
This report is a slightly revised version of the article appearing in the pro-
ceedings of PANEL’92, XVIII Latin-American Conference of Informatics, 31
August–5 September, 1992, Las Palmas de Gran Canaria, Spain. Citations
should refer to the Proceedings (not to this report).

1

The Sun RPC Language Semantics

Mart́ın Musicante∗

Department of Computer Science, Aarhus University,
DK-8000 Aarhus, Denmark

September 1992

Abstract

A formal description of the Sun Remote Procedure Call Protocol
is given.
The description is written using the Action Notation style of formal
specification. Action Notation proves to be adequate to express the
meaning of the Sun RP communication mechanism.

Keywords: Formal Semantics, Action Notation, Remote Procedure
Call.

Introduction

The Sun Remote Procedure Call Protocol [11], is regarded as a basis for the
actual implementation of Remote Procedure Call (RPC) in many distributed
computing systems, mainly in those of workstation networks, running UNIX1.

∗On leave from Universidade Federal de Pernambuco, Departamento de Informática,
Caixa Postal 7851, CEP 50739 - Recife - PE, Brazil. This work was partly supported
by CNPq, Brazil, grant No. 201.201/7-91, and DART, Denmark, grant No. 5.21.08.03.
Author’s E-mail address: mam@daimi.aau.dk or mam@di.ufpe.br.

1UNIX is a trademark of AT & T Bell Laboratories

2

The RPC concept [1] is a generalization of the procedure call concept, present
in most imperative languages. The main idea is that the called procedure is
executed in a different environment than the calling program, and possibly
in a different machine. Data exchange between the caller and the called
processes is performed only by parameter and return value passing. For a
comprehensive explanation of the RPC concept, the reader is encouraged to
read [1], [6] or [9].

The Sun RPC implementation scheme is based in the existence of a port-
mapper process in each host. The port-mapper is accessible at a predefined,
well-know address (the same for all systems) and its purpose is to keep a
map of all the “remote accessible programs” available at the local machine.

The port-mapper itself is a remote program, consisting of several remote
procedures. Operations such as registration or de-registration of programs,
queries for the address of any available procedure in the machine, etc, can be
performed using the port-mapper procedures. We refer to a program regis-
tered at the port-mapper as an RPC server. Each of the remote procedures
is called a service available at the program. In the same way, a program that
calls a remote procedure is said to be a client.

The descriptions given in [10] and [11] consist on the definition of a data
description language (called XDR, External Data Representation language)
and a program definition language (called the RFC Language). The RPC
language [11] is an extension of the XDR language.

Each program can contain a set of program versions, and each version can
be formed by several procedures (the actual remote procedures).

In this work, Action Notation [3] is used to give a formal semantics of the
XDR and RPC languages. Modularity characteristics of Action Notation
are used to provide the semantics of the RPC language as an extension of
the XDR language specification. This is done in a way in which the XDR
language semantics can be abstracted from the complete specification, if
needed.

Both data representation and program definition languages follow the syn-
tactic specifications given in [10, 11] (with minor changes to correct little
errors and to give a better presentation for the semantic functions).

3

Action Notation

Action Notation [3] is a formal language designed to provide modular and
readable descriptions of programming languages. Unlike denotational se-
mantics, where functions are used to state the meaning of programs, Action
Semantics uses special constructions called actions. Like in denotational se-
mantics, semantic functions in Action Notation are defined in a compositional
way, i.e., the meaning of each phrase of the language depends only on the
meaning of its components.

Actions can be performed. They process information in a stepwise way. The
performance of an action can yield four possible status: successful comple-
tion of execution (complete), exceptional termination (escape), unsuccessful
completion of execution (fail) or non-termination (diverge).

The description language presented in [3] includes basic actions and action
combinators, that is, rules to obtain new actions from simpler ones. Primi-
tive actions to declare, store and access data and to manage processes and
communication are presented also. As it is pointed out in [12], the set of
combinators was carefully, chosen, in order to facilitate the task of stating
the meaning of most programming languages.

Action descriptions are modular. This feature allows the modification of
parts of the semantic description without affecting the whole system, as well
as the reusability of modules. Action Notation modularity also allows the
description to be organized in sections, very much in the same way as chapters
and sections in a book.

1 Abstract Syntax

The abstract syntax of both the XDR and RPC languages is described in
the following sections. The original description of the languages define some
constructions that can be used as abbreviations for common patterns of defi-
nition. All these abbreviations were preserved in this description. We choose
to consider them in the abstract syntax as a way of maintaining compatibility
with the original descriptions.

4

Action Notation syntactic descriptions can be regarded as defining context-
free languages in the same way well-known BNF’s does. Usual regular ex-
pressions are allowed, as well.

1.1 XDR

The syntax of the XDR language is presented in this section. The description
follows (with minor changes) the grammar given in [10].

The symbol ‘✷’ in the right hand side of the equations corresponding to
Constant and Identifier indicates that the non-terminal is left undefined in
this part of the specification.

grammar:

(1) Declaration =
[[Type-specifier Identifier]] |
[[Type-specifier Identifier “[” Value “]”]] |
[[Type-specifier Identifier“〈”Value?“〉”]] |
[[“opaque” Identifier “[” Value “]”]] |
[[“opaque”Identifier“〈”Value? “〉”]] |
[[“string” Identifier“〈” Value?“〉”]] |
[Type-specifier “∗” Identifier]] | “void”

(2) Value = Constant | Identifier

(3) Type-specifier =
[[“unsigned”? “int”]] | [[“unsigned”? “hyper”]] |
“float” | “double” | “bool” | “void” |
[[“enum” “{” Enumerand+ “}”]] |
[[“struct” “{” Declaration+ “}”]] |
[[“union” Union-body]] | ldentifier

(4) Enumerand = [[Identifier “=” Valuen]]

(5) Union-body = [[“switch” “(” Declaration “)” “{”
Union-case+

(“default” “:” Declaration)?

5

“}”]]

(6) Union-case = [[“case” Value “:” Declaration]]

(7) Constant-def = [[“const” identifier “=” Constant]]

(8) Type-def =
[[“typedef” Declaration]] |

[[“enum” Identifier“ {” Enumerand+ “}”]] |
[[“struct” Identifier “{” Declaration+ “}”]] |

[[“union” Identifier Union-body]]

(9) Definition = Type-def | Constant-def

(10) Constant = ✷

(11) identifier = ✷

(12) Specification = Definition∗

1.2 RPC

The RPC language is presented as an extension of the XDR language. The
syntactic description follows (with minor changes) the grammar given in [11].

The semantics of an RPC specification supposes the existence of a procedure
body to each procedure declared within a program. It also supposes that
this procedure is bound to a name formed by the name of the declared pro-
gram (but upper-cased), followed by an underscore character, and the version
number which the referred procedure belongs to.

The symbol ‘✷′ in the right hand side of Definition indicates that the non-
terminal symbol is being extended at this point.

grammar:

needs: XDR

6

(1) Program-def =
[[“program” Identifier “{” Version-def+ “}” “=” Constant]]

(2) Version-def =
[[“version” Identifier “{” Procedure-def+ “}” “=” Constant]]

(3) Procedure-def =
[[“Type-specifier” Identifier “(” Type-specifier “)” “=” Constant]]

(4) Definition = ✷ | Program-def

(5) Specification = Definition∗

2 Semantic Functions

Bernantic functions are defined to establish the meaning of each phrase of
the language. They are stated in a compositional way, by recursion on the
syntactic structure of the language.

For space reasons, we present only a tiny but representative part of the
semantic descriptions here. The interested reader can refer to the whole
work, in [5].

2.1 XDR

This section is devoted to state the XDR language semantics. The definition
here is concerned with two main issues: binding syntactic tokens to types
and constants, and define translation functions for each type.

2.1.1 Elaborating Specifications

The main purpose of the semantic functions of this section is to create “bind-
ings”, i.e: associations from language tokens to semantic entities. The basic

7

binding action is the primitive “bind to ”, which binds a syntactic token,
given as first argument, to a value or cell given as second argument.

The combinator “ before ” takes two actions. The bindings produced by the
first one are merged with the bindings received for the whole action. The
result of this merge is passed to the second action (the one after the keyword
“before”).

The elaboration of a specification consist on the elaboration of the definitions
it is composed by. Elaboration is performed by merging the binding maps
corresponding to the component definitions.

• elaborate = Specification → action [bindings][using current bindings]

(1) elaborate() = complete

(2) elaborate〈D1: Definition D2Definition+〉 =
elaborate D1 before elaborate D2

2.1.2 Elaborating Definitions

Constant declarations are elaborated simply by binding the supplied token
to its corresponding value.

Type declarations are elaborated by binding the token that identifies the
type to a pair. The first component of this pair is a “type” semantic value.
The second component is an abstraction2 that, when enacted, performs the
translation between byte streams and semantic values.

• elaborate = Definition → action [bindings][using current bindings]

The elaboration of a constant declaration consists on the binding of the token
corresponding to the identifier I to a semantic value, corresponding to the

2An “abstraction” is defined in Action Notation as an item of data encoding an action.
An abstraction can be stored, bound, and communicated as normal data. An abstraction
can also be performed (or “enacted”, following the Action Notation terminology). It cor-
responds more or less to the notion of procedure present in most programming languages.

8

valuation of the constant.

(1) elaborate [[“const” I: Identifier “=” C : Constant]] =

bind the token of I to valuation C

(2) elaborate [[“union” I: Identifier B: Union-body]] =
elaborate B before
bind the token of I to the pair(typified)-union of B

closure of abstraction of translate B)

2.1.3 Translating Type Declarations

The main purpose of the XDR data language is to define a standard byte-
stream representation for simple and structured data. These sequences of
bytes will be passed from one process to another during computation (this
method ensures portability and the possibility of communication among pro-
grams written in different languages).

In order to use the XDR representation in real applications, translation al-
gorithms need to be provided, for data types of a programming language, to
and from byte representation.

A major goal in our semantic description is to obtain XDR and RPC pre-
sentations as close as possible to the actually implemented systems, without
lacking mathematical rigor. This is the motivation of our choose of a “con-
crete” byte-stream representation of the semantic “sendable” values, instead
of choosing a more abstract way.

Semantic values belonging to simple types, as well as values of structured
types are translated into byte streams. In the actual C implementation, sup-
plied with the SunOS operative system, the same routine is used to translate
data in both directions. Once more, we accept the price of obscuring our
semantic description to keep ourselves close to the actual implementation.
Only one translation action for each type is specified. The direction of the
translation depends only on the kind of data supplied to the action.

When a value is supplied to the actions defined here, they return a byte
stream to represent it, following the informal specification in [10].

9

When a byte stream is supplied to one of the action defined here, both a value
and a byte-stream are returned. The value corresponds to the beginning por-
tion of the supplied byte-stream, interpreted as a value of the corresponding
type. The returned byte stream corresponds to the “unconsumed” part of
the original stream.

The functionality of the translation semantic functions can be stated as fol-
lows.

• translate :: Declaration → action[using a given (value | byte-stream)]
[escaping | giving a (byte-stream |

〈value, byte-stream〉)]

The translation of an identified type, is defined as the translation action of
it’s definition.

(1) translate[[T type-specifier Identifier]] = translate T

Opaque data is data that should be left uninterpreted.

The byte stream representation for fixed-length opaque data of size n, as
given in [10], can be depicted as:

As it is specified in [10] the actual length of any byte representation should
be a multiple of four (adding null bytes, if needed).

The translation action corresponding to a fixed length opaque data is as:

(2) translate [[opaque Identifier “[′′V : Value“]′′]] =

10

evaluate V and regive
then
give the given positive-integer#1 and
split the given byte-stream#2 after the given natural#1 bytes

then
give the given positive-integer#1 and
chop the given byte-stream#3 using the given natural#1

then
give fixed-length-opaque-value of the given byte-strean #1 and
give the given byte-stream #2

or
evaluate V and
give component-bytes of the given fixed-length-opaque-value)

then grow the given byte-stream #2 using the given natural #1

The action combinator “ or ” makes possible the specifiction of non-deter-
ministic actions. The combinator “ and ” triggers the performance of its
component subactions with arbitrary interleaving, while the action “A1 then
A2” performs first the action A1, possibly passing some transient data to the
action A2. The primitive action “regive” simply return its received transient
data.

When the previous action receives a byte-stream, it is divided in two byte-
streams, according to the pre-defined length of the the values of the type
(given by the constant V).

The first portion will be encapsulated as an “opaque value”. The second
portion (possibly null) will be returned (or given) by the action.

When the previous action receives an “opaque value” the corresponding se-
quence of bytes is extracted and returned (after normalization).

The action “{textsfsplit after bytes” simply breaks the first argument
(should be a byte sequence) in two byte sequences. The number of bytes of
the first one is specified as the second argument to the function.

The actions “chop using ” and “grow using ” perform the operations
of cutting and adding the zero bytes necessary to adjust the length of a
byte sequence to be multiple of 4, according to a value given in the second
argument.

11

2.2 RPC

The elaboration of a program consist on the binding of its name identifier to
its program number, together with the elaboration of all its versions.

Similarly, versions and procedures elaboration bind (version and procedure)
identifiers to their corresponding number in the RPC system.

(1) elaborate [[“program” I:Identifier “{” V : Version-def+ “}”
“=” C: Constant]] =
evaluate C

then
elaborate V before bind the token of I to the given value

(2) elaborate [[“version” I: Identifier “{” P : program-def+ “}”
“=” C: Constant]] =
evaluate C

then
elaborate P before bind the token of I to the given value

(3) elaborate [[T1: Type − specifier I: Identifier “{” T2: Type − specifier “}”
“=” C: Constant]] =
elaborate C before bind the token of I to the given value

2.2.1 Executing Programs

The execution of programs performing the RPC protocol is defined in this
section. The same conventions as in the Sun RPC system [11] are adopted;
that is: Program, version and procedure names are supposed to be in lower-
case (this is ensured by our semantic functions). The existence of an “action”
body is supposed for each defined procedure.

The first three semantic equations does not need explanation. The execution
of a program P consist of two basic parts:

• The initialization of its environment, followed by the elaboration of
itself (i.e.: the performance of all its local bindings).

12

• The instantiation of an Action Notation agent, whose task will be the
performance of the program itself (i.e.: the performance of the abstrac-
tion that defines the program semantics)

• execute :: Specification → action [using current bindings | current buffer]
[communicating]

(1) execute () = complete

(2) executeT : type-def = elaborate T

(3) executeC: Constant-def = elaborate C

(4) P = [[“program” I :Identifier “{” V :Version-def+ “}” “=” C: Constant]]
⇒

execute P =
init − environment hence elaborate P

before
subordinate an agent then
send a message [containing closure of abstraction of abstract P]

[to the given agent]

2.2.2 Abstracting Programs

This semantic function defines the action to be contracted by each agent
performing an RPC service.

The main structure of the following action is an iteration. The “un-folding”
combinator takes an action (possibly containing “unfold”). The whole action
is equivalent to the action given by substituting itself for each occurrence of
unfold in the action given as parameter.

The next action performs the first checkings for each received message (RPC
call). This c ec h ks are for the correct RPC version number and the authen-
tication of the calling process credentials, sending the corresponding error
messages to the client process, if any problem is verified. In the normal case,

13

the processing of the message (service required) continues by the performance
of the action “perform P”. The complete specification of the protocol can be
found in [5].

• abstract :: Program-def → action [using current bindings | current buffer]
[communicating]

(1) P = [[”program” I : Identifier “{” V : Version-def+ “}” “=” C: Constant]]
⇒
abstract P =
unfolding

receive a message [from any agent][containing an rpc-msg]
then decodify-msg
then

check not (the given natural#1 is 2) and then
send rpc-msg(the given xid#9, REPLY, MSG-DENIED,

RPC-MISMATCH, 2, 2)
to the given agent#8

or
check (the given natural#1 is 2)

and then
give the rest of the given tuple

then regive and authenticate-call
then

check (the given boolean#9 is true) and then
send rpc-msg(the given xid#8, REPLY, MSG-DENIED,

AUTH-ERROR, the given natural#10)
to the given agent#7

or
check (the given boolean#9 is true) and then

give the rest of the rest of the beginning
of the given tuple

then perform P
then unfold

14

Conclusion

This article shows that Action Notation can be use to give formal specifica-
tions of “real world” applications in a relatively simple way.

We tried to keep the semantic description as close as possible to the actual
implementation. This feature imposed a very concrete style of semantic
description, in which most of the actual implementation was mirrored. We
believe that this relative lack of abstractness (and of mathematic beauty)
of our formal specification will facilitate its use as a reference to the actual
implementation.

The complete specification given in [5] is about 40 pages of formal description
in which each detail of the languages semantics was Govered. Our hope is
that this work can be viewed as a complementary reference to [10, 11].

Modularity of Action Notation played an important role in the present de-
scription. It permitted the specification of the two languages in a very in-
dependent fashion, in a way in which the XDR language description can be
extracted as an independent entity.

References

[1] A. D. Birrell, B. J. Nelson, Implementing Remote Procedure Calls, ACM
Transactions on Computer Systems, 2(1):39-59, February 1984.

[2] P. Lee, Realistic Compiler Generation, The MIT Press, Foundations of
Computing Series, 1989.

[3] P.D.Mosses, Action Semantics. Cambridge University Press, Tracts in
Theoretical Computer Science Series, 1992.

[4] D. F. Brown, H. P. Moura, D. A. Watt, Actress: an Action Semantics
Directed Compiler Generatoy, Technical report, Glasgow University, De-
partment of Computer Science, 1992.

[5] M. Musicante, The Action Semantics Definition of the Sun XDR and
RPC Languages, Unpublished Manuscript, Aarhus University, Depart-
ment of Computer Science (Available from the author).

15

[6] B. J. Nelson, Remote Procedure Call, PhD thesis, Carnegie Mellon Uni-
versity, 1981a

[7] J. Palsberg, An Automatically generated and provably correct compiler
for a subset of ADA. In Proc. ICCL’92, Fourth International Conference
on Computer Languages, 1992.

[8] J. Palsberg, A Provably Correct Compiler Generator. In Proc. ESOP’92,
European Symposium on Programming, 1992.

[9] P. G. Soares, On Remote Procedure Call, Area Paper, Department of
Computer Science, Columbia University, January 1992.

[10] Sun Microsystems, XDR: External Data Representation Standard. RFC
1014, 1987.

[11] Sun Microsystems, RPC: Remote Procedure Call Specification. RFC
1050, 1988.

[12] D.A.Watt, Programning Language Syntax and Semantics, Prentice Hall
International, 1991.

16

