
LAYERED PREDICATES∗

Flemming Nielson and Hanne Riis Nielson

Computer Science Department, Aarhus University, Bldg. 540
Ny Munkegade,DK-8000 Aarhus C, Denmark

December 1992

Abstract

We review the concept of logical relations and how they interact
with structural induction; furthermore we give examples of their use,
and of particular interest is the combination with the PER-idea (par-
tial equivalence relations). This is then generalized to Kripke-logical
relations; the major application is to show that in combination with
the PER-idea this solves the problem of establishing a substitution
property in a manner conducive to structural induction. Finally we
introduce the concept of Kripke-layered predicates; this allows a mod-
ular definition of predicates and supports a methodology of “proofs in
stages” where each stage focuses on only one aspect and thus is more
manageable. All of these techniques have been tested and refined in
“realistic applications” that have been documented elsewhere.

Keywords: logical relations, partial equivalence relations, Kripke-
logical relations, layered predicates, Kripke-layered predicates, sub-
stitution properties, well-structured proofs, denotational semantics,

∗This is a preprint of a paper to appear in the Proceedings of the REX’92 workshop
“Semantics - foundations and applications” to be published by Springer Lecture Notes in
Computer Science.

1

correctness of code generation, proof principles.

Contents

0 Introduction 2

1 Logical Relations 3

2 Kripke-Logical Relations 14

3 Kripke-Layered Predicates 28

4 Conclusion 41

0 Introduction

It is common mathematical practice to structure the development of a theory
into a series of definitions and a series of facts, lemmas, propositions and the-
orems. Each definition introduces some concept, predicate or relation. Each
fact, lemma, proposition and theorem presents insights of increasing impor-
tance and, at least in principle, increasing difficulty of proof. By structuring
the main insight into a number of definitions and theorems, the latter struc-
tured into a number of lemmas etc., the claim is that each step in the overall
development becomes more amenable, easier to conduct and check, and eas-
ier to adopt to analogous settings. By combining all the theorems one then
obtains the insight desired about the aggregation of concepts introduced.

Well-structured and amenable proofs are of no less importance in computer
science than in mathematics. Perhaps they are more important here because
the structures studied are often much “bulkier” than in mathematics. As an
example consider a realistic programming language with its massive amount

2

of syntax and syntactic categories; any interesting claim about such a lan-
guage is likely to be at least as “bulky” as the syntax of the language since
every syntactic category must participate in the formulation of the claim and
each syntactic construct in the proof. Machine implementations of automatic
and semi-automatic proof systems have been devised to help in dealing with
such “bulky” proofs but they all need some amount of guidance, e.g. in the
form of proof tactics, and some require human interaction to solve subgoals
beyond the power of the machine. Thus the need for well-structured proofs
is of no less importance for automatic proofs than for manual proofs.

The main problem in adapting the techniques of mathematics to computer
science is that most structures in computer science have some higher-order or
recursive aspects. Examples include the meaning of procedures, the context
free syntax of programming languages, domain equations, and type systems.
Here even the definition of the predicates may require some ingenuity and
the use of special techniques. As we shall see one such technique is that of
logical relations where the predicate is defined to hold on a function if and
only if the predicate is preserved across function calls: if the predicate holds
of the argument it must also hold of the result. The difficulty now is that
preservation of an aggregation of predicates (or a strong predicate) does not
imply the preservation of each individual predicate (or of a weaker predicate).
The reason is that the strong predicate may be preserved simply because it
holds for no arguments and that the weak predicate may fail to be preserved
because it holds for no results; we shall study concrete examples in Examples
3.1 and 3.2.

The solution is to be more careful in the aggregation of predicates and to this
end a notion of layered predicates is developed. To conduct this development
we first give an overview of logical relations and partial equivalence relations
and we give examples suggesting that these notions are unavoidable. We next
consider Kripke-logical relations and we give an extended example suggest-
ing that this notion is unavoidable for establishing a substitution property.
Finally the notion of layered predicates is developed.

Throughout the presentation we aim at avoiding complex examples; how-ever
extensive applications of the development may be found in [10, Chapter 6]
and in [9] in the context of proving the correctness of code generation. Indeed
the present work is a synthesis of the ideas developed there and we aim at
presenting the (often rather implicit) ideas in an application-independent

3

setting. This allows to study the techniques on their own and will make it
easier to apply them to other tasks. Of particular interest would be the use of
these techniques as a tool in structuring computer-based proofs. Also more
general and more mathematical (e.g. categorical) formulations would be an
avenue for further research.

1 Logical Relations

Our example language throughout this paper will be a monotyped λ-calculus.
Its types t, expressions e, variables v and constants c are given by

t ::= num | bool | charlist | t → t
e ::= λv : t.e | e e | v | c
v ::= x | y | z | f | g | · · ·
c ::= ∗ | + | − | · · ·

Here num, bool and charlist are base types and t1 → t2 denotes the type of
functions from t1 to t2. It is merely for simplicity of presentation that sum
types, product types and recursive types have not been included. Expres-
sions include λ-abstraction, function application, and the use of variables and
constants. We leave the exact nature of variables and constants unspecified
and we shall use infix rather than prefix notation for constants.

Example 1.1 To make our examples appear a bit more realistic we shall
impose a module structure upon the language. It consists of specifications
and implementations. An example specification is

spec sum1: num → num

with sum1 maps nonneg. integers to nonneg. integers

/∗ sum1 x = 1 + . . . + x ∗/

Here the first line gives the functionality of the function sum1. The third line
states our intention with the function but this is merely a comment and of
no semantic consequence. The second line states a property of sum1 that any
acceptable implementation must satisfy. Part of our work is to formalize the

4

informal wording of that property but the more difficult part (in general) is
to do it in a way that lends itself to proofs by structural induction (on the
syntax of implementations). An example implementation then is

impl sum1 = λx.x∗x
2

+ x
2

Here we take some liberty in the use of the infix notation. We shall shortly
return to the proof that the implementation satisfies its specification. ✷

This language is subject to the usual rules for well-formedness. It is worth-
while to write this out in detail. The judgements are of the form

tenv � e : t

saying that in the type environment tenv the expression e has type t. As
usual a type environment is a finite list of pairs of variables and types and
we write tenv(v) = t whenever (v, t) is the rightmost pair in tenv of form
(v, t′) for some t′. The central portions of the inference system are given by

tenv, (v, t) � e : t′

tenv � λv : t.e : t → t′

tenv � e1 : t → t′ tenv � e2 : t
tenv � e1 e2 : t′

tenv � v : t if tenv(v) = t

tenv � c : t if TYPE (c) = t

For constants we have assumed a global assignment TYPE of types to the
constants much like the type environment but we shall leave the details im-
plicit. Expressions are uniquely typed; this means that if an expression has
two types, as in tenv � e : t1 and tenv � e : t2, then they are equal, i.e.
t1 = t2, but it does not guarantee the existence of a type for all expressions
(e.g. the application 1 2). In examples we shall allow to dispense with the
types after λ-abstracted variables. The empty type environment is written (
).

5

The semantics of types and expressions is usually parametrized on an in-
terpretation I of the meaning of base types and constants. An example
interpretation is the standard interpretation S that has

S(num) = NUM (the flat domain of rational numbers)
S(bool) = BOOL (the flat domain of booleans)
S(charlist) = CHARLIST (the flat domain of lists of characters)

The semantics I[[t]] of a type t is then given by

I[[num]] = I(num)
I[[bool]] = I(bool)
I[[charlist]] = I(charlist)
I[[t1 → t2]] = [I(t1) → I(t2)]

where the arrow constructs the set of total functions and the square brackets
extract those that are continuous. It is helpful also to define the semantics
I[[tenv]] of a type environment tenv. Here we simply set

I[[(v1, t1), . . . , (vn, tn)]] = I[[t1]] × . . . × I[[tn]]

where the righthand side is the n-ary cartesian product ordered compo-
nentwise (and the one-point domain if n = 0). Corresponding to the notation
tenv(v) = t we define the associated projection function

πtenv
v : I[[tenv]] → I[[t]]

but we shall not use space for the tedious details of the formal definition.
Turning to expressions we define the semantics I[[e]]tenv ∈ I[[tenv]] → I[[t′]] of
a well-formed expression e, i.e. tenv � e : t′, as follows

I[[λv : t. e]]tenv = λ(w1 . . . , wn). λw.I[[e]]tenv,(v,t)(w1 . . . , wn, w)

I[[e1 e2]]tenv = λ(w1 . . . , wn). I[[e1]]tenv(w1 . . . , wn)

(I[[e2]]tenv(w1 . . . , wn))

I[[v]]tenv = πtenv
v

I[[c]]tenv = λ(w1 . . . , wn). I(c)

6

where the interpretation specifies the meaning I(c) ∈ I[[TYPE (c)]] of con-
stants. We shall not go further into the behaviour of the standard interpre-
tation S at this stage.

A predicate over a domain (or set) D is a total function from D to the set
{true, false} of truth values. We shall write D → {true, false} for the set of
predicates over D. An m-ary relation over D1, . . . , Dm is simply a predicate
over the cartesian product D1 × . . .×Dm and henceforth we shall regard the
words predicate and relation as interchangable.

Definition 1.2 An indexed relation R over interpretations I1, . . . , Im is
a collection of m-ary relations Rt : I1[[t]] × . . . × Im[[t]] → {true, false} one
for each type t. It is a logical relation iff

Rt1→t2(f1, . . . , fm) ≡ ∀(w1, . . . , wm) : Rt1(w1, . . . , wm)

⇓
Rt2(f1(w1), . . . , fm(wm))

holds for all types t1 and t2. ✷

Clearly a logical relation is uniquely determined by its effect on the base
types. To avoid excessive use of brackets we write e |= R[t] for Rt(I1[[e]]()(), . . . ,
Im[[e]]()()) whenever R is an indexed relation.

We shall next consider some examples of the use of logical relations. These
will be grouped into three groups corresponding to increasing complexity of
formulation. The fist group is concerned with logical relations over one in-
terpretation only.

Example 1.3 Returning to the sum1 example our first task is to formalize
the interface condition:

sum1 maps nonnegative integers to nonnegative integers

We may define a logical relation NONNEG over S as follows:

NONNEGnum(w) ≡ w ≥ 0
NONNEGbool(w) ≡ true
NONNEGcharlist(w) ≡ true

7

The definition of NONNEGbool and NONNEGcharlist may seem abitrary but
they will be instances of a general pattern that will emerge later. In a similar
way we may define a logical relation INT as follows:

INT num(w) ≡ w ∈ {. . . ,−2,−1, 0, 1, 2, . . . }
INT bool(w) ≡ true
INT charlist(w) ≡ true

Given logical relations R′ (e.g. NONNEG) and R′′ (e.g. INT) we may define
a logical relation R′ ∧ R′′ by

(R′ ∧ R′′)num(w) ≡ R′num(w) ∧ R′′num(w)
(R′ ∧ R′′)bool(w) ≡ R′bool(w) ∧ R′′bool(w)
(R′ ∧ R′′)charlist(w) ≡ R′charlist(w) ∧ R′′charlist(w)

It is very important to point out, as was already hinted at in the Introduction,
that in general (R′ ∧ R′′)t(w) will be different from R′t(w) ∧ R′′t (w); we shall
study concrete examples in Examples 3.1 and 3.2. Turning to the logical
relation NONNEG ∧ INT we see that

sum1 |= (NONNEG∧INT)[num → num]

is the desired reformulation of the interface condition.

A direct proof would proceed by assuming that x is a nonnegative integer
and would then show that also x∗x

2
+ x

2
is. This is not simply a structural

induction because for odd x also x∗x and x will be odd; but luckily x∗x+x is
even so that x∗x

2
+ x

2
is an integer. The details of this proof are of no interest

to us, however.

A more well-structured proof might split the combined proof about the rela-
tion NONNEG∧INT into separate proofs about NONNEG and INT. Clearly
one can show

sum1 |= NONNEG [num → num]
sum1 |= INT [num → num]

by the same methods of reasoning that we sketched above. From this we
would like to infer

8

sum1 |= (NONNEG∧INT)[num → num]

We may do so if we have available to us a proof rule

e |= R′[t] e |= R′′[t]

e |= (R′ ∧ R′′)[t]
if t . . .

but this does not hold for all types t; as was claimed above, the reason
is that there are likely to be types t′ such that (R′ ∧ R′′)t′(w) differs from
R′t′(w)∧R′′t′(w). However, the proof rule is available to us for t = num → num

(as well as t = num) and the proof carries through. ✷

Example 1.4 For an example of a somewhat different flavour, and to
prepare for the development of the next sections, consider the following mod-
ule:

spec badge: charlist → charlist

with badge only involves 7 bit ASCII characters

impl badge = λ x. if # x ≤ 17
then "Professor" ++ x

else "Prof." ++ x

Here # gives the length of a list and ++ concatenates two lists. (In the stan-
dard semantics these functions will be strict in each argument.) The purpose
of the module is to construct a conference badge but taking into account
that some names are long and that badges have fixed sizes. Additionally the
badge printer only correctly deals with 7 bit ASCII characters.

To formalize the interface condition we define a logical relation LOWASCII
by

LOWASCII num(w) ≡ true
LOWASCII bool(w) ≡ true
LOWASCII charlist(w) ≡ all characters in w have ASCII value

at most 127 (or w = ⊥)

(We shall not bother to be more formal about LOWASCII charlist.) This
follows the pattern of the previous example. Then

9

badge |= LOWASCII [charlist → charlist]

presents the desired formalization. Clearly if applied to a name that contains
an offending character (like the Danish æ, ø and å) so will the result but at
least no such characters will be introduced by badge provided that none are
present in the argument. ✷

The second group of examples is concerned with logical relations over a se-
quence of pairwise distinct interpretations.

Example 1.5 Strictness analysis aims at determining when functions
need to evaluate their arguments. It is based upon the 2-point domain

2 =
• �|||• ⊥

An interpretation I for a simple version of strictness analysis is obtained by
specifying

I(num) = 2
I(bool) = 2
I(charlist) = 2

Concerning constants we shall give two examples. If

S(∗) = λw1. λw2.

{
⊥ if w1 = ⊥ ∨ w2 = ⊥
w1 × w2 otherwise

it is natural to set

I(∗) = λw1. λw2. w1 � w2

where � denotes binary meet, i.e. 0 � 0 = 0 � 1 = 1 � 0 = 0 and 1 � 1 = 1.
Similarly, if

S(if) = λw1. λw2. λw3.

⊥ if w1 = ⊥
w2 if w1 = true
w3 if w1 = false

10

then it is natural to set

I(if) = λw1. λw2. λw3.

{
⊥ if w1 = ⊥
w2 � w3 otherwise

where � denotes binary join.

To express the correctness of the strictness analysis we define a logical relation
COR over the interpretations S and I. It is given by

CORnum(w
1, w2) ≡ (w2 = ⊥ ⇒ w1 = ⊥)

CORbool(w
1, w2) ≡ (w2 = ⊥ ⇒ w1 = ⊥)

CORcharlist(w
1, w2) ≡ (w2 = ⊥ ⇒ w1 = ⊥)

It is then quite standard to prove the correctness of ∗ and if, but we shall
dispense with the details. ✷

The third group of examples is concerned with logical relations over a se-
quence of interpretations that are not necessarily pairwise distinct.

Example 1.6 The need for more than one appearance of the same in-
terpretation arises when we want to relate values rather than just express
properties about them. To be more specific let us consider the following
module:

spec sq: num → num

with sq is independent of the sign of the argument

impl sq = λx. x ∗ x

It is not difficult to be more formal about the interface condition. Some
possibilities are

sq = sq ◦ abs
sq = sq ◦ neg
∀x1, x2 : abs(x1) = abs(x2) ⇒ sq(x1) = sq(x2) (a)

where abs is the function that gives the absolute value and neg is the function
that multiplies by (−1).

11

However, these formulations do not immediately lend themselves to proof by
structural induction. As we shall see below this will be the case if we can use
the framework of logical relations. Our first approach will be to consider

∀x1, x2 : abs(x1) = abs(x2) ⇒ abs(sq(x1)) = abs(sq(x2) (b)

We may define a logical relation SQ over interpretations S, S by

SQnum(w
1, w2) ≡ abs(w1) = abs(w2)

SQbool(w
1, w2) ≡ w1 = w2

SQcharlist(w
1, w2) ≡ w1 = w2

and clearly (b) is then equivalent to

sq |= SQ[num → num]

Since sq always yields a nonnegative result this is equivalent to (a) as well.

To capture (a) directly we may proceed as follows. Rather than having the
base type num we shall have several distinct versions; for the present purposes
numabs and numid suffice. These will be interpreted in the same way in all
interpretations but their presence allows us to give the following modified
definition of the logical relation SQ over S, S:

SQnumabs
(w1, w2) ≡ abs(w1) = abs(w2)

SQnumid
(w1, w2) ≡ w1 = w2

SQbool(w
1, w2) ≡ w1 = w2

SQcharlist(w
1, w2) ≡ w1 = w2

Then the condition

sq |= SQ[numabs → numid]

is equivalent to the desired interface condition (a).

For any base type t, i.e. t ∈ {numabs, numid, bool, charlist}, each SQt is an
equivalence relation over S[[t]] i.e. SQt is a reflexive, transitive and symmetric

12

relation. But is it more advantageous to exploit only the weaker fact that
each such SQt is a partial equivalence relation (abbreviated PER); this just
means that for a base type t each SQt is a (not necessarily reflexive) transitive
and symmetric relation. Then one can show by structural induction over all
types t that SQt is a partial equivalence relation over S[[t]], i.e. we do not
need to restrict our attention to base types only.(This would not be the case
if we had studied equivalence relations.)

So our approach is essentially that of [1]. A notational difference is that our
formulation is close to that of the faithfulness relation studied in [8]. This
means that the formulation would be useful also for analyses carried out
by means of non-standard type inference. The use of binary relations over
the same domain, e.g. in the form of partial equivalence relations, rather
than just unary predicates seems to be necessary for validating a number of
analyses. Examples include binding time analysis [2] and liveness analysis
[6]. ✷

Logical relations are useful because they interact very well with the semantics
of the λ-calculus. In particular they are well suited to proofs by structural
induction.

Definition 1.7 An indexed relation R over I1, . . . , Im is said to admit
structural induction whenever it satisfies the following condition:

For every type environment tenv = (v1, t1), . . . , (vn, tn) and every
well-typed expression e of type t, i.e. tenv � e : t; if

Rti(w
1
i , . . . , wm

i) for all i = 1, . . . , n

Rt′(I1(c
′), . . . , Im(c′)) for all constants c′ of type t′ occurring in e

then

Rt(I[[e]]tenv(w
1
1, . . . , w1

n), . . . , I[[e]]tenv(w
m
1 , . . . , wm

n) ✷

Lemma 1.8 Logical relations admit structural induction. ✷

Proof Using the notation of the definition this is a structural induction
over e. For a variable v the result is immediate from the assumptions. This
is also the case for a constant c. For an application e1 e2 we use the induction
hypothesis to obtain

13

Rt′→t(I1[[e1]]tenv(w
1
1, . . . , w1

n), . . . , Im[[e1]]tenv(w
m
1 , . . . ,wm

n))

Rt′(I1[[e2]]tenv(w
1
1, . . . , w1

n), . . . , Im[[e2]]tenv(w
m
1 , . . . ,wm

n))

and then we use that R is logical; to be more specific we use the following
proof rule

Rt′→t(f1, . . . , fm) Rt′(w1, . . . , wm)

Rt(f1(w1), . . . , fm(wm))

whose validity is a direct consequence of R being logical. For a λ-abstraction
λv : t′. e we must show

Rt′→t′′(I1[[λv : t′. e]]tenv(w
1
1, . . . , w1

n), . . . , Im[[λv : t′. e]]tenv(w
m
1 , . . . , wm

n))

By R being logical this amounts to assuming

Rt′(w
1
n+1, . . . , wm

n+1)

and showing

Rt′′(I1[[λv : t′. e]]tenv(w
1
1, . . . ,w1

n)(w1
n+1), . . . ,

Im[[λv : t′. e]]tenv(w
m
1 , . . . , wm

n)(wm
n+1)).

But since

Ii[[λv : t′. e]]tenv(w
i
1, . . . , wi

n)(wi
n+1) = Ii[[e]]tenv,(v,t′)(w

i
1, . . . , wi

n, w
i
n+1).

this follows from the induction hypothesis. ✷

Taking n = 0 and m = 1 we get:

Corollary 1.9 If the closed expression e has type t, i.e. () � e : t, and
c′ |= R[t′] for all constants c′ of type t′ occurring in e, then e |= R[t] provided
that R is logical. ✷

Historical Remark The concept of logical relations, including the result

14

on structural induction (our Lemma 1.8), is often attributed to [12]. Actu-
ally, [11] predated [12] and contained many of the ideas and one should also
acknowledge the relational functors of [13]. That binary relations over a set,
rather than just unary predicates, is sometimes needed for abstract interpre-
tation was first realized in [6] in terms of a distinction between “first-order”
and “second-order” analyses; the link to partial equivalence relations is due
to [1] .

2 Kripke-Logical Relations

The definitions of the predicates of the previous section were mostly rather
natural. However, in Example 1.6 the use of partial equivalence relations
accounted for a somewhat different flavour of the formulation. To motivate
the development of the present section it is worthwhile to look closer at this
difference.

All but one of the examples of the previous section were such that the for-
mulation of the predicates was quite natural at level 0, i.e. for base types.
The extension to higher levels, i.e. function types, was then accomplished
using the general technique of logical relations. In Example 1.6 the predicate
was quite natural to formulate at level 1, i.e. for functions in num → num.
The formulation at level 0, i.e. for num, was not so straightforward and we
found it necessary to use partial equivalence relations, or more precisely, to
use the same interpretation more than once. Then the extension to higher
levels could be accomplished using the general technique of logical relations.

In this section we shall consider an example that is more along the lines of
Example 1.6 than the other examples. But it presents additional compli-
cations that we shall solve by parameterizing the predicates with elements
drawn from a partially ordered set.

Example 2.1 As a variation of our badge example consider the following
module for writing a letter of invitation:

spec letter: charlist → charlist

with letter is a character list with hole(s) in it

impl letter = λx. "Dear Professor" ++ x ++", We hereby

15

invite . . . "

By mapping letter onto a list of names we will then obtain a list of letters.
To ensure that all letters are materially the same, e.g. any discount is offered
uniformly to all recipients, we request that letter is a character string with
hole(s) in it; these holes will be filled with the names of recipients. To be
more formal we may rephrase this as

∃l0, . . . , ln : letter = λx. (l0++x++l1++. . . ++x++ln)

Similar situations arise frequently in correctness proofs for code generation
based on denotational semantics [9, 10].

The above formulation is given at level 1, i.e. on functions in charlist →
charlist, and so we need to find a definition at level 0. Trying to adapt
the use of partial equivalence relations we might search for a relation ∼ and
rephrase the interface condition as follows:

x ∼ y ⇒ letter x ∼ letter y

However, this approach does not seem to work because of difficulties in defin-
ing a relation like ∼. The problem is that when analyzing the result of letter
x it is not possible to distinguish between those substrings that are present
because of the insertion of the parameter, and those substrings that just
happened to be part of l0, . . . , ln.

To overcome this problem we shall pretend that there are special characters
called holes that may be used to indicate where substitutions should occur.
We shall write l = l1[l2/h] whenever l is obtained from l1 by replacing each
hole h by the substring l2. (A formal definition will be given shortly.) The
interface condition will then be formulated as follows:

SUBST ({(h, w)})([h], w) ⇒ SUBST ({(h, w)})(letter[h], letter w)

where the predicate is given by

SUBST ({(h, l)})(l1, l2) ≡ (l1[l/h] = l2)

16

and [h] denotes a one-element list consisting of the character denoted by h.
From this we shall see that we can infer letter w = (letter[h])[w/h] and
that the interface condition then holds. The formal details follow. ✷

Example 2.2 Before going into the formal development it is worthwhile
to investigate the number of holes that will be necessary. So far we have only
seen the need for one but consider the following module:

spec invite: charlist → charlist → charlist

with invite is a character list with hole(s) in it

impl invite = λy. λx. "Dear Mr. "++ x ++",

You are hereby invited

to the "++ x ++" conference, . . . "

(This might be suitable for a conference bureau.) To formulate the interface
condition properly we will need two different holes and in general we will
need an arbitrary finite number of holes. This means that the parameter
to the SUBST relation will be a finite set and not just a single ton set;
these parameters are naturally ordered by subset inclusion.—In terms of the
motivating applications of code generation, this phenomenon arises whenever
nested fixed points (e.g. nested while loops) are allowed. ✷

In the remainder of this section we develop the general theory of Kripke-
logical relations and study some of their properties. We then go on to the
rather more demanding task of applying Kripke-logical relations to Example
2.1.

Definition 2.3 A parameterized and indexed relation R over a non-
empty partially ordered set ∆ and interpretations I1, . . . , Im is a collection
of parameterized m-ary relations Rt[δ] : I1[[t]]× . . .×Im[[t]] → {true, false}
one for each type t and δ ∈ ∆. It is a Kripke-indexed relation iff

∀δ′ � δ : Rt[δ](w1, . . . , wm) ⇒ Rt[δ
′](w1, . . . , wm)

holds for all types t. It is a Kripke-logical relation iff it is a Kripke-indexed
relation and

17

Rt1→t2 [δ](f1,. . . , fm) ≡ ∀δ′ � δ : ∀(w1, . . . , wm) :
Rt1 [δ

′](w1, . . . , wm) ⇒ Rt2 [δ
′](f1(w1), . . . , fm(wm))

holds for all types t1 and t2. ✷

It is possible to weaken the assumptions on ∆, e.g. to be a quasi-ordered
set, but for our purposes this is hardly worth the effort. Clearly a Kripke-
logical relation is uniquely determined by its effect on the base types. A
logical relation may be regarded as a Kripke-logical relation with ∆ having
only one element. The need for ∆ to have more than one element was hinted
at in Example 2.2. The need for the “∀δ′ � δ :” will be illustrated in
the proof of Lemma 2.13. To avoid excessive use of semantic brackets we
shall write e |= R[t, δ] for Rt[δ](I1[[e]]()(), . . . , Im[[e]]()()) and e |= R[t] for
∀δ ∈ ∆ : e |= R[t, δ] whenever R is a Kripke-indexed relation.

Fact 2.4 If R is a Kripke-indexed relation and ∆ has a least element, ⊥∆,
then e |= R[t,⊥∆] is equivalent to e |= R[t]. ✷

Luckily Kripke-logical relations share the good properties of logical relations,
namely that they are well suited to proofs by structural induction.

Definition 2.5 A Kripke-indexed relation R over ∆ and I, . . . , Im is said
to admit structural induction whenever it satisfies the following condition:

For every type environment tenv = (v1, t1), . . . , (vn, tn),
every element δ ∈ ∆ and every well-typed expression e of type t,
i.e. tenv � e : t; if

Rti [δ](w
1
i , . . . , wm

i) for all i = 1, . . . , n
Rt′ [δ](I(c′), . . . , Im(c′)) for all constants c′ of type t′

occurring in e
then

Rt[δ](I1[[e]]tenv(w
1
1, . . . , w1

n), . . . , Im[[e]]tenv(w
m
1 , . . . , wm

n)) ✷

Lemma 2.6 Kripke-logical relations admit structural induction. ✷

Proof. Using the notation of the definition this is a structural induction over
e. For a variable v the result is immediate from the assumptions. This is
also the case for a constant c. For an application e1 e2 we use the induction
hypothesis to obtain

18

Rt′→t[δ](I1[[e1]]tenv(w
1
1, . . . , w1

n), . . . , Im[[e1]]tenv(w
m
1 , . . . , wm

n))

Rt′ [δ](I1[[e2]]tenv(w
1
1, . . . , w1

n), . . . , Im[[e2]]tenv(w
m
1 , . . . , wm

n))

and then we use that R is Kripke-logical; to be more specific we use the
following proof rule

Rt′→t[δ](f1, . . . , fm) Rt′ [δ](w1, . . . , wm)

Rt[δ](f1(w1), . . . , fm(wm))

whose validity is a direct consequence of R being Kripke-logical (and δ � δ).
For a λ-abstraction λv : t′. e we must show

Rt′→t[δ](I1[[λv : t′. e]]tenv(w
1
1, . . . , w1

n), . . . , Im[[λv : t′. e]]tenv(w
m
1 , . . . , wm

n))

By R being Kripke-logical this amounts to choosing δ′ � δ and assuming

Rt′ [δ
′](w1

n+1, . . . , wm
n+1)

and showing

Rt′ [δ
′](I1[[λv : t′. e]]tenv(w

1
1, . . . , w1

n)(w1
n+1), . . . ,

Im[[λv : t′. e]]tenv(w
m
1 , . . . , wm

n)(wm
n+1))

But by assumption we have

Rti [δ](w
1
i , . . . , wm

i) for all i = 1, . . . , n

so using the proof rule

Rt[δ](w1, . . . , wm)

Rt[δ
′](w1, . . . , wm)

δ′ � δ

we obtain

Rti [δ
′](w1

i , . . . , wm
i) for all i = 1, . . . , n

19

As we also have

Rti [δ
′](w1

i , . . . , wm
i) for all i = n + 1

it follows from the induction hypothesis that

Rt[δ
′](I1[[e]]tenv,(v,t′)(w

1
1, . . . , w1

n, w
1
n+1), . . . , Im[[e]]tenv,(v,t′)(w

m
1 , . . . , wm

n , wm
n+1))

But since

Ii[[λv : t′. e]]tenv(w
i
1, . . . , wi

n)(wi
n+1) = Ii[[e]]tenv,(v,t′)(w

i
1, . . . , wi

n, w
i
n+1))

this is the desired result. ✷

Taking n = 0 and m = 1 we get:

Corollary 2.7 If the closed expression e has type t, i.e. () � e : t, and
c′ |= R[t′] for all constants c′ of type t′ occurring in e, then e |= R[t] whenever
R is Kripke-logical. ✷

Extended Example: Establishing Substitution Proper-
ties

To apply the technique of Kripke-logical relations to our letter example we
must take care of a few formalities before defining the SUBST relation. We
begin by looking closer at the standard interpretation S and in particular
the equation

S(charlist) = CHARLIST

where CHARLIST is the flat domain of lists of characters. Henceforth we
shall assume that

CHARLIST = ((NORMAL ∪ HOLE)∗)⊥

where NORMAL is a (finite) set of characters, HOLE is a disjoint (and
in general infinite) set of “hole characters”, (–)∗ constructs lists and (–)⊥

20

constructs flat domains. We shall assume that NORMAL includes all the
usual ASCII characters and we shall write h1, h2, . . . for the elements of
HOLE.

The partially ordered set ∆ has as elements those sets of pairs of holes and
lists of characters that are acceptable according to the definition given below.
The partial order is subset inclusion and it will emerge that ∅, the empty set,
is the least element. A set δ is acceptable iff

• δ ⊆ HOLE × (NORMAL ∪ HOLE)∗,

• δ is finite,

• δ is functional, i.e. (h, l1), (h, l2) ∈ δ ⇒ l1 = l2,

• (h, l) ∈ δ ⇒ FH(l) ⊆ DOM(δ)

where FH(l) is the set of free holes in l, i.e.

FH([]) = ∅

FH([c]++l) =

{
{c} ∪ FH(l) if c ∈ HOLE
FH(l) if c ∈ NORMAL

and DOM(δ) is the “domain” of δ, i.e.

DOM(δ)= {h | ∃l : (h, l) ∈ δ}

The first three conditions for acceptability are rather straightforward; the
fourth condition is of a more technical nature and is suitable for the subse-
quent development (see e.g. Fact 2.10). Whenever δ is acceptable and h ∈
DOM(δ) we shall write δ(h) for the unique l such that (h, l) ∈ δ.

We write l[l1/h1, . . . , lm/hm] for the result of substituting each list li for each
hole hi in l. More formally we have

[][l1/h1, . . . , lm/hm] = []

([c]++l)[l1/h1, . . . , lm/hm] =

[c]++(l[l1/h1, . . . , lm/hm])
if c /∈ {h1, . . . , hm}

li++(l[l1/h1, . . . , lm/hm])
if c = hi

21

and it is convenient to write also ⊥[l1/h1, . . . , lm/hm] = ⊥ as well as FH(⊥)
= ∅.
We may then attempt to define a Kripke-logical relation SUBST over ∆ and
S,S as follows:

SUBST num[δ](w
1, w2) ≡ (w1 = w2)

SUBST bool[δ](w
1, w2) ≡ (w1 = w2)

SUBST charlist[{(h1, l1), . . . (hm, lm)}](w1, w2) ≡
(w1[l1/h1, . . . , lm/hm] = w2)∧
(FH(w1) ⊆ {h1, . . . , hm})

Fact 2.8 For all base types t, if SUBST t[δ](w
1, w2) then (w1 = ⊥)∨ (w2 =

⊥) is equivalent to w1 = ⊥ = w2. ✷

Proof. For t = num and t = bool the result is trivial. For t = charlist it
follows because δ ∈ ∆ implies that any (h, l) ∈ δ has l = ⊥. (It is unlikely
that the result holds for function types.) ✷

Lemma 2.9 SUBST as defined above is a Kripke-logical relation. ✷

Proof. It suffices to prove that

δ′ � δ∧ SUBST t[δ](w
1, w2) ⇒ SUBST t[δ

′](w1, w2)

for all base types t ∈ {num, bool, charlist}. This is immediate except for
t = charlist. So assume that δ′ ! δ and that SUBST charlist[δ](w

1, w2). If
w1 = ⊥ or w2 = ⊥ then w1 = ⊥ = w2 and the result is immediate so we shall
henceforth assume that w1 = ⊥ and w2 = ⊥. It is possible to find m′ ≥ m
and h1, l1, . . . , hm′ , lm′ such that

δ = {(h1, l1), . . . (hm, lm)}
δ′ = {(h1, l1), . . . (hm′ , lm′)}

Our assumption

SUBST charlist[δ](w
1, w2)

22

implies that

FH(w1) ⊆ {h1, . . . , hm}

and from this

FH(w1) ⊆ {h1, . . . , hm′}

immediately follows since m′ ≥ m. Next our assumption

SUBST charlist[δ](w
1, w2)

also implies that

w1[l1/h1, . . . , lm/hm] = w2

and from this

w1[l1/h1, . . . , lm′/hm′] = w2

follows because we also know that

FH(w1) ⊆ {h1, . . . , hm}

This establishes SUBST charlist[δ
′](w1, w2).

It is convenient to note also

Fact 2.10 If SUBST charlist[{(h1, l1), . . . , (hm, lm)}](w1, w2) then

FH(w1) ⊆ {h1, . . . , hm}
FH(w2) ⊆

⋃m
i=1 FH(li) ⊆ {h1, . . . , hm} ✷

Proof. The first condition is immediate and then gives the first inclu-
sion in the second condition because w1[l1/h1, . . . , lm/hm] = w2. The sec-
ond inclusion in the second condition then follows from acceptability of
{(h1, l1), . . . , (hm, lm)} ✷

23

We now have two tasks ahead of us. One is to show that our SUBST relation
is satisfied by letter and the other is to show that the SUBST relation does
express the substitution property that we are interested in.
We begin with the former.

Lemma 2.11 letter |= SUBST [charlist → charlist]. ✷

For the proof we consider δ ∈ ∆. To show the result we must consider δ′ � δ
and assume that

SUBST charlist[δ
′](w1, w2)

and then show

SUBST charlist[δ
′](letter w1, letter w2)

Writing

δ′ = {(h1, l1), . . . (hm, lm)}

our assumptions amount to

FH(w1) ⊆ {h1, . . . , hm}

and

w1[l1/h1, . . . , lm/hm] = w2

Since

letter = λx. "Dear Professor "++ x ++",

We hereby invite . . . "

and ‘D’,‘e’,. . . ∈ NORMAL it follows that

24

FH(letter w1) = FH(w1) ⊆ {h1, . . . , hm}

(letter w1)[l1/h1, . . . , lm/hm]
= letter(w1[l1/h1, . . . , lm/hm])
= letter w2

and this establishes the desired result.

Example 2.12 To show that the SUBST relation is not trivially true we
shall show that

¬(badge |= SUBST [charlist → charlist])

First define

l1 = "this is a name with 39 characters in it"

δ = {(h1, l1)}

and note that δ ∈ ∆ and clearly SUBST charlist[δ]([h1], l1). But

badge [h1] = "Professor "++ [h1]
badge l1 = "Prof. "++ l1

and clearly SUBST charlist[δ](badge[h1], badge l1) fails. ✷

That SUBST expresses the desired substitution property follows from

Lemma 2.13

SUBST charlist→charlist[∅](f, f) ∧ f = ⊥
#
∃w0, . . . , wn ∈ CHARLIST : ∀w ∈ CHARLIST \ {⊥} :

(f(w) = w0++w++w1++. . . ++w++wn)∧
(∀i :FH(wi) = ∅ ∧ wi = ⊥)

Proof. The downward implication is the more interesting one. The proof
proceeds in three stages:

Stage 1 Choose some h ∈ HOLE (e.g. the one with minimal index). Define
w0, . . . , wn ∈ CHARLIST by the conditions that

25

f [h] = w0++[h]++w1++. . . ++[h]++wn

∀i : h /∈FH(wi) ∧ wi = ⊥)

This is possible if f [h] = ⊥ and then uniquely defines w0, . . . , wn (subject to
the choice of h).

To see that f [h] = ⊥ suppose by way of contradiction that f [h] = ⊥. Since
f = ⊥ there exists w ∈ CHARLIST such that f w = ⊥; we may without
loss of generality assume that w = ⊥. Now define

δ = {(h, w)} ∪
⋃
{(h′, [h′]) | h′ ∈ FH(w) ∧ h′ = h}

and note that δ ∈ ∆. Clearly SUBST charlist[δ]([h], w) and since δ � ∅,
we get SUBST charlist[δ](f [h], f w). But since f [h] = ⊥ = f w, this is a
contradiction (Fact 2.8).

Stage 2 Let w ∈ CHARLIST be given such that w = ⊥. As in Stage 1
define

δ = {(h, w)} ∪
⋃
{(h′, [h′]) | h′ ∈ FH(w) ∧ h′ = h}

and obtain that SUBST charlist[δ](f [h], f w). This means that

f w = (f [h])[w/h]

= w0++[h]++w1++. . . ++[h]++wn[w/h]

= w0++w++w1++. . . ++w++wn

as was to be shown.

Stage 3 To show the remaining properties of w0, . . . , wn we first define

δ = {(h, [])}

and note that δ ∈ ∆. Since SUBST charlist[δ]([h], []), it follows from the as-
sumptions that SUBST charlist[δ](f [h], f []). Using Fact 2.10 we have FH(f []) ⊆
∅ and by Stage 2 (with w = []) this gives ∀i : FH(wi) = ∅ as desired.

26

The upward implication is along the lines of the proof of Lemma 2.11. We
provide the details by means of:

Stage 4 Suppose that w0, . . . , wn are chosen such that

∀w = ⊥ : f w = w0++w++w1++. . . ++w++wn

∀i : FH(wi) = ∅ ∧ wi = ⊥

Then clearly f = ⊥. To show SUBST charlist→charlist[∅](f, f) take δ ∈ ∆
such that SUBST charlist[δ](w

1, w2) and show SUBST charlist[δ](f w1, f w2).
We may write δ in the form δ = {(h1, l1), . . . , (hn, ln)}. If w1 = ⊥ we have

FH(f w1) = FH(w0++w
1++w1++. . . ++w

1++wn) = FH(w1)
(f w1)[l1/h1, . . . , ln/hn]

= (w0++w
1++w1++. . . ++w

1++wn)[l1/h1, . . . , ln/hn]
= f(w1[l1/h1, . . . , ln/hn]

and then the desired result follows from the assumptions. If w1 = ⊥ we
also have w2 = ⊥ so that f w1 = f w2. The result is then immediate if
f w1 = f w2 = ⊥ so assume that f w1 = f w2 = ⊥. Then f w1 = f w2 = f []
since w1 ! [] implies f w1 ! f [] and by flatness of CHARLIST equality
follows. Next

FH(f []) = FH(w0++w1++. . . ++wn) = ∅
(f [])[l1/h1, . . . , ln/hn] = f []

and the result follows. ✷

In the examples we have given in this section the substitution property is
something that may or may not be satisfied by the functions defined: it
holds for letter but not for badge. In the applications to code generation
[9, 10] that motivated the present development, the situation is slightly dif-
ferent. There the substitution property does hold for all functions defined
(in the process of interpreting a metalanguage). The need to formulate the
substitution property then arises because of the higher-order constant fix.
It will be instructive to regard fix as having functionality

(charlist → charlist) → charlist

27

and to regard elements of charlist as pieces of code. Any function (of
functionality charlist → charlist) that is passed as a parameter to fix

will satisfy the substitution property because of the way it is defined. How-
ever, the domain for charlist → charlist contains many functions that
do not and hence the definition of fix cannot make that assumption with-
out formally defining a predicate like SUBST that expresses the substitution
property.

This phenomenon has some connection to the question of full abstractness.
Usually full abstractness means that equality of denotations is equivalent to
equal behaviour in all program contexts. For our purposes it is more instruc-
tive to use the characterization of [3]1: full abstractness holds provided all
(compact) elements of the domains are denotable. The search for full ab-
stractness then may be regarded as a search for models where there are no
superfluous elements. Usually the superfluous elements express some features
corresponding to parallel evaluation of arguments with the ability to retract
a (possibly nonterminating) evaluation. For us the superfluous elements of
charlist → charlist are those that do not satisfy the substitution prop-
erty. The fact that no fully abstract models are known to exist for simple
sequential languages suggests that techniques like our SUBST relation may
be unavoidable.

Historical Remark The concept of Kripke-logical relations, including the
result on structural induction (our Lemma 2.6) was already studied in [12].
Further studies along these lines may be found in [5] and a brief survey is
contained in [4]. Independently of the latter works the authors used the
concept in [9]. The use of Kripke-logical relations to achieve substitution
properties (our Lemma 2.13) is due to [9] with preliminary ideas in [7]. (The
main limitation of [7] is that all sets {(h1, l1), . . . , (hn, ln)} have m = 1 so
that the development only allows the fixed point operator to occur once.)

3 Kripke-Layered Predicates

We now return to the challenge of producing well-structured proofs and for
this to succeed our techniques must interact well with the concepts of log-

1The central result of [3] is the “Second Context Lemma”.

28

ical and Kripke-logical relations. In Example 1.3 we managed to conduct
a proof about an aggregate concept by conducting proofs about each con-
stituent concept and then combining the results. However, we did indicate
that this approach would not work in general and we shall give an example
shortly. Furthermore we shall present an example showing that in general
the constituent concepts must be allowed to depend on each other.

Example 3.1 As an extension of Examples 1.1 and 1.3 consider the following
module:

spec comp1: (num → num) → (num → num)
with comp1 g maps nonnegative integers to nonnegative

integers, provided that g does

impl comp1 = λg. λx.
g(x) ∗ g(x)

2
+

g(x)
2

Clearly comp1 satisfies its interface condition because comp1 g = sum1 ◦ g

and we happen to know that comp1 |= (NONNEG ∧ INT)[num → num] and
we assume that g |= (NONNEG ∧ INT)[num → num] and so may use the
proof rule

Rt1→t2(f1) Rt2→t3(f2)

Rt1→t3(f2 ◦ f1)

which holds for any logical relation R, in particular NONNEG ∧ INT. How-
ever, this was not a simple proof by structural induction because it included
algebraic transformations on comp1 g. To achieve a proof more along the
lines of Example 1.3 we may begin by establishing that

comp1 |= NONNEG [(num → num) → (num → num)]
comp1 |= INT [(num → num) → (num → num)]

using the methods sketched in Example 1.3. Next we may aim at showing

sum1 |= (NONNEG ∧ INT)[(num → num) → (num → num)]

using the proof rule

29

e |= R′[t] e |= R′′[t]

e |= (R′ ∧ R′′)[t]
if t . . .

in the instance where t = (num → num) → (num → num), R′ = NONNEG,
and R′′ = INT .

Validation of this instance fails, intuitively because it relies on the validity
of the rule instances

e |= (NONNEG ∧ INT)[num → num]

e |= NONNEG [num → num]

e |= (NONNEG ∧ INT)[num → num]

e |= INT [num → num]

e |= (NONNEG ∧ INT)[num → num] e |= INT [num → num]

e |= NONNEG ∧ INT [num → num]

The latter instance is valid (as seen in Example 1.3). For the first two
instances note that taking e to be

λx. if x = −1 then 1
2

else
if x = 1

2
then −1 else

x

invalidates both: the above function maps nonnegative integers to non-
negative integers but does not map nonnegative numbers to nonnegative
numbers nor does it map integers to integers. ✷

Example 3.2 The previous example showed that a function might preserve
an aggregation of properties but none of the constituent properties individ-
ually. Perhaps more “natural” are the settings where only one of the con-
stituent properties is preserved individually. For an example of this consider
the following slight variation on the module of Examples 1.1 and 1.3:

spec sum0: (num → num)
with sum0 g maps nonnegative integers to

nonnegative integers,

/∗ sum0 x = 0 + . . . (x-1) ∗/
impl sum0 = λg. λx. x∗x

2
+ x

2

30

Proceeding along the lines of Example 1.3 we might aim at first proving

sum0 |= NONNEG [num → num]

but this fails: sum0 maps 1
3

to −1
9
. On the other hand

sum0 |= INT [num → num]

succeeds. We can remedy our failure by showing that sum0 maps nonneg-
ative integers to nonnegative numbers; this amounts to strengthening our
assumptions without also strengthening our proof obligation. We shall allow
to write this succinctly as

sum0 |= (INT∧ NONNEG)[num] ⇒ NONNEG [num]

To prove the desired

sum0 |= (INT∧ NONNEG)[num → num]

we may then attempt to use the proof rule

e |= R′[t1 → t2] e |= (R′ ∧ R′′)[t1] ⇒ R′′[t2]

e |= (R′ ∧ R′′)[t1 → t2]
if t1, t2 . . .

in the instance where t1 = t2 = num, R′ = INT, and R′′ = NONNEG.

Validation of this instance succeeds because we have the following valid rule
instances

e |= (INT ∧ NONNEG)[num]

e |= INT [num]

e |= INT [num] e |= NONNEG [num]

e |= (INT ∧ NONNEG)[num]

and hence our proof is complete.

31

However, in general the above proof rule fails when t1 or t2 is a function type,
intuitively because the analogues of the two rule instances above then may
fail. ✷

These examples show that our problems are due to lack of introduction rules
for proving (R′ ∧ R′′)t(w) given R′t(w) and R′′t (w), and a lack of elimination
rules for proving R′t(w) and R′′t (w) given (R′ ∧ R′′)t(w). The latter example
additionally suggests that it may be more appropriate to consider R′′ as a
way to extend R′ rather than a predicate that should be preserved on its
own; equivalently, to establish R′′ of a result we need to know R′ in addition
to R′′ of the argument. Our solution therefore will be to define a new notion
of a layered combination of R′ and R′′ such that useful introduction and
elimination rules do become valid.

Recall that a logical relation may be regarded as a Kripke-logical relation over
a partially ordered set with just one element. For conciseness we therefore
concentrate on the more general case.

Definition 3.3 Given Kripke-indexed relations P and Q over ∆ and I1, . . . ,
Im, we define a Kripke-indexed relation P & Q over ∆ and I1, . . . , Im, as
follows:

(P & Q)num[δ](w1, . . . , wm) ≡ Pnum[δ](w1, . . . , wm) ∧ Qnum[δ](w1, . . . , wm)

(P & Q)bool[δ](w1, . . . , wm) ≡ Pbool[δ](w1, . . . , wm) ∧ Qbool[δ](w1, . . . , wm)

(P & Q)charlist[δ](w1, . . . , wm) ≡ Pcharlist[δ](w1, . . . , wm)∧
Qcharlist[δ](w1, . . . , wm)

(P & Q)t1→t2 [δ](f1, . . . , fm) ≡ Pt1→t2 [δ](f1, . . . , fm)∧
∀δ′ � δ : ∀(w1, . . . , wn) :

(P & Q)t1 [δ
′](w1, . . . , wm)

⇓
(P & Q)t2 [δ

′](f1 w1, . . . , fm wm)

We shall say that P &Q is a Kripke-layered predicate over ∆ and I1, . . . , Im

and that it is the Kripke-layered combination of P and Q.

When P and Q are indexed relations (in the sense of Section 1) we shall say
that P & Q is a layered predicate and that it is the layered combination of

32

P and Q. ✷

Fact 3.4 With P and Q as above, P & Q is a Kripke-indexed relation over
∆ and I1, . . . , Im. However, P & Q need not be Kripke-logical even when P
and Q both are. ✷

Proof. Only the latter claim is nontrivial. It suffices to find an instance
where

∀δ′ � δ : ∀(w1, . . . , wm) : (P & Q)t1 [δ
′](w1, . . . , wm)

⇓
(P & Q)t2 [δ

′](f1 w1, . . . , fm wm)

does not imply Pt1→t2 [δ](f1, . . . , fm). But this was established by the final
part of Example 3.1. ✷

Fact 3.5 With P and Q as above

(P & Q)t[δ](w1, . . . , wm) ⇒ Pt[δ](w1, . . . , wm)

holds for all types t. ✷

Proof. This is a structural induction over t. In all cases the result follows
because Pt is an explicit conjunct in (P & Q)t. ✷

Despite the negative statement in Fact 3.4, the concept of Kripke-layered
predicates interacts well with the semantics of the λ-calculus. Recalling Def-
inition 2.5 we have:

Lemma 3.6 The Kripke-Zayered predicate P&Q admits structural induction
provided P does. ✷

Proof. Using the notation of Definition 2.5, this is a structural induction
over e. For a variable v the result is immediate from the assumptions. This
is also the case for a constant c. For an application e1 e2 we use the induction
hypothesis to obtain

(P&Q)t′→t[δ](I1[[e1]]tenv(w
1
1, . . . , w1

n), . . . , Im[[e1]]tenv(w
m
1 , . . . , wm

n))

(P & Q)t′ [δ](I1[[e2]]tenv(w
1
1, . . . , w1

n), . . . , Im[[e2]]tenv(w
m
1 , . . . , wm

n))

33

and then we use the definition of P & Q; to be more specific we use the
following proof rule

(P & Q)t′→t[δ](f1, . . . , fm)(P & Q)t′ [δ](w1, . . . , wm)

(P & Q)t[δ](f1(w1), . . . , fm(wm))

that follows immediately from the definition of P & Q. For a λ-abstraction
λv : t′.e we must show two results. One is that

Pt′→t[δ](I1[[λv : t′.e]]tenv(w
1
1, . . . , w1

n), . . . , Im[[λv : t′.e]]tenv(w
m
1 , . . . , wm

n))

but this follows from the assumptions, Fact 3.5 and that P admits structural
induction. The other amounts to choosing δ′ � δ and assume that

(P & Q)t′ [δ
′](w1

n+1, . . . , wm
n+1)

and then show

(P & Q)t[δ
′](I1[[λv : t′.e]]tenv(w

1
1, . . . , w1

n)(w1
n+1), . . . ,

Im[[λv : t′.e]]tenv(w
m
1 , . . . , wm

n)(wm
n+1))

But by assumption we have

(P & Q)ti [δ](w
1
i , . . . , wm

i) for i = 1, . . . , n

so using the proof rule

(P & Q)t[δ](w1, . . . , wm)

(P & Q)t[δ
′](w1, . . . , wm)

δ′ � δ

we obtain

(P & Q)ti [δ
′](w1

i , . . . , wm
i) for i = n + 1

It follows from the induction hypothesis that

34

(P & Q)t[δ
′](I1[[e]]tenv,(v,t′)(w

1
1, . . . , w1

n, w
1
n+1), . . . ,

Im[[e]]tenv,(v,t′)(w
m
1 , . . . , wm

n , wm
n+1))

and since

Ii[[λv : t′ .e]]tenv(w
i
1, . . . , wi

n)(wi
n+1) = Ii[[e]]tenv,(v,t′)(w

i
1, . . . , wi

n, w
i
n+1)

this is the desired result. ✷

Corollary 3.7 If P is Kripke-logical, then P &Q admits structral induction.

✷

Taking n = 0 and m = 1 we get:

Corollary 3.8 If the closed expression e has type t, i.e. () � e : t,
and c′ |= (P & Q)[t′] for all constants c′ of type t′ occurring in e, then
e |= (P & Q)[t] provided that P & Q is the Kripke-layered combination of
Kripke-logical relations P and Q. ✷

To complement Lemma 3.6 we also need to consider how to prove that P &
Q holds for the constants. In the previous sections there was little to say
because there the predicates had “no structure”, but here the predicate are
combinations of other predicates. This amounts to the study of introduction
rules for P & Q and for the sake of completeness we shall give elimination
rules and a few derived rules as well. We begin with the elimination rules:

[E1]
(P & Q)t[δ](w1, . . . , wm)

Pt[δ](w1, . . . , wm)

[E2]
(P & Q)t[δ](w1, . . . , wm)

Qt[δ](w1, . . . , wm)
if t is a base type

The validity of the first rule, for arbitrary t and δ, is a direct consequence of
Fact 3.5. The validity of the second rule, for t ∈ {num, bool, charlist},
is a direct consequence of the definition of P & Q; that the rule may fail for
function types follows rather easily from Example 3.2. A derived rule that
occasionally is useful is

35

(P & Q)tn→...→t0 [δ](f)

Ptn [δ](wn)

...

[E1′]
Pt1 [δ](w1)

Pt0 [δ](f wn . . . w1)
if P is Kripke-logical

(where for simplicity we took m = 1). Turning to the introduction rules
it is helpful to say that t is an iterated base type (of order n) whenever
∃ tn, . . . , t1, t0 ∈ {num, bool, charlist} : t = tn → tn−1 → . . . → t1 → t0.

We then have

[I]
Pt[δ](w1, . . . , wm) Qt[δ](w1, . . . , wm)

(P & Q)t[δ](w1, . . . , wm)

if t is an iterated base type and P and Q are Kripke-logical.

Fact 3.9 The above rule is valid. ✷

Proof. Validity is proven by induction on the order n of the iterated base
type t. The base case is trivial given the definition of P & Q on base types.
For the inductive step we consider t = tn+1 → (tn → . . . → t0) and assume

Pt[δ](f1, . . . , fm)

Qt[δ](f1, . . . , fm)

and must show (P & Q)t[δ](f1, . . . , fm). This amounts to showing

Pt[δ](f1, . . . , fm)

which is trivial given the assumptions, and to consider δ′ � δ and assume

(P & Q)tn+1 [δ
′](w1, . . . , wm)

and show (P & Q)tn→...→t0 [δ
′](f1 w1, . . . , fm wm). But from our two elimi-

nation rules we have Ptn+1 [δ
′](w1, . . . , wm) and Qtn+1 [δ

′](w1, . . . , wm) so that
our assumptions yield

36

Ptn→...→t0 [δ
′](f1 w1, . . . , fm wm)

Qtn→...→t0 [δ
′](f1 w1, . . . , fm wm)

The desired result then follows from the induction hypothesis. ✷

It is possible to generalize this rule in various ways. One rule that my be
useful is

Ptn→...→t0 [δ](f)

[I ′]
(∀i ∈ {1, . . . , n} : (P & Q)ti [δ](wi)) ⇒ Qt0 [δ](f wn . . . w1)

(P & Q)tn→...→t0 [δ](f)

if t0 is an iterated base type and P and Q are Kripke-logical

(where for simplicity we took m = 1); alternatively one could use a Gentzen-
style presentation. Validity of this rule may be shown by numerical induction
on n.

Example 3.10 We now briefly return to the successes and failures encoun-
tered in Examples 1.3, 3.1 and 3.2. In all three examples the predicate of
interest is

INT & NONNEG

rather than NONNEG ∧ INT. Concerning Example 1.3 we were able to show

sum1 |= INT [num → num]
sum1 |= NONNEG [num → num]

and the desired

sum1 |= (INT & NONNEG)[num → num]

then is a simple application of Introduction Rule [I], since num → num is an
iterated base type. This should hardly be surprising since this is the same
approach that succeeded in Example 1.3 but for NONNEG ∧ INT, i.e. INT
∧ NONNEG, instead of INT & NONNEG .

37

Concerning Example 3.1 we noted that the obvious approach is to begin by
showing

comp1 |= INT [num → num]
comp1 |= NONNEG [num → num]

and this still succeeds. However, we still cannot achieve the desired result
because Introduction Rule [I] is not applicable as (num → num) → (num →
num) is not an iterated base type. Instead we aim at using the stronger rule
[I ′]. For this we modify the second claim above to

comp1 |=(INT & NONNEG)[num→ num]
⇒ (INT & NONNEG)[num]
⇒ NONNEG [num]

where we have used “ . . . ⇒ . . . ” in the sense explained in Example 3.2.
This succeeds and we may then used rule [I ′] to obtain the desired result.

Finally Example 3.2 goes through in much the same way as above; first note
that

sum0 |= INT [num → num]
som0 |= (INT & NONNEG)[num] → NONNEG [num]

and then use rule [I ′] to obtain the desired result. ✷

Example 3.11 A “realistic example” is beyond the space available to us but
we can give a very sketchy overview of the development of [10, Chapter 6].
The problem under study is that of translating a certain typed λ-calculus into
an abstract mashine somewhat similar to the categorical abstract machine.
The λ-calculus allows arbitrary nesting of fixed point operators and this is
the root of our first problem. The abstract machine works in a stack-like
manner and this allows to separate the correctness proof into two parts. To
be more specific the correctness predicate is of the form (R1 & R2) & R3.

The first predicate, R1, aims at establishing a substitution property along
the lines of the Extended Example of Section 2; thus R1(w) roughly means

38

SUBST [∅](w, w). This is necessary for the semantics of the abstract ma-
chine to behave as desired. This is because the code for the fixed point of
a functional is the code resulting from supplying the functional with an ap-
propriate call instruction that “points” to that code. The abstract machine
then executes a call instruction by replacing it with yet another copy of that
code. Having done this once the unfolded code, viewed in its original context,
should desirably correspond to the result of applying the functional to that
code. In symbols this amounts to

(F call)[F call/ call] = F (F call)

where the functional is written as F . To achieve this we use the substitution
property and we refer to [10, Section 6.2] for the details.

The second predicate, R2, aims at showing that the code generated from well-
formed λ-expressions is well-behaved. Certainly the execution of a piece of
code can result in errors as well as nontermination. However, there are several
“structural properties” that will be fulfilled by the code generated although
they may not hold for arbitrary code sequences. The typical example of this
is that evaluation of an expression on a stack pushes an element upon the
stack and leaves the remainder of the stack unchanged. In [10] the λ-calculus
and the code generation is such that instead evaluation of an expression only
modifies the top element of the stack and leaves the remaining elements
and the height of the stack unchanged. There are several complications
in the definition of the predicate because the elements on the stack may
themselves contain code components. We refer to [10, Section 6.3] for the
detailed definition and proofs.

The third predicate, R3, then finally expresses the correctness of the code
generated with respect to the semantics of the λ-expression. The detailed
development rather closely follows that of well-behavedness except that at
each step the correctness considerations need to be added. We refer to [10,
Section 6.4] for the details.

Overall the development of [10, Section 6] is almost 70 pages with about 50
pages devoted to establishing (R1 &R2) &R3. We strongly believe that the
“separation of concerns” facilitated by expressing the desired predicate as a
combination of three simpler predicates, and by proving the desired predicate
in three stages, is of immense help when developing the proof as well as when

39

presenting it to others. ✷

Generalizations

It follows from Corollary 3.7 and Fact 3.4 that the Kripke-logical relations
constitute a proper subset of those Kripke-indexed relations that admit struc-
tural induction. This suggests studying a notion of “benign” modifications
of Kripke-logical relations so as to obtain a larger subset.

We have no formal definition of “benign” but the general idea is that the
definition of the Kripke-indexed predicate P (over ∆ and I1, . . . , Im) is given
by a formula

Pt[δ](w1, . . . , wm) ≡ ∀δ̄ ∈ ∆̄ : ∀w̄ ∈ Dt :

P ′t [∂(δ, δ̄)](ωt
1(w1, . . . , wm, w̄), . . . , ωt

m′(w1, . . . , wm, w̄))

where

∂ : ∆ × ∆̄ → ∆′

ωt
i : I1[[t]] × . . . × Im[[t]] × Dt → I ′i[[t]]

and ∆̄ is a non-empty partially ordered set, Dt a (non-empty) domain that
depends on t and P ′ is a Kripke-logical relation over ∆′ and I ′1, . . . , I ′m.

To simplify matters let us make the rather drastic assumption that each ωt
i

selects one of its first m arguments, i.e. ωt
i(w1, . . . , wm, w̄) = wni

for ni ∈
{1, . . . , m}, and that the corresponding interpretations agree, i.e. I ′i = Ini

.
Then P admits structural induction. To see this, note that the assumptions

Pti [δ](w
1
i , . . . , wm

i) for . . .

Pt′ [δ](I1(c
′), . . . , Im(c′)) for . . .

amount to

P ′ti [∂(δ, δ̄)](ωti
i (w1

i , . . . , wm
i), . . .) for . . .

P ′t′ [∂(δ, δ̄)](ωt′
i (I1(c

′), . . . , Im(c′)), . . .) for . . .

40

for all choices of δ̄ ∈ ∆̄ and where we have dropped the w̄ argument. For
each δ̄ ∈ ∆̄, Lemma 2.6 (and Definition 2.5) then gives

P ′t [∂(δ, δ̄)](I ′1[[e]]tenv(ω
t1
1 (w1

1, . . . , wm
1), . . . , ωtn

1 (w1
n, . . . , wm

n)), . . .)

and this amounts to

P ′t [∂(δ, δ̄)](ωt
1(I1[[e]]tenv(w

1
1, . . . , w1

n), . . . , Im[[e]]tenv(w
m
1 , . . . , wm

n)), . . .)

from which

Pt[δ](I1[[e]]tenv(w
1
1, . . . , w1

n), . . . , Im[[e]]tenv(w
m
1 , . . . , wm

n))

follows.

We already used a result along these lines in Example 3.11 (and [10]): while
SUBST is a Kripke-logical relation, the relation R1 is not although it is a
“benign” modification of SUBST. Thus R1 does admit structural induction
and by Lemma 3.6 so do R1 & R2 and (R1 & R2) & R3.

In another direction we may generalize the number of P ’s and Q’s considered.
Specifically one may define

(P1, . . . , Pp) & (Q1, . . . , Qq)

for p ≥ 1 and q ≥ 1. For a base type to t0 ∈ {num, bool, charlist} we set

((P1, . . . , Pp) & (Q1, . . . , Qq))t0 [δ](w1, . . . , wm) ≡∧p
i=1(Pi)t0 [δ](w1, . . . , wm) ∧

∧q
j=1(Qj)t0 [δ](w1, . . . , wm)

and for a function type t1 → t2 we set

((P1, . . . , Pp) & (Q1, . . . , Qq))t1→t2 [δ](f1, . . . , fm) ≡∧p
i=1(Pi)t1→t2 [δ](f1, . . . , fm) ∧ ∀δ′ � δ : ∀(w1, . . . , wm) :

((P1, . . . , Pp) & (Q1, . . . , Qq))t1 [δ](w1, . . . , wm)
⇓

((P1, . . . , Pp) & (Q1, . . . , Qq))t2 [δ](f1 w1, . . . , fm wm)

41

Taking p > 1 defines a more general notion that may well be useful; taking
q > 1 is useless as (P1, . . . , Pp)&(Q1, . . . , Qq) is equivalent to (P1, . . . , Pp)&
(Q1 ∧ . . . ∧ Qq) where (Q1 ∧ . . . ∧ Qq) is defined as in Example 1.3.

Historical Remark The notion of (Kripke-) layered predicate is based
on [10, Chapter 6] which is the only relevant reference that we know of.

4 Conclusion

We have presented a number of techniques for the defining predicates so
as to allow proofs by structural induction. All of these are based on the
underlying concept of logical relations and have been applied to problems
with substance; we refer to [10] and its bibliography for examples. Some of
the main lessons learned may be summarized as follows:

• Some predicates have base cases that are most naturally expressed at
level 1 (functions between base values) rather than at level 0 (base
values). To adopt logical relations the notion of partial equivalence
relations is useful or more generally using the same interpretation more
than once. (Counting the levels from one rather than zero this also
explains the distinction between “first-order” and “second-order” made
in [6].)

• Kripke-layered relations have “local memory” consisting of the param-
eter (δ) drawn from the partially ordered set (∆). This allows them
to be used to describe a substitution property by means of a level 0
behavior.

• Kripke-layered predicates are not simply Kripke-logical relations (Fact
3.4) but allow for more structured proofs that proceed in stages. The
complexity of each stage is significantly smaller (but often still substan-
tial) than a brute force proof.

The strengths of Kripke-layered predicates include the ability to reorder the
parameters and to modify the partially ordered set over which the parameters

42

are drawn. Comparing the proof of [10, Chapter 6] with that of [9], where only
Kripke-logical relations were used, we believe that the advantages claimed
for Kripke-layered predicates are indeed sustained.2

The notions studied in this paper are fairly robust. One may add additional
type constructors like sum, product and recursive types and still perform the
development. Also one may restrict the attention to admissible predicates so
as to support Scott-induction and the development still carries through. Fi-
nally, when no recursive types or fixed point constructs are present one may
use ordinary sets instead of domains. This all calls for a more general cate-
gorical formulation of Kripke-layered predicates and this should also include
a more general theory of “benign” modification.

Acknowledgement

This work was supported in part by The Danish Research Councils under
grant 5.21.08.03 (“The DART-Project”). Torben Amtoft and Torben Lange
provided useful comments and Karen Møller expert typing.

References

[1] S. Hunt: PERs Generalise Projections for Strictness Analysis, report
DOC 90/14, Imperial College (1990).

[2] S Hunt, D. Sands: Binding Time Analysis: A New PERspective, Proc.
ACM Symposium on Pascal Evaluation and Semantics-Based Program
Manipulation, ACM Press (1991) 154-165.

[3] R. Milner: Fully abstract models of typed λ-calculi, Theoretical Com-
puter Science 4 (1977) 1-22.

[4] J.C. Mitchell: Type Systems for Programming Languages, in: Handbook
of Theoretical Computer Science, vol. B: Formal Models and Semantics,
J. van Leeuwen (ed.), Elsevier (1990).

2The relative success of [9] also raises the question whether Kripke-layered predicates
are more intimately connected to Kripke-logical relations than suggested by Fact 3.4.

43

[5] J.C. Mitchell, E. Moggi: Kripke-style models for typed λ-calculus, Proc.
2nd Ann. IEEE Symposium on Logic in Computer Science, IEEE Press
(1987) 303-314.

[6] F. Nielson: Program Transformations in a Denotational Setting, ACM
Transactions on Programming Languages and Systems 7 (1985) 359-379.

[7] F. Nielson: Correctness of code generation from a two-level metalan-
guage, Proc. ESOP 1986, Springer Lecture Notes in Computer Science
213 (1986) 30-40.

[8] F. Nielson: Strictness Analysis and Denotational Abstract Interpreta-
tion, Information and Computation 76 29-92.

[9] F. Nielson, H.R. Nielson: Two-Level Semantics and Code Generation,
Theoretical Computer Science 56 (1988) 59-133.

[10] F. Nielson, H.R. Nielson: Two-Level Functional Languages, Cambridge
Tracts in Theoretical Computer Science 34, Cambridge University Press
(1992)

[11] G.D. Plotkin: Lambda-definability and logical relations, Edinburgh AI
memo, Edinburgh University (1973).

[12] G.D. Plotkin: Lambda-definability in the fill Type Hierarchy, in: To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and For-
malism, J.P. Seldin and J.R. Hindley (eds.), Academic Press (1980).

[13] J.C. Reynolds: On the relation between direct and continuation seman-
tics, Proc. 2nd ICALP, Springer Lecture Notes in Computer Science 14
(1974).

44

