
Design, Analysis and Reasoning about Tools:
Abstracts from the Second Workshop

Flemming Nielson
(editor)

September 1992

1 Introduction

The second DART workshop took place on Thursday August 20’th and Fri-
day August 21’st at Limfjordshotellet in Aalborg. The primary aim of the
workshop was to increase the awareness of DART participants for each other’s
work, and to stimulate collaboration between the different groups. In addi-
tion to this, the Thursday programme was planned so as to be of interest
also to computer scientists not participating in DART; hence a number of
survey talks about recent research were presented by the contact persons for
each area.

A brief overview of DART will be given in the remainder of this Introduction;
for a more detailed description please consult Section 3 of [95]. The remaining
sections list the abstracts of the talks given (Section 2), report on the current
state of activities (Sections 3 and 4) and give an overview of all research
publications from DART participants (Section 5).

The DART project concerns the “Design, Analysis and Reasoning about
Tools”. It is funded by the Danish Research Councils until 1994 and com-
prises researchers at Aarhus University, University of Copenhagen and Aal-
borg University Centre. The research has a strong semantic basis and is
grouped under six main headings:

1



• Semantics as a Descriptive Tool

• Semantics as an Analytical Tool

• Semantics of Concurrency

• Semantics Based Deduction

• Semantics Based Program Manipulation

• Operational Semantics, Types and Language Implementation

This workshop attracted som 28 attendees and a total of 20 (mainly half-
hour) talks were given. It was organized mainly by Peter D. Mosses and
Kim G. Larsen - and Susanne Brøndberg did a great job in compiling this
booklet. The next workshop is foreseen in the Fall of 1993.

2 Abstracts of Talks given

On Thursday, August 20’th, a number of survey presentations were given.
These were aimed at a broad audience, beyond merely the participants of the
DART project, and presented recent and not-so-recent research so as to give
a good overview of the activities. On Friday, August 21’st, a number of more
detailed research presentations were given. These were primarily aimed at
participants of the DART-project.

2.1 Survey Presentations

Semantics as a Descriptive Tool

Peter D. Mosses
Aarhus University

Action semantics, a framework developed mainly by Peter Mosses at DAIMI,
is intermediate between denotational and operational semantics. It uses ac-
tions to represent the semantics of programming constructs. These actions

2



are specified in a specially-designed action notation, which has a straightfor-
ward operational interpretation. The combinators of action notation satisfy
various algebraic laws, allowing elementary reasoning about action notation.

Action semantics has significant pragmatic advantages over other frame-
works. E.g., action semantic descriptions (ASDs) scale up smoothly to re-
alistic programming languages, and extensions to a described language only
require extensions of its previous description—not reformulation.

A book providing the first comprehensive exposition of action semantics has
recently been published. It includes the ASD of a substantial sublanguage of
Ada. A showcase example of action semantics (an ASD of Standard Pascal)
is currently being completed, in collaboration with David Watt (Glasgow).

Action semantics is an attractive basis for semantics-directed compiler gener-
ation. In his Ph.D. thesis Jens Palsberg (DAIMI) gives a translation from a
subset of action notation to a RISC code—and proves it correct. The system
implementing this, Cantor, provides a correct compiler generator for simple
ASDs, although the code produced by the compilers is very inefficient. An
M.Sc. student at DAIMI is now going to optimize the code produced by
Cantor. Jens Palsberg is collaborating with Anders Bondorf (DIKU) on the
application of the Similix system to generate compilers from programming
languages into Scheme from ASDs, using an interpreter for action notation.
A guest Ph.D. student at DAIMI is investigating compiler generation for
concurrent languages based on their ASDs.

A system for action semantics, SAS, based on Mathematics, is being devel-
oped at DAIMI. It is intended to provide a user-friendly way of constructing,
checking, and changing ASDs. The MSc. student who has implemented the
prototype SAS is also going to investigate how to implement the operational
semantics of action notation directly in Mathematica. Another M.Sc. stu-
dent at DAIMI is extending the work of Even and Schmidt (Kansas) on type
inference to the full action notation. Finally, Valentin Antimirov, an SNF
post-dot. at DAIMI, is investigating the implementation of unified algebraic
specifications of abstract data types; this work is expected to contribute to
the type checking and evaluation of user-specified data in SAS.

The main defect of the action semantics framework is currently the weakness
of the theory of action notation. Collaboration on developing action theory
(or on any other aspect of action semantics) would be most welcome.

3



Semantics as an Analytical Tool

Hanne Riis Nielson
Aarhus University

The first part of the talk gives a brief summary of the results obtained within
the main areas of program analysis, correct code generation and fixed point
computation. The second part of the talk gives a more detailed survey of the
results in the latter area.

In the context of abstract interpretation we study the number of times a
functional needs to be unfolded in order to determine the least fixed bound.
In the monotone framework where all functions are known to be monotone
we get an exponential upper bound. If we restrict the functions to be strict
and additive we get a quadratic upper bound. These bounds are tight in a
certain sense.

By specializing the form of the functionals we show how the classical no-
tions of fastness and k-boundedness carry over to the framework of abstract
interpretation. This gives us an alternative way of bounding the number
of unfoldings needed to compute the least fixed points. For iterative forms
(often obtained when analysing tail recursive programs) and primitive recur-
sive forms (often obtained for programs with a single recursive call) we have
simple methods for bounding the number of unfoldings.

Finally, we suggest an algorithm for computing fixed points based on iterative
squaring. In the monotone framework it has time complexity O(log k · n)
when the functional is k-bounded and the domain of the functions has n
elements. When the functions are strict and additive the time complexity of
the algorithm can be reduced to O(log k · (log n)3).

This work has been reported in [92] and [98].

Semantics of Concurrency

Kim G. Larsen
Aalborg University Centre

This talk summarises work within the Semantics of Concurrency section of
DART.

4



The main activity in this area is concerned with the development of a the-
oretical basis, supporting methodologies and automatic tools for designing
and reasoning about concurrent systems.

A substantial amount of work has been carried out for classical process alge-
bras such as CCS, CSP and ACP using the modal µ-calculus as specification
languages. In particular, so–called local techniques for checking properties of
processes have been developed by members of this group, and the problem
of compositionality has been studied to great length.

Current research also includes extensions of classical process algebras to deal
with more quantitative aspects of processes such as: real–time, probabilis-
tic non–determinism, value–passing, higher–order processes, processes with
priorities. Particular resistant to standard techniques is the real–time and
value–passing calculi, in particular with respect to axiomatization and deci-
sion procedures. New (often symbolic) techniques have been developed and
are intended implemented.

As for application of theories and tools, a number of experiments have been
carried out using the Aalborg TAV–system. Also intensive experimentation
with Esterel and the associated programming environment has been carried
out at DAIMI.

Semantics Based Deduction

Glynn Winskel
Aarhus University

This talk summarises work within the Semantics-based-deduction section of
the DART project.

There are currently three projects in applying the proof assistant HOL:

- a metalanguage for domain theory in HOL (part of a PhD project)

- a basic theory of computability in HOL (student project)

- lattice theory in HOL (student project)

The work on domain theory and computability borrows heavily from the
book “Introduction to formal semantics” by Winskel to be published by MIT

5



Press, The technique for proving adequacy of a denotational semantics with
respect to an operational semantics, via information systems, has also be
demonstrated to work for polymorphism.

In addition, there has been work on repairing a defect in Abramsky’s “Com-
putational interpretation of linear logic.” This work is an essential prelim-
inary to applications of linear logic, for example to a “resource-conscious”
domain theory. This work is expected to tie-up with models treated in the
handbook chapter “Models for concurrency” by Winskel and Nielsen, which
provides helpful leads to describing and reasoning about concurrent compu-
tation.

Semantics Based Program Manipulation

Neil D. Jones
University of Copenhagen

Area SBPM is rather broad, covering semantically based work in which pro-
grams are interpreted as data objects. Substantial progress has been made
in the following research areas, both in theory and in practice, and they have
many interconnections despite their seeming diversity. First, an overview.

1. Partial evaluation has been applied to larger and more realistic prob-
lems and programming languages, including a large-scale lazy func-
tional language, and a new partial evaluator for the widely used pro-
gramming language C.

2. A number of new results have been obtained in abstract interpretation,
both under its own heading below and as a tool in partial evaluation
and other program optimizations.

3. Much more efficiet algorithms have been devised for abstract inter-
pretation, partial evaluation, and type inference. Proven to run in
near-linear time, they have also been seen to work extremely well in
practice.

4. A better understanding of complexity issues in our research area has
been achieved. Practical and theoretical progress towards two long-
standing problems in partial evaluation has been made — to estimate

6



how much speedup will be achieved, and to develop analyses sufficient
to guarantee that specialization will always terminate. In addition new
lower run time bounds have been obtained for practically interesting
problems.

5. The relationships among and relative expressivity of type inference, ab-
stract interpretation, and abstract interpretation are becoming better
understood.

Abstract interpretation

Some work emphasizes analyses of new program properties useful in effi-
ciently implementing programming languages, and other work concerns im-
plementation, proof that the analyses are correct, and studies of the relations
with abstract interpretation and types.

Globalization, the problem of discovering which data can be statically allo-
cated rather than more expensively on a stack or heap, was studied in work
done before DART was begun. The earlier work did not, however, satis-
factorily account for globalizable data captured in higher order functional
values, and under DART the earlier results were strengthened considerably
by Gomard and Sestoft in [36].

Evaluation order in lazy languages is a rather tricky subject and has been
studied by researchers several places in the world. Stronger results were
reported by Gomard and Sestoft in [35] and an improved version came out
in [37]. The globalization and evaluation order results were based on results
obtained in their two Ph.D. theses [32], [117].

Strictness analysis of attribute grammars was done by Rosendahl in [115], and
his and Mycroft’s paper [91] generalizes earlier work on “minimal function
graphs”. This work is being extended to cover lazy programming languages,
jointly with Mycroft.

Partial evaluation

This is currently the largest area of activity. A breakthrough was a partial
evaluator for the widely used programming language C, described in L.O.
Andersen’s M.Sc. thesis [12]. It received a prize given by the Dansk Data-
logisk Selskab as the “best MSc. thesis of the year”. Papers [13] and [10]
describe parts of the project.

7



Our currently most recognized partial evaluator is Bondorf’s Similix for the
medium scale untyped functional language Scheme [16], [89]. It has been
distributed to around 200 sites, and at least two papers done at other uni-
versities were based on experiments using Similix. Experiments are currently
taking place to implement Mosses’ “action semantics” using Similix — joint
work between DIKU and DAIMI.

The system is continually evolving, see for example Bondorf’s Lisp and Func-
tional Programming article [17]. Similix has been used to implement lazy
functional languages by specializing interpreters for them. Mogensen is cur-
rently working on production of RISC code using an interpreter in continu-
ation passing style.

Two experiments producing Scheme code have been undertaken, the first
reported by Bondorf in [14]. Jørgensen’s M.Sc. thesis [66] dealt with a much
larger language and was reported at POPL [67]. It is particularly interesting
because of the language size and the generated compiler’s efficiency — the
target programs it produced were faster than those of Turner’s commercially
used Miranda compiler.

Noteworthy is that the compiler was generated automatically by a system
which knew nothing about special compiling tricks for the language being
implemented. The compiler generator’s only input was a definitional inter-
preter of the source language. Target code efficiency was gained by rewriting
the interpreter until good separation of compile- and run-time actions was
obtained. Experience shows performing such equivalence-preserving trans-
formations on a program that already works to be rather easier than conven-
tional compiler writing.

Two of DART’s themes: partial evaluation and the “self-optimizing” phe-
nomenon seen in lazy evaluation of functional languages were discovered
by Holst and Gomard to have a deep similarity, reported in [52]. Inter-
estingly, the same idea was independently discovered a few months later by
two Japanese researchers.

Bondorf and Mogensen report in [85] a self-applicable partial evaluator for
Prolog. The core of the system is finished, but a number of preprocessing
analyses remain to be done, The full correctness proof for Lambda-mix by
Gomard has now come out in TOPLAS [33].

8



Work on the challenging problems of estimating speedup factors and ensuring
termination in partial evaluation has continued, preliminary speedup results
being reported in [11]. A chapter of a book being written on partial evaluation
by Jones, Gomard and Sestoft concerns binding time analyses strong enough
to guarantee termination, and Bondorf plans to add such an analysis to
Similix.

Henglein developed a nearly linear time binding time analysis algorithm using
constraint systems and “union-find” algorithms [47], with a smaller constant
factor than observed in many theoretically good algorithms with low asymp-
totic running times. He is currently working on its polymorphic extension.
Bondorf and Jørgensen have adapted his ideas to gain dramatic speedups of
several Similix analyses. Recent work by Palsberg and Schwartzbach com-
pares Bondorf’s and Gomard’s approaches to binding time analysis, proving
the former to be strictly more powerful than the latter — another DAIMI-
DIKU link.

Lambda calculus

This mathematically based small programming language has received consid-
erable attention, including Klaus Grue’s doctoral work which belongs under
DART activity 6.7 [39].

Following Barendregt’s publication of a mathematically simple self-inter-
preter for the pure lambda calculus without constants, Mogensen developed
a much simpler and more efficient alternative, and a “self-reducer” as well,
reported in [83]. Extension of these ideas led to an exceptionally small partial
evaluator, reported in [84].

This work has already attracted some attention. Mitch Wand (Boston) has
developed a new proof technique and formally proven Mogensen’s partial
evaluator to be correct; and Corrado Böhm (Rome) has a paper on an
improved self-interpreter in the forthcoming conference Computer Science
Logic.

Hannan (a postdoc supported by DART) showed that lambda Prolog can
faithfully describe various reduction strategies in [44]. Current work includes
studies and experiments on “parallel optimal” reduction strategies, being
done by Rose and Jørgensen at DIKU, with related work by Birk Hansen
and Hvid Sørensen at DAIMI.

9



Types

Jones reported on a notation for the types of language processors in [61] and
its relation to compiler generation by partial evaluation. He visited Hagiya
in Kyoto for further work, but much still remains to be done.

Henglein has worked on polymorphic extensions of binding time analysis,
boxing/unboxing analysis, and strictness analysis. In [48] he shows the un-
decidability of type inference in Mycroft’s scheme for polymorphic recursive
types by reduction from the semiunification problem.

Dynamic typing with a minumum of tagging and untagging operations is
studied both theoretically and practically by Henglein in [49] and [50]. This
very promising work is the basis for a Scheme to ML translator worked on
by Kees van Schaik, visiting from the University of Utrecht.

Complexity

An “oblivious” algorithm is one whose control flow depends only on the
inputs known at partial evaluation time. Their role in relation to the pre-
dictability and efficiency of program specialization is just now becoming un-
derstood. Recent observations appear in a chapter by Jones of the partial
evaluation book.

Andersen and Gomard present an automatic method to estimate speedup fac-
tors obtained by partial evaluation in [11]. Work by Henglein was described
before on efficient algorithms in partial evaluation [47]. Reformulation of ear-
lier analyses in terms of constraint systems has already led to considerable
improvements in the speed of Similix.

Henrik Andersen from DAIMI is at DIKU for the Fall semester, working on
efficient algorithms for model checking.

A lower bound complexity result recently obtained by Jones is that increasing
computation time by a constant factor on a natural computing model prop-
erly increases computing power. The result is interesting for two reasons: it
contradicts a known result for Turing machines and can be interpreted as
showing that they are an unnatural computing model; and it shows that the
constant speedups typically obtained in partial evaluation are nontrivial in
a mathematical sense. The proof is interesting too, as the novel technique
involved is a highly efficient self-interpreter for a simple imperative language.

10



Graph rewriting

A M.Sc. thesis by Rose [114] led to two papers [112], [113] concerning the use
of graph rewriting as a semantic formalism. The new DIKU postdoc, David
Sands, is working on the Gamma model of parallel computation, based on
conditional multi-set rewriting (with an elegant chemical reaction metaphor).

Further work is planned, e.g. experiments with a “hashing apply” for online
memoisation, and with Lamping’s optimal graph reductions as mentioned in
the lambda calculus discussion.

Diverse topics

Hannan describes derivation of machine architectures from interpreters in
[43]. He and Pfenning have used the computer to prove correct a compiler
from the lambda calculus to the Categorical Abstract Machine in [46], using
Pfenning’s logic programming language which is based on the Edinburgh
Logical Framework. It is the most complex mechanically proven compiler of
which this writer is aware.

Operational Semantics, Types and Language
Implementation

Mads Tofte
University of Copenhagen

In this presentation we give an overview of the activities that are going on
under area OST, namely the semantics of higher-order functors in ML, type
inference and storage allocation, and the ML Kit.

Higher-older Functors

We have defined the static semantics of higher-order functors in a skeletal
language and proved a central theorem which says that so-called principal
signatures exist. An algorithm which finds principal signatures has been
developed; it has been implemented in the ML Kit by Lars Birkedal. There
has been close collaboration with David MacQueen of Bell Labs, one of the
authors of Standard ML of New Jersey. The next version of New Jersey ML
will support higher-order functors.

Type Inference and Storage Allocation

11



Within the past six months, we have had an exciting breakthrough in this
area. We have found that it is indeed possible to use a refined notion of type
inference, we call it region inference, to partition the values a program
produces into regions, which can be allocated and de-allocated in a stack-
like manner. The exciting thing is that the scheme works for languages with
higher-order functions, despite the fact that it is widely believed that stack
allocation is incompatible with higher-order functions. So far, we have con-
centrated on developing a mathematically robust theory of region inference;
we plan to test the ideas in practice in future. This work has been done in
collaboration with Jean-Pierre Talpin, Ecole des Mines, Paris.

The ML Kit

During the past year the Kit has been developed further to an extent that it
now implements virtually all of Standard ML. Also, we have written about
half the planned documentation. A student, Lars Birkedal, has been em-
ployed as a half-time programmer, funded by DART; his job is to fill out the
remaining holes in the Kit code and to write further documentation. This
work has been done in collaboration with Nick Rothwell of Laboratory for
Foundations of Computer Sciences University of Edinburgh.

Type Systems and Constraints

Michael Schwartzbach
Aarhus University

The general area of research has been type systems, interpreted in a broad
sense, using constraint-based techniques.

Joint work with Jens Palsberg has focused on applications of closure analysis
of the λ-calculus. Phrasing both as constraints, we have managed to show
that safety analysis, based on closure analysis, is strictly more powerful than
Milner-style type inference in accepting safe λ-terms; this result has been
improved to allow even inference with recursive and partial types. We have
employed a novel proof technique which is based on solvability-preserving
maps on constraint systems. A further application of this has shown that
the binding time analysis of Bondorf, based on closure analysis, is strictly
more powerful than that of Gomard, based on type inference. We have
defined an improvement of closure analysis, which ignores unreachable code,

12



and shown it to be sound with respect to both a strict and a lazy operational
semantics. We have adapted closure analysis to object-oriented languages
and shown how it can solve a number of static analysis problems. The use
of program transformations to improve such analyses has been developed.

Algorithmic aspects of subtyping has been explored with Dexter Kozen and
Jens Palsberg. Using again a constraint-based approach we have solved two
open problems concerning type inference with Thatte’s partial types: that
typability with finite types can be decided in polynomial time, and that
recursive types always allow a unique Böhm-minimal type. A further de-
velopment of this approach has enabled us to decide the Amadio-Cardelli
recursive subtyping relation in quadratic time, improving on the previously
best-known exponential time.

Recent work with Nils Klarlund has enriched recursive datatypes with a
particular kind of constraints. This yields the concept of graph types, allow-
ing the systematic definition of non-tree shaped families of values, such as
doubly-linked cyclic lists threaded trees, etc. We have developed a decidable
monadic logic for reasoning about such types, as well as optimal algorithms
for their manipulation at run-time. This has the promise of allowing more
conventional data structures to be defined in functional languages.

Map Theory

Klaus Grue
University of Copenhagen

Map theory is a foundation of mathematics based on lambda-calculus instead
of logic and sets, and thereby fulfills Church’s original aim of introducing
lambda-calculus. Map theory can do anything ZFC set theory can do. In
particular, all of classical mathematics is contained in map theory. In addi-
tion, and contrary to set theory, map theory has unlimited abstraction and
contains a computer programming language as a natural subset. Map theory
is as simple and homogeneous as ZFC set theory.

The talk gives an intuitive understanding of the notion of a map and gives a
short overview of implementation of map theory on a computer.

13



2.2 Research Presentations

Formal Specifications of CML Programs

Klaus Havelund
Ecole Normale Superieure (ENS), Paris

Purpose of this Work

The purpose of this work is to develop a specification language for (a subset
of) the programming language CML.

What is CML?

CML (Concurrent ML) is an extension of the programming language ML
with CCS/CSP-like concurrency primitives. The model behind CML is that
of concurrently executing expressions that communicate by synchronous mes-
sage passing on typed channels.

Channels can be created dynamically and they are themselves values. Con-
currency is obtained in terms of a so-called spawn operator. In principle,
the expression spawn(e) starts the evaluation of expression e whereafter
evaluation of the remaining program immediately continues. The remaining
program will then run in parallel with e.

Since functions are values, processes (functions that communicate) are values,
thus making CML truly higher order.

CML allows for imperative programming with side-effects via ML reference
types. This concept can be ignored since ML references can be theoretically
modelled by the concurrency primitives added in CML.

A Specification Language

A specification language for CML must make it possible to state properties
about CML programs. Inspiration can be obtained by studying diverse modal
logics for concurrency specification. One should for example be able to state a
property like: If during the evaluation of this expression a value x is received
(input) on the channel i, then later in the expression evaluation, the value
2 ∗ x will be sent (output) on the channel o.

14



Region Inference

Mads Tofte
University of Copenhagen

It is widely believed that higher-order functions are incompatible with stack
implementation. In this talk we present region inference, a type-inference
based technique which allows compile-time inference of where data is to be
put in order that allocation at runtime can happen in a stack-like manner,
even in the presence of higher-order functions. The technique has been proved
sound for a skeletal language, namely the call-by-value λ-calculus with let

typed according to Milner’s polymorphic type discipline. Instead of a heap
and garbage collection, our implementation scheme has regions, which are
allocated and deallocated in a stack-like manner. Regions are inferred using
types and effects, and there exists an algorithm which finds principal types,
minimal effects and smallest possible regions.

In this talk we explain what region inference is, show the region inference
rules and state the soundness theorem. (There will probably not be enough
time to present the inference algorithm.)

The C-Lisp Language

Frank Jensen
Aalborg University Centre

C-Lisp is a higher-order functional language with facilities for synchronous
communication (message passing), process creation and channel allocation.

We present a calculus for a simple language L that captures the essential
features of C-Lisp. This calculus is the λ-calculus extended with primitives
for communication (send/receive a value), for generation of new channels and
processes (agents), and for sequencing and recursion.

The semantics of L is defined through two transition systems: one transi-
tion system defines the possible actions of individual agents, while another
transition system defines the behavior of a collection of agents.

15



Finally, we outline how agents of the π-calculus (by Milner et al) can be
translated into L in such a way that the (π) agent and its translation can
simulate each other’s actions quite closely.

Value-passing

Anna Ingolfsdottir
Aalborg University Centre

The standard theory of CCS, based on testing, is extended to a process
algebra which supports transmission of simple values. This will be compared
to a similar theory based on the idea of testing due to Hennessy and De
Nicola.

Nontriviality of Constant Speedups

Neil D. Jones
University of Copenhagen

It is proven that that multiplying computing time by a sufficiently large con-
stant properly increases computation power for a natural computation model.
Specifically, given a f(n) time-constructable function, there is a constant c
and a set X such that X can be recognized in time c · f(n) but cannot be
recognized in time f(n).

The result strengthens Fürer’s “tight time hierarchy”, but is of course in
direct contradiction to the constant speedup enjoyed by Turing machines. It
makes clear what the price for having arbitrarily large tape alphabets is.

The computation model consists of syntactically restricted imperative pro-
grams manipulating Lisp-like list values. The result appears to carry over
to other models allowing pointer reference in constant time, e.g. Tarjan’s
pointer machines with a uniform bound on record size.

Partial evaluation nearly always yields constant speedups, and it has been
somewhat disconcerting to recall that such speedups give no increase at all in
problem solving ability for Turing machine computation models. The result
is of relevance to DART since it shows that constants do indeed matter, for
models that are closer to computing practice.

16



The technique uses

1. A self-interpreter whose interpretation overhead is a constant multi-
plicative factor, independent of the program being interpreted. This is
the key point to the proof.

2. Extending this to a self-timed version, using the fact that one can count
the binary representation of n down to 0 in time O(n).

3. The usual resource-bounded diagonalization argument.

So the constant speedups we get by partial evaluation are not trivial (in terms
of complexity theory) after all. And list values and efficient interpreters are
a Good Thing.

Binding Time Analysis:
Abstract Interpretation versus Type Inference

Jens Palsberg
Aarhus University

Binding time analysis is important in partial evaluators. Its task is to deter-
mine which parts of a program can be evaluated if some of the expected input
is known. Two approaches to do this are abstract interpretation and type in-
ference. We compare two specific such analyses to see which one determines
most program parts to be eliminable. The first is the abstract interpretation
approach of Bondorf, and the second is the type inference approach of Go-
mard. Both apply to the untyped lambda calculus. We prove that Bondorf’s
analysis is better than Gomard’s.

We present both binding time analyses via constraint systems. The mo-
tivation for this is to abstract away the algorithmic aspects of computeing
binding time information. Rather the constraint systems yield two soundness
predicates on all possible outputs of a binding time analysis. The outputs
we consider are elements of the 2-level lambda calculus. They have a natural
ordering such that “smaller” means “better”. The algorithms of Gomard and
Bondorf can then be understood as computing the least 2-level term which
is sound relative to their respective predicates. Our comparison proceeds

17



by showing that if Gomard’s predicate is true of a particular 2-level term,
then so is Bondorf’s. This implies our result: for any pure term, Bondorf’s
analysis produces a smaller 2-level term than does Gomard’s analysis

This work is joint with Michael Schwartzbach.

Generation of Proof Obligations for Type
Consistency

Bo Stig Hansen
DTH, Lyngby

This work concerns a type inference system for a simple applicative language.
The system can be used for inferring types of expressions and, in addition,
the necessary proof obligations for ruling out “dynamic” type errors such as
taking the head of an empty list.

The system has been proved sound and complete with respect to a denota-
tional semantics of the language. In this semantics, the head of an empty
list is the special element WRONG, denoting type error, and not BOTTOM
which is used only for modelling non-termination.

The work is joint with Ph.D. student Flemming Damm.

Reasoning about Infinite State Systems in the
Modal mu-Calculus

Henrik R. Andersen
University of Copenhagen

We describe a method for performing model checking on infinite state systems
in the modal µ-calculus. The method can assist in proving that subsets of
states of infinite labelled transition systems satisfy formulae in the modal µ-
calculus. Success of using the method in one particular situation will depend
on proper choices in certain steps of applying the method and on the ability
to show properties of infinite sets by properly chosen induction principles
like mathematical or structural induction. The undecidability of the overall
problem can be viewed as a combination of the impossibility of making these

18



choices algorithmically and of the impossibility of algorithmically deciding
properties on infinite sets.

The method will be sound in the sense that, whenever a model is shown to
satisfy an assertion of the logic using the method, this is certainly a valid
conclusion, and it will be complete in the sense that, whenever a model
satisfies an assertion it is possible to make correct choices, and — provided
the infinite reasoning is possible — find a finite number of steps of the method
proving this fact.

Recursive Binding as a Primitive

Kristoffer H. Rose
University of Copenhagen

Most programming languages include some kind of recursive binding, i.e.,
cyclic definitions of data and computations through naming. The binding
present in standard (λ-calculus based) models of computation, however, only
allows acyclic binding directly, whereas cyclic definitions have to be ‘encoded’
using fixed point combinators. Consequently, models of recursive binding do
not enjoy the same simplicity in presentation as models of acyclic binding
(they need closures, stores, or other intermediate structure), making it diffi-
cult to represent and reason about ‘self-sharing,’ i.e., cyclic data structures.
In this paper we show how the ‘Explicit Substitutions’ technique of Abadi,
Cardelli, Curien, and Lévy (in the POPL ’90 proceedings) can be extended
to handle the cyclic ease by applying it to a λ-calculus with an explicit sub-
stitution operator.

Constructor Specialization

Torben Mogensen
University of Copenhagen

We investigate the posibility of specializing constructors as well as func-
tions during partial evauation. We present an example that shows that the
idea has merit, and discuss implementation of binding time analysis and
specialization.

19



Efficient Analyses for Realistic Off-Line Partial
Evaluation

Jesper Jørgensen
University of Copenhagen

Based on Henglein’s efficient binding time analysis for the lambda calculus
(with constants and “fix”), we develop four efficient analyses for use in the
preprocessing phase of Similix, a self-applicable partial evaluator for a higher
order subset of Scheme.

A flow analysis determines possible value flow between function applications
and lambda abstractions and between constructor applications and selec-
tor/predicate applications. A binding time analysis distinguishes static and
dynamic values; the analysis treats both higher order functions and partially
static data structures. An is-used analysis finds a non-minimal binding time
annotation which is “safe” in a certain way: first order values may only be-
come static if their result is “needed” during specialization; this “poor man’s
generalization” [52] increases termination of specialization. Finally, an eval-
uation order dependency analysis ensures that the order of side-effects is
preserved in the residual program. The analyses are performed sequentially
in the above mentioned order since they depend on results from the previous
analyses.

The input to all four analyses are constraint sets generated from the program
being analysed. The constraints are solved efficiently by a union/find-based
algorithm in almost-linear time. Whenever possible, the constraint sets are
partitioned into subsets which are solved in separate subphases; this simplifies
constraint solving.

The framework elegantly allows expressing both forwards and backwards
components of analyses. In particular, the is-used analysis is of backwards
nature.

The four constraint solving algorithms have been proved correct (soundness,
completeness, termination, existence of a best solution).

The analyses have been implemented and integrated in the Similix system.
The implementation confirms that the analyses are indeed efficient in practice
and that the complexity is almost-linear. For example, preprocessing a 75K

20



machine produced program that makes heavy use of higher order functions
and partially static data structures (the compiler generator of Similix) takes
around 15 seconds (Chew Scheme version 3.2 on a SPARC 2).

Minimal Function Graphs for a Lazy Language

Mads Rosendahl
University of Copenhagen

The minimal function graph technique was proposed by Jones and Mycroft as
method to define the semantics of a first-order eager functional language. In
the semantics, the meaning of a function is described as a set of argument-
result pairs where only arguments to function calls which may be reached
from a given initial call are included. The semantics may be used for defining
program analyses which extract information about the possible arguments to
the functions in the program.

In this work we describe a minimal function graph for a language with a call-
by-need evaluation strategy for arguments to function calls. The extension
requires that one not only collects arguments to function calls but also the
needed arguments to functions. The semantics is presented in a framework
which facilitates its use for abstract interpretation.

Possible applications of the semantics in program analysis are discussed.
They include neededness analysis, automatic complexity analysis, and con-
stant propagation.

The work is done in collaboration with Alan Mycroft.

3 Current Status of DART (Summer 1992)

This section presents the results obtained so far and the work that still lies
ahead. It is grouped on reports from each of the “work areas” that were
mentioned in the Introduction. For more detailed descriptions of the aims of
each area please consult Section 3 of [95] “Abstracts from the first Workshop”.

21



3.1 SDT (DART 6.1): Semantics as a Descriptive Tool
(by P.D. Mosses)

Peter Mosses presented action semantics at the Marktoberdorf Summer School
[86]. He has recently published a book [88] providing the first comprehensive
exposition of action semantics. A showcase example of action semantics is
currently being completed, in collaboration with David Watt (Glasgow).

Padmanabhan Krishnan is now a lecturer at Christ Church, New Zealand.
During the last months (supported by DART) of his post-dot. at DAIMI
he completed his investigations of the action semantics of real-time and dis-
tributed systems [70, 71, 72, 74].

In his Ph.D. thesis [103] Jens Palsberg has given a translation from a sub-
set of action notation to a RISC code, and proved it correct. The system
implementing this, Cantor, provides a correct compiler generator for simple
action semantic descriptions. An M.Sc. student is going to optimize the code
produced by Cantor. Jens Palsberg is collaborating with Anders Bondorf on
the application of the Similix system to action semantics based compiler gen-
eration. Mart́ın Musicante, a guest Ph.D. student, is investigating compiler
generation for concurrent languages using action semantics.

A prototype system for action semantics, SAS, has been implemented. The
MSc. student who programmed it in Mathematics is now going to investi-
gate how to implement the operational semantics of action notation directly.
Another M.Sc. student is extending the work of Even and Schmidt (Kansas)
on type inference to the full action notation. Finally, Valentin Antimirov,
an SNF post-dot., is investigating the implementation of unified algebraic
specifications of abstract data types; this work is expected to contribute to
the type checking and evaluation of userspecified data in SAS.

Some advances concerning the specification of sorts of actions have recently
been made. However, the theory of action notation needs further develop-
ment to allow direct reasoning about nontrivial action equivalence.

22



3.2 SAT (DART 6.2): Semantics as an Analytical Tool
(by H.R. Nielson)

The main activities have been within the following areas:

Specification and correctness of program analyses:

The power of abstract interpretation relies on the constructions used for the
abstract domains. It has been shown that using a tensor product one can
avoid Wadler’s case construct without loosing precision. Further precision
can be obtained using open sets when analysing lists. A MSc-thesis (by Jens
Mikkelsen) shows how homomorphisms can be used to construct abstract
domains which give even more precision although more work is needed to
study their computational tractability.

Computation of fixed points:

The efficient implementation of abstract interpretation relies on the cost of
computing fixed points. When the abstract domains are finite (as often
is the case) the cost can be bounded by the height of the domain of the
functional; this has been studied in detail for three frameworks of abstract
interpretations It has also been shown that one may obtain even lower bounds
when the functionals have special forms.

Correctness of simple and optimizing code generation schemes:

Although the specification of code generation for lazy functional languages
may seem obvious, it is rather complicated to formulate and to prove its
correctness. The concept of layered predicates has been introduced to reduce
the complexity of the problem and allows the proof to be conducted in a
few stages. A MSc-thesis (by Torben Lange) shows that the technique easily
adapts to optimizing code generations using abstract interpretation.

Also there has been work on logical specifications of binding time analysis
(by Kirsten Solberg, PhD-student from Odense), safety analysis (by Jens
Palsberg, research assistant employed by DART from 1/8-1991 to 31/12-
1991), correctness of code generation for Occam (by Anders Gammelgaard,
PhD-student, ProCoS) and program transformations (by Karin Glindtvad,
former research assistant, ProCoS, and Torben Amtoft, PhD-student). Fi-
nally, an experimental system in Miranda supporting a number of the above

23



mentioned techniques is under construction (by Anders Pilegaard, former
programmer, and Torben Lange, research assistant employed by DART from
1/7 1992).

In addition to three MSc-theses and one PhD-thesis the above work is doc-
umented in a couple of conference papers, (forthcoming) journal papers and
the monograph, Two-Level Functional Languages (by Flemming Nielson and
Hanne Riis Nielson, Cambridge University Press, 1992). Also an introductory
book to the general area of semantics has appeared: Semantics with Appli-
cations, A Formal Introduction (by Hanne Riis Nielson, Flemming Nielson,
Wiley, 1992).

The future work will most likely be centered around program analysis and
their specification (by abstract interpretation, logical systems, projections,
partial equivalence relations, etc). Both theoretical and practical aspects
will be studied but the emphasis will be on the former. So far most of the
work has been for functional languages but an opening towards other kinds
of languages (e.g. with concurrency primitives) is expected. There is already
a number of activities supporting this development:

• PhD-seminars on Approaches to Program Analysis (Spring 1992) and
on Functional Languages with Higher-Order Processes (Fall 1992).

• DART task meetings on Type Inference (May 1992) and on Linear
Logic (planned for Fall 1992). Also it is expected that the work on
fixed point computation and layered predicates will be continued.

3.3 SOC (DART 6.3): Semantics of Concurrency (by
K.G. Larsen)

The main activity in this area is concerned with the development of a the-
oretical basis together with supporting methodologies and automatic tools
for designing provably correct distributed/concurrent systems. In particular,
theories allowing modular design and compositional verification are sought;
i.e. it should be possible to relate properties of a complex system to proper-
ties of its components.

Using the modal µ-calculus as a specification language for parallel systems,

24



we have described methods for decomposing specifications of a combined
process into sufficient and necessary properties of its components [80, 8, 127].
This theoretical basis for compositional verification has been established for
classical process algebras such as CCS, CSP and ACP. Furthermore, in [76,
127] the expressive power required of a specification formalism in order that
it supports decomposition of properties has been characterized.

Related to these decomposition methods a number of local techniques for
checking various properties of parallel systems have been developed. In con-
trast to traditional global techniques, the local techniques are designed so
that precomputation of the global state–space (and hence state–explosion)
may be avoided. In [77] a general description of the local technique under-
lying all the tools of the TAV system is given in terms of Boolean Equation
Systems. In [7, 5, 127] local algorithms for model checking with respect to
the modal µ–calculus are given. In particular, the efficiency of these local
techniques is comparable to the best known global algorithms and currently
work is made towards their practical implementation.

Using classical process algebras and classical modal and temporal logics it
is possible to specify concisely the desired observable behaviour of a parallel
system. However, such specifications will focus only on qualitative aspects of
a system while leaving unspecified quantitative aspects which often are vital
for several practical applications. Such quantitative aspects include:

• Real-time (dense or discrete)

• Probabilistic non-determinism

• Passing of values in communication

• Priorities among processes and/or actions

Within DART substantial research has been carried out during the last year
in order to extend the classical results in the above directions. We give a
more detailed account of the results obtained below.

For (dense) real-time system we have applied the basic model of timed graphs
by Alur, Courcoubetis and Dill and the timed version of CCS (TCCS) by
Wang. We have obtained decidability results for a regular part of TCCS [51]
and more recently decidability for static networks of regular timed processes

25



has been obtained [22]. This lays the theoretical foundation for tool–building,
which we intend to implement during the next year (in collaboration with
Karlis Cerans). Real–time (dense) calculi are fairly resistant to standard
techniques; in particular, we have shown that no expansion theorem will hold,
and hence that parallel composition can not be reduced to non–determinism
[31]. As for work in progress, we are currently investigating a notion of time–
abstracting bisimulation on TCCS and to what extent this (rather abstract)
equivalence may capture timing properties [128].

With respect to probabilistic behaviour we have studied various specification
formalisms. In [65] a transition based specification formalism for probabilis-
tic behaviour is introduced together with a characterization of the refinement
ordering between specifications, The resulting theory can be seen as an ex-
tension of the theory for modal transition systems. In [79] a probabilistic
calculi and a probabilistic modal logic is introduced. As main results it is
shown how to decompose properties expressed in the logic with respect to
operators of the calculus. Also a complete axiomatization of (validity of)
the logic is given. Finally, in [128] a test theory for probabilistic processes is
developed. In particular, a process will pass a test with a certain probability
refining the notions of a process must or may pass a test in the classical test
theory of Hennessy.

Substantial work has been made on the semantic basis for communicating
processes with value–passing [58], and currently a group at DAIMI is making
progress on the decidability problems associated with this class of processes.
Similar to (dense) real–time systems, the infinite nature of data immediately
leads to infinite–state systems and new techniques are therefore needed. We
believe that the symbolic techniques used for real–timed processes and pro-
cesses with values are related and we intend to investigate this relationship
during the next year.

As argued above, infinite–state systems are unavoidable when introducing
concepts such as time and values. During the last year, several fundamental
results on the decidability of various equivalence for a class of (potentially)
infinite–state process have been obtained [54]. In [56] bisimulation has been
shown decidable for the class of normed BPA processes (a BPA process is
built from a set of basic actions using summation, sequential composition and
recursion). This result has recently been extended to the full class of BPA
processes [23] (an open problem for nearly five years). In [55] decidability of

26



branching bisimulation for normed BPA is established. In contrast it is shown
in [38] that all other standard equivalences are undecidable for BPA. As for
model checking infinite state–systems techniques (rather than algorithms) are
under development [5]. These techniques can be seen as combining modal
reasoning with familiar induction priciples.

Also in the direction of processes with priorities work has been done both
with respect to the development of a suitable semantic basis [21] and in
developing tools supporting automatic verification of such systems [59].

In the direction of application intensive experimentation with Esterel and
the associated programming environment has been carried out at DAIMI.
Also, a wide range of experiments has also been carried out using the TAV
system [20, 18, 19]; in particular, an interface to AUTO and its graphical
interphase (AUTOGRAPH) has been developed, making it possible to apply
TAV to the verification of (finite–state) Esterel programs. We hope the class
of Esterel programs amenable to automatic verification can be enlarged using
future decidability results for value–passing processes.

3.4 SBD (DART 6.4): Semantics Based Deduction (by
G. Winskel)

A major aim is to strengthen and support expertise in automated proof,
based in theoretical work in logic, domain theory and concurrency.

There are currently three projects in applying the proof assistant HOL.

• a metalanguage for domain theory in HOL (Sten Agerholm, Part of a
PhD project)

• a basic theory of computability in HOL (Ole Hougaard, student project)

• lattice theory in HOL (Esben Dalsgaard, student project)

The work on domain theory and computability borrows heavily from the
book “Introduction to formal semantics” by Winskel to be published by MIT
Press [123]. The technique it presents for proving adequacy of a denotational
semantics with respect to an operational semantics, via information systems,
has also been demonstrated to work for polymorphism [119].

27



Urban Engberg, as part of his PhD work, has been mechanising verification in
Lamport’s TLA (Temporal Logic of Actions). He is presently constructing an
interactive theorem proving system, improving on his earlier work described
in [26].

In additions there has been work of Torben Braüner, advised by Douglas
Gurr and Glynn Winskel, on repairing a defect in Abramsky’s term language
for proofs in “A computational interpretation of linear logic”. This work
is an essential preliminary to applications of linear logic, for example to a
“resource-conscious” domain theory. It is expected to tie-up with models
treated in the handbook chapter “Models for concurrency” by Winskel and
Nielsen [126], which provides helpful leads to describing and reasoning about
concurrent computation.

In March Aarhus hosted a very successful workshop in Categorical Logic in
Computer Science [122].

This summer saw the visits of Tom Melham and Juanito Camilleri, both
helpful because of their expertise in HOL; Juanito also spent two days exper-
imenting with the “Priority Workbench” implemented by Claus Torp Jensen,
in the analysis of “toy” operating systems. Kim Skak Larsen has begun work
in the implementation of Henrik Reif Andersens’ model-checking algorithms.
It is hoped that DART will fund a continuation of Kim Skak Larsen’s work,
presently supported by funds under Mogens Nielsen and Glynn Winskel.
AnnGrete Tan will begin as Introduktionsstipendiat in November—her re-
search is likely to be in theorem proving and constructive logic. Sergei
Soloviev, associate professor in Mathematics at the University of St. Peters-
burg, will come to Aarhus in January ’93 employed by the ESPRIT Basic
Research Action CLICSII. Douglas Gurr has left Aarhus to take a position
in London.

3.5 SBPM (DART 6.5): Semantics Based Program
Manipulation (by N.D. Jones)

Area SBPM has been in a very dynamic state since DART began in March
1991, and noteworthy accomplishments have been made towards the goals
outlined in the original proposal. This part of DART is still very much on
track with numerous results already obtained and described in the “survey”

28



part of this report, and with many interesting tasks remaining to be done
and new leads to be followed. Some are described later in this section.

Staff changes

Mads Tofte was appointed as lektor (associate professor), and Fritz Henglein
was appointed as adjunkt (assistant professor).

John Hannan (University of Pennsylvania) was employed as postdoctoral
guest for a half year, and David Sands (Imperial College, London) will replace
him starting in November. A guest, Kees van Schaik, has worked on dynamic
typing with Fritz Henglein, with support from Holland. Much useful work has
been done by DART-employed programmers Lars Ole Andersen and Peter
Holst Andersen.

Education

Four M.Sc. theses were written (Lars Ole Andersen, Jesper Jørgensen,
Kristoffer Rose, and Bjarne Steensgaard/Morten Marquard). Lars Ole An-
dersen’s received an award from the Dansk Datalogisk Selskab as the best
Danish M.S. thesis of the year in Computer Science.

Three Ph.D. theses have been defended in 1991: Hans Dybkjær in May, Peter
Sestoft in November, and Carsten Gomard in December. Three students are
currrently working on Ph.D. degrees at DIKU (Lars Ole Andersen, Jesper
Jørgensen, and Kristoffer Rose), and three students being advised by DART
members and with Danish funding are working in foreign countries on Ph.D.
degrees.

External recognition

Papers have been presented at conferences (most with publically available
proceedings) including ACM Principles of Programming Languages, Bor-
deaux Workshop on Program Analysis, Dagstuhl Workshop on Functional
programming, Compiler Technology, and Parallelism, Functional Program-
ming and Computer Architecture, Glasgow Workshop on Functional Pro-
gramming, Lisp and Functional Programming, Logic in Computer Science,
Logic from Computer Science (not the same!), and Partial Evaluation and
Semantics Based Program Manipulation.

DART people in area SBPM were on the program committees of the first
two, and as well selected papers for ICALP 92, and Programming Language

29



Implementation and Logic Programming.

In addition, several journal and book articles have appeared, in the ACM
Transactions on Programming Languages and Systems, Journal of Functional
Programming, Structured Programming, Mathematical Structures in Com-
puter Science, Science of Computer Programming, and Theoretical Computer
Science.

A special issue of Science of Computer Programming was guest edited by
Neil Jones, and a book on partial evaluation by him, Carsten Gomard, and
Peter Sestoft is nearing completion, to be published by Prentice Hall next
year.

Future work

The goals enunciated in the original DART proposal are still valid; rapid
progress has been made, but much remains to be done. Partial evaluation
has become widely recognized worldwide, and the publication of our book in
1993 should give it even more momentum. Crucial factors for a wider use of
partial evaluation include:

• Stand-alone systems for realistic and widely used programming lan-
guages. There is still much to do with the C partid evaluator to turn it
into a generally usable tool, but the possibility of this in principle has
now been firmly established. The language ML is without question the
most widely used typed functional language in the world, with large
user communities in the UK, the US, and other countries. We have
recently decided to begin a pilot project on partial evaluation of ML,
and feel well equipped in both theory and practice on the basis of our
members’ expertise in areas SBPM and OST.

• More highly automated, reliable, efficient and predictable partial eval-
uation systems. This requires a better understanding of complexity
issues and efficient algorithms. A major task is to predict what the
results of program specialization will be before it is done; for this our
work in abstract interpretation, speedup analysis, and general algo-
rithm design will be quite useful.

• Wider applications. By far the greatest part of our work until now
has centered around programming languages. We are now beginning

30



to investigate applications of partial evaluation in scientific computing,
and have preliminary contacts with the Danish Hydraulics Institute
and other groups.

• Theoretical issues. Recent applied successes in partial evaluation and
related areas have opened up a variety of interesting new theoretical
questions with considerable long term practical relevance. One exam-
ple is how to identify those characteristics of a computational task that
makes it particularly well suited to partial evaluation which in turn
leads to many new questions to ask in applied algorithm design, anal-
ysis, and implementation.

A special problem

Anders Bondorf was employed full time on Esprit BRA (Basic Research Ac-
tion) project Semantique I for three years, but its continuation Semantique
II is as a working group rather than as a project. In consequence Semantique
II has a much smaller budget, without funds for full-time researchers during
its planned three years.

This situation is in no way a sign of problems with the academic quality
of Semantique I (which received excellent evaluations), but rather that this
year’s Esprit BRA program suffered from bad planning and political prob-
lems. The BRA program’s final budget was around half of that which was
initially projected, with the result that many successful projects were ter-
minated, and many others were changed to working groups with no salary
funds.

Anders Bondorf’s work is essential to SBPM as he is the head architect of
the Similix partial evaluator and has published numerous articles on it. This
system has been copied by nearly two hundred researchers many places in
the world, and is under continuous development. Its recognition by other
places has been discussed in the “Survey” section, and is also evident from
the bibliographical items by himself, Jørgensen, Mossin, and Palsberg at
Aarhus, all centered around Similix.

We argued vigorously for some salary to aid transition from Semantique I
to Semantique II. The result is that Semantique II will pay 6 months salary,
specifically targeted for Anders Bondorf. I have been told that we were the
only working group to receive any salary money at all. In addition Bondorf

31



will receive 6 months “vikar” salary from DIKU, so he will not need to leave
our research group in the immediate future, but the situation after next
Spring is still unsettled.

In conclusion, Anders Bondorf’s work is quite important for the whole DART
project, and he has been one of the group’s most productive members with
respect to constructing pra ti ally useful (and used) programs and to trans-
ferring theoretical ideas into computational practice. However, continuation
of this work in 1993 and later will require additional funds.

3.6 OST (DART 6.6): Operational Semantics, Types
and Language Implementation (by M. Tofte)

The project proposal defined three areas of activities: the semantics of higher-
order functors in ML, type inference and storage allocation, and the ML Kit.
Progress in these areas has been as follows:

Higher-order Functors:

We have defined the static semantics of higher-order functors in a skeletal
language and proved a central theorem which says that so-called principal
signatures exist. An algorithm which finds principal signatures has been
developed; it has been implemented in the ML Kit by Lars Birkedal. The
theoretical results were presented at POPL ’92 and a full journal version of
this paper has been submitted for publication. There has been close collab-
oration with David MacQueen of Bell Labs, New Jersey (two visits by him
to Denmark, one by Mads Tofte to Bell Labs). Bell Labs has produced the
leading ML implementation, Standard ML of New Jersey; the next version
of New Jersey ML will have higher-order functors built in. Since ML of New
Jersey is the most widely used ML implementation, our work has therefore
been put into practice and will become widely available. However, we are
not entirely satisfied with the semantic theory of functor application in the
presence of higher-order functors (this was not addressed in the above men-
tioned papers) and we feel that further consolidation in the theoretical work
is desirable.

Type Inferference and Storage Allocation:

Within the past six months, we have had an exciting breakthrough in this

32



area. We have found that it is indeed possible to use a refined notion of
type inference, we call it region inference, to partition the values a program
produces into regions, which can be allocated and de-allocated in a stack-
like manner. The exciting thing is that the scheme works for languages with
higher-order functions despite the fact that it is widely believed that stanc
allocation is incompatible with higher-order functions. So far we have con-
centrated on developing a mathematically robust theory of region inference.
We have proved that region inference is sound and we have an algorithm
which infers regions, that are “best possible”, in a sense which can be made
precise. The practical implications of this work are very important, we feel,
as it appears that it will be possible to implement functional languages with-
out garbage collection and with much more modest memory requirements
than has been the case till now. However, there still remains much work in
extending the theoretical work to cover a full language (which will be Stan-
dard ML) and trying out the scheme in a real implementation (which will
probably be the ML Kit). This work has been done in collaboration with
Jean-Pierre Talpin, Ecole des Mines, Paris.

The ML Kit:

During the past year the Kit has been developed further to an extent that it
now implements virtually all of Standard ML. Also, we have written about 60
pages of documentation; the entire documentation is intended to be no more
than 100 pages long. A student, Lars Birkedal, has been employed as a half-
time programmer, funded by DART; his job is to fill out the remaining holes
in the Kit code and to help with the documentation effort. This work has
been done in collaboration with Nick Rothwell of Laboratory for Foundations
of Computer Science, University of Edinburgh.

4 Reports on meetings

In this section we report on meetings since the previous workshop. Most
importantly this comprises an “Open Day” aimed at Danish Industry and
other researchers outside the project. Additionally, we have held the first of
a series of small meetings, each devoted to a single topic.

33



4.1 Open Day (by N.D. Jones)

On February 127 1992 an open day was held at DIKU in Copenhagen, concen-
trating on two of DART’s main directions: partial evaluation, and modelling
of parallel systems. The day’s program was as follows:

1. Partial Evaluation. A method for automatic program generation
with applications to, among others, compiling and compiler generation
from a formal definition of a programming language.

0915-1000 Neil D. Jones, DIKU: Overview lecture.

1015-1100 T. Mogensen: Applications of partial evaluation outside
programming languages; and A. Bondorf, DIKU: a description of
Similix, a locally developed partial evaluator.

1115-1200 A. Bondorf, J. Jørgensen, DIKU: Demonstrations of the
Similix system.

2. 1200-1315 Lunch.

3. Reactive Systems. Languages and models for describing reactive sys-
tems, including process control systems, man-machine interface drivers,
and communication protocols. Focus on languages for describing tightly
coupled (ESTEREL) and loosely coupled parallel systems (CCS, OC-
CAM, and LOTOS), together with (graphic) programming, analysis
and verification environments.

1315-1400 K. G. Larsen, IESD: Overview lecture.

1415-1500 U. Engberg, DAIMI: The Esterel system.

1515-1600 K. G. Larsen, U. Engberg: Demonstrations of the Esterel
system.

4. 1600-1630 Discussion of technical questions, and an evaluation of
the day’s events.

Participants included, in addition to DART members, six from industry:
three from TFL (Teletechnical Research Laboratory), Ambrasoft, PPU Soft-
ware, and IFAD (Institute for Applied Computer Science); the leader of

34



Denmark’s newly established Basic Research Fund; and four University par-
ticipants from outside DART (Aalborg, Aarhus, and Denmark’s Technical
University).

Many questions were asked and interest was shown in the demonstrationse
The final discussion session was lively and extended well over its scheduled
time. A few comments that were made:

Partial evaluation

• For industrial usage a partial evaluator must be able to handle a widely
used language such as C or Pascal.

• The programs encountered in practice are large, but not structurally
or algorithmically complex. Their simplicity could make them suitable
for automatic optimization.

• The classical Burstall-Darlington program transformation technology
is not practically useful, since it does not scale up to large programs.
Partial evaluation appears to be better for scaling up.

• Major speedups are not essential — even a 20% speedup would be of
great help, if it could be accomplished without too much work on the
part of the program developer.

Interactive systems

• At least two participants said that scaling up is also a major problem
in the development of interactive systems.

• One reply: compositional specifications allow the development of one
component at a time, and so make it possible to decompose large spec-
ifications into small and more manageable subproblems.

• Another was that the HOL (Higher Order Logic) system has already
given good results in developing some large interactive systems.

35



• The need for a module language, providing a way to specify the way
one uses communications channels, was identified.

General

• It was mentioned that for really large projects, there is no reason not
to write special-purpose compilers or other tools.

• It is often a problem to persuade customers to use specialized tools.

4.2 DART-meeting on Type Inference (by H.R. Niel-
son)

On May 25’th 1992 an informal meeting on Type Inference was held in
Aarhus. It was organized by the DART groups SAT and OST but was at-
tended also by members of other DART groups and by Ph.D.- and advanced
MSc-students.

The meeting was arranged in order to have an informal setting in which
to discuss our current work. Due to the great interest in type inference we
ended up having quite a number of talks but, luckily, with a lot of interesting
discussions.

The talks were grouped under three headings as can be seen from the program
listed below:

Non-standard type inference

Hanne Riis Nielson: Program analyses in logical form
Fritz Henglein: Strictness analysis
Kirsten Lockner Solberg: Binding time analysis

Extensions of functional languages

Mads Tofte: Polymorphic references
Mads Tofte: Higher-order functors
Flemming Nielson: Higher-order processes

Algorithmic aspects of type inference

36



Michael Schwartzbach: Type inference for partial types
Fritz Henglein: On the complexity of closure analysis

The talks on Non-standard type inference discussed the logical (or “type
theoretic”) formulation of traditional program analyses such as strictness
analysis and binding time analysis. Special emphasis was given to the clas-
sification of such specifications and their equivalence to alternative formula-
tions (using abstract interpretation or other logical formulations). The talks
on Extensions of functional languages concentrated on the traditional typing
problem. The problem has recently found a satisfactory solution for higher-
order functors (in the sense of Standard ML). A number of approaches have
been suggested to typing polymorphic references and the discussions revealed
a similarity between the problems studied here and those arising when as-
signing types to higher-order processes. Finally, the talks on Algorithmic
aspects of type inference presented a polynomial time algorithm for solving
constraints obtained from partial typing and the application of similar tech-
niques to closure analysis was surveyed.

5 Publications from DART (from March 1991

to July 1992)

Below we list the publications from the project. The overall criterion has
been that publication took place in the period from March 1991 to July
1992, but we have marked with an asterix those entries where almost all
scientific work was performed before March 1991.

References

[1] L. Aceto and A. Ingólfsdóttir, “A theory of testing for ACP,” in Pro-
ceedings of CONCUR’91, Lecture Notes in Computer Science, 1991.

[2] S. Agerholm, “Mechanizing program verification in HOL,” in Proceed-
ings of the International HOL users Meeting, Davis, California, 1991.
Also available as Internal Report DAIMI IR-111, Computer Science De-
partment, Aarhus University, 1992.

37



[3] T. Amtoft, “Properties of unfolding-based meta-level systems,” in Pro-
ceedings of the Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, SIGPLAN NOTICES vol. 26, no. 9, pp. 243–254,
1991.

[4] T. Amtoft and J. Larsson Träff, “Partial memorization for obtaining
time behavior of a 2dpda,” Theoretical Computer Science, vol. 98, pp.
347–356, 1992.

[5] H. R. Andersen, “Local computation of alternating fixed-points,” Tech.
Rep. 260, Computer Laboratory, University of Cambridge, 1992.

[6] H. R. Andersen, “Local computation of simulataneous fixed-points.”
Submitted for publication, 1992.

[7] H. R. Andersen, “Model checking and boolean graphs,” in Proceedings
of ESOP’92, vol. 582 of Lecture Notes in Computer Sciences, Springer-
Verlag, 1992.

[8] H. R. Andersen and G, Winskel, “Compositional checking of satisfac-
tion,” in Proceedings of CAV, Aalborg, vol. 575 of Lecture Notes in Com-
puter Science, Springer-Verlag, 1991. To appear in Formal Methods in
Systems Design.

[9] H. R. Anderson and G. Winskel, “Checking of satisfaction,” 1992. Se-
lected for a CAV Special Issue of Formal Methods in System Design.

[10] L. Andersen, “Self-applicable C program specialization,” in Proceeding
of PEPM’92: Partial Evaluation and Semantics-Based Program Ma-
nipulation, pp. 54–61, 1992. Available as Technical Report from Yale
University.

[11] L. Andersen and C. Gomard, “Speedup analysis in partial evaluation:
Preliminary results,” in Proc. of Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM’92), pp. 1–7, 1992.
Available as Technical Report from Yale University.

[12] L. O. Andersen, “C program specialization,” Master’s thesis, DIKU,
University of Copenhagen, Denmark, 1991. Student Project 91-12-17,
128 pages.

38



[13] L. O. Andersen, “Partial evaluation of C and automatic compiler gen-
eration (extended abstract),” in Proc. of International Workshop on
Compiler Construction, 1992. (to appear).

[14] A. Bondorf, “Compiling laziness by partial evaluation,” in Functional
Programming, Glasgow 1990. Workshops in Computing (S. L. P. Jones,
G. Hutton, and C. K. Holst, eds.), pp. 9–22, Springer-Verlag, 1991.∗

[15] A. Bondorf, “Similix manual, system version 3.0,” Tech. Rep. 91/9,
DIKU, University of Copenhagen, Denmark, 1991.

[16] A. Bondorf, “Similix manual, system version 4.0.” Included in Similix
distribution, 1991.

[17] A. Bondorf, “Improving binding times without explicit CPS-
conversion,” in 1992 ACM Conference on Lisp and Functional Program-
ming. San Francisco, California, pp. 1–10, 1992.

[18] A. Børjesson, “Distinguishing properties and model cheching in TAV.”
In preparation, 1992.

[19] A. Børjesson and K. G. Larsen, “Equation solving using TAV.” In prepa-
ration 1992.

[20] A. Børjesson K. G. Larsen and A. Skou, “Generality in design and com-
positional verification using TAV,” In Proceedings of FORTE’92, 1992.
To appear.

[21] J. A. Camilleri and G. Winskel, “CCS with priority choice”, In Proceed-
ings of LICS’91, 1991. To appear in Information and Computation.

[22] K. Cerans, “Decidability of bisimulation equivalences for parallel timer
processes”, in Proceedings of CAV’92, Lecture Notes in Computer Sci-
ence, 1992.

[23] S. Christensen, H. Hüttel, and C. Stirling, “Bisimulation equivalence
is decidable for all context-free processes,” Tech. Rep. ECS-LFCS-92,
Department of Computer Sciences University of Edinburgh, 1992. To
appear at CONCUR ’92.

39



[24] H. Dybkjær, Category Theory, Types, and Programming Languages.
PhD thesis, DIKU University of Copenhagen, Denmark, 1991.
vi+146pp. Available as DIKU report 91/11.∗

[25] H. Dybkjær and A. Melton, “Comparing Hagino’s categorical program-
ming language and typed lambda calculi,” Theoretical Computer Sci-
ence, 1992. Accepted for publication by Theoretical Computer Science.∗

[26] U. Engberg, P. Grønning, and L. Lamport, “Mechanical verification of
concurrent systems with TLA.” To appear in the Proceedings of the
Fourth International Workshop on Computer-Aided Verification, 1992.

[27] A. Gammelgaard, “Constructing simulations chunk by chunk,” Internal
Report DAIMI IR-106, Computer Science Department, Aarhus Univer-
sity, 1991.∗

[28] A. Gammelgaard, “Reuse of invariants in proofs of implementation,”
DAIMI PB-360, Computer Science Department, Aarhus University,
1991.∗

[29] A. Gammelgaard, H. H. Løvengreen, C. Ø. Rump, and J. F. Søgaard-
Andersen, “Base system verification.” Submitted for publication, 1992.∗

[30] K. Glindtvad and H. R. Nielson, “Correctness preserving transforma-
tions on a multipass OCCAM compiler,” DAIMI PB-368, Computer
Science Department, Aarhus University, 1991.

[31] J. C. Godskesen and K. G. Larsen, “Real time calculi and expansion
theorems,” in Proceedings of FST-TCS’92, Lecture Notes in Computer
Science, 1992. To appear.

[32] C. K. Gomard, Program Analysis Matters. PhD thesis, DIKU, University
of Copenhagen, Denmark, 1991. DIKU report 91/17.

[33] C. K. Gomard, “A self-applicable partial evaluator for the lambda calcu-
lus: Correctness and pragmatics,” TOPLAS, vol. 14, no. 2, pp. 147–172,
1992.∗

[34] C. K. Gomard and N. D. Jones, “A partial evaluator for the untyped
lambda calculus,” Journal of Functional Programming, vol. 1, pp. 21–69,
1991.∗

40



[35] C. K. Gomard and P, Sestoft, “Evaluation order analysis for lazy data
structures,” in Functiunal Programming, Glasgow Workshop 1991 (Hel-
dal, Holst, and Wadler, eds.), pp. 112–127, Springer-Verlag, 1991.

[36] C. K. Gomard and P. Sestoft, “Globalization and live variables,” in
Proceedings of the Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, SIGPLAN NOTICES vol. 26, no. 9, pp.
166–177, ACM Press, 1991.

[37] C. K. Gomard and P. Sestoft, “Path analysis for lazy data structures,”
in Fourth International Symposium on Programming Language Imple-
mentation and Logic Programming, PLILP 92, Springer-Verlag, 1992.
(to appear, ultimo August).

[38] J. F. Groote and H. Hüttel, “Undecidable equivalences for basic pro-
cess algebra,” Tech. Rep. ECS-LFCS-91-169, Department of Computer
Science, University of Edinburgh, 1991.

[39] K. Grue, “Map theory,” Theoretical Computer Science, vol. 102, pp.
1–133, 1991.

[40] D. Gurr and C. Brown, “Relations and non-commutative linear logic,”
DAIMI PB-372, Computer Science Department, Aarhus University,
1991.

[41] D. Gurr and C. Brown, “A representation therorem for quantales.” To
appear in Jounal of Pure & Applied Algebra, 1992.

[42] J. Hannan, “Making abstract machines less abstract,” in Proceedings
of the 5th ACM Conference on Functional Programming and Computer
Architecture (J. Hughes, ed.), vol. 523 of Lecture Notes in Computer
Science, pp. 618–635, Springer-Verlag, 1991.

[43] J. Hannan, “Staging transformations for abstract machines,” in Pro-
ceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics Based Program Manipulation (P. Hudak and N. Jones, eds.),
pp. 130–141, ACM Press, 1991.

[44] J. Hannan, “Implementing λ-calculus reduction strategies in extended
logic programming languages,” in Proceedings of the Second Workshop

41



on Extensions to Logic Programming (L. Hallnäs, ed.), Lecture Notes in
Computer Science, Springer-Verlag, 1992. To appear.

[45] J. Hannan and D. Miller, “From operational semantics to abstract
machines,” Mathematical Structures in Computer Science, 1992. To
appear.∗

[46] J. Hannan and F. Pfenning, “Compiler verification in LF,” in Proceed-
ings of the Seventh Annual IEEE Symposium on Logic in Computer
Science (A. Scedrov, ed.), IEEE Computer Society Press, 1992.

[47] F. Henglein, “Efficient type inference for higher-order binding-time anal-
ysis,” in FPCA (J. Hughes, ed.), vol. 523 of Lecture Notes in Computer
Science, pp. 448–472, 5th ACM Conference, Cambridge, MA, USA,
Springer-Verlag, 1991.

[48] F. Henglein, “Type inference with polymorphic recursion,” ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 1991.∗

[49] F. Henglein, “Dynamic typing,” in Proc. European Symp. on Program-
ming (ESOP), Rennes, France (B. Krieg-Brückner, ed.), vol. 582 of
Lecture Notes in Computer Science, pp. 233–253, Springer-Verlag, 1992.

[50] F. Henglein, “Global tagging optimization by type inference,” in Proc.
1992 ACM Conf. on LISP and Functional Programming (LFP), San
Francisco, California, ACM Press, 1992.

[51] U. Holmer, K. G. Larsen, and W. Yi, “Decidability of bisimulation
equivalence between regular timed processes,” in Proceedings of CAV’91,
vol. 575 of Lecture Notes in Computer Science, 1992.

[52] C. K. Holst and C. K. Gomard, “Partial evaluation is fuller laziness,” in
Proceedings of Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, SIGPLAN NOTICES vol. 26, no. 9, pp. 223–233,
ACM Press, 1991.

[53] P. Hudak and N. Jones, eds., Proceedings of the Symposium on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM), New
Haven, Connecticut. Sponsored by the ACM Special Interest Group SIG-
PLAN, in cooperation with IFIP, ACM Press, 1991.

42



[54] H. Hüttel, “Decidability, behavioural equivalences and infinite transition
graphs,” ECS-LFCS-91-191, Department of Computer Science, Univer-
sity of Edinburgh, 1992.

[55] H. Hüttel, “Silence is golden: Branching bisimilarity is decidable for
context-free processes,” in Proceedings of CAV91, vol. 575 of Lecture
Notes in Computer Science, Springer-Verlag, 1992. The full version is
available as Tech. Rep. ECS-LFCS-91-173, Department of Computer
Science, University of Edinburgh.

[56] H. Hüttel and C. Stirling, “Actions speak louder than words: Proving
bisimilarity for context-free processes,” in Proceedings of 6th Annual
Symposium on Logic in Computer Science (LICS 91), pp. 376–386, IEEE
Computer Society Press, 1991.

[57] A. Ingolfsdottir and B. Steffen, “Characteristic formulae,” Information
and Computation, 1992. To appear.

[58] A. Ingolfsdottir and B. Thornsen, “Semantics models for CCS with val-
ues,” In Proceedings of the Workshop on Concurrency, B̊astad, Sweden,
1991.

[59] C. T. Jensen, “The concurrency workbench with priorities,” in Pro-
ceedings of CAV’91, Aalborg, Denmark, vol. 575 of Lecture Notes in
Computer Science, Springer-Verlag, 1992.

[60] N. D. Jones, “Computer implementation and applications of Kleene’s
s-m-n and recursive theorems,” in Lecture Notes in Mathematics, Logic
From Computer Science (Y. Moschovakis, ed.), pp. 243–263, Springer-
Verlag, 1991.∗

[61] N. D. Jones, “Efficient algebraic operations on programs,” in Prelimi-
nary Proceedings, University of Iowa (T. Rus, ed.), 1991. Accepted for
publication by Theoretical Computer Science, 1992.

[62] N. D. Jones, ed., Selected Papers of ESOP’90. Science of Computer
Programming. Volume 17, numbers 1-3, pages 1-271, Elsevier, 1991.∗

[63] N. D. Jones, “Static semantics, types and binding time analysis,” in Im-
ages of Programming (D. Bjørner and V. Kotov, eds.), North-Holland,

43



1991. Further appeared in Theoretical Computer Science 90 (1991),
pages 95–118.

[64] B. Jonsson and K. G. Larsen, “On the complexity of equation solving
in process algebra,” in Proceedings of TAPSOFT’91, vol. 493 of Lecture
Notes in Computer Science, Springer-Verlag, 1991.

[65] B. Jonsson and K. G. Larsen, “Specification and refinement of proba-
bilistic processes,” in Proceedings of LICS’91, 1991.

[66] J. Jørgensen, “Compiler generation by partial evaluation,” Master’s the-
sis, DIKU, University of Copenhagen, Denmark, 1991.

[67] J. Jørgensen, “Generating a compiler for a lazy language by partial eval-
uation,” in Nineteenth Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. Albuquerque, New Mexico, pp.
258–268, 1992.

[68] D. Kozen, J. Palsberg, and M. I. Schwartzbach, “Efficient inference of
partial types,” in Proc. FOCS’92, 33rd IEEE Symposium on Founda-
tions of Computer Science, Pittsburgh, Pennsylvania, 1992. Also avail-
able as Tech. Rep. DAIMI PB-394, Computer Science Department,
Aarhus University.

[69] D. Kozen, J. Palsberg, and M. I. Schwartzbach, “Efficient recursive sub-
typing,” DAIMI PB-405, Computer Science Department, Aarhus Uni-
versity, 1992.

[70] P. Krishnan, “Distributed CCS,” in Proc. CONCUR-91, vol. 527 of Lec-
ture Notes in Computer Science, pp. 393–407, Springer-Verlag, 1991.

[71] P. Krishnan, “A model for real-time systems,” in Proc. MFCS’91, vol.
520 of Lecture Notes in Computer Science, Springer-Verlag, 1991.

[72] P. Krishnan, “Real-time action,” in Proc. Euromicro Workshop on Real-
Time Systems, 1991.

[73] P. Krishnan, “A semantics for multiprocessor systems,” in ESOP’92,
Proc. European Symposium on Programming, Rennes, vol. 582 of Lecture
Notes in Computer Science, Springer-Verlag, 1992.

44



[74] P. Krishnan and P. D. Mosses, “Specifying asynchronous transfer of
control,” in RTFT’92, Proc. Symp. on Formal Techniques in Real-Time
and Fault-Tolerant Systems, Delft, vol. 571 of Lecture Notes in Computer
Science, Springer-Verlag, 1992.

[75] K. G. Larsen, “Proof systems for satisfiability in Hennessy-Milner logic
with recursion,” Theoretical Computer Science, vol. 72, 1990.

[76] K. G. Larsen, “The expressive power of implicit specifications,” in Pro-
ceedings of ICALP’91, vol. 510 of Lecture Notes in Computer Science,
Springer-Verlag, 1991.

[77] K. G. Larsen, “Efficient local correctness checking,” In Proceedings of
CAV’92. To appear in Lecture Notes in Computer Science., 1992.

[78] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,”
Information and Computation, vol. 94, no. 1, 1991.

[79] K. G. Larsen and A. Skou, “Compositional verification of probabilistic
processes,” In Proceedings of CONCUR’92. To appear in Lecture Notes
in Computer Science., 1992.

[80] K. G. Larsen and L. Xinxin, “Compositionality through an operational
semantics of contexts,” Journal of Logic and Computation, vol. 1, no. 6,
pp. 761–795, 1991.∗

[81] K. S. Larsen, E. M. Schmidt, and M. I. Schwartzbach, “A new formalism
for relational algebra,” Information Processing Letters, vol. 41, no. 3,
1992.

[82] K. Marriot, H. Søndergaard, and N. Jones, “Denotational abstract in-
trepretation of logic programs,” ACM Transactions on Programming
Languages and Systems, 1991. To appear.

[83] T. Æ. Mogensen, “Efficient self-interpretation in lambda calculus,” Jour-
nal of Functional Programming, 1992. To appear.

[84] T. Æ. Mogensen, “Self-applicable partial evaluation for pure lambda
calculus,” in ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-based Program Manipulation, 1992.

45



[85] T. Æ. Mogensen and A. Bondorf, “Logimix: a self-applicable partial
evaluator for Prolog,” in LOPSTR 92, 1992.

[86] P. D. Mosses, “An introduction to action semantics,” DAIMI PB-370,
Computer Science Department, Aarhus University, 1991. Accepted for
the Proceedings of the 1991 Marktoberdorf Summer School, Springer-
Verlag (Series F).

[87] P. D. Mosses, “A practical introduction to denotational semantics,” in
Formal Description of Programming Concepts (E. J. Neuhold and M.
Paul, eds.), IFIP State-of-the-Art Report, pp. 1–49, Springer-Verlag,
1991.

[88] P. D. Mosses, Action Semantics. No. 26 in Cambridge Tracts in Theo-
retical Computer Science, Cambridge University Press, 1992.

[89] C. Mossin, “Similix binding time debugger manual, system version 4.0.”
Included in Similix distribution, 1991.

[90] M. A. Musicante, “The Sun RPC language semantics,” in Proc. 18th
Latin-American Conference for Informatics, 1992.

[91] A. Mycroft and M. Rosendahl, “Minimal function graphs are not in-
strumented,” in WSA’92 Bordeaux 1992, Bigre, Irisa, Rennes, France,
1992.

[92] F. Nielson and H. R. Nielson, “Forced transformations of OCCAM pro-
grams,” Information and Software Technology, vol. 34, no. 2, 1992.∗

[93] F. Nielson and H. R. Nielson, “The tensor product in Wadler’s analysis of
lists,” in Proceedings of ESOP’92, vol. 582 of Lecture Notes in Computer
Science, Springer-Verlag, 1992.

[94] F. Nielson and H. R. Nielson, Two-Level Functional Languages, vol.
34 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1992.

[95] F. Nielson, (ed.), “Design, analysis and reasoning about tools: Abstracts
from the first workshop,” DAIMI PB-367, Computer Science Depart-
ment, Aarhus University, 1991.

46



[96] H. R. Nielson and F. Nielson, “Using transformations in the implemen-
tation of higher-order functions,” Journal of Functional Programming,
vol. 1, no. 4, pp. 459–494, 1991.∗

[97] H. R. Nielson and F. Nielson, “Bounded fixed point iteration,” in Pro-
ceedings of POPL’92, ACM Press, 1992. The full version appeared as
DAIMI PB-359, Aarhus University, 1991.

[98] H. R. Nielson and F. Nielson, “Finiteness conditions for fixed point
iteration,” in Proceedings of Lisp and Functional Programming, 1992.
The full version appeared as DAIMI PB-384, Aarhus University.

[99] H. R. Nielson and F. Nielson, Semantics with Applications: A Formal
Introduction. Wiley, 1992.

[100] F. Nielson (ed.), “Design, analysis and reasoning about tools: Ab-
stracts from the second workshop,” DAIMI PB-417, Computer Science
Department, Aarhus University, 1992.

[101] N. Oxhøj, J. Palsberg, and M. I. Schwartzbach, “Making type inference
practical,” in Proc. ECOOP ’92, Sixth European Conference on Object-
Oriented Programming, Utrecht, The Netherlands, vol. 615 of Lecture
Notes in Computer Science, pp. 329–349, Springer-Verlag, 1992.

[102] J. Palsberg, “An automatically generated and provably correct com-
piler for a subset of Ada,” in ICCL’92, Proc. Fourth IEEE Int. Conf.
on Computer Languages, Oakland, pp. 117–126, IEEE, 1992.

[103] J. Palsberg, Provably Correct Compiler Generation. PhD thesis,
Aarhus University, 1992.

[104] J. Palsberg, “A provably correct compiler generator,” in ESOP’92,
Proc. European Symposium on Programming, Rennes, vol. 582 of Lecture
Notes in Computer Science, pp. 418–434, Springer-Verlag, 1992.

[105] J . Palsberg and M. I. Schwartzbach, “Object-oriented type infer-
ence,” in Proc. OOPSLA’91, ACM SIGPLAN Sixth Annual Conference
on Object-Oriented Programming Systems, Languages and Applications,
Phoenix, Arizona, pp. 146–161, 1991.

47



[106] J. Palsberg and M. I. Schwartzbach, “Static typing for object-oriented
programming,” DAIMI PB-355, Computer Science Department, Aarhus
University, 1991.

[107] J. Palsberg and M. I. Schwartzbach, “Types, inheritance and assign-
ments,” 1991. Workshop held at ECOOP’91 in Geneva, Switzerland,
July 1991. The collection of position papers is available from Computer
Science Department, Aarhus University as PB-357.

[108] J. Palsberg and M. I. Schwartzbach, “What is type-safe code reuse?,” in
Proc. ECOOP ’91, Fifth European Conference on Object-Oriented Pro-
gramming, Geneva, Switzerland, vol. 512 of Lecture Notes in Computer
Science, pp. 325–341, Springer-Verlag, 1991.

[109] J. Palsberg and M. I. Schwartzbach, “Safety analysis versus type infer-
ence,” DAIMI PB-389, Computer Science Department, Aarhus Univer-
sity, 1992.

[110] J. Palsberg and M. I. Schwartzbach, “Safety analysis versus type in-
ference for partial types,” Information Processing Letters, vol. 43, pp.
175–180, 1992. Also available as Tech. Rep. DAIMI PB-404, Computer
Science Department, Aarhus University.

[111] J. Palsberg and M. I. Schwartzbach, “Three discussions on object-
oriented typing,” ACM SIGPLAN OOPS Messenger, vol. 3, no. 2, pp.
31–38, 1992.

[112] K. H. Rose, “Graph-based operational semantics for lazy functional
languages,” in Sema Graph ’91 Symposium on the Semantics and Prag-
matics of Generalized Graph Rewriting (M. J. Plasmeijer and M. R.
Sleep, eds.), (Nijmegen, Holland), pp. 203–225, Katholieke Universiteit
Nijmegen, 1991. (available as Nijmegen Tech. Report 91-25).∗

[113] K. H. Rose, “Explicit recursive binding,” in CTRS ’92—3rd Interna-
tional Workshop on Conditional Term Rewriting Systems (M. Rusinow-
itch and J.-L. Rémy, eds.), Lecture Notes in Computer Science, (Pont-
a-Mousson, France), pp. 28–32, Springer-Verlag, 1992. To appear.

[114] K. H. Rose, “Gos-graph operational semantics,” M.Sc.-thesis 92-1-9,
DIKU, University of Copenhagen, Denmark, 1992. (56pp).

48



[115] M. Rosendahl, “Strictness analysis for attribute grammars,” in
PLILP’92, Lecture Notes in Computer Science, Springer-Verlag, 1992.

[116] M. I. Schwartzbach, “Type inference with inequalities,” in Proc. TAP-
SOFT’91, vol. 493 of Lecture Notes in Computer Science, Springer-
Verlag, 1991.

[117] P. Sestoft, Analysis and efficient implementation of functional pro-
grams. PhD thesis, DIKU University of Copenhagen, Denmark, 1991.

[118] H. Søndergaard and P. Sestoft, “Non-determinism in functional lan-
guages,” Computer Journal, 1990 ? Accepted - Melbourne Technical
Report 88/18.∗

[119] B. B. Sørensen and C. Clausen, “Adequacy results for a lazy functional
language with recursive and polymorhic types,” Internal Report DAIMI
IR-113, Computer Science Department, Aarhus University, 1992. Sub-
mitted to Theoretical Computer Science.

[120] M. Tofte, “Principal signatures for higher-order program modules,”
in The 19th Annual ACM Symposium on Principles of Programming
Languages, Albuquerque, New Mexico, pp. 189–199, 1992.

[121] G. Winskel, “On 1ocal model checking the modal λ-calculus,” 1991. In
an ICALP’89, special issue of Theoretical Computer Science.

[122] G. Winskel, ed., CLICS Workshop-Parts I and II. Proceedings of the
Workshop on Categorical Logic in Computer Science, 1992. Also avail-
able as Tech. Rep. DAIMI PB-397 I and II, Computer Science Departe-
ment, Aarhus University.

[123] G. Winskel, The formal semantics of programming languages. To be
published by MIT Press, 1992.

[124] G. Winskel and J. Camilleri, “CCS with a priority choice,” in Proceed-
ings of LICS, 1991.

[125] G. Winskel and K. Larsen, “Using informations systems to solve recur-
sive domain equations,” Information and Computation, vol. 91, no. 2,
1991.∗

49



[126] G. Winskel and M. Nielsen, “Models for concurrency.” To appear as
a chapter in the Handbook of Logic and the Foundations of Computer
Science, Oxford University Press.

[127] L. Xinxin, Specification and Decomposition in Concurrency. PhD the-
sis, Department of Mathematics and Computer Science, Aalborg Uni-
versity, Denmark., 1992.

[128] W. Yi and K. G. Larsen, “Testing probabilistic and nondeterministic
processes,” Proceedings of PSTV’92, 1992.

50


