∧ compAt2(x2, y2)

compAt1→t2(F, G) ≡ ∀x, y : compAt1(x, y)⇒ compAt2(F (x), G(y))

compAt1→t2((s, RC), g) ≡ valAt1→t2(s, g)

Lemma 5 The clauses for compA define an admissible predicate.

Proof A simple structural induction on the type t. ¥

The correctness of the strictness analysis now amounts to showing that
compA holds for all basic operators and combinators.

Proposition 6 The predicate compAt([[e]](C), [[e]](S)) holds for every expres-
sion e of type t.

Proof As compA is a logical relation we only need to consider each combi-
nator and operator (Fact 4). It is quite straightforward, see e.g. [13], so let
us only consider the operator fix [(t→ t)→ t] in the case t = t1→t2.

Assume compAt→t(F, G), define

sn = (λs′.(w1 where (w1, w2) = F (s′, ·)))n(up(⊥))
gn = Gn(up(⊥))

and let us by induction on n show that

14

∀RC : compAt((sn, RC), gn) (Pn)

The base case n = 0 is immediate by admissibility of compA.

Using (Pn) and compAt→t(F, G) we get compAt(F (sn, ·), G(gn)), but

gn+1 = Gn+1(up(⊥)) = G(gn)

and

sn+1 = (λs′.(w1 where (w1, w2) = F (s′, ·)))(sn)
= w1 where (w1, w2) = F (sn, ·)

which completes the proof, since compAt((sn, RC), gn) ≡ valAt(sn, gn) and
by admissibility of compA. ¥

As a corollary of the above proof, we see that the strictness information is
independent of the code, so that the interpretation of fix [t] by C, in fact,
make sense.

Other approaches to correctness of a strictness analysis is [1, 4], where a suit-
able abstraction function is defined. The predicates, however, is just another
way of defining such an abstraction function αt: if whenever valAt(a, x) also
αt(x) v a, then αt would respect the characteristic properties of an abstrac-
tion function.

6 Correctness of the Code Generation

The proof of correctness will consist of three layers, each described by a
predicate. The first layer ensures that fix [t] is used correctly, the second
layer additionally ensures that the generated code behaves well on the stack,
and, finally, the last layer ensures the correctness of the strictness analysis
and the generated code.

This approach is similar to [18], but we additionally need to incorporate the
strictness analysis into the correctness predicate. This will, as we shall see,
cause no difficulties.

15

6.1 The Substitution Property

This property is needed to guarantee that the code for fix [t] will only be
applied to functions that may be regarded as relocatable code with holes.
First, define

compS ′[Σ]t : [[t]](C)× [[t]](C)→ {true, false}

compS ′[Σ]Ai
(x, y) ≡ x = y

compS ′[Σ]tt×t2((x1, x2), (y1, y2)) ≡
compS ′[Σ]t1(x1, y1) ∧ compS ′[Σ]t2(x2, y2)

compS ′[Σ]tt→t2(F, G) ≡
∀Σ′ ⊇ Σ : ∀x, y : compS ′[Σ′]t1(x, y)⇒ compS ′[Σ′]t2(F (x), G(y))

compS ′[Σ]t1→t2((s1, RC1), (s2, RC2)) ≡
∀d > max(dom(σ)) : compS ′′[Σ]t1→t2(RC1(d), RC2(d))

where comps′′[Σ]t1→t2(C1, C2) ≡
(C2 = ⊥ ⇒ C1 = ⊥)∧
(C2 6= ⊥ ⇒ (C1 6= ⊥) ∧ C1[Σ] = C2 ∧ FreeLab(C1) ⊆ dom(Σ))

The function FreeLab : Code→ {D | D ⊆ IN} collects the free labels in an
instruction sequence. The parameter Σ, denoting a substitution, is a set of
pairs of labels and code. With dom(Σ) we mean the set {l | (l, C) ∈ Σ}, and
whenever (l, C1) ∈ Σ and (l, C2) ∈ Σ then C1 = C2.

Lemma 7 The clauses for compS’[Σ] define an admissible predicate.

Proof A simple structural induction on the type t. ¥

The desired property can now be stated as the Substitution Property
[15, 18]:

Proposition 8 Assume that compS ′[Σ]t→t(F0, F) holds for every type t =
t1→t2 and that for d > max(dom(Σ)) and every s ∈ [[t]](A) we have defined

C = (w2 where (w1, w2) = F (s, λd′.call d))(d + 1)
C ′ = callrec(d, C)
C ′′ = (w2 where (w1, w2) = F (s, λd′.C ′))(d + 1)

Then
C 6= ⊥ ⇒ C[C ′/d] = C ′′ ∧ FreeLab(C ′) ⊆ dom(Σ)

16

holds.

The proposition says that the “hole” in C (the instruction “call l” may
safely be substituted with C ′ yielding C ′′.

Proof Assume C 6= ⊥, define C0 using F0 in the same way as C is defined
using F , and consider the two stages 1 and 2.

Stage 1:
Extend Σ to Σ1 = Σ ∪ {(d, call d)}. From

compS ′[Σ2]t((s, λd′.call d), (s, λd′.call d))

we get compS ′[Σ1]t((·, λd′.C0), (·, λd′.C)) so that FreeLab(C) ⊆ dom(Σ) ∪
{d} and C = C0[Σ].

Stage 2:
Extend Σ to Σ2 = Σ ∪ {(d, C ′)}. From

compS ′[Σ2]t((s, λd′.call d), (s, λd′.C ′))

we get compS ′[Σ2]t((·, λd′.C0), (·, λd′.C ′′)) so that C ′′ = (C0[Σ])[C ′/d] =
C[C ′/d] which completes the proof. ¥

We only need to show that compS ′ holds for every expression to be able to
use Proposition 8:

Proposition 9 The predicate compS ′[Σ]t([[e]](C), [[e]](C)) holds for every Σ
and every expression e of type t.

Proof As the predicate compS ′[Σ] is a Kripke-logical relation it is sufficient
to show that compS ′[∅]t([[e]](C), [[e]](C)) holds. For every operator and com-
binator other than fix [t] this is straightforward, for the fix [t] operator we
mimic Stage 1 of Proposition 8. ¥

As we only use compS ′ with an empty substitution ∅ and identical argu-
ments, let us define the logical relation compSt : [[t]](C) → {true, false} by
compSt(x) ≡ compS ′[∅]t(x, x) and use this definition in the following.

17

6.2 The Well-behavedness Predicate

To ensure that the code only transforms the top element of the stack into
another well-behaved element, we use the valW and compW predicates. The
valW predicate ensures the well-behavedness of a stack element:

valWt : V al→ {true, false}
valWAi

(b) ≡ true for all basic values b of type Ai

valWt1×t2(〈v1, v2〉) ≡ valWt1(v1) ∧ valWt2(v2)

valWt1→t2(〈C, v0〉) ≡ ∀v1 : valWt1(v1)⇒ valWt2({C, 〈v0, v1〉})
valWt({C, v}) ≡ ∀∆ ∈ ExSeq(∗, C, v) : postWt(∆) ∧ nothunk(∆)

The predicate postW tells us whether a code sequence ∆ ends with a well-
behaved element on the stack, and nothunk ensures that the last element on
the stack is not a thunk.

postWt, nothunk : ExSeq(m)→ {true, false}
postWt(∆) ≡ ∃v : ∆(m) = (ε, [v]) ∧ valWt(v)

nothunk(∆) ≡ ¬∃C, C ′, v, ST : ∆(m) = (C, {C ′, v} : ST)

The definition of valWt({C, v}) says, that if we execute C with v on top of
the stack, we end up with a well-behaved element on the stack which is not
a thunk.

The well-behavedness predicate compWt : [[t]](C) → {true, false} is defined
as follows:

compWAi
(x) ≡ true

compWt1×t2((x1, x2)) ≡ compWt1(x1) ∧ compWt2(x2)

compWt1→t2(F) ≡ compSt1→t2(F)∧
(∀x : compWt1(x)⇒ compWt2(F (X)))

compWt1→t2((s, RC)) ≡ compSWt1→t2((s, RC))∧
(∀d > 0 : compSWt1→t2(RC(d)))

where compSWt1→t2(C) ≡ C 6= ⊥ ⇒ (∀v ∈ V al :valWt1(v)⇒
valWt2({C, v}))

18

Lemma 10 The clauses for compW define an admissible predicate.

Proof First we must define a well-founded order ¹ on types and values by

(t1, v1) ¹ (t2, v2)⇐⇒ (t1 is a proper subtype of t2) ∨
(t1 = t2 ∧ v1 is not a thunk ∧v2 is a thunk)

Consider then each clause for valWt(v). If v is not a thunk, then each
valWt′(v

′) on the right hand side has (t′, v′) ¹ (t, v) since t′ is a subtype
of t. If v is a thunk, then we have valWt′(v

′) on the right hand side with
t = t′, but v′ is not a thunk by nothunk, so (t′, v′) ¹ (t, v).

As the predicate valW now is well-defined, the admissibility of compW is an
easy structural induction on the types. ¥

We are now ready to show that compW holds for all operators and combi-
nators.

Proposition 11 The predicate compWt([[e]](C), [[e]](S)) holds for every ex-
pression e of type t.

Proof Even though compW is not a logical relation, it is an instance of a
Kripke-layered predicate which admits structural induction [17]. Therefore,
for each operator or combinator, consider an execution sequence

∆ ∈ ExSeq(m, C1 : C2 : . . . : Ck)

and decomposeit into executionsequences ∆i(mi, Ci) for i ∈ {1, . . . , k}. Then
either use the induction hypothesis on ∆i or write ∆i out in detail to get the
desired result. A full proof of well-behavedness can be found in [18], yet for
a simpler code generation. ¥

6.3 The Correctness Predicate

For run-time objects we define valCt : V al × [[t]](S) → {true, false} as fol-
lows:

valCAi
(b, x) ≡ valWAi

(b) ∧ Bi[[b]] = x

valCt1×t2(〈v1, v2〉, x) ≡ ∃x1, x2 : x = up(x1, x2)∧

19

valCt1(v1, x1) ∧ valCt2(v2, x2)

valCt1→t2({C; v0}, g) ≡ valWt1→t2({C; v0}) ∧ (g 6= ⊥)∧
(∀v1, x : valCt1(v1, x)⇒

valCt2({C, 〈v0, v1〉}, dn(g)(x)))

valCt({C, v}, x) ≡ valWt({C, v}) ∧ valWCt({C, v}, x)
where valWCt ≡ ∀∆ ∈ ExSeq(∞, C, v) :

(∆ ∈ ExSeq(ω)⇒ x = ⊥)∧
(∆ ∈ ExSeq(∗)⇒ postCt(∆, x) ∧ nothunk(∆))

The function Bi : V al → [[Ai]](S) maps a basic value to its appropriate
counterpart in the standard semantics. For an example, Bbool(true) = true
and Bint(7) = 7. The predicate postC is defined much as postW , the only
difference being an additional parameter to the semantic value and using
valC instead of valW . We omit the details.

Finally, we define compCt : [[t]](C)× [[t]](S)→ {true, false} by the following
clauses:

compCAi
(x, y) ≡ x = y

compCt1×t2((x1, x2), (y1, y2)) ≡ compCt1(x1, y1) ∧ CompCt2(x2, y2)
compCt1→t2(F, G) ≡ compWt1→t2(F) ∧ compAt1→t2(F, G)∧

compWCt1→t2(F, G)
where compWCt1→t2(F, G) ≡
∀x, y : compCt1(x, y)⇒ compCt2(F (x), G(y))

compCt1→t2((s, RC), g) ≡
compWt1→t2((s, RC)) ∧ compAt1→t2((s, RC), g)∧
(∀d > 0 : compWCt1→t2(RC(d), g))
where compWCt1→t2(C, g) ≡

(C = ⊥ ⇒ g = ⊥)∧
(C 6= ⊥ ⇒ g 6= ⊥ ∧ (∀v, x : valCt1(v, x)⇒

valCt2(C, v, dn(g)(x))))

Before continuing with the proof of correctness, we must be sure the predicate
is well-defined.

Lemma 12 The clauses for compC define an admissible predicate.

Proof Similar to the proof of Lemma 10, this is a structural induction on
the type t. ¥

20

The main theorem of the paper can now be formulated and proved.

Theorem 13 The code generated by the optimixed code generation C is cor-
rect with respect to the standard semantics S, that is the predicate compCt([[e]]
(C), [[e]](S)) holds for every expression e of type t.

Proof As for the compW predicate, compC is an instance of a Kripkelayered
predicate [17], so that the proof is by structural induction on the operators
and combinators. Here we will only consider 2[t] and fix [t], which are the
interesting cases. The full proof of correctness can be found in [13].

2[t′ → t′′ → t] for t′ = t0→t2, t
′′ = t1→t0, t = t1→t2.

Assume compCt′((s1, RC1), g1) and compCt′′((s2, RC2), g2), define

s = A(2[t′ → t′′ → t])(s1)(s2)

RC = λd.


{

C2 : C1, if dn(s1)(⊥) = ⊥
delay(C2) : C1, otherwise

}
if C1 6= ⊥ ∧ C2 6= ⊥

⊥, otherwise

C1 = RC1(d), C2 = RC2(d)

g =

{
up(λx.dn(g1)(dn(g2)(x))), if g1 6= ⊥ ∧ g2 6= ⊥
⊥, otherwise

and show compCt((s, RC), g).

It is, however, sufficient to choose d > 0, define C = RC(d) and show
compWCt(C, g).

The non-trivial case is C 6= ⊥, so choose v, x with valCt1(v, x). We must
show that valCt({C, v}, dn(g)(x)) holds, so let ∆ ∈ ExSeq(∞, C, v).

The case dn(s1)(⊥) 6= ⊥ :
We have ∆(1) = (C1, [{C2, v}]). From compCt′′((s2, RC2), g2) we get valCt0({C2, v},
dn(g2)(x)) and using compCt′((s1, RC1), g1) we easily get valCt2({C1, {C2, v}},
dn(g)(x)).

If ∆(1..) ∈ ExSeq(ω) then dn(g)(x) = ⊥.

If ∆(1..) ∈ ExSeq(∗) then postCt2(∆(1..), dn(g)(x))∧nothunk(∆(1..)) which
completes the first case.

21

The case dn(s1)(⊥) = ⊥ :
We have ∆(0) = (C2 : C1, [v]). Let ∆1 ∈ ExSeq(∞, C2, v) be the initial
execution sequence of ∆. From compCt′′((S2, RC2), g2) we get

∆1 ∈ ExSeq(ω)⇒ dn(g2)(x) = ⊥)∧
∆1 ∈ ExSeq(∗)⇒ postCt0(∆1, dn(g2)(x)) ∧ nothunk(∆1))

If ∆1 ∈ ExSeq(ω) also ∆ ∈ ExSeq(ω) and dn(g)(x) = dn(g1)(⊥) = ⊥ using
compAt′((s1, RC1), g1) and dn(s1)(⊥) = ⊥.

If ∆1 ∈ ExSeq(∗) then there exists an integer m so that ∆ ∈ ExSeq(m) and,
furthermore, valCt0(v1, dn(g2)(x)) follows for some v1. As ∆(m) = (C1, [v1])
we use compCt′((s1, RC1), g1) to get

(∆(m..) ∈ ExSeq(ω)⇒ dn(g)(x) = ⊥)∧
(∆(m..) ∈ ExSeq(∗)⇒ postCt2(∆(m..), dn(g)(x))∧

nothunk(∆(m..)))

which is the desired result.

fix [(t→ t)→ t] for t = t1→t2.

The proof for the fix [t]-operator require a new technique. The general idea
is to be able to control the number of unfoldings allowed for the callrec

instruction. We will therefore index the instruction with a counter, which is
decreased every time an unfolding take place. We extend the instruction set
with callrecn for every n ≥ 0, and define

(callrec0(l, C
′) : C, ST) 7→ (callrec0(l, C

′) : C, ST)
(callrecn+1(l, C

′) : C, ST) 7→ (C ′[callrecn(l, C
′)/l] : C, ST)

so that every ∆ ∈ ExSeq(∞, callrec0(l, C
′)) will be infinite.

Let us now go on to the proof.

Assume compCt→t(F, G), define

s = tn≥1(λs′.(w1where(w1, w2) = F (s′, ·)))n(up(⊥))

22

RC = λd.

{
callrec(d, Cd), if Cd 6= ⊥
⊥, otherwise

Cd = (w2 where (w1, w2) = F (s, λd′.call d))(d + 1)

g = tn≥1G
n(up(⊥))

and show compCt((s, RC), g). It is, however, sufficient to show that
compWCt(RC(d),g) holds for every d > 0, but let us instead show
compCt((s,λd′.RC(d)),g) from which the desired property easily follows.

Cd = ⊥ : We must show compCt((s, λd.⊥), g), which amounts to show that
g = ⊥. The proof is in three stages:

Stage 1: Show
w2 where (w1, w2) = F (up(⊥), λd′.callrec(d, call d)))(d + 1) = ⊥.

Letting Σ = {(d, callrec(d, call d))} we have

compS ′[Σ]t((s, λd′.call d), (up(⊥), λd′.callrec(d, call d)))

and using compSt→t(F) and Cd = ⊥ we complete the stage.

Stage 2 : Show compCt((up(⊥), λd′.callrec(d, call d)), up(⊥)).

The predicate compSt((up(⊥), λd′.callrec(d, call d))) holds since
FeeLab(callrec(d, call d)) = ∅.

The predicate compWt((up(⊥), λd′.callrec(d, call d))) holds since ev-
ery ∆ ∈ ExSeq(∞, callrec(d, call d)) has ∆ ∈ ExSeq(ω).

The predicate compAt((up(⊥), λd′.callrec(d, call d)), up(⊥)) holds
since the predicate valTt(⊥,⊥) holds.

The predicate compCt((up(⊥), λd′.callrec(d, call d)), up(⊥)) holds
since every ∆ ∈ ExSeq(∞, callrec(d, call d)) has ∆ ∈ ExSeq(ω)
and ⊥(x) = ⊥ for every x.

23

Stage 3 : Show g = ⊥.

Combine compCt→t(F, G) and stage 2 with stage 1 to get G(up(⊥)) =
⊥, from which g = ⊥ follows easily.

Cd 6= ⊥ : Let us by numerical induction show

compCt((h
n(up(⊥)), λd′.callrecn(d, Cd)), G

n(up(⊥))) (Pn)

where h = λs′ .(w1 where (w1, w2) = F (s′, ·)).

The base case, n = 0, amounts to show FeeLab(callrec0(d, Cd)) = ∅,
as every ∆ ∈ ExSeq(∞, callrec0(d, Cd)) has ∆ ∈ ExSeq(ω). Let Σ =
{(d, call d)} so that compS ′[Σ]t(λd′.call d, λd′.call d) holds. Using
compSt→t(F) we get FreeLab(Cd) ⊆ {d} implying FreeLab(callrec0

(d, Cd)) = ∅.

For the induction step, we use the arguments above as well as the
induction hypothesis to get

compWt((h
n+1(up(⊥)), λd′.callrecn+1(d, Cd)))∧

compAt((h
n+1(up(⊥)), λd′.callrecn+1(d, Cd)), G

n+1(up(⊥)))

To show compWCt(callrecn+1(d, Cd)), G
n+1(up(⊥))) we use the in-

duction hypothesis (Pn) and compCt→t(F, G) to get

compWCt ((w2 where (w1, w2) =
F (hn(up(⊥)), λd′.callrecn(d, Cd)))(d + 1),

Gn+1(up(⊥)))

We now apply the Substitution Property to obtain

compWCt(Cd[callrecn(d, Cd)/d], Gn+1(up(⊥)))

from which compWCt(callrecn+1(d, Cd), G
n+1(up(⊥))) follows.

This completes the proof by numerical induction.

The desired result compCt((s, λd′.callrec(d, Cd)), g) now follows from
the admissibility of compC.

¥

24

7 Conclusion

For a functional programming language, we have defined a code generation
which uses a strictness analysis to improve the code. Using layers of admis-
sible predicates we were able to show the correctness of the code generation
with respect to a standard semantics. This work is based on [15, 18], where
the correctness of a simple code generation with no optimizations is treated.
The idea of using a strictness analysis to optimize the code was presented in
[16] and proved correct in [13].

Related to our approach for correctness is [15, 18], where the notion of layered
predicates is used to show the correctness of a simple code generation without
optimizations. The concept of layered predicates and how they interact with
structural induction is discussed in [17]. A similar approach is used in [23],
where structural induction is used to relate the denotational semantics for a
small imperative language with an interpreter for the language.

Recent work [10, 8] translates an expression into code for a stack-based ma-
chine, such that the correctness is ensured by the “compilation” itself. The
transformation is, however, based on the operational semantics of the source
language.

Finally, there has been some work using domain algebra [7, 14, 24], where the
denotational semantics of the source language is related to the denotational
semantics of the target language using homomorphisms.

The optimization we get using a strictness analysis could be better. In [12]
we compare this code generation with code generations using strictness con-
tinuations and evaluation degrees, and both remove superfluous delay and
resume instructions. Strictness continuations is a way of examining the sur-
roundings of a constructor to see if it occurs in a strict context, and evaluation
degrees tells us to which extent a data constructor is evaluated.

In [13] we show the correctness of a code generation using strictness con-
tinuations for a language without higher order constructs such as Apply[t]
and Curry[t]. The correctness proof is based on layered predicates as in
this paper. Furthermore, there seems to be a strong relationship between
strictness continuations and evaluators [13]. An evaluator [4, 5] says how
much evaluation must be done to an expression, which can be exploited to

25

generate efficient code [5, 13]. The correctness of such a code generation
using evaluators might then rather easily be proved using the framework of
logical relations and layered predicates instead of graph reduction as hinted
in [3, 5].

The task of showing correctness of a code generation is a tiresome task, but
using layered predicates we are able to divide the task into parts which can
be proved one by one. Moreover, this enhances the possibility of using a
mechanized verification tool such as HOL [9] or Isabelle [19].

Acknowledgement

I want to thank my supervisor, D.Sc. Flemming Nielson, who enabled me
to write this paper. His comments and ideas are an invaluable part of the
work. Also thanks to Torben Amtoft for proof-reading the paper. This work
was supported by The Danish Research Councils under the DART-Project
(grant 5.21.08.03).

References

[1] Samson Abramsky and Chris Hankin. An introduction to abstract in-
terpretation. In Samson Abramsky and Chris Hankin, editors, Abstract
Interpretation of Declarative Languages, chapter 1, pages 9–31. Ellis
Horwood, 1987.

[2] Hans Bekič. Definable Operations in General Algebras, and the The-
ory of Automata and Flowcharts. Lecture Notes in Computer Science,
Programming Languages and Their Definition(177):30–55, 1984.

[3] Geoffrey L. Burn. Using Projection Analysis in Compiling Lazy Func-
tional Programs. In Proceedings of the 1990 ACM Conference on Lisp
and Functional Programming, pages 227–241, 1990.

[4] Geoffrey L. Burn. The Evaluation Transformer Model of Reduction and
Its Correctness. Lecture Notes in Computer Science, TAPSOFT91: Col-
loquium on Combining Paradigms for Software Development(494):458–
482, 1991.

26

[5] Geoffrey L. Burn. Lazy Functional Languages: Abstract Interpretation
and Compilation. Research Monographs in Parallel and Distributed
Computing. Pitman in association with MIT Press, 1991.

[6] Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strictness
analysis for higher-order functions. Science of Computer Programming,
7:249–278, 1986.

[7] Peter Dybjer. Using domain algebras to prove the correctness of a com-
piler. Lecture Notes in Computer Science, 182:98–108, 1985. Proceedings
STACS 1985.

[8] Pascal Fradet and Daniel Le Mètayer. Compilation of Functional Lan-
guages by Program Transformation. ACM Transactions on Program-
ming Lanugages and Systems, 13(1):21–51, 1991.

[9] Mike Gordon. HOL – A Proof Generating System for Higher-Order
Logic. Cambridge CL TR 103, Computer Laboratory, University of
Cambridge, 1987.

[10] John Hannan and Dale Miller. From Operational Semantics to Abstract
Machines: Preliminary Results. In ACM Conference on LISP and Func-
tional Programming, pages 323–332, 1990.

[11] Paul Hudak and Jonathan Young. Higher-Order Strictness Analysis in
Untyped Lambda Calculus. In Proceedings of the 13th ACM Symposium
on Principles of Programming Languages, pages 97–109, 1986.

[12] Torben P. Lange. Implementation af parametriserede semantikker, 1990.
Report of written project, Aarhus University, Denmark. In Danish.

[13] Torben P. Lange. Correctness of Code Generations Based on a Func-
tional Programming Language. Master’s thesis, Aarhus University, Den-
mark, 1992.

[14] F. L. Morris. Advice on structuring compilers and proving them correct.
In ACM Conference on Principles of Programming Languages, pages
144–152, 1973.

[15] Flemming Nielson and Hanne R. Nielson. Two-level semantics and code
generation. Theoretical Computer Science, 56:59–133, 1988.

27

[16] Flemming Nielson and Hanne R. Nielson. Context Information for Lazy
Code Generation. In ACM Conference on LISP and Functional Pro-
gramming, pages 251–263, 1990.

[17] Flemming Nielson and Hanne R. Nielson. Layered Predicates. In Pro-
ceedings of the 1992 REX Workshop on “Semantics: Foundations and
Applications”, 1992. To appear in Springer Lecture Notes in Computer
Science.

[18] Flemming Nielson and Hanne R. Nielson. Two-Level Functional Lan-
guages, volume 34 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1992.

[19] Lawrence C. Paulson. Experience with Isabelle: A Generic Theorem
Prover. Cambridge TR 143, Computer Laboratory, University of Cam-
bridge, 1988. Preliminary version.

[20] Gordon D. Plotkin. Lambda-definability and logical relations. Memo-
randum SAI-RM-4, School of Artificial Intelligence, University of Edin-
burgh, 1973.

[21] Gordon D. Plotkin. Lambda-definability in the full type hierarchy. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism. Academic Press,
1980.

[22] J. C. Reynolds. Types, Abstraction and Parametric Polymorphism. In
Proceedings in Information Processing (IFIP), pages 513–523. North-
Holland, 1983.

[23] J. E. Stoy. The Congruence of two Programming Language Definitions.
Theoretical Computer Science, 13:151–174, 1981.

[24] J. W. Thatcher, E. G. Wagner, and J. B. Wright. More on advice on
structuring compilers and proving them correct. Theoretical Computer
Science, 15:223–249, 1981.

28

