
Unfold/fold transformations preserving
termination properties

Torben Amtoft
Computer Science Department

Aarhus University
Ny Munkegade, building 540
DK-8000 Århus C, Denmark

nternet: tamtoft@daimi.aau.dk

August 19, 1992

Abstract

The unfold/fold framework constitutes the spine of many program
transformation strategies. However, by unrestricted use of folding the
target program may terminate less often than the source program.
Several authors have investigated the problem of setting up conditions
of syntactic nature, i.e. not based on some well-founded ordering of the
arguments, which guarantee preservation of termination properties.
These conditions are typically formulated in a way which makes it
hard to grasp the basic intuition why they work, and in a way which
makes it hard to give elegant proofs of correctness. The aim of this
paper will be to give a more unified treatment by setting up a model
which enables us to reason about termination preservation in a cleaner
and more algebraic fashion. The model resembles a logic language and
is parametrized with respect to evaluation order, but it should not be
too difficult to transfer the ideas to other languages.

A summary of this work is reported in [Amt92].

1



1 Introduction

The unfold/fold framework for program transformation dates bank to (at
least) [BD77] and has since been the subject of much interest, primarily
aimed at making the process of finding “eureka”-definitions more systematic,
e.g. [Wad90], [NN90], [PP91b]. Also supercompilation [Tur86] can be seen
as a variant over the concept.

A major problem with the technique is that one, due to “too much fold-
ing”, may risk that the program resulting from transformation (the target
program) loops while the original (the source program) does not. A classical
example is the following, expressed in a logic language: suppose we have a
source program containing the clauses

p(X)← q(X); q(a)← ✷

Here the query p(X) will succeed with answer substitution {X → a}. How-
ever, if one folds the first clause of the program against itself, the target
program will contain the clause

p(X)← p(X)

and now the query p(X) will loop (i.e. neither succeed nor fail).
By innocent abuse of terminology, we will say that a transformation is

partially correct iff each time the target program terminates with some result
also the source program terminates and with the same result; whereas we
will define total correctness to mean partial correctness together with the
condition that if the target program does not terminate then neither does
the source program. Whether a transformation process itself terminates is
beyond the scope of this paper, but e.g. [Wad90], [PP91b] address this
problem for certain transformation strategies.

Several ways to guarantee total correctness have been proposed in the
literature, e.g. [TS84], [KK90], [Sek91], [Kot85], [GS91], [PP91a]. They all
work by putting forward some restrictions on the types of foldings allowed.
For a more detailed description (and comparison with our appreach), see
section 3.

The purpose of this paper is to present a model for unfold/fold-transforma-
tions which enables one to express conditions which are provably sufficient
for total correctness. We want the model to include (most of) the results

2



from the literature as special cases (after the frameworks in question have
been encoded into our framework); and we want the model to have a clean
algebraic structure.

Our framework is primarily aimed at modeling logic programming - even
though the machinery differs from the one usually used when treating logic
languages, as done in e.g. [Llo84], [Søn89]. However, we believe that the
main ideas can be carried over to other types of languages as well.

The meaning of programs will be defined in terms of a transition seman-
tics (cf. [Plo81]). The reason for this is that we feel this is more appropriate
for capturing the essence of unfolding and folding: unfolding corresponds to
a transition being made in the “right” direction; folding corresponds to a
transition being made in the “wrong” direction. By using a denotational
approach, this cannot be expressed directly. We believe that the reason why
conditions for unfold/fold transformations to be termination preserving ap-
parently is a more hot topic in the logic programming community than in the
functional community is that in the former operational semantics (typically
derivation trees) has a more respectable status than in the latter.

1.1 An overview of this paper

The aim of section 2 will be to give the reader a flavor of the main features
of our model. In particular.

• in section 2.1 we introduce the concept of multilevel transition systems,
a way to model the relationship between evaluating the source program,
transforming the source program and evaluating the target program.

• in section 2.2 we introduce the concept of U-mirrors, a representation
of (the control part of) an unfold/fold transformation which facilitates
reasoning about preservation of termination properties.

• in section 2.3 we focus upon the data aspect, which is usually modeled
by means of substitutions - we will propose an alternative approach.

• in section 2.4 we discuss when it is permissible to fold against a given
clause - not wrt. total correctness, but wrt. partial correctness.

• in section 2.5 we discuss how to ensure total correctness. Various eval-
uation strategies are considered.

3



• in section 2.6 we discuss how to extend the model such that it is able
to represent the whole search tree and not only a single branch.

Section 2 will be rather informal, based on examples and intuition. All
concepts introduced will be formally defined and all theorems will be proved
in the subsequent sections. Section 3 compares with related work.

In section 4, the basic machinery is set up, e.g. concerning configurations
transitions and U-mirrors. In section 5, a multilevel transition system is de-
fined. In section 6, we state and prove various theorems concerning sufficient
conditions for total correctness. In section 7 the whole story is repeated,
transitions now representing search trees instead of single branches - here
some proofs will appeal rather heavily to intuition, but of course these may
be formalized at the expense of decreased clarity.

First, however, we give a “realistic” example of the unfold/fold technique:

Example 1.1 Consider the following source program, written in a logic
language:

f([], [])← ✷

f([N | U ], [s(N) | V ])← f(U, V )
g(X, Z)← f(X, Y ), f(Y, Z)

Operationally, f adds one to each element in a list of unary numbers. Thus g
will traverse its input list X twice. Our aim will be to make a target program
where g only traverses its input list once: first consider the configuration
g([], Z). This can be unfolded into the configuration f([], Y ), f(Y, Z). By
unfolding the first f, Y gets bound to [] and we arrive at the configuration
f([], Z). Now this f can be unfolded, binding Z to []. We are thus able to
let the target program contain the rule

g([], [])← ✷ (1)

Next consider the configuration g([N | X], Z). This can be unfolded into
f([N | X], Y ), f(Y, Z). By unfolding the first f , Y gets bound to [s(N) | Y 1]
and we get the configuration f(X, Y 1), f([s(N) | Y 1], Z). By unfolding the
second f , Z gets bound to [s(s(N)) | Z1] an we arrive at the configuration
f(X, Y 1), f(Y 1, Z1). As Y 1 is a new unbound variable, this can now be
folded back into the configuration g(X, Z1) We are thus able to let the target
program contain the rule

g([N | X], [s(s(N)) | Z1])← g(X, Z1) (2)

4



Now consider the “query” g([0, 0], Z). If the target program is used “solve”
this query, it is first rewritten into g([0], Z1) binding Z to [s(s(0)) | Z1); then
rewritten into g([], Z2) binding Z1 to [s(s(0)) | Z2) and finally rewritten into
the empty configuration, binding Z2 to []. Thus the query is solved using
three inference steps, and Z has been bound to [s(s(0)), s(s(0))].

It is easily seen that the same query, g([0, 0], Z), also can be solved with
the same binding to Z by using the source program - but then seven inference
steps are needed. ✷

2 An outline of the theory

2.1 Modeling the transformation process

The key idea is to model computation as transitions between configurations,
and to model a program as a collection of distinguished transitions to be
called rules. We have a hierarchy as follows:

1. The source program is represented as rules at level 0. That t is a rule
at level 0 is written t ∈ RU0.

2. As soon as the rules at level 0 have been given a series of other entities
will be fixed:

• the set of level 1 unfolding steps. That t is a level 1 unfolding
step from B to B′ intuitively means that B′ can be derived by
unfolding one of the atoms in B, using a rule in RU0.

• the set of level 1 folding steps. That t is a level 1 folding step
from B to B′ intuitively means that B′ can be derived from B by
performing one folding step, using a rule in RU0.

• the set of level 1 unfoldings. That t is a level 1 unfolding from B
to B′ means that B′ can be derived by from B by a sequence of
unfoldings, using rules in RU0.

• the set of level 1 foldings. That t is a level 1 folding from B to B′

means that B′ can be derived from B by a sequence of foldings,
using rules in RU0.

• the set of level 1 transitions. That t is a level 1 transition from B
to B′ means that B′ can be derived by from B by a sequence of
unfoldings and foldings, using rules in RU0.

5



Level 1 unfoldings model standard evaluation of the source program;
whereas level 1 transitions model transformation (“symbolic evalua-
tion”) of the source program.

3. Among all level 1 transitions, some are chosen to be rules at level 1 -
that t is a rule at level 1 is written t ∈ RU1. These rules represent the
target program.

4. As soon as the rules at level 1 have been given, the level 2 unfolding
steps and the level 2 unfoldings are fixed. That t is a level 2 unfolding
step (unfolding) from B to B′ means that B′ can be derived from B
by a (sequence of) unfoldings, using rules in RU1.

Level 2 unfoldings thus model (standard) evaluation of the target pro-
gram.

For inference rules determining the set of level 1 unfoldings etc, see section
5. Not surprisingly, it will hold that if t is a level 2 unfolding it also is a level
1 transition.

A key point of our approach is that “standard evaluation” (the level 1
unfoldings) is a special case of “symbolic evaluation” (the level 1 transitions)
- this greatly facilitates reasoning about the properties of the target program.
This lack of distinction between standard evaluation and symbolic evaluation
comes almost for free in a logic language, but also in the functional world
one gains from viewing the latter as a generalization of the former [DP88].
However, an important difference between standard and symbolic evaluation
is that during symbolic evaluation any atom in the goal sequence may be
unfolded, whereas during standard evaluation one for efficiency reasons often
chooses a fixed strategy, typically the strategy always to unfold the leftmost
goal - this strategy will be denoted LR.

2.2 Modeling control

A transition t from B to B′ will be represented by means of U-mirrors:
intuitively speaking, a U-mirror is a triple (f, f ′, B′′) where f is a U-forest
describing how to get from B to B′′ by means of unfoldings using level 0
rules; and f ′ is a U-forest describing how to get from B′ to B′′ by means
of unfoldings using level 0 rules. Thus, if t is a level 1 unfolding f ′ will be
trivial; and if t is a level 1 folding f will be trivial. U-mirrors will be treated
in depth in section 4.2.

6



Figure 1: Two U-mirrors

In figure 1 is depicted the U-mirrors corresponding to the level 1 rules
(1) and (2) from example 1.1. That the two leaves of the first U-mirror
are labeled “f, 1′′ is because the two occurrences of f were unfolded when
deriving the rule, in both cases using the first level 0 rule for f . That two
internal nodes in the second U-mirror are labeled “f, 2′′ is because the two
occurrences of f were unfolded when deriving the rule, in both cases using
the second level 0 rule for f .

Now suppose the target program loops on some configuration B, i.e. there
exists an infinite sequence of level 2 unfolding steps from B. As each such
unfolding step is represented by the second U-mirror in figure 1, it is easily
seen - as a folding into g is “canceled” by a subsequent unfolding of g - that
this means that from B there exists an infinite sequence of level 1 unfolding
steps, where the first step unfolds g and the remaining steps unfold f . This
informally shows the total correctness of the transformation.

Of course, it is also possible to argue for total correctness by observing
that the first argument to g gets “smaller” for each inference step (assuming
that g is called with a first argument which is fully instantiated). However,
the virtue of the abovementioned way of reasoning is that it only depends on
the syntactic structure of the transformation process.

7



2.3 Modeling data

A configuration is a sequence of goals together with some information about
which values the variables in the goals can assume. One usually represents
this information as a substitution, cf. [Llo84]. As substitutions 7are hard
to reason about from an algebraic point of view (even though e.g. [Søn89]
and [Pal89] show that certain sets of substitutions carry some structure),
in particular one has to be careful about renaming, we will represent the
information as a family of sets of ground values, to be called an information
family. For a full account of configurations and operations on these, see
section 4.1.

We will now briefly sketch how the standard framework translates into our
framework. In the following, assume that D is a universal data domain.1

As an example take the goal sequence (p(X), q(Y ), r(Z)) together with
the substitution {X → f(Y ), Z → a}. This in our framework could be
represented as the goal sequence (p, q, r) together with the D-indexed family
where the d’th element is the singleton set {(f(d), d, a)} - on the other hand,
one might also use the family consisting of one element only, namely the set
{(f(d), d, a) | d ∈ D}. The latter representation will be needed for dealing
with “variables occurring on the right hand side but not on the left hand
side”; we will elaborate on this issue in section 2.4.

We now return to example 1.1. The level 0 rule f([], [])← ✷ is represented
as a transition from B1 = ([f ], Q1) to B′

1 = ([], Q′
1), where Q1 and Q′

1 are D×
D-indexed families with Q1(d1, d2) = {(d1, d2)}, Q′

1([], []) = {()}, Q′
1(d1, d2) =

∅ if d1 �= [] or d2 �= [].
The level 0 rule f([N | U ], [s(N) | V ) ← f(U, V ) is represented as a

transition from B2 = ([f ], Q2) to B′
2 = ([f ], Q′

2) where the D × D-indexed
information families Q2 and Q′

2 are given by Q2(d1, d2) = {(d1, d2)}, Q′
2([dn |

du], [s(dn) | dv]) = {(du, dv)} and Q′
2(d1, d2) = ∅ if (d1, d2) is not of the form

above.
In the standard framework, the query f([0], Z) is solved yielding an an-

swer substitution where Z is bound to [s(0)]. Now consider how this works
in our framework. There the query f([0], Z) is represented as the configu-
ration B = ([f ], Q) where the D-indexed information family Q is given by
Q(d) = {([0], d)}. Now consider the mapping s from D to P(D × D) given

1We will impose no requirements on the structure of this set; in our examples, how-
ever, we shall assume the elements of D to be PROLOG ground terms, i.e. terms built
inductively from some set of functors (constants just being zero-arity functors).

8



by s(d) = Q(d). Then for all d it will trivially hold that

Q(d) =
⋃

(d1,d2)∈s(d)

Q2(d1, d2)

The existence of this s shows that B is an instance of B2, to be written
B = Is(B2). Then there will be a level 1 unfolding step from B to Is(B

′
2),

to be denoted B′. B′ = ([f ], Q′) where Q′ is a D-indexed family given by

Q′(d) =
⋃

(d1,d2)∈s(d)

Q′
2(d1, d2)

That is, Q′([s(0) | dv]) = {([], dv)} and Q′(d) = ∅ otherwise.
Next consider the mapping s′ from D to P(D×D) given by s′(d) = Q′(d).

Then for all d it will trivially hold that

Q′(d) =
⋃

(d1,d2)∈s′(d)

Q1(d1, d2)

This means that B′ = Is′(B1). Then there will be a level 1 unfolding step
from B′ to Is′(B

′
1), to be denotes B′′. B′′ = ([], Q′′) where Q′′ is a D-indexed

family given by

Q′′(d) =
⋃

(d1,d2)∈s′(d)

Q′
1(d1, d2)

That is, Q′′([s(0) | dv) = Q1([], dv) and Q′′(d) = ∅ otherwise, i.e. Q′′([s(0)]) =
{()} and Q′′(d) = ∅ otherwise. As Q′′(d) �= ∅ iff d = [s(0)], this corresponds
to Z being bound to [s(0)] in the standard model.

Of course, also B′ = Is′(B2). So there also is a level 1 unfolding from
B′ to Is′(B

′
2) = B′′′, where B′′′ = ([f ], Q′′′). However, it is easily seen that

Q′′′(d) = ∅ for all d - we say that B′′′ is a failure configuration. Thus the
transition from B′ to B′′′ represents a failure branch.

In our examples we will, for ease of exposition, often switch back and forth
between the standard model and our model when it is the control aspect
which has our primary interest.

2.4 Modeling folding

Let some predicate symbol G be given, and let the level 0 rules for G be of
form {ti | i ∈ I}, each ti going from B to Bi. Here B contains goal sequence

9



G and K-indexed information family Q, and each Bi contains K-indexed
information family Qi.

Given i ∈ I. Now suppose s, a mapping from K ′ to P(K), is such that

1. with Q′
i the K ′-indexed information family of Is(Bi), Q

′
i(k

′) �= ∅ for all
k ∈ K ′

2. Is(Bi′) is failure for i′ �= i

3. Bi consists of a non-empty goal sequence.

Then it will be possible to make a level 1 folding step from Is(Bi) to Is(Bi),
cf. the definition in section 5.4.

The rationales for the above requirements are as follows:

1. It must not be possible to make a folding step from a failure configu-
ration into a non-failure configuration. To see whys consider the two
program clauses:

p(a)← q(a); q(X)← q(X)

Starting with the configuration p(X), one may consider unfolding it
into q(a), then unfold it once more into q(a), and finally (erroneously!)
fold back into p(X) - thus deriving the target program p(X) ← p(X).
As two unfoldings and only one folding is made, the reasoning in sec-
tion 2.2 may tempt us to believe that this transformation preserves
termination properties. However, e.g. the goal p(b) loops at level 2
(i.e. when using the target program); while it fails when evaluated at
level 1. This is because the infinite sequence of level 2 unfolding steps
p(b) → p(b) → . . . corresponds to the sequence of level 1 unfold/fold
steps where p(b) is unfolded into failure which then is unfolded into
failure which then is folded back to p(b) etc.

To see why the folding from q(a) to p(X) is not a level 1 folding step
in our model, notice that the clause p(a) ← q(a) is represented as a
transition from B to B1, containing D-indexed information families Q
and Q1 respectively. Here Q(d) = {d} for all d ∈ D, while Q1(a) = {a}
and Q1(d) = ∅ for d �= a.

2. This in the standard framework is modeled by the requirement that
only one clause defining the predicate folded against should match: if
we have two program clauses

10



p← q; p← r

it must not be possible to fold r into p and then unfold into q - this
would destroy semantics.

3. If there is a source program clause p ← ✷, it should not be possible
to fold e.g. q into q, p. Such foldings never occur in practice, and it
is convenient to exclude them: otherwise we above could derive the
target program p ← p, and then p would loop at level 2 but as the
corresponding level 1 transition unfolds p into [] which then is folded
back into p etc, p does not loop at level 1.

When folding in a logic language, one has to be careful when folding against
a clause containing variables not occurring in the head. This is a problem to
which some incorrect solutions have been proposed in the literature (and yet
proved correct!), for a survey see [GS91].

In our framework, this problem is solved “for free”: consider e.g. the
clause from example 1.1 g(X, Z) ← f(X, Y ), f(Y, Z) which is represented
as a transition from B = ([g], {{(d1, d2)} | d1, d2 ∈ D}) to B′ = ([f, f ], Q′)
where the D × D-indexed information family Q′ is given by Q′(d1, d2) =
{(d1, d, d, d2) | d ∈ D}. Now suppose B′′ = Is(B

′) for some s, with B′′ =
([f, f ], Q′′). For any k (in the domain of s) we have

Q′′(k) =
⋃

(d1,d2)∈s(k)

Q′(d1, d2)

so if Q′′(k) contains an element of the form (d1, d, d, d2) then for all d′ ∈
D also Q′′(k) contains (d1, d

′, d′, d2). This means - switching back to the
standard framework - that if Y is instantiated in f(X, Y ), f(Y, Z) then this
configuration cannot be written on the form Is(B

′).
On the other hand, if Y is uninstantiated and a “new variable” then it

is possible to fold back into g, as done when deriving rule (2) in example
1.1. Let us do so, within our framework: we start with the configuration
B1 = ([g], Q1) where the D ×D ×D-indexed information family Q1 is given
by

Q1(d1, d2, d3) = {([d1 | d2], d3)}

By unfolding g, we get the configuration B2 = ([f, f ], Q2) where the D3-
indexed information family Q2 is given by

Q2(d1, d2, d3) = {([d1 | d2], d, d, d3) | d ∈ D}

11



Now the first f is unfolded, and we get the configuration2 B3 = ([f, f ], Q2)
where the D3-indexed information family Q3 is given by

Q3(d1, d2, d3) = {(d2, d
′, [s(d1) | d′], d3) | d′ ∈ D}

By unfolding the second f we get the configuration B4 = ([f, f ], Q4) where
the D3-indexed information family Q4 is given by

Q4(d1, d2, [s(s(d1)) | d′
3]) = {(d2, d

′, d′, d′
3) | d′ ∈ D}, Q4(d1, d2, d3) = ∅otherwise

Now define s, a mapping from D3 to P(D2), as follows:

s(d1, d2, [s(s(d1)) | d′
3]) = {(d2, d

′
3)}, s(d1, d2, d3) = ∅ otherwise

Then we have B4 = Is(B
′), as

Q4(d1, d2, d3) =
⋃

(d′1,d′2)∈s(d1,d2,d3)

Q′(d′
1, d

′
2)

So then we can fold B4 into B5 = Is(B), with B5 = ([g], Q5) where the
D3-indexed information family Q5 is given by Q5 = s, ie.

Q5(d1, d2, [s(s(d1)) | d′
3]) = {(d2, d

′
3)}, Q5(d1, d2, d3) = ∅ otherwise

The level 1 transition from B1 to B5, translated into the standard framework,
is just rule (2).

2.5 Conditions for total correctness

Consider the program

E(a)← A

E(b)← B

E(X : Y )← E(X), E(Y )

A← B, B

. . .

Starting with E(a), we can unfold this into A and further into B, B. This
can be folded bank into B, E(b) into E(b), E(b) and finally folded back into

2It will be a good exercise for the reader to check this, after having read section 5.2.

12



E(b : b), yielding a target program

E(a)← E(b : b)

As two unfolding steps and three folding steps have been made, the reasoning
technique from section 2.2 cannot be used to show total correctness of the
transformation. However, we can argue that the clause above represents
some progress in the computation process, as A is unfolded into B, B but
never folded back. This can be formalized by assigning weights (non-negative
numbers) to the arcs in the U-mirrors representing a transition, such that
the weight of an arc is a function of the predicate symbol being unfolded.3

We can now define the weight of a path in a U-mirror (f, f ′) as the sum of
the weights encountered when walking along the path, where the weights of
arcs in f ′ are negated before contributing to the summation.

Figure 2: A U-mirror with weights

By assigning arcs from E weight 0 and arcs from A weight 1, the target
program clause above is represented by the U-mirror depicted in figure 2.
We see that all paths have weights 1 - but if we had assigned E weight 2 all
paths would have weight −1.

Informally, a fair strategy sooner or later unfolds any goal. Then we have

3Actually, the weight may also depend on which rule is used and which conjunct the
arc represents.

13



Condition 2.1 Suppose it for all level 1 rules holds that all the paths in
the corresponding U-mirror have weight ≥ 1. Suppose B loops at level 2
by a fair strategy. Then B loops at level 1 by a fair strategy too. (This is
theorem 6.2.)

Thus we have found a condition for a transformation to be total correct
wrt. a fair evaluation strategy. Concerning total correctness wrt. the LR
strategy, we have

Condition 2.2 Suppose it for all level 1 rules holds that the leftmost path
in the corresponding U-mirror has weight ≥ 1. Suppose B loops at level 2
by the LR strategy. Then B loops at level 1 by the LR strategy too. (This
is theorem 6.3.)

On the other hand, if the transformation does some non-LR steps it may
happen that the domain of termination is increased. To see this, consider
the source program

p(X)← q(X), r(X); q(a)← q(a); r(b)← ✷

Starting with the configuration p(X), this can be unfolded into q(X), r(X)
and then by a non-LR unfolding into q(b), yielding the target program

p(b)← q(b)

Now p(X) terminates (and fails) at level 2 by any strategy, while p(X) loops
at level 1 by the LR strategy.

The same source program shows that it may happen that a transformation
is total correct wrt. the LR strategy but not wrt. a fair strategy: again
starting with the configuration p(X) we unfold this into q(X), r(X) and then
we unfold the leftmost atom yielding q(a), r(a). This can be folded back into
p(a), yielding the target program

p(a)← p(a)

It is easily seen that this transformation is total correct wrt. the LR strategy
- p(t) loops at level 2 (by the LR strategy) iff t can be unified with a iff p(t)
loops at level 1 by the LR strategy. This is as predicted by condition 2.2,
since it is possible to assign weights in a way (e.g. 1 to q and 0 to p) such
that the leftmost path of the U-mirror corresponding to this transformation
has weight ≥ 1.

On the other hand, p(X) loops at level 2 (by any strategy) but terminates
at level 1 by a fair strategy. Thus the transformation is not total correct wrt.

14



a fair strategy.
Having defined the weight of a U-mirror (f, f ′) as the sum of the weights

occurring in it, the weights occurring in f ′ negated, we can formulate a - less
useful - condition:

Condition 2.3 Suppose it for all level 1 rules holds that the correspond-
ing U-mirror has weight ≥ 1. Suppose B loops at level 2 by some strategy.
Then B also loops at level 1, by some strategy. (This is theorem 6.1.)

This condition is not enough to guarantee total correctness (neither wrt.
fair nor LR semantics): consider the source program p(X) ← r(X), q(X);
q(a) ← q(a); r(b) ← ✷. By unfolding p; unfolding q and finally folding into
p we get the level 1 rule p(a) ← p(a). If q is assigned weight ≥ 1, the cor-
responding U-mirror will have weight ≥ 1. Now e.g. p(a) loops at level 2
by any strategy, but fails at level 1 by a fair strategy as well as by the LR
strategy.

2.6 Modeling the full search tree

So far a transition – for ease of exposition - only represents a single branch
of the search tree, the transition system thus being non-confluent. In order
to model the full search tree, configurations have to be multisets of “old”
configurations (now to be called basic configwations). There are two reasons
for working with multisets and not with sequences (i.e. not to order the
branches), a pragmatic and a mathematical one:

• it is rather easy to implement or-parallelism [Gre87], as no communi-
cation has to occur between the branches. On the other hand, and-
parallelism [Gre87] is much harder to implement due to the need for
sharing of data, hence most implementations employ the LR strategy.

• If we use sequences, the Church-Rosser property will be lost. To see
this, consider the program

a← b; a← c; d← e; d← f ;

Now consider the goal (a, d) By first unfolding a and then unfolding
d we first get (b, d); (c, d) and then B1 = (b, e); (b, f); (c, e); (c, f). By
first unfolding d and then unfolding a we first get (a, e); (a, f) and then
B2 = (b, e); (c, e); (b, f); (c, f). In [PP91a] one wants to distinguish

15



between B1 and B2, and therefore unfolding of the leftmost atom only
is allowed (unless extra conditions are satisfied.)

A configuration is said to be in normal form if all the basic configurations
belonging to it are non-failure and with an empty goal sequence. Due to the
Church-Rosser property, it then for a (basic) configuration B makes sense
to define [[B]]1 as follows: if there exists a C in normal form and a level 1
unfolding from B to C, [[B]]1 = C. Otherwise, [[B]]1 = ⊥. In a similar vein,
one can define [[B]]2. By restricting the level 1 (2) unfoldings in question
to be LR, one can define [[B]]L1 ([[B]]L2 ). Now condition 2.1 and 2.2 can be
restated (a rule may now be represented by several U-mirrors):

Condition 2.4 Suppose that for all level 1 rules, represented by U-mirrors
m1 . . . mk, it holds for all mi that all paths in mi have weight ≥ 1. Then for
all B, [[B]]2 = [[B]]1.

Condition 2.5 Suppose that for all level 1 rules, represented by U-mirrors
m1 . . . mk, it holds for all mi that the leftmost path in mi has weight ≥ 1.
Then for all B, [[B]]2 ≥ [[B]]1 (notice that the domain of termination may be
increased, as shown in section 2.5).

For a more detailed treatment and for proofs, see section 7.
In one way, the expressive power is enhanced by working with the full

search tree: we can fold a configuration containing several basic configu-
rations back into a single basic configuration - resembling the process of
converting a NFA into a DFA. As an example of this, consider the program

ab([])← ✷; ab([a | X])← ab(X); ab([b | X])← ab(X)

bc([])← ✷; bc([b | X])← bc(X); bc([c | X])← bc(X)

abc(X)← ab(X); abc(X)← bc(X)

Now consider the configuration abc([]). This is unfolded into ab([]); bc([])
which by two unfoldings yield ✷; ✷. The configuration abc([a | X]) is un-
folded into ab([a | X)]; bc([a | X]) which by two unfoldings yield ab(X) (as
the second basic configuration is unfolded into failure). In a similar vein, the
configuration abc([c | X]) is unfolded into bc(X).

16



The interesting case is where we start with the configuration abc([b | X]).
Then we unfold into ab([b | X]); bc([b | X]), two more unfoldings yield
ab(X); bc(X) and now this can be folded back into abc(X). We have thus
derived five new rules for abc:

abc([])← ✷; abc([])← ✷;

abc([a | X])← ab(X); abc([c | X])← bc(X)

abc([b | X])← abc(X);

To the latter rule correspond two U-mirrors, depicted in figure 3.

Figure 3: The two U-mirrors for abc([b | X])← abc(X)

3 Related work

In the literature on unfold/fold transformations in logic languages transfor-
mation typically proceeds in a “step by step fashion”; after a goal in the
body of a clause has been unfolded the clause is deleted from the program
and replaced by the clause resulting from the unfolding - this is the approach
taken in e.g. [GS91], [KK90], [PP91a], [Sek91], [TS84]. As pointed out in
[GS91], one by applying this method loses some power - to see this, consider
the clause C = p(f(X)) ← p(X). By our or similar techniques one is able

17



to derive the clause C ′ : p(f(f(f(X)))) ← p(X) but this is impossible by
the step-by-step method, since one - after having unfolded C against itself
obtaining p(f(f(X)))← p(X) - has lost C. Aside from being less powerful,
we also think that the step-by-step strategy conceptually is much less clean
than our approach - a similar view being held in [Tur86].

In the literature, one is typically (contrary to our framework) not allowed
to fold against a (direct or indirect) recursive predicate [KK90], [PP91a],
[Sek91], [TS84]. This mirrors the view that folding corresponds to abbrevia-
tion, a view also held in [Han91].

[TS84] and [KK90] divide the predicates into two classes: the new (corre-
sponding to “eureka-definitions”) and old, where folding is allowed against
new predicates only. In the body of new predicates as well as in the body of
old predicates, only old predicates can occur. Folding is valid in two cases:

• Starting with the definition of an old predicate, O ← O1 . . . On, one
can do zero or more unfoldings of some of the Oi’s and then fold some
of these back into a new predicate.

• Starting with the definition of a new predicate, N ← O1 . . . On, one
has to do at least one unfolding of some of the Oi’s before folding back
into a new predicate.4

If new predicates are assigned weight 0 and old predicates are assigned weight
1, this translates into our condition 2.3. As we have seen in section 2.5 this
condition is (too) weak, since failing branches may convert to loops.

[Sek91] improves on the above, essentially by coming up with condition 2.1
(still when new predicates have been assigned weight 0 and old predicates
weight 1). As now not only the success set but also the failure set is preserved,
negation can be handled as well.

[Kot85] treats a functional language (where there apparently is no branch-
ing), thus his results are not immediately compatible to ours. The situation
is that first a number of unfoldings are made, then some laws are applied (not
catered for by our framework), then some foldings are made. It is claimed
that folding is safe if the number of unfoldings is greater than the number of

4Actually, in [TS84] one is allowed to fold even if no unfolding of an Oi is made, provided
not all the Oi’s disappear by the folding. By assigning new predicates a weight equal the
number of goals on the right hand side of their definition, and by assigning old predicates
a “very large integer” as weight, this translates into our condition 2.3.

18



foldings. In some sense, this corresponds to assigning all predicates weight 1
in our framework.

[GS91] allows folding against existing clauses (recall clauses are deleted
after having been unfolded) only (not allowing a clause to be folded against
itself). This greatly limits the applications, since it seems impossible to arrive
at recursive definitions of eureka-predicates. On the other hand, it becomes
possible to give a relatively simple proof of termination preservation.

In contrast to the authors mentioned so far, [PP91a] impose an order on a
sequence of goals, i.e. consider PROLOG’s LR strategy. The crucial condition
on folding is that the leftmost atom has been unfolded. Again by assigning
the predicates folded against weight 0 and the others 1, the essence of this
translates into our condition 2.2. A version of condition 2.2 is also stated in
[Han91].

4 Fundamental concepts

4.1 Basic configurations

Assume a finite universe of predicate symbols U .

Definition 4.1 A goal sequence (J, H) consists of a totally ordered set J ,
together with a mapping H which to each j ∈ J assigns a member of U .

Often we drop J and just write H. j < j′ models that H(j) is “to the
left” of H(j′).

Definition 4.2 A basic configuration (over K) is a quadruple (J, H, K, Q)
where (J, H) is a goal sequence, K is a set and Q is a mapping which to each
k ∈ K assigns a member of P(

∏
j∈J D) (for simplicity, we assume that all

predicates have arity 1).
A basic configuration is failure if Q(k) = ∅ for all k ∈ K; and is empty if

J = ∅.

Definition 4.3 Given goal sequence (J, H), we define the canonical ba-
sic configuration over (J, H) as follows: Ca(J,H) = (J, H,

∏
j∈J D, Q) where

Q(&d) = {&d}.

19



Specializations

Definition 4.4 Given basic configurations B and B′, with B = (J, H, K, Q)
and B′ = (J, H, K ′, Q′). A specialization from B to B′5 is a mapping s from
K to P(K ′) such that for all k ∈ K

Q(k) =
⋃

k′∈s(k)

Q′(k′)

We say that B = Is(B
′).

Fact 4.5 Given basic configuration B = (J, H, K, Q). Now there exists
one and only one specialization s from B to Ca(J,H).

Proof: s will be a specialization iff

Q(k) =
⋃

�d∈s(k)

{&d} = s(k)

✷

Operators on configurations and specializations

Definition 4.6 If J1 and J2 are two ordered sets (ordered by <1 and <2),
we define J = J1&J2 (ordered by <) by letting J be the disjoint union of J1

and J2 by letting in1(j) < in1(j
′) iff j <1 j′ and in2(j) < in2(j

′) iff j <2 j′;
and by letting in1(j) < in2(j

′) for all j ∈ J1, j
′ ∈ J2.

Definition 4.7 Let (J1, H1) and (J2, H2) be two goal sequences. We de-
fine (J1, H1)&(J2, H2) (= (J, H)) as follows: J = J1&J2; H(in1(j)) = H1(j1)
and H(in2(j)) = H2(j).

Definition 4.8 Let B1 = (J1, H1, K1, Q1) and B2 = (J2, H2, K2, Q2) be
basic configurations. Then we define B1&B2 = (J, H, K, Q) as follows:

• (J, H) = (J1, H1)&(J2, H2).

• K = K1 ×K2

5B′ is “more general” than B.

20



• Q(k1, k2) = {&d1 × &d2 | &d1 ∈ Q1(k1), &d2 ∈ Q2(K2)} where

(&d1 × &d2)(in1(j)) = &d1(j), (&d1 × &d2)(in2(j)) = &d2(j)

Fact 4.9 B1&B2 is failure iff B1 is failure or B2 is failure.

Definition 4.10 Given specializations s1 from B1 to B′
1 and s2 from B2

to B′
2. Let B1 = (J1, H1, K1, Q1), B2 = (J2, H2, K2, Q2), B

′
1 = (J1, H1, k

′
1, Q

′
1)

and B′
2 = (J2, H2, K

′
2, Q

′
2). Then define s = s1&s2, a specialization from

B1&B2 to B′
1&B′

2, by

(s1&s2)(k1, k2) = {(k′
1, k

′
2) | k′

1 ∈ s1(k1), k
′
2 ∈ s2(k2)}

We have to check that this actually is a specialization: but with B1&B2 =
(J, H, K, Q) and B′

1&B′
2 = (J, H, K ′, Q′) we have

Q(k1, k2) = {&d1 × &d2 | &d1 ∈ Q1(k1), &d2 ∈ Q2(k2)}
= {&d1 × &d2 | ∃k′

1 ∈ s1(k1),∃k′
2 ∈ s2(k2) : &d1 ∈ Q′

1(k
′
1),

&d2 ∈ Q′
2(k

′
2)}

= {&d | ∃k′
1 ∈ s1(k1),∃k′

2 ∈ s2(k2) : &d ∈ Q′(k′
1, k

′
2)}

= {&d | ∃k′ ∈ s(k1, k2) : &d ∈ Q′(k′)}
=

⋃

k′∈s(k1,k2)

Q′(k′)

Definition 4.11 Given specialization s from B to B′, and specialization
s′ from B′ to B′′, we define s ' s′, a specialization from B to ′′, by (here
B = (J, H, K, Q), B′ = (J, H, K ′, Q′), B′′ = (J, H, K ′′, Q′′))

(s ' s′)(k) =
⋃

k′∈s(k)

s′(k′)

We have to check that this actually is a specialization:

Q(k) =
⋃

k′∈s(k)

Q′(k′) =
⋃

k′∈s(k)

⋃

k′′∈s′(k′)

Q′′(k′′) =
⋃

k′′∈(s�s′)(k)

Q′′(k′′)

Definition 4.12 Given basic configuration B = (J, H, K, Q) we define IdB,
a specialization from B to B, by

IdB(k) = {k}

21



Algebraic identities

When writing “=”, we always mean “module isomorphism”. It should be
obvious what it means for two basic configurations to be isomorphic.

Fact 4.13 By letting the objects be basic configurations and by letting the
morphisms be specializations, we obtain a category. That is, ' is associative
and IdB is a neutral element for all B.

Moreover, & is a functor in this category - i.e. IdB1&IdB2 = IdB1&B2 , and
(s1 ' s′1)&(s2 ' s′2) = (s1&s2) ' (s′1&s′2).

Finally, & is associative and CaH1&CaH2 = CaH1&H2 .

Proof: The only nontrivial part is the relation between & and ':

(k′′
1 , k

′′
2) ∈ ((s1 ' s′1)&(s2 ' s′2))(k1, k2)

⇔ k′′
1 ∈ (s1 ' s′1)(k1), k

′′
2 ∈ (s2 ' s′2)(k2)

⇔ ∃k′
1, k

′
2 : k′

1 ∈ s1(k1), k
′′
1 ∈ s′1(k

′
1), k

′
2 ∈ s2(k2), k

′′
2 ∈ s′2(k

′
2)

⇔ ∃(k′
1, k

′
2) : (k′

1, k
′
2) ∈ (s1&s2)(k1, k2), (k

′′
1 , k

′′
2) ∈ (s′1&s′2)(k

′
1, k

′
2)

⇔ (k′′
1 , k

′′
2 ∈ ((s1&s2) ' (s′1&s′2))(k1, k2)

✷

4.2 U-mirrors

Given a function OI which for each G ∈ U returns a non-empty and finite
index set OI(G).

Given a function AI which for each G ∈ U and each i ∈ OI(G) returns a
finite index set AI(G), equipped with a total order <.

Given a function P which for each G ∈ U, i ∈ OI(G) and j ∈ AI(G, i)
returns P (G, i, j) ∈ U .

Given a function W which for each G ∈ U, i ∈ OI(G) and j ∈ AI(G, i)
returns W (G, i, j), a non-negative integer.

Returning to example 1.1, there e.g. OI(f) = {1, 2} (or any two-element
set); OI(g) = {1} (or any one-element set), AI(f, 1) = ∅, AI(g) = {1, 2}
with 1 < 2, P (g, 1, 1) = P (g, 1, 2) = f .

22



U-forests

Definition 4.14 A U-forest from goal sequence (J, H) to goal sequence
(J ′, H ′) is a J-indexed family of trees where

1. Nodes are labeled by a goal label G, G ∈ U . Some nodes are also
equipped with an or-direction label i with i ∈ OI(G). All nodes not
being leaves, and possibly also some leaves, have an or-direction label.

2. Arcs are labeled by an and-direction label j and a weight label w.
Distinct arcs going from the same node are labeled by distinct and-
direction labels.

3. For all j ∈ J , the root of the j’th tree has goal label H(j).

4. Let N be a node which has an or-direction label i, and which has goal
label G. Then j will be the and-direction label of an arc going from N
iff j ∈ AI(G, i). The arcs from N inherit the ordering of AI(G, i).

5. Let a be an arc from a node N , with goal label G, to N ′. Then G
will contain an or-direction label i. Further, with j the and-direction
label and w the weight label of a, the goal label of N ′ is P (G, i, j) and
w = W (G, i, j).

6. There is a total ordering among the leaves - and thus also among the
paths, where a path starts at a root and ends at a leaf - determined in
the “natural way” by the ordering on J and the ordering on the arcs
leaving each node.

7. The sequence of leaves not having an or-direction label, together with
their goal labels, is isomorphic to (J ′, H ′).

• A path ending in a leaf not having an or-direction label is termed
working.

• A U-forest is working iff all paths are working.

• The weight of a path p, W (p), is the sum of the weight labels encoun-
tered when walking along p.

• The weight of a U-forest f , W (f), is the sum of the weight labels in f .

23



To be more formal, a working path p in a U-forest from (J, H) to (J ′, H ′) is
a sequence of the form

jG0(i1, j1, w1)G1 · · · (in, jn, wn)j′Gn(n ≥ 0)

where j ∈ J, G0 = H(j), j′ ∈ J ′, Gn = H ′(j′), Gk = P (Gk−1, ik, jk) and
wk = W (Gk−1ik, jk) for k = 1 . . . n.

A non-working path in a U-forest from (J, H) to (J ′, H ′) is a sequence of
the form

jG0(i1, j1, w1G1 · · · (in, jn, wn)Gni(n ≥ 0)

where j ∈ J, G0 = H(j), AI(Gn, i) = ∅, Gk = P (Gk−1, ik, jk) and. wk =
W (Gk−1, ik, jk) for k = 1 . . . n.

In both cases W (p) =
∑n

k=1 wk.

Definition 4.15 If p is a working path in a U-forest from (J, H) to (J ′, H ′)
of form jGqj′G′, and p′ is a path in a U-forest from (J ′, H ′) to (J ′′, H ′′) of
form j′G′q′, then we define p ' p′ = jGqj′G′q′.

Definition 4.16 Given U-forest f from (J, H) to (J ′, H ′) and U-forest f ′

from (J ′, H ′) to (J ′′, H ′′). We can now define f ' f ′, a U-forest from (J, H)
to (J ′′, H ′′), by “gluing” the two forests together in the obvious way.

Observation 4.17 Given a path p′′ in f ' f ′. Two possibilities:

• p′′ is a non-working path in f . Then p′′ will be non-working in f ' f ′

as well.

• There exists working path p in f and path p′ in f ′ such that p′′ = p'p′.
p′′ will be working iff p′ is. These p and p′ are unique.

Conversely, if p′ is a path in f ′ there exists exactly one (working) path p in
f such that p ' p′ forms a path in f ' f ′. If p is a working path in f , there
exists at least one path p′ in f ′ such that p ' p′ forms a path in f ' f ′.

Definition 4.18 Given goal sequence (J, H). Id (J,H) is now defined as the
U-forest from (J, H) to (J, H), where all paths ire of the form jG.

24



Definition 4.19 Given U-forest f1 from H1 to H ′
1 and U-forest f2 from

H2 to H ′
2. Now define f1&f2, a U-forest from H1&H2 to H ′

1&H ′
2, in the ob-

vious way - i.e. the paths in f1&f2 will be the “disjoint union” of the paths
in f1 and the paths in f2.

Fact 4.20 By letting the objects be goal sequences and the morphisms be
U-forests, one gets a category (with ' as composition and Id as identities).
& is a functor in this category, and & is associative.

Definition 4.21 Given a U-forest f1 from H to H1, and a U-forest f2 from
H to H2. We say that (f ′

1, f
′
2, H

′) is a completion of (f1, f2) if f ′
1 is a U-forest

from H1 to H ′, f ′
2 is a U-forest from H2 to H ′, and f1 ' f ′

1 = f2 ' f ′
2.

Pushouts

Observation 4.22 Given a U-forest f1 from H to H1, and a U-forest f2 from
H to H2. Suppose (f1, f2) has a completion. Then there exists a completion
(f ′

1, f
′
2, H

′) such that for all completions (f ′′
1 , f ′′

2 , H ′′) there exists a U-forest
f from H ′ to H ′′ with f ′

1 'f = f ′′
1 , f ′

2 'f = f ′′
2 . Consequently, this completion

is unique - we term (f ′
1, f

′
2, H

′) the pushout of (f1, f2).
Moreover, if f1 is working then f ′

2 will be working.

Fact 4.23 Taking pushouts is commutative in the following sense: given
(f1, f

′
1) and (f2, f

′
2), such that f ′

1 and f2 are U-forests to the same goal se-
quence. Suppose (f1, f

′
1) has pushout (f3, f

′
3), and suppose (f2 ' f ′

3, f
′
2) has

pushout (f4, f
′
4). Now the situation is as in the left part of figure 4.

Then (f2, f
′
2) will have a pushout, to be written (f5, f

′
5); and also (f1, f

′
1'f5)

will have a pushout, to be written (f6, f
′
6) - as depicted in the right part of

figure 4. Moreover,

f3 ' f4 = f6, f ′
5 ' f ′

6 = f ′
4

Proof: Standard categorical reasoning is applied: As f2 ' f ′
3 ' f4 = f ′

2 ' f ′
4

we see that (f2, f
′
2) in fact has a pushout (f5, f

′
5), and there exists unique f

such that f5 ' f = f ′
3 ' f4, f ′

5 ' f = f ′
4. Now

f1 ' f3 ' f4 = f ′
1 ' f ′

3 ' f4 = f ′
1 ' f5 ' f

25



Figure 4: Pushout commutes

which shows that (f1, f
′
1 ' f5) has a pushout (f6, f

′
6), and there exists f ′

such that f6 ' f ′ = f3 ' f4, f ′
6 ' f ′ = f .

Also we have f ′
5 ' f ′

6 ' f ′ = f ′
5 ' f = f ′

4. For reasons of symmetry (f6 plays
the same role as f ′

4, f ′
5 plays the same role as f3 and f ′

6 plays the same role
as f4) we can find f ′′ such that f ′

4 ' f ′′ = f ′
5 ' f ′

6 f3 ' f4 ' f ′′ = f6.
From f6 = f3 'f4 'f ′′ = f6 'f ′ 'f ′′ we conclude f ′ = Id - hence the claim.

✷

U-mirrors

Definition 4.24 A U-mirror m from goal sequence H to goal sequence H ′

is a triple (f, f ′, H ′′)6 where f is a U-forest from H to H ′′; and where f ′ is
a U-forest from H ′ to H ′′. We require f ′ to be working (as we do not allow
folding using a rule of form g ← ✷).

• One can in the natural way define the paths of a U-mirror. A path p′′

is either a non-working path in f or of the form (p, p′) where p is a
working path in f of form qj′′G′′ and p′ a (working) path in f ′ of form
q′j′′G′′ - we say p and p′ are connected. Paths of the former kind are
termed non-working; paths of the latter kind are termed working.

• We say that m is working iff all paths are working - i.e. iff f is working.

• The weight of a non-working path p, W (p), is the weight of p in f ; the

6We often just write (f, f ′) and omit H ′′.

26



weight of a working path (p, p′), W (p, p′), is the difference between the
weight of p in f and the weight of p′ in f ′.

• The weight of the U-mirror, W (m), is W (f)−W (f ′).

Observe that given working path p in f there exists exactly one path p′ in
f ′ connected to p; and given (working) path p′ in f ′ there exists exactly one
path p in f connected to p′. Also, there will exist a working path in m iff H ′

is not empty.
We will not distinguish between a U-forest f from H to H ′ and the U-

mirror (f, IdH′ , H ′).

Definition 4.25 Let m = (f, f ′, H ′′) be a U-mirror from H to H ′, and
suppose m is working (i.e. f is working). Then we can define R(m), a
(working) U-mirror from H ′ to H, by R(m) = (f ′, f, H ′′).

Definition 4.26 Let m1 = (f1, f
′
1, H

′′
1 ) be a U-mirror from H1 to H ′

1, and let
m2 = (f2, f

′
2, H

′′
2 ) be a U-mirror from H2 to H ′

2. Now we can define m1&m2,
a U-mirror from H1&H2 to H ′

1&H ′
2, by letting

m1&m2 = (f1&f2, f
′
1&f ′

2, H
′′
1 &H ′′

2 )

Definition 4.27 Given goal sequence H. Then we can define IdH as (IdH ,
IdH , H).

Definition 4.28 Given a U-mirror m1 = (f11, f21, H
′
1) from H1 to H2, and

given a U-mirror m2 = (f22, f32, H
′
2) from H2 to H3.

First suppose the pushout of (f21, f22) exists. Let it be (f ′
1, f

′
2, H

′′). Then

m1 ' m2 = (f11 ' f ′
1, f32 ' f ′

2, H
′′)

(This is a well-defined U-mirror: m1 is a U-mirror, so f21 is working. By
observation 4.22, f ′

2 is working. As m2 is a U-mirror, f32 is working. Hence,
f32 ' f ′

2 is working.)
If the pushout does not exist, m1 ' m2 = ⊥ (i.e. undefined).

Lemma 4.29 Suppose m1 ' m2 �= ⊥. Suppose (p, p′) is a path in m1 ' m2.
Then there exists paths (p1, p

′
1) in m1, (p2, p

′
2) in m2 and paths p′′, p′′′ such

that p = p1 ' p′′, p′ = p′2 ' p′′′, and p′1 ' p′′ = p2 ' p′′′.

27



Proof: Let m1 = (f1, f
′
1(J

′
1, H

′
1)) be a U-mirror from (J1, H1) to (J2, H2),

and let m2 = (f2, f
′
2(J

′
2, H

′
2)) b e a U-mirror from (J2, H2) to (J3, H3). Let

(f ′′, f ′′′, (J ′′, H ′′)) be the pushout of (f ′
1, f2). Then

m1 ' m2 = (f1 ' f ′′, f ′
2 ' f ′′′)

We have that p is a working path in f1 ' f ′′, and p′ is a (working) path
in f ′

2 ' f ′′′. There thus exist working paths p1 in f1, p′′ in f ′′, p′2 in f ′
2 and

p′′′ in f ′′′ such that p = p1 ' p′′, p′ = p′2 ' p′′′. Now let p2 in f2 and p′1 in
f ′

1 be the unique paths connected to p′2 and p1 respectively. As there exists
j′1 ∈ J ′

1 such that p1 and p′1 both end with j′1H
′
1(j

′
1), p′1 ' p′′ will be a path in

f ′
1 ' f ′′. Similarly, p2 ' p′′′ will be a path in f2 ' f ′′′. Since f ′

1 ' f ′′ = f2 ' f ′′′,
and since p2 ' p′′′ ends with the same element in J ′′ as p′′′ does as p′ does as
p does as p′′ does as p′1'p′′ does, we conclude that actually p′1'p′′ = p2'p′′′. ✷

Fact 4.30

1. Operating on U-mirrors, ' is associative7 with Id as neutral element.

2. & is a functor; i.e. (m1 ' m′
1)&(m2 ' m′

2) = (m1&m2) ' (m′
1&m′

2); and
IdH&IdH′ = IdH&H′ . Also, & is associative.

3. The property of being working is closed under all operations in question.

4. Given working f from H to H ′. Considered as a U-mirror, R(f) ' f =
IdH′ .

Proof: First for the last claim: we must show that (IdH′ , f) ' (f, IdH′) =
IdH′ . Now the pushout of (f, f) is (IdH′ , IdH′), hence the claim follows.

That Id is neutral element can be seen as follows: Let m = (f, f ′, H ′′) be a
U-mirror from H to H ′. The pushout of (f ′, IdH′) clearly is (IdH′′ , f ′, H ′′). So

m ' IdH′ = (f ' IdH′′ , IdH′ ' f ′, H ′′) = (f, f ′, H ′′) = m

That Id is left neutral element is seen similarly.

7Equality, in the presence of ⊥, means that either both sides are ⊥ or both sides are
�= ⊥ and equal.

28



Figure 5: Associativity of ' on U-mirrors

Next for the associativity: let m1 = (f1, f
′
1), m2 = (f2, f

′
2), m3 = (f3, f

′
3).

Consider figure 5, where the relevant pushouts have been drawn (assuming
they exist). Then

(m1 ' m2) ' m3 = (f1 ' f4 ' f5, f
′
3 ' f ′

6)
m1 ' (m2 ' m3) = (f1 ' f6, f

′
3 ' f ′

4 ' f ′
5)

Now we can apply fact 4.23 to see that (m1 ' m2) ' m3 will be defined iff
m1 ' (m2 ' m3) is, and then they will be equal.

The remaining claims are trivial. ✷

4.3 Properties of U-mirrors

Definition 4.31 Given n, we say that a U-mirror m satisfies F(n) iff for all
working paths p we have W (p) ≥ n; and there exists a working path.

Lemma 4.32 If m1 satisfies F(n1) and m2 satisfies F(n2) then m1 ' m2

- if defined - satisfies F(n1 + n2).

Proof: Let m1 = (f1, f
′
1, H

′
1) from H1 to H2; and let m2 = (f2, f

′
2, H

′
2)

from H2 to H3.
Since there exists a working path in m2, H3 is not empty, and hence there

exists a working path in m1 ' m2.
Let (p, p′) be a working path in m1'm2. By lemma 4.29, there exists (p1, p

′
1)

in m1, (p2, p
′
2) in m2 and paths p′′, p′′′ such that p = p1 ' p′′, p′ = p′2 ' p′′′, and

p′1 ' p′′ = p2 ' p′′′. Now, by applying the assumption, we have

W (p, p′) = W (p)−W (p′) = W (p1) + W (p′′)−W (p′2)−W (p′′′)

29



≥ W (p′1) + n1 + W (p′′)−W (p2) + n2 −W (p′′′)

= W (p′1 ' p′′)−W (p2 ' p′′′) + n1 + n2

= n1 + n2

✷

Definition 4.33 Given n, we say that a U-mirror m satisfies A(n) iff W (m)
≥ n.

Lemma 4.34 If m1 satisfies A(n1), and m2 satisfies A(n2), then m1 ' m2 -
if defined - satisfies A(n1) + m2).

Proof: Let m1 = (f1, f
′
1, H

′
1) from H1 to H2; and let m2 = (f2, f

′
2, H

′
2)

from H2 to H3. Let (f ′′, f ′′′) be the pushout of (f ′
1, f2). Now

W (m1 ' m2) = W (f1 ' f ′′)−W (f ′
2 ' f ′′′)

= W (f1) + W (f ′′)−W (f ′
2)−W (f ′′′)

≥ W (f ′
1) + n1 + W (f ′′)−W (f2) + n2 −W (f ′′′)

= W (f ′
1 ' f ′′)−W (f2 ' f ′′′) + n1 + n2

= n1 + n2

✷

Definition 4.35 Given n, we say that a U-mirror m satisfies L(n) iff there
exists a path in m, and the leftmost path has weight ≥ n.

Definition 4.36 Given a U-mirror m, we let

• E(m) denote the number of non-working paths to the left, i.e. E(m) ≥
n iff the n leftmost paths in m are non-working.

• L(m) denote the weight of the leftmost working path (if no such exists,
0).

Then we can define an ordering ≺ on the set of U-mirrors by letting m1 ≺ m2

iff E(m1) < E(m2) or E(m1) = E(m2) and L(m1) < L(m2).

Lemma 4.37 Suppose m2 satisfies L(1), and m = m1 ' m2 is defined. Then
m1 ≺ m.

30



Proof: First some notation: we say that a path is left-directed if the follow-
ing holds for all its arcs: let the arc have and-direction label j and go from a
node with goal label G and or-direction label i. Then j is the least element
in AI(G, i).

Let m1 = (f1, f
′
1), m2 = (f2, f

′
2). Let (f ′′, f ′′′) be the pushout of (f ′

1, f2).
Now m = (f1 ' f ′′, f ′

2 ' f ′′′). The E(m1) leftmost paths of m1 will be non-
working; so the E(m1) leftmost paths of f1 will be non-working; so the E(m1)
leftmost paths of f1 ' f ′′ will be non-working; so the E(m1) leftmost paths
of m will be non-working. This shows that E(m1) ≤ E(m).

Now consider the leftmost path in m2. Two possibilities:

• It is of form p2 with p2 non-working in f2. As f2 ' f ′′′ = f ′
1 ' f ′′, there

will exist p′1 in f ′
1 and left-directed p′′ in f ′′ such that p2 = p′1 ' p′′, and

such that p′1 is the leftmost path in f ′−1. Let p′1 be connected to p1; p1

will be the leftmost working path in f1. Now p1'p′′ will be non-working
in f1 ' f ′′ and hence also in m. This shows that E(m1) < E(m) and
hence m1 ≺ m.

• It is of form (p2, p
′
2) with p2 working in f2. As f2 ' f ′′′ = f ′

1 ' f ′′, there
will exist p′1 in f ′

1, left-directed p′′ in f ′′ and left-directed p′′′ in f ′′′ such
that p2 ' p′′′ = p′1 ' p′′, and such that p′1 is the leftmost path in f ′

1. Let
p′1 be connected to p1; p1 will be the leftmost working path in f1. Now
(p1 ' p′′, p′2 ' p′′′) will belong to m, and be the leftmost working path in
m. Moreover,

L(m) = W (p1 ' p′′)−W (p′2 ' p′′′)

= W (p1) + W (p′′)−W (p′2)−W (p′′′)

> W (p1) + W (p′′)−W (p2)−W (p′′′)

= W (p1) + W (p′′)−W (p2 ' p′′′)

= W (p1) + W (p′′)−W (p′1 ' p′′)

= W (p1)−W (p′1)

= L(m1)

This shows m1 ≺ m.

✷

31



4.4 Transitions

Definition 4.38 A transition t from basic configuration B = (J, H, K, Q)
to B′ = (J ′, H ′, K ′, Q′) (notice the K-sets are identical) is a set of U-mirrors
from (J, H) to (J ′, H ′) which is either empty or a singleton.8 We will demand
that (Q, Q′) is a non-increasing pair, i.e. that for all k ∈ K, Q(k) = ∅ ⇒
Q′(k) = ∅ (so it will not be possible to make a transition from a failure basic
configuration into a non-failure, cf. the discussion in section 2.4, (1)).

We say that t is stable iff also (Q′, Q) is a non-increasing pair, i.e. Q(k) =
∅ ⇔ Q′(k) = ∅.

Definition 4.39 Let t be a transition from B to B′, and let t′ be a transition
from B′ to B′′. Now define t ' t′, a transition from B to B′′, by

m′′ ∈ t ' t′ ⇔ ∃m ∈ t, m′ ∈ t′ : m′′ = m ' m′

Clearly (B, B′′) is a non-increasing pair, and t ' t′ will be stable if t and
t′ are stable.

Definition 4.40 Let t1 be a transition from B1 to B′
1, and let t2 be a transi-

tion from B2 to B′
2. Now define t1&t2, a transition from B1&B2 to B′

1&B′
2, by

m ∈ t1&t2 ⇔ ∃m1 ∈ t1, m2 ∈ t2 : m = m1&m2

Clearly non-increasingness will be preserved, and t1&t2 will be stable if t1
and t2 are stable.

Definition 4.41 Given B = (J, H, K, Q), define IdB, a transition from B to
B, by letting IdB be the singleton set containing IdJ,H . This is clearly stable.

Definition 4.42 Given a transition t from B to B′. Let s be a special-
ization from Is(B) to B. Now we define Is(t), a transition from Is(B) to
Is(B

′), by letting m be in Is(t) iff m is in t. Clearly (Is(B), Is(B
′)) is a

non-increasing pair, and Is(t) will be stable if t is.

Definition 4.43 Given a transition t from B to B′. Suppose t is stable,
and suppose it for all m ∈ t holds that m is working. Then we say that t is

8We will often identify t with its element.

32



reversible and we can define R(t), a transition from B′ to B, by stipulating
that m is in R(t) iff R(m) is in t. Clearly R(t) is reversible.

Fact 4.44 By letting the objects be basic configurations and by letting the
morphisms be transitions, we obtain a category. & is a functor in this cate-
gory.

5 Two level transition system

5.1 The level 0 rules

Assume that for all G ∈ U and i ∈ OI(G) there exists a transition t(G, i)
from CaG to c(G, i), where c(G, i) takes the form

(AI (G, i), λj.P (G, i, j),D)

and where t(G, i) contains the U-mirror (U-forest) determined by the paths

{G(i, j, )G′ | j ∈ AI (G, i)}

where G′ = P (G, i, j). However, if AI (G, i) = ∅ the U-mirror will be de-
termined by the singleton path Gi. Clearly, this in non-increasing. Now

RU0 = {t(G, i) | G ∈ U, i ∈ OI (G)} (3)

In example 1.1, e.g. c(g, 1) = ([f, fj],D ×D, Q) with

Q(d1, d2) = {{((d1, d), (d, d2))} | d ∈ D}

5.2 Unfolding at level 1

We now define what it means for a transition t from B to B′ to be a level
1 unfolding step, to be written 1 �S

u t : B → B′9 (here H1 and H2 are goal
sequences, and s is a specialization):

9When we are not interested in the configurations, we may simply write 1 �S
u t.

33



t(G, i) ∈ RU0

1 �S
u Is(IdCaH1

&t(G, i)&IdCaH2
)

(4)

Next we define what it means for a transition t from B to B′ to be a level
1 unfolding, to be written 1 �u T : B → B′

1 �S
u t : B → B′

1 �u t : B → B′ (5)

1 �u IdB : B → B (6)

1 �u t : B → B′, 1 �u t′ : B′ → B′′

1 �u t ' t′ : B → B′′ (7)

If 1 �u t, we can write t = t1 ' · · · tn (n ≥ 0) with 1 �S
u ti for i ∈ {1 . . . n}.

The least n which can be used is called the length of t.

Fact 5.1

1. If 1 �S
u t, then 1 �S

u t&IdB and 1 �S
u IdB&t for basic configuration B.

2. If 1 �S
u t, then 1 �S

u Is(t) for specialization s.

3. If 1 �u t, then 1 �u t&IdB and 1 �u IdB&t for basic configuration B.

4. If 1 �u t1 and 1 �u t2, then 1 �u t1&t2.

5. If 1 �u t, then 1 �u Is(t) for specialization s.

6. If 1 �u t, then t is a singleton - i.e. of form {m}.

Proof: For (1), notice that fact 4.5 tells us that we can write B = Is′(CaH).
Then

Is(IdCaH1
&t(G, i)&IdCaH2

)&IdB

= Is(IdCaH1
&t(G, i)&IdCaH2

)&Is′(IdCaH
)

= Is&s′(IdCaH1
&t(G, i)&IdCaH2

&IdCaH
)

= Is&s′(IdCaH1
&t(G, i)&IdCaH2&H

)

(2) is trivial. (3) follows by induction in the derivation tree for 1 �u t :
the case where rule (5) has b een applied follows from what has just been

34



shown; the case where rule (6) has been applied is trivial; and the case where
rule (7) has been applied follows from the calculation (cf. fact 4.44)

(t&IdB) ' (t′&IdB) = (t ' t′)&(IdB ' IdB) = (t ' t′)&IdB

(4) follows from what has been just shown and fact 4.44:

t1&t2 = (t1 ' Id )&(Id ' t2) = (t1&Id ) ' (Id &t2)

(5) is a trivial induction in the derivation tree. (6) follows from the fact
that all U-mirrors involved in fact are U-forests, thus ' can never be unde-
fined.

✷

The diamond lemma

Lemma 5.2 Suppose 1 �S
u t1 : B → B1 and 1 �S

u t2 : B → B2. Suppose
t1 and t2 have a completion (viewed as U-forests). Then there exists B′,
transition t′1 from B1 to B′

1 and transition t2 from B2 to B′
2 such that (t′1, t

′
2)

(viewed as a U-forest) is the pushout of (t1, t2). Moreover, one of two holds:

• B1 = B2 = B′, t1 = t2, t
′
1 = t′2 = IdB′ .

• 1 �S
u t′1 : B1 → B′ and 1 �S

u t′2 : B2 → B′.

Proof: We can assume that the transitions involved are of the following
form:

t1 = Is1(IdCaH11
&t(G1, i1)&IdCaH12

)

t2 = Is2(IdCaH21
&t(G2, i2)&IdCaH22

)

As t1 and t2 both are transitions from B, we get

Is1(CaH11&G1&H12
) = B = Is2(CaH21&G2&H22

)

From this we infer H11&G1&H12 = H21&G2&H22 and (by fact 45) that
s1 = s2. Now two possibilities:

35



• H11 = H21. Then G1 = G2, and H12 = H22. As (t1, t2) has a comple-
tion, i1 = i2. This shows t1 = t2 and B1 = B2. Thus we can choose
t′1 = t′2 = IdB1 , and clearly (t′1, t

′
2) is the pushout.

• H11 �= H21. We can wlog. assume that H11 is shorter than H21. Then
there exists H such that H21 = H&G2&H22, H21 = H11&G1&H. Now
define

t′1 = Is1(IdCaH11
&Id c(G1,i1)&IdCaH

&t(G2, i2)&IdCaH22
)

t2 = Is1(IdCaH11
&t(G1, i1)&IdCaH

&Id c(G2,i2 , &IdCaH22
)

We can easily calculate

t1 ' t′1 = Is1(IdCaH11
&t(G1, i1)&IdCaH

&t(G2, i2)&IdCaH22

= t2 ' t′2

To show that 1 �S
u t′1, notice that we can write c(G1, i1) on the form

Is′(CaH′) for some s′, H ′ - similarly we have 1 �S
u t′2

Again, viewed as U-forests (t′1, t
′
2) is clearly the pushout.

✷

Figure 6: The Church-Rosser property

The Church-Rosser lemma

Lemma 5.3 Suppose 1 �u t1 : B → B1 and 1 �u t2 : B → B2. Suppose
t1 and t2 have a completion, viewed as U-forests. Then there exists B′ and
transitions t′1, t

′
2 such that 1 �u t′1 : B1 → B′, 1 �u t′2 : B2 → B′, and such

that (t′1, t
′
2) - viewed as U-forests - is the pushout of (t1, t2).

36



Moreover, the length of t′1 is less than or equal the length of t2, and the
length of t′2 is less than or equal the length of t1.

Proof: Induction in the length of t1 plus the lenght of t2. If t1 or t2 is
the identity the claim is clear. If 1 �S

u t1 and 1 �S
u t2, the claim follows from

lemma 5.2.
Otherwise, we can wlog. assume that t1 = t11 ' t12 with 1 �u t11, 1 �u t12.

The situation is as depicted in figure 6. By induction, there exists t′2, t
′
11

such that 1 �u t′11, 1 �u t′2 and such that (t′2, t
′
11) is the pushout of (t11, t2).

Moreover, the length of t′2 is less than or equal the length of t2 - this enables
us to use the induction hypothesis once more and arrive at t′′2, t

′
12 such that

1 �u t′12, 1 �u t′′2.
Now we can choose (t′′2, t

′
11 ' t′12) as the desired transition pair. That it

actually is the pushout of (t1, t2) follows from fact 4.23. ✷

Lemma 5.3 shows that given a basic configuration B = (J, H, K, Q) and
an U-forest f from (J, H), it makes sense to define Uf (B) as the basic con-
figuration B′ such that 1 �u f : B → B′.

5.3 Evaluation strategies and Looping at level 1

Definition 5.4 We say that B loops at level 1 by some strategy if for all
n ≥ 1 third exists a tn and a Bn not failure such that 1 �S

u tn : Bn−1 → Bn

(here B0 = B).

Lemma 5.5 The following are sufficient conditions for B to loop at level
1 by some strategy:

1. For all N ≥ 0, there for all n with 1 ≤ n ≤ N exists tn and Bn not
failure such that 1 �S

u tn : Bn−1 → Bn (agin, B0 = B).

2. For all n ≥ 0, there exists Bn not failure and tn such that 1 �u tn :
B → Bn, where tn viewed as a U-forest has n nodes with an or-direction
label.

3. For all n ≥ 0, there exists Bn not failure and tn such that 1 �u tn :
B → Bn, where tn viewed as a U-forest has weight ≥ n - i.e. satisfies
A(n).

Proof: That (1) implies that B loops at level 1 by some strategy is a
consequence of Königs lemma (as there from a given B is a finite number of

37



level 1 unfolding steps, since OI (G) is finite). That (2) implies (1) is obvious.
That (3) implies (2) is a consequence of the weights being upper bounded
(as U , OI (G) and AI (G, i) are finite sets). ✷

Fair strategy

Definition 5.6 We say that t is a fair level 1 unfolding step if t is of form
Is(r1& . . . &rk), k ≥ 1, where r1 . . . rk are level 0 rules.

For a fair level 1 unfolding step t, we clearly have 1 �u t.

Definition 5.7 We say that B loops at level 1 by a fair strategy if for all
n ≥ 1 there exists a fair level 1 unfolding step tn and a Bn not failure such
1 �u tn : Bn−1 → Bn (here B0 = B).

Similar to lemma 5.5, we may prove

Lemma 5.8 The following are sufficient conditions for B to loop at level
1 by a fair strategy:

1. For all N ≥ 0, there for all n with 1 ≤ n ≤ N exists a fair level 1
unfolding step tn and Bn not failure such that 1 �u tn : Bn−1 → Bn

(again, B0 = B).

2. For all n ≥ 0, there exists Bn not failure and tn such that 1 �u tn :
B → Bn, where each working path in tn (viewed as a U-forest) has
length ≥ n and there exists a working path.

3. For all n ≥ 0, there exists Bn not failure and tn such that 1 �u tn :
B → Bn, where tn satisfies F(n).

LR strategy

Definition 5.9 We say that t is a LR level 1 unfolding step if t is of form
Is(r&Id ) with r a level 0 rule.

We say that t is a LR level 1 unfolding if t is of form t1 ' . . . ' tn with each
ti being a LR level 1 unfolding step.

The U-forest corresponding to a LR level 1 unfolding is termed a LR U-
forest.

38



Definition 5.10 We say that B loops at level 1 by a LR strategy if for
all n ≥ 1 there exists a LR level 1 unfolding step tn and a Bn not failure
such that 1 �u tn : Bn−1 → Bn (here B0 = B).

Recall the functions E(m) and L(m) introduced in section 4.3.

Lemma 5.11 The following are sufficient conditions for B to loop at level 1
by a LR strategy:

1. For all N ≥ 0, there for all n with 1 ≤ n ≤ N exists a LR level 1
unfolding step tn and Bn not failure such that 1 �S

u tn : Bn−1 → Bn

(again, B0 = B).

2. For all n ≥ 0, there exists a transition tn and Bn not failure, with
1 �u tn : B → Bn, such that E(tn) ≥ n.

3. For all n ≥ 0, there exists a transition tn and Bn not failure, with
1 �u tn : B → Bn, such that the length of the leftmost working path
≥ n.

4. For all n ≥ 0, there exists a transition tn and Bn not failure, with
1 �u tn : B → Bn, such that L(tn) ≥ n.

Proof: First consider (1); then (2) ⇒ (1); then (3) ⇒ (1) and finally (4)
⇒ (3). ✷

5.4 Folding at level 1

We now define what it means for a transition t from B to B′ to be a level 1
folding step, to be written 1 �S

f t : B → B′.
We will assume the existence of a partial function s(G, i) such that Is(G,i)

(t(G, i)) is reversible, and such that Is(G,i)(c(G, i′)) is failure for all i′ �= i.

t(G, i) ∈ RU0, s(G, i) defined

1 �S
f Is(IdCaH1

&R(Is(G,i)(t(G, i)))&IdCaH2
)

(8)

Next we define what it means for a transition t from B to B′ to be a level
1 folding, to be written 1 �f t : B → B′:

39



1 �S
f t : B → B′

1 �f t : B → B′ (9)

1 �f IdB : B → B (10)

1 �f t : B → B′, 1 �f t′ : B′ → B′′

1 �f t ' t′ : B → B′′ (11)

Fact 5.12

1. If 1 �S
f t, then 1 �S

f t&IdB and 1 �S
f IdB&t for basic configuration B.

2. If 1 �f t1 and 1 �f t2, then 1 �f t1&t2.

3. If 1 �S
f t (1 �f t), then 1 �S

f Is(t) (1 �f Is(t)) for specialization s.

4. If 1 �S
f t : B → B′ (or 1 �f t : B → B′), then t is reversible.

5. If 1 �S
f t : B → B′ then 1 �S

u R(t) : B′ → B. If 1 �f t : B → B′) then
1 �u R(t) : B′ → B.

Proof: Mostly as in the proof of fact 5.1. The last point follows from

R(Is(IdCaH1
&R(Is(G,i)(t(G, i)))&IdCaH2

))

= Is(IdCaH1
&Is(G,i)(t(G, i))&IdCaH2

)

= Is(IId (IdCaH1
)&Is(G,i)(t(G, i)&IId (IdCaH2

))

= Is(IId &s(G,i)&Id (IdCaH1
&t(G, i)&IdCaH2

))

= I
s�(Id &s(G,i)&Id )(IdCaH1

&t(G, i)&IdCaH2
)

✷

5.5 Unfold/fold at level 1

We now define what it means for a transition t from B to B′ to be a level 1
transition, to be written 1 � t : B → B′.

1 �S
u B → B′

1 � t : B → B′ (12)

1 �S
f t : B → B′

1 � t : B → B′ (13)

40



1 � IdB : B → B′ (14)

1 � t : B → B′, 1 � t′ : B′ → B′′

1 � t ' t′ : B → B′′ (15)

Fact 5.13

1. If 1 � t1 and 1 � t2, then 1 � t1&t2.

2. If 1 � t, then 1 � Is(t) for specialization s.

5.6 Fundamental properties of level 1 transitions

The switching lemma

Lemma 5.14 Suppose 1 �S
f t1 : B1 → B, 1 �S

u t2 : B → B2, with B2

not failure. Then one of two holds:

• B1 = B2, t1 ' t2 = IdB1

• There exists B′, t′1, t
′
2 with 1 �S

u t′1 : B1 → B′, 1 �S
f t′2 : B′ → B2 such

that

t1 ' t2 = t′1 ' t′2

Proof: This lemma, as well as its proof, is very similar to lemma 5.2.
We can assume that the transitions involved are of the following form:

t1 = Is1(IdCaH11
&R(Is(G1,i1)(t(G1, i1)))&IdCaH12

)

t2 = Is2(IdCaH21
&t(G2, i2)&IdCaH22

)

With s = s1 ' (Id &s(G1, i1)&Id ), we from the fact that t1 is a transi-
tion to B and t2 is a transition from B get

Is(Ca
H11&G1&H12

) = B = Is2(Ca
H21&G2&H22

)

From this we infer H11&G1&H12 = H21&G2&H22 and that s = s2. Now
two posse bilities:

• H11 = H21. Then G1 = G2, and H12 = H22. Again two possibilities:

41



– i1 �= i2. Then we have
B2 = Is1(CaH21&Is(G1,i1)(c(G1, i2))&CaH22) but Is(G1,i1)(c(G1, i2))
is failure by the definition of s(G, i), hence B2 is failure contra-
dicting our assumption.

– i1 = i2. Then it is obvious that B1 = B2. And

t1 ' t2 = Is(IdCaH11
&(R(t(G1, i1)) ' t(G1, i1))&IdCaH12

)

= Is(IdCaH11
&Id c(G1,i1)&IdCaH12

)

= IdIs(CaH11&c(G1, i1)&CaH12)
= IdB1

where we have used fact 4.30,(4).

• H11 �= H21. We can wlog. assume that H11 is shorter than H21. Then
there exists H such that H12 = H&G2&H22, H21 = H11&G1&H. Now
define

t′1 = Is(IdCaH11
&Id c(G1,i1&IdCaH

&t(G2, i2)&IdCaH22
)

t′2 = Is1(IdCaH11
&R(Is(G1,i1)(t(G1, i1)))&IdCaH

&Id c(G2,i2)&IdCaH22
)

We can easily calculate

t′1 ' t′2
= Is1(IdCaH11

&R(Is(G1,i1)(t(G1, i1)))&IdCaH
&t(G1, i1)&IdCaH22

)

= t1 ' t2

To show that 1 �S
u t′1, notice that we can write c(G1, i1) on the form

Is′(CaH′) for some s′, H ′. To show that 1 �S
f t′2, apply the same obser-

vation to c(G2, i2).

✷

The normalization lemma

Lemma 5.15 Suppose 1 � t : B → B′, with B′ not failure. Then there exists
B′′, t1 and t2 such that 1 �u t1 : B → B′′, 1 �f t2 : B′′ → B′, t1 ' t2 = t.

From transitions being non-increasing we conclude that B′′ is not failure,
and from t1, t2 and t1 ' t2 trivially being �= ⊥ we conclude t �= ⊥.

Proof: There exists t1, . . . , tn such that t = t1 ' · · · ' tn and such that
for each i ∈ {1 . . . n} either 1 �S

u ti or 1 �S
f ti. We will use induction in

42



the number of times an application of the fold-rule precedes (not necessarily
immediately) an application of the unfold-rule. If this number is zero, we are
through. Otherwise there exists i, 1 ≤ i ≤ n, such that 1 �S

f ti, 1 �S
u ti+1.

Now apply lemma 5.14. Two possibilities:

• ti ' ti+1 = Id . Then

t = t1 ' · · · ' ti−1 ' ti+2 ' · · · ' tn

with a strictly smaller number of “inversions”.

• There exists t′i, t′i+1 such that t′i ' t′i+1 = ti ' ti+1, and such that 1 �S
u t′i,

1 �S
u t′i+1. Now

t = t1 ' · · · ' ti−1 ' t′i ' t′i+1 ' ti+2 ' · · · ' tn

and again the number of inversions has decreased.

✷

5.7 Unfolding at level 2

Now assume that we have defined RU1, a finite set of rules at level 1, such
that t ∈ RU1 implies that 1 � t.

We now define what it means for a transition t from B to B′ to be a level
2 unfolding step, to be written 2 �S t : B → B′:

t ∈ RU1

2 �S Is(IdCaH1
&t&IdCaH2

)
(16)

Next we define what it means for a transition t from B to B′ to be a level
2 unfolding, to be written 2 � t : B → B′:

2 �S t : B → B′

2 � t : B → B′ (17)

2 � IdB : B → B′ (18)

2 � t : B → B′, 2 � t′ : B′ → B′′

2 � t ' t′ : B → B′′ (19)

Fact 5.16 Suppose 2 �S t or 2 � t. Then 1 � t.

43



Proof : For 2 �S t, exploit e.g. fact 5.13. For 2 � t, a straight forward
induction in the derivation tree. ✷

Definition 5.17 We say that B loops at level 2 by some strategy if for all
n ≥ 1 there exists a tn and a Bn not failure such that 2 �S tn : Bn−1 → Bn

(here B0 = B).

Definition 5.18 We say that t is a fair level 2 step if t is of form Is(r1& · · ·&rk),
k ≥ 1, where r1 . . . rk are level 1 rules.

For a fair level 2 step t, we clearly have 2 � t.

Definition 5.19 We say that B loops at level 2 by a fair strategy if for
all n ≥ 1 there exists a fair level 2 step tn and a Bn not failure such that
2 � tn : Bn−1 → Bn (here B0 = B).

Definition 5.20 We say that t is a LR level 2 step if t is of form Is(r&Id )
with r a level 1 rule.

Definition 5.21 We say that B loops at level 2 by a LR strategy if for
all n ≥ 1 there exists a LR level 2 step tn and a Bn not failure such that
2 �S tn : Bn−1 → Bn (here B0 = B).

6 Conditions for termination preservation

Theorem 6.1 Assume all rules in RU1 satisfies A(1). Then if B loops at
level 2 by some strategy, it also loops at level 1 by some strategy.

Proof: Let, for all n ≥ 1, be given tn and Bn not failure such that
2 �S tn : Bn−1 → Bn. Define t′n = t1 ' · · · ' tn. Now 2 � t′n : B → Bn,
and by fact 5.16 also 1 � t′n : B → Bn. By lemma 5.15, there exists t′′n, t′′′n

and B′
n such that 1 �u t′′′n : B → B′

n, 1 �f t′′′n : B′
n → Bn, t′n = t′′n ' t′′′n and B′

n

not failure.
Due to the assumption of the theorem, each ti will satisfy A(1). Then, by

lemma 4.34, each t′n will satisfy A(n). But then also t′′n will satisfy A(n). By
lemma 5.5, this shows that B loops at level 1 by some strategy. ✷

44



Theorem 6.2 Assume all rules in RU1 satisfies F(1). Then if B loops
at level 2 by a fair strategy, it also loops at level 1 by a fair strategy.

Proof: Let, for all n ≥ 1, be given fair level 2 step tn and Bn not failure such
that 2 �S tn : Bn−1 → Bn. Define t′n = t1 ' · · · ' tn. Now 2 � t′n : B → Bn,
and by fact 5.16 also 1 � t′n : B → Bn. By lemma 5.15. there exists t′′n, t

′′′
n

and B′
n such that 1 �u t′′n : B → B′

n, 1 �f t′′′n : B′ − n→ Bn, t′n = t′′n ' t′′′n and
B′

n not failure.
Due to the assumption of the theorem, each ti will satisfy F(1). Then, by

lemma 4.32, each t′n will satisfy F(n). But then also t′′n will satisfy F(n). By
lemma 5.8, this shows that B loops at level 1 by a fair strategy. ✷

Theorem 6.3 Assume all rules in RU1 satisfies L(1). Then if B loops
at level 2 by a LR strategy, it also loops at level 1 by a LR strategy.

Proof: Let, for all n ≥ 1, be given LR level 2 step tn and Bn not failure
such that 2 �S tn : Bn−1 → Bn. Define t′n = t1'· · ·'tn. Now 2 � t′n : B → Bn,
and by fact 5.16 also 1 � t′nB → Bn. By lemma 5.15, there exists t′′n, t′′′n and
B′

n such that 1 �u t′′n : B → B′
n, 1 �f t′′′n : B′

n → Bn, t′n = t′′n ' t′′′n and B′
n not

failure.
Due to the assumption of the theorem, each ti will satisfy L(1). Then, by

lemma 4.37, we will have an increasing sequence

t′1 ≺ t′2 ≺ t′3 ≺ · · ·

Now two possibilities:

• E(t′n) is not bounded. Then neither E(t′′n) is bounded, so by lemma
5.11 B loops at level 1 by a LR strategy.

• E(t′n) is bounded. Then L(t′n) is unbounded, so also L(t′′n) is un-
bounded. Then again lemma 5.11 tells us that B loops at level 1 by a
LR strategy.

✷

45



7 Working with the full search tree

Definition 7.1 A configuration C (over K) is a family of basic configurations
over K, i.e. consists of an index set I and a mapping B which to each i ∈ I
assigns a basic configuration over K.

Two new operators will be defined, + and P( ):

Definition 7.2 Given configurations C1 = (I1, B1) and C2 = (I2, B2), over
the same K. Now we define C1 +C2 = (I, B) by letting I = I1 + I2 (where +
denotes disjoint union); and by lettingB(in1(i)) = B1(i), B(in2(i)) = B2(i).

Definition 7.3 Given configuration C = (I, B). Let

I ′ = {i ∈ I | B(i) is not failure}

Now we define P(C) = (I ′, B′) where B′(i′) = B(i′). We say that C is
pruned if C = P(C).

& will be extended to configurations such that & distributes over +. That
is, if C = (I, B) and C ′ = (I ′, B′) then C&C ′ = (I×I ′, B′′) where B′′(i, i′) =
B(i)&B′(i′). Notice that this is possible only because configurations are mul-
tisets with + as multiset union; if configurations had been sequences with +
as concatenation it would be impossible to make & left-distributive as well
as right-distributive.
I ( ) will be extended to configurations such that

Is(C1 + C2) = Is(C1) + Is(C2)

A lot of new identities hold, not to be stated explicitly here – most are
very trivial.

7.1 Transitions

Definition 7.4 A transition t from C = (I, B) to C ′ = (I ′, B′) now to each
(i, i′) ∈ I×I ′ assigns a set t(i, i′) of U-mirrors from B(i) to B′(i′). Moreover,
we will demand t to be non-increasing: if t(i, i′) is non-empty, (B(i), B′(i′))
must be a non-increasing pair.

46



Definition 7.5 Given transition t from C = (I, B) to C ′ = (I ′, B′) and
transition t′ from C ′ to C ′′ = (I ′′, B′′). t ' t′, a transition from C to C ′′, is
now defined as follows:

(t ' t′)(i, i′′) = {m ' m′ | ∃i′ ∈ I ′ : m ∈ t(i, i′), m′ ∈ t(i′, i′′)}

& on transitions is defined in a similar vein:

Definition 7.6 Given transition t1 from C1 = (I1, B1) to C ′
1 = (I ′

1, B
′
1),

and given transition t2 from C2 = (I2, B2) to C ′
2 = (I ′

2, B
′
2). Then t1&t2, a

transition from C1&C2 to C ′
1&C ′

2, is defined by

(t1&t2)((i1, i2), (i
′
1, i

′
2)) = {m1&m2 | m1 ∈ t1(i1, i

′
1), m2 ∈ t2(i2, i

′
2)}

Definition 7.7 Given transition t from C = (I, B) to C ′ = (I ′, B′) Then
Is(t), a transition from Is(C) to Is(C

′), is given by

Is(t)(i, i
′) = t(i, i′)

Definition 7.8 Given configuration C = (I, B), we define IdC by

IdC(i, i) = {IdB(i)}, IdC(i, i′) = ∅ for i �= i′

Definition 7.9 Given transition t1 from C1 = (I1, B1) to C ′
1 = (I ′

1, B
′
1),

and given transition t2 from C2 = (I2, B2) to C ′
2 = (I ′

2, B
′
2) (suppose C1 and

C2 configurations over the same K). Then t1 + t2, a transition from C1 + C2

to C ′
1 + C ′

2, is defined by

(t1 + t2)(in1(i1, in1(i
′
1)) = t1(i1, i

′
1)

(t1 + t2)(in2(i2, in2(i
′
2)) = t2(i2, i

′
2)

(t1 + t2)(in1(i1, in2(i
′
2)) = ∅

(t1 + t2)(in2(i2, in1(i
′
1)) = ∅

Definition 7.10 Given transition t from C1 = (I1, B1) to C2 = (I2, B2).
Let P(C1) = (I ′

1, B
′
1), P(C2) = (I ′

2, B
′
2). Now define P(t), a transition from

P(C1) to P(C2) by

P(t)(i′1, i
′
2) = t(i′1, i

′
2)

47



Definition 7.11 Given transition t from C = (I, B) to C ′ = (I ′, B′), we
say that t is reversible iff the following holds for all (i, i′) with t(i, i′) �= ∅ :
(B′(i′), B(i)) is a non-increasing pair, and for all m ∈ t(i, i′) m is a working
U-mirror.

If t is reversible we can defineR(t), a transition from C ′ to C, by stipulating

R(t)(i′, i) = {R(m) | m ∈ t(i, i′)}

Again, a lot of algebraic identities hold – most are quite trivial. Let us
just show that

(t1&t2) ' (t′1&t′2) = (t1 ' t′1)&(t2 ' t′2) (20)

where t1 is a transition from C1 = (I1, B1) to C ′
1 = (I ′

1, B
′
1), t′1 is a tran-

sition from C ′
1 to C ′′

1 = (I ′′
1 , B′′

1 ), t2 is a transition from C2 = (I2, B2) to
C ′

2 = (I ′
2, B

′
2) and t′2 is a transition from C ′

2 to C ′′
2 = (I ′′

2 , B′′
2 ). Now the left

hand side of (20) as well as the right hand side will be a transition from
C1&C2 to C ′′

1 &C ′′
2 . And for i1 ∈ I1, i2 ∈ I2, i′′1 ∈ I ′′

1 and i′′2 ∈ I ′′
2 we have

((t1&t2) ' (t′1&t′2))((i1, i2), (i
′′
1, i

′′
2))

= {m′′ | ∃(i′1, i′2),∃m ∈ (t1&t2)((i1, i2), (i
′
1, i

′
2)),

∃m′ ∈ (t′1&t′2)((i
′
1, i

′
2), (i

′′
1, i

′′
2)) : m′′ = m ' m′}

= {m′′ | ∃(i′1, i′2),∃m1 ∈ t1(i1, i
′
1),∃m2 ∈ t2(i2, i

′
2),

∃m′
1 ∈ t′1(i

′
1, i

′′
1),∃m′

2 ∈ t′2(i
′
2, i

′′
2) : m′′ = (m1&m2) ' (m′

1&m′
2)}

= {m′′ | ∃(i′1, i′2),∃m1 ∈ t1(i1, i
′
1), existsm2 ∈ t2(i2, i

′
2),

∃m′
1 ∈ t′1(i

′
1, i

′′
1),∃m′

2 ∈ t′2(i
′
2, i

′′
2) : m′′ = (m1 ' m′

1)&(m2 ' m′
2)}

= ((t1 ' t′1)&(t2 ' t′2))((i1, i2), (i
′′
1, i

′′
2))

where we have used fact 4.30, (2).
Also we have that

P(t1 ' t2) = P(t1) ' P(t2)

This holds only because we demand transitions to be non-increasing.

48



7.2 The level 0 rules

For each G ∈ U , there exists a rule t(G) ∈ RU0 from CaG to c(G), where
c(G) = {c(G, i) | i ∈ OI (G)}. Here m ∈ t(G)(i) iff m ∈ t(G, i).

7.3 Unfolding at level 1

We now define what it means for a transition t from C to C ′ to be a level 1c
unfolding step10, to be written 1 c �S

u t : C → C ′.

t(G) ∈ RU0

1 �S
u Is(IdCaH1

&t(G)&IdCaH2
)

(21)

1 c �S
u IdC (22)

1 c �S
u t1, 1 c �S

u t2
1 c �S

u t1 + t2
(23)

Fact 7.12 If 1 c �S
u t, then 1 c �S

u t&Id and 1 c �S
u Id &t. Also, 1 c �S

u Ist.

Next we define what it means for a transition t from C to C ′ to be a level 1c
unfolding, to be written 1 c �u t : C → C ′:

1 c �S
u t : C → C ′

1 c �u P(t) : P(C)→ P(C ′)
(24)

1 c �u t : C → C ′, 1 c �u t′ : C ′ → C ′′

1 c �u t ' t′ : C → C ′′ (25)

Observe that if 1 c �u t : C → C ′, then t = P(t), C = P(C) and C ′ = P(C ′).

Fact 7.13 If 1 c �u t1 and 1 c �u t2, then 1 c �u t1&t2, 1 c �u t1 + t2
and 1 c �u P(Is(t1)).

Proof: Inductions in the derivation tree:

• Concerning &, it will be enough to show that 1 c �u t implies 1 c �u

t&IdC (and 1 c �u IdC&t) for C with P(C) = C, as

t1&t2 = (t1 ' Id )&(Id ' t2) = (t1&Id ) ' (Id &t2)

10The “c” to denote that the complete search tree is modeled.

49



If t = t1 ' t2 with 1 c �u t1, 1 c �u t2 this follows from

t&Id = (t1&Id ) ' (t2&Id )

If t = P(t′) with 1 c �S
u t′, first note that by fact 7.12 1 c �S

u t′&Id .
Thus 1 c �u P(t′&Id ), i.e. 1 c �u t&Id .

• Concerning +, it will be enough to show that 1 c �u t′ implies 1 c �u

t + IdC with C such that C = P(C) - as

t1 + t2 = (t1 + Id ) ' (Id + t2)

If t = t1 ' t2, this follows from

t + Id = (t1 + Id ) ' (t2 + Id )

If t = P(t′) with 1 c �S
u t′, first note that 1 c �S

u t′ + Id .
Thus 1 c �u P(t′ + Id ), i.e. 1 c �u t + Id .

• Concerning I ( ), first suppose 1 c �u t because t = P(t′), 1 c �S
u t′.

Now also 1 c �S
u Is(t

′), and thus 1 c �u P(Is(t
′)), i.e. also 1 c �u

P(Is(t)).

Next suppose t = t1 ' t2. By induction, 1 c �u P(Is(t1)) and 1 c �u

P(Is(t2)). The claim now follows from

P(Is(t1)) ' P(Is(t2)) = P(Is(t1 ' t2))

✷

If 1 c �u t, there exists t1 . . . tn such that t = P(t1) ' . . . ' P(tn) with 1 c �S
u ti

for i = 1 . . . n. Again, we can define the length of a transition t as the mini-
mal n which can be used (n ≥ 1).

Observation 7.14 Suppose 1 c �u t : B → C, with C = (I, B). Then
for all i ∈ I there exists ti such that 1 �u ti : B → B(i). We say that
ti = πi(t).

50



The diamond lemma, revisited

Lemma 7.15 Suppose 1 c �S
u t1 : C → C1 and 1 c �S

u t2 : C → C2. Then
there exists C ′, transition t′1 with 1 c �S

u t′1 : C1 → C ′ and transition t′2 with
1 c �S

u t′2 : C2 → C ′ such that t1 ' t′1 = t2 ' t′2.

Proof: Much as the proof of lemma 5.2. A brief sketch: we can assume C
to consist of a single basic configuration (if C is the union of several basic
configurations each of these can be “treated” separately).

If t1 = IdC , choose t′1 = t2, t′2 = IdC2 . Similarly if t2 = IdC . So in
the following we can assume that t1 as well as t2 are derived by means of
(21). If “the same G” is unfolded, we take t′1 = t′2 = IdC1 . Otherwise,
we can - dispensing with the IdCaH

-parts - write t1 = Is(IdCaG1
&t(G2)),

t2 = Is(t(G1)&IdCaG2
). Then C1 and C2 take the form

C1 = {Is(CaG1&c(G2, i)) | i ∈ OI (G2)}
C2 = {Is(c(G1, i)&CaG1) | i ∈ OI (G1)}

Now define t′1, t′2 as follows:

t′1 = Is(t(G1)&Id c(G2)

t′2 = Is(Id c(G1)&t(G2))}

That e.g. 1 c �S
u t′1 follows from the fact that t′1 can be written on the

form

t′1 =
∑

i∈OI (G2)

Is(t(G1)&Id c(G2,i)

where again c(G2, i) can be written on the form Is′(CaH′).
That t1 't′1 = t2 't′2 follows from the fact that both equal Is(t(G1)&t(G2)).

✷

The Church-Rosser lemma, revisited

Lemma 7.16 Suppose 1 c �u t1 : C → C1 and 1 c �u t12 : C → C2.
Then there exists C3 and transitions t3, t4 such that 1 c �u t3 : C1 → C3,
1 c �u t4 : C2 → C3, and such that t1 ' t3 = t2 ' t4.

51



Moreover, the length of t3 is less than or equal the length of t2, and the
length of t4 is less than or equal the length of t1.

Proof: We use induction in the length of t1 plus the length of t2. For the in-
duction step, proceed as in the proof of lemma 5.3. So assume that both tran-
sitions have length 1. The situation is as follows: we have 1 c �S

u t′1 : C ′ → C ′
1

and 1 c �S
u t′2 : C ′′ → C ′

2, with t1 = P(t′1), t2 = P(t′2), and C = P(C ′) = P(C ′′).
We can assume that C ′ = C ′′, as we can “expand” t′1 and t′2. Now apply
lemma 7.15, to find t′3, t

′
4 and C ′

3 with 1 c �S
u t′3 : C ′

1 → C ′
3, 1 c �S

u t′4 : C ′
2 →

C ′
3, t′1 ' t′3 = t′2 ' t′4. Then define C3 = P(C ′

3), t3 = P(t′3), t4 = P(t′4). Then
1 c �u t3, 1 c �u t4, and

t1 ' t3 = P(t′1) ' P(t′3) = P(t′1 ' t′3) = P(t′2 ' t′4) = t2 ' t4
✷

7.4 Level 1 semantics

We say that a configuration C = (I, B) is in normal form iff C is pruned
and for all i ∈ I B(i) is empty.

Lemma 7.16, together with the observation that if C is in normal form and
1 c �u t : C → C ′ then C = C ′, shows that the following is welldefined:

Definition 7.17 Given basic configuration B (not failure). Suppose 1 c �u

t : B → C with C in normal form. Then [[B]]1 = C.
If no such t and C exists, [[B]]1 = ⊥.

Fact 7.18 [[B]]1 = ⊥ iff B loops at level 1 by a fair strategy (as defined
in definition 5.7)

Proof: Suppose [[B]]1 = ⊥. Given n ≥ 0. It is easily seen that there
will exist tn and C ′ = (I ′, B′) such that 1 c �u tn : B → C ′, and such that
for all i ∈ I ′ we have 1 �u πi(tn) : B → B′(i) where either B′(i) is empty
or πi(tn) is composed of n fair level 1 unfolding steps. Now, there exists at
least one i ∈ I ′ where B′(i) is not empty (otherwise C ′ would be in normal
form). Hence we conclude that B loops at level 1 by a fair strategy.

Conversely, suppose there exists C in normal form such that 1 c �u t : B →
C. Then there exists U-forests f1 . . . fk such that Ufi

(B) is either empty or
failure for all i. Moreover, there exists a n such that for all U-forests f where

52



the shortest working path is longer than n, there exists an i such that f can
be written as fi ' f ′ for some f ′. Hence for such f also Uf (B) is empty or
failure, showing that B does not loop at level 1 by a fair strategy. ✷

LR semantics

We say that t is a LR level 1c single step if t takes the form t = Is(t(G)&IdB),
with t(G) ∈ RU0. We say that t is a LR level 1c step if t takes the form
t = t1 + · · ·+ tk, at least one ti being a LR level 1c single step and the rest
being of form IdB, B empty. We say that t is a LR level 1c unfolding if t
takes the form t = P(t1) ' · · · ' P(ti), each ti being a LR level 1c step.

Definition 7.19 Given basic configuration B. Suppose 1 c �u t : B → C
with C in normal form, where t is a LR level 1c unfolding. Then [[B]]L1 = C.

If no such t and C exists, [[B]]1 = ⊥.

Fact 7.20 [[B]]L1 = ⊥ iff B loops at level 1 by a LR strategy (as defined
in definition 5.10).

Proof: Suppose [[B]]L1 = ⊥. Given n ≥ 0. It is easily seen that there
will exist tn and C ′ = (I ′, B′) such that 1 c �u tn : B → C ′, and such that
for all i ∈ I ′ we have 1 �u πi(tn) : B → B′(i) where either B′

i is empty or
πi(tn) is composed of n LR level 1 unfolding steps. Now, there exists at least
one i ∈ I ′ where B′(i) is not empty (otherwise C ′ would be in normal form).
Hence we conclude that B loops at level 1 by a LR strategy.

Conversely, suppose there exists C in normal form such that 1 c �u t :
B → C, with t a LR level 1c unfolding. Then there exists U-forests f1 . . . fk

such that Ufi
(B) is either empty or failure for all i. Moreover, there exists

a n such that for all LR U-forests f of size greater than n, there exists an
i such that f can be written as fi ' f ′ for some f ′. Hence for such f also
Uf (B) is empty or failure, showing that B does not loop at level 1 by a LR
strategy. ✷

✷

7.5 Folding at level 1

We now define what it means for a transition t from C to C ′ to be a level 1c
transition, to be written 1 �S

f t : C → C ′.

53



We will assume the existence of a partial (perhaps multivalued) function
s(G) such that P(Is(G)(t(G))) is reversible.

t(G) ∈ RU0

1 c �S
f Is(IdCaH1

&R(P(Is(G)(t(G))))&IdCaH2
)

(26)

1 c �S
f IdC (27)

1 c �S
f t1, 1 c �S

f t2
1 c �S

f t1 + t2
(28)

Next we define what it means for a transition t from C to C ′ to be a level 1c
folding, to be written 1 c �f t : C → C ′:

1 c �S
f t : C → C ′

1 c �f P(t) : P(C)→ P(C ′)
(29)

1 c �f t : C → C ′, 1 c �f t′ : C ′ → C ′′

1 c �f t ' t′ : C → C ′′ (30)

7.6 Unfold/fold at level 1

Next we now define what it means for a transition t from C to C ′ to be a
level 1c folding, to be written 1 c � t : B → B′.

1 c �S
u t : C → C ′

1 c � P(t) : P(C)→ P(C ′)
(31)

1 c �S
f t : C → C ′

1 c � P(t) : P(C)→ P(C ′)
(32)

1 c � t : C → C ′, 1 c � t′ : C ′ → C ′′

1 c � t ' t′ : C → C ′ (33)

Fact 7.21 If 1 c � t1 and 1 c � t2, then also 1 c � t1&t2 and 1 c � P(Is(t1)).

The switching lemma, revisited

Lemma 7.22 Suppose 1 c � t1 : C1 → C is a folding step, i.e. is derived by
means of rule (32), and suppose 1 c � t2 : C → C2 is an unfolding step, i.e.
is derived by means of rule (31). Then there exists t3, t4 and C3 such that

54



1 c � t31 : C1 → C3 by an unfolding step; 1 c � t4 : C3 → C2 by a folding
step; and t1 ' t2 = t3 ' t4.

Proof: (A sketch only) There exists t′1, t
′
2, C

′
1, C

′
2, C

′ and C ′′ such that
1 c �S

f t′1 : C ′
1 → C ′. 1 c �S

u t′2 : C ′′ → C ′
2, t1 = P(t′1), t2 = P(t′2) and

C = P(C ′) = P(C ′′). It is not hard to see that we can assume that t′1 and t′2
are derived by means of (26) and (21) respectively, and that we can assume
C to be a singleton (i.e. not ∅).

There are two cases (where we dispense with writing the IdCaH
-parts):

1. t′1, t
′
2 takes the form

t′1 = Is1(R(P(Is(G)(t(G)))))

t′2 = Is2(t(G))

Thus t1 = R(P(Is1�s(G)(t(G)))), t2 = P(Is2(t(G))). Then

Is1�s(G)(CaG) = C = Is2(CaG)

enabling us to conclude that s1 ' s(G) = s2 and hence also C1 = C2.
Now we can use t3 = t4 = IdC1 . That t1 ' t2 = IdC1 is an easy conse-
quence of fact 4.30,(4).

2. t′1, t
′
2 takes the form

t′1 = Is1(R(P(Is(G1)(t(G1))))&IdCaG2
)

t′2 = Is2(IdCaG1
&t(G2))

Now apply the usual technique: we infer that s1 ' (s(G1)&Id ) = s2,
and define

t′4 = Is1(R(P(Is(G1)(t(G1))))&Id c(G2))

t′3 = Is2(Id c(G1)&t(G2))

We now define t3 = P(t′3), t4 = P(t′4). Clearly 1 c �S
u t′3, 1 c �S

f t′4
and

t3 ' t4 = P(t′3 ' t′4) = P(t′1 ' t′2) = t1 ' t2

55



✷

The normalization lemma, revisited

Lemma 7.23 Suppose 1 c � t : C ′ → C ′. Then there exists t1, t2, C
′′ such

that 1 c �u t1 : C → C ′′, 1 c �f t2 : C ′′ → C ′, t = t1 ' t2.

Proof: As the proof of lemma 5.15, now exploiting lemma 7.22. ✷

7.7 Unfolding at level 2

Now assume that we have definedRU1, a finite set of rules at level 1. Assume
that there is a bijective correspondence between RU1 and U , such that the
rule corresponding to G is a transition from CaG. Then there is no risk of
a configuration being stuck (i.e. not in normal form but cannot be unfolded
further).

We now define what it means for a transition t from C to C ′ to be a level
2c unfolding step, to be written 2 c �S t : C → C ′.

t ∈ RU1

2 c �S Is(idCaH1
&t&idCaH2

)
(34)

2 c �S IdC (35)

2 c �S t1, 2 c �S t2
2 c �S t1 + t2

(36)

Next we define what it means for a transition t from C to C ′ to be a level
2c unfolding, to be written 2 c � t : C → C ′:

2 c �S t : C → C ′

2 c � P(t) : P(C)→ P(C ′)
(37)

2 c � t : C → C ′, 21 c � t′ : C ′ → C ′′

2 c � t ' t′ : C → C ′ (38)

Fact 7.24 If 2 c � t : C → C ′, also 1 c � t : C → C ′.
If 2 c �S t : C → C ′, also 1 c � P(t) : P(C)→ P(C ′).

Proof: Induction in the derivation tree: the only interesting case is where
(34) has been applied. We must show that

56



1 c � P(Is(IdCaH1
&t&IdCaH2

))

But this is a consequence of fact 7.21. ✷

By combining lemma 7.23 and fact 7.24 we get

Fact 7.25 If 2 c � t : C → C ′, there exists t1, t2, C
′′ such that

1 c �u t1 : C → C ′′, 1c �f t2 : C ′′ → C ′, t = t1 ' t2.

If C ′ is in normal form, C ′ = C ′′.

7.8 Level 2 semantics

Definition 7.26 Given basic configuration B (not failure). Suppose 2 c �
t : B → C with C in normal form. Then [[B]]2 = C.

If no such t and C exists, [[B]]2 = ⊥.

By fact 7.25, this is well-defined.
We say that t is a fair level 2c single step if t takes the form t = Is(t1& · · ·

&tn), n ≥ 1, each ti ∈ RU1. We say that t is a fair level 2c step if t takes the
form t = t1 + · · ·+ tk, at least one ti being a fair level 2c single step and the
rest of form IdB with B empty. We say that t is a fair level 2c unfolding if
t takes the form t = P(t1) ' · · · ' P(tk), each ti being a fair level 2c step. We
say that B loops at level 2c by a fair strategy if for all i > 0 there exists Ci

not in normal form and fair level 2c step ti from Ci−1 to Ci (here C0 = B).
We say that t is a LR level 2c single step if t takes the form t = Is(t1&IdB),

with t1 ∈ RU1. We say that t is a LR level 2c step if t takes the form
t = t1 + · · · + tk, at least one ti being a LR level 2 single step and the rest
of form IdB with B empty. We say that t is a LR level 2c unfolding if t
takes the form t = P(t1) ' · · · ' P(tk), each ti being a LR level 2c step. We
say that B loops at level 2c by the LR strategy if for all i > 0 there exists
Ci not in normal form and LR level 2c step ti from Ci−1 to Ci (here C0 = B).

Definition 7.27 Given basic configuration B (not failure) Suppose 2 c �
t : B → C with C in normal form, where t is a LR level 2c unfolding. Then
[[B]]L2 = C.

57



If no such t and C exists, [[B]]L2 = ⊥.

Clearly, [[B]]L2 = ⊥ iff B loops at level 2c by the LR strategy.

7.9 Total correctness

Theorem 7.28 Assume all U-mirrors occurring in rules in RU1 satisfy F(1).
Then for all B, [[B]]2 = [[B]]1.

Proof: First suppose [[B]]2 = C �= ⊥. By fact 7.25, also [[B]]1 = C.
Now suppose [[B]]2 = ⊥. Then for all n ≥ 1 there will exist fair level

2c step tn and Cn not in normal form such that 2 c � P(tn) : Cn−1 → Cn

(C0 = B). Let t′n = P(t1) ' · · · ' P(tk). 2 c � t′n : B → Cn, and by fact 7.25
there exists t′′n, t

′′′
n and C ′

n such that 1 c �u t′′n : B → C ′
n, 1 c �f t′′′n : C ′

n → Cn

and t′n = t′′n ' t′′′n .
As Cn contains a non-empty basic configuration, this shows that t′n for all

n contains at least one mirror from B to a non-empty basic configuration.
Then it will be possible (by Königs lemma) for all n to find mn ∈ tn such
that m′

n = m1 ' · · · ' mn is a mirror in t′n from B to a non-empty basic
configuration. Also there will exist mirrors m′′

n ∈ t′′n and m′′′
n ∈ t′′′n such that

m′
n = m′′

n 'm′′′
n . It is easily seen that 1 �u m′′

n : B → B′
n, with B′

n not failure.
Due to the assumption of the theorem, each mi will satisfy F(1). Then, by

lemma 4.32, each m′
n will satisfy F(n). But then also m′′

n will satisfy F(n).
By lemma 5.8, this shows that B loops at level 1 by a fair strategy, and by
fact 7.18 [[B]]1 = ⊥. ✷

Theorem 7.29 Assume all U-mirrors occurring in rules in RU1 satisfy L(1).
Then for all B, [[B]]L2 ≥ [[B]]L1 .

Proof: First suppose [[B]]L2 = C �= ⊥. Then also [[B]]2 = C, so by fact
7.25 [[B]]1 = C. Now either [[B]]L1 = C or [[B]]L1 = ⊥.

Now suppose [[B]]L2 = ⊥. Then for all n ≥ 1 there will exist LR level
2c step tn and Cn not in normal form such that 2 c � P(tn) : Cn−1 → Cn

(C0 = B). Let t′n = P(t1) ' · · · ' P(tn). 2 c � t′n : B → Cn, and by fact 7.25
there exists t′′n, t′′′n and C ′

n such that 1 c �u t′′n : B → C ′
n, 1 c �f t′′′′n : C ′

n → Cn

and t′n = t′′n ' t′′′n .
As Cn contains a non-empty basic configuration, this shows that t′n for all

n contains at least one mirror from B to a non-empty basic configuration.

58



Then it will be possible for all n to find mn ∈ tn such that m′
n = m1 ' · · ·mn

is a mirror in t′n from B to a non-empty basic configuration. Also there will
exist mirrors m′′

n ∈ t′′n and m′′′
n ∈ t′′′n such that m′

n = m′′
n ' m′′

n. It is easily
seen that 1 �u m′′

n : B → B′
n, with B′

n not failure.
Due to the assumption of the theorem, each mi satisfies L(1). By lemma

4.37, there exists an increasing sequence

m′
1 ≺ m′

2 ≺ m′
3 ≺ · · ·

Now two possibilities:

1. E(m′
n) is not bounded. Then neither E(m′′

n) is bounded, so by lemma
5.11 B loops at level 1 by a LR strategy.

2. E(m′
n) is bounded. Then L(m′

n) is unbounded, so also L(m′′
n) is un-

bounded. Then again lemma 5.11 tells us that B loops at level 1 by a
LR strategy.

In both cases, fact 7.20 tells us that [[B]]L1 = ⊥. ✷

References

[Amt92] Torben Amtoft. Unfold/fold transformations preserving termination
properties. To appear in the proceedings of PLILP 92, 1992.

[BD77] R.M. Burstall and John Darlington. A transformation system for de-
veloping recursive programs. Journal of the ACM, 24(1):44–67, January
1977.

[DP88] John Darlington and Helen Pull. A program development methodol-
ogy based on a unified approach to execution and transformation. In D.
Bjørner, A.P. Ershov, and N.D. Jones, editors, Partial Evaluation and
Mixed Computation, pages 117–131. North-Holland, 1988.

[Gre87] Steve Gregory. Parallel Logic Programming in PARLOG - the lan-
guage and its implementation. Addison-Wesley, 1987.

[GS91] P. A. Gardner and J. C. Shepherdson. Unfold/fold transformations
of logic programs. In Computational Proofs: Essays in honour of Alan
Robinson. 1991.

59



[Han91] Torben Amtoft Hansen. Properties of unfolding-based meta-level
systems. In Partial Evaluation and Semantics-Based Program manipu-
lation, New Haven, Connecticut. (Sigplan Notices, vol. 26, no. 9), 1991.

[KK90] Tadashi Kawamura and Tadashi Kanamori. Preservation of stronger
equivalence in unfold/fold logic program transformation. Theoretical
Computer Science, 75:139–156, 1990.

[Kot85] Laurent Kott. Unfold/fold program transformations. In Maurice Ni-
vat and John C. Reynolds, editors, Algebraic methods in Semantics,
chapter 12. Cambridge University Press, 1985.

[Llo84] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
1984.

[NN90] Hanne Riis Nielson and Flemming Nielson. Eureka definitions for
free! or disagreement points for fold/unfold transformations. In Neil
D. Jones, editor, ESOP 90, Copenhagen, Denmark. LNCS 432, pages
291–305, May 1990.

[Pal89] Catuscia Palamidessi. Algebraic properties of idempotent substitu-
tions. Technical Report TR-33/89, University of Piss, 1989.

[Plo81] Gordon D. Plotkin. A structural approach to operational seman-
tics. Technical Report FN-19, DAIMI, University of Aarhus, Denmark,
September 1981.

[PP91a] Maurizio Proietti and Alberto Pettorossi. Semantics preserving
transformation rules for Prolog. In Partial Evaluation and Semantics-
Based Program Manipulation, New Haven, Connecticut. (Sigplan No-
tices, vol. 26, no. 9), 1991.

[PP91b] Maurizio Proietti and Alberto Pettorossi. Unfolding - Definition -
Folding, in this order, for avoiding unnecessary variables in logic pro-
grams. In Proceedings of PLILP 91, Passau, Germany (LNCS 528),
August 1991.

[Sek91] Hirohisa Seki. Unfold/fold transformations of stratified programs.
Theoretical Computer Science, 86(1):107–139, 1991.

60



[Søn89] Harald Søndergaard. Semantics-based analysis and transformation
of logic programs. Technical Report 89/22, DIKU, University of Copen-
hagen, Denmark, 1989.

[TS84] Hisao Tamaki and Taisuke Sate. Unfold/fold transformation of logic
programs. In Proceedings of 2nd International Logic Programming Con-
ference, Uppsala, pages 127–138, 1984.

[Tur86] Valentin F. Turchin. The concept of a supercompiler. ACM Transac-
tions on Programming Languages and Systems, 8(3):292–325, July 1986.

[Wad90] Philip Wadler. Deforestation: Transforming programs to eliminate
trees. Theoretical Computer Science, 73:231–248, 1990.

61


