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Abstract

In this paper we model both program behaviours and abstractions between them
as lax functors, which generalize abstract interpretations by exploiting the natural
ordering of program properties. This generalization provides a framework in which
correctness (safety) and completeness of abstract interpretations naturally arise from
this order. Furthermore, it supports modular and stepwise refinement: given a
program behaviour, its characterization, which is a “best” correct and complete
denotational semantics for it, can be determined in a compositional way.

*University of Aarhus, Denmark
tLFCS, University of Edinburgh, Scotland
{Universitat Erlangen, Germany



1 Introduction

Abstract interpretation is a method for analyzing program behaviours, i.e. the relationship
between programs and their observable properties [CC77a, CC77b, Nie86, AH87, JN90].
It abstracts from standard (denotational) semantics for programming languages to non-
standard semantics, which are intended to retain correct (safe), but not necessarily com-
plete, information about given properties of interest. This intention is hard to specify
without a precise notion of behaviour, which, despite its primacy, was missing in the
framework of abstract interpretation.

In this paper, the notion of behaviour is defined formally as a simple generalization of
abstract interpretation, in which operations (specifically, sequential composition) are pre-
served up to a notion of inequality, which, intuitively, expresses precision of information.
It can then be used to specify the properties of programs, which must be respected, both
by abstract interpretations and the abstractions between them. This notion of behaviour
is not restricted to programming languages, nor need it be derived from a standard de-
notational semantics. For example, abstractions between semantics can also be viewed
as behaviours in our framework, replacing logical relations [Plo80], which are symmetric
and do not compose, which is counter-intuitive [MJ86].

Moreover, correctness and completeness of one behaviour for another arise naturally
from this precision ordering on properties, and so define a partial order on behaviours.
This provides an intuitive and simple notion of correctness and completeness of one ab-
stract interpretation for another via their behaviours, and generalizes the approach using
correctness correspondences [JN90, MJ86], which aside from being complicated yields a
non-transitive notion of correctness.

Unlike denotational semantics or abstract interpretations, behaviours are not, in gen-
eral, compositional. However, compositionality can be systematically recovered by apply-
ing the characterization functor, which maps behaviours to the abstract interpretation
that identifies programs, which behave identically in any context. This construction pre-
serves stmultaneous observation and stepwise construction of behaviours and therefore
permits the hierarchical development of abstract interpretations from behavioural speci-
fications.

The development in this paper is based on the categorical framework. This has two
reasons. First, because it provides a very general and well-developed mathematical back-
ground for computer science in general, and typed programming languages in particular.
Second, the inequalities, which are central to our concept of behaviour, have been studied
extensively as lax functors [KS74]. However, neither of these reasons for using categories
is imperative, as the point is that behaviours preserve operations up to inequality. This is
equally meaningful for untyped languages, where the programs form a set equipped with
some operations, and our behaviours are a form of “weak” homomorphism.

Altogether, the paper is structured as follows. After sketching our model in Section 2,
we develop our notion of behaviour in Section 3. We introduce simulation relations in
Section 3.1 in order to motivate the subsequent development, where behaviours are defined
as lax functors (Section 3.3) between ordered categories (Section 3.2). Subsequently,
we define the dual notions of correctness and completeness of one behaviour (abstract
interpretation) wrt another in Section 3.4. Section 4 presents (Section 4.1) and illustrates




(Section 4.2) the main result of this paper, as well as too corollaries, which establish the
modularity and functoriality of our framework (Section 4.3). Finally, Sections 5 and 6
mention conclusions and directions for future work.

2 The Model

Our model consists of ordered categories (similar to O-categories [SP82]), with behaviours
corresponding to morphisms between them. It can be sketched by means of the following
diagram:

L is a category, which we identify with a programming language: its objects are types
and its morphisms are programs. Denotational semantics and abstract interpretations
D: L — D are both structure-preserving functors (into, say, a category of domains). For
the purposes of this exposition, we consider the simplest case, where the only structure
of £ is composition.

O is an ordered category of observations or properties, i.e. its morphisms are ordered
in a way compatible with composition, with smaller morphisms representing stronger
properties. For example, for strictness analysis, one usually considers O = , which
has one object and two morphisms L (reflecting strictness wrt the parameter under
consideration) and T (reflecting that no information could be inferred) satisfying 1 < T.

A behaviour B: £ x— O is an assignment of properties to programs, which is weakly
functorial or compositional, i.e. is a laz functor (Section 3.3). For example, the strictness
of a composite program f;g cannot be inferred from the strictness of its components f
and g. Rather, we have for strictness behaviour B

B(f;9) < Bf;Byg

which allows us to infer correct, but incomplete information about f; g from the behaviours

of f and g, e.g. if f and g are both strict then so is f;g, but otherwise no information
can be deduced.

Let now B’ : D x— O be a given behaviour (lax functor) for the semantics D (e.g.
strictness for continuous functions between domains). Then D is correct for B if

B < D;B

Completeness is exactly dual, i.e. D is complete for B if D;B’ < B. Thus, D is correct and
complete for B if D;B’ = B, as indicated by the diagram above.
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The Characterization Theorem 4.6 states that every behaviour has a “best” correct
and complete abstract interpretation @B, which is its characterization. More precisely,
we factorize the lax functor B as a functor QB followed by a lax functor eg. Data types
are preserved by @B, i.e. it is injective on objects, and it is computationally relevant, i.e.
surjective on morphisms. Its effect is to identifiy those programs, which have the same
behaviour in any context. That QB is the “best” possible such abstract interpretation
refers to the following universal property:

L

¥

o

Let D be another abstract interpretation for B, which is correct and complete, datatype
preserving, and computationally relevant (Section 4.1). Then QB factors through D in a
unique way.

Behaviours may have structure themselves: they may either represent the simultaneous
observation of some more primitive behaviours, or they may be constructed by stepwise
abstraction. In fact, this structure is preserved by the characterization functor @, as can
be easily derived from the Characterization Theorem 4.6:

First, Q is modular, i.e. the characterization of a behaviour, which is the simultaneous
observation of a pair of behaviours B; and B,, is obtained from their characterizations
using categorical products.

Second, Q is functorial. Hence, the characterization of the stepwise abstraction B;;B,
along two behaviours factors through the characterization of B,1

Thus correct and complete abstract interpretations can be constructed hierarchically
along the structure of their behavioural specifications, which is reminiscent of the well-
known paradigm of software development.

Related Approaches

[CC79, Ste87, Ste89] are concerned with the systematic development of abstract in-
terpretations for imperative languages. Cousot/Cousot consider only the phenomenon
of simultaneous observation. Moreover, they do not aim to obtain an abstract inter-
pretation, which satisfies a specific behaviour. Rather, they consider a given abstraction
function, and try to mimic the complete semantics (static semantics) on the corresponding
codomain as precise as possible.

1This is particularly useful for data flow analysis since one can successively abstract from certain
program properties, until the universal model  is decidable. Of course, properties like decidability are
not covered by our framework. They must be investigated separately.
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In contrast, like this paper, [Ste87, Ste89] are concerned with developing an abstract
interpretation that satisfies a given program behaviour, or in their terminology, which
cannot be distinguished from its specification on a given level of observation. Whereas
[Ste87] only deals with functoriality, [Ste89] also considers modularity.

The categorical approach presented here generalizes and simplifies these approaches.

3 Behaviours of Programs

A programming language is represented by a category £ in our setting; the types of the
language are its objects (or if untyped then it has a single object) and the programs are
its morphisms. Usually, the language will have further structure (e.g. A-abstraction or
fixpoints), which we would expect semantics to preserve (see Section 6), but here, for the
sake of simplicity, we will refrain from assuming more than sequential composition and
empty programs, which are the composition and identities, respectively, of L.

Thus, a denotational semantics for £ is a functor £ — D. Typically, D is Dom the
category of domains or, alternatively, one of its full subcategories. For some authors (e.g.
[BHAS6]) the semantics is represented as a single domain +D,,, namely, the coalesced sum
of the objects of D, but this suppression of typing information obscures the functoriality
of the semantics. Abstract interpretations are also functors, and may be thought of as
non-standard denotational semantics.

Each family of observable properties of £ (e.g. {“strict”, “no-information”}) is nat-
urally ordered by implication so that these properties, or observations, form an ordered
category (Section 3.2).

A behaviour maps programs (or perhaps denotations) into an ordered category of
properties, or observations. The only behaviours of interest are those for which the
property of a composite program is at least as strong as that determined by its parts,
whence a behaviour is a lax functor (Section 3.3). Lax functors also arise as abstractions
between abstract interpretations, e.g. the abstraction map abs for strictness of [BHAS6].
Once the nature of behaviour is made explicit, the definition of correctness, and the dual
notion of completeness, arise naturally from the ordering.

To motivate our definition of behaviours as lax functors into ordered categories, we
will begin with simulation relations, which generate an important class of behaviours.

3.1 Simulation Relation

Definition 3.1 Let A and B be categories. A simulation relation R : A ~— B from A
to B consists of

(i) @ function, also denoted R, from objects of A to objects of B, and
(ii) for each pair of objects A and A’ of A, a relation
Rya : A(A,A") = B(RA,RA")
between the homsets of A and B, which together satisfy

(iii) g € Rf and g’ € Rf' implies g;g' € R(f; f') for morphisms



A f y Al f N AII

RA J — RA' 7 RA"

(iv) for any object A in A then idps € Ry a(idy).

Note that the simulation relations that are (partial) functions on the homsets are just
(partial) functors.

Example 3.2 A subcategory A’ of A, which contains all of the objects of A, is called slim.
A’ may be thought of as the collection of morphisms (programs) having some property
satisfied by identities and preserved by composition. Then there is a simulation relation
R : Ax—1 (1 is the terminal category with one object * and whose sole morphism is

id,) defined by
(i) RA =4 * for all objects A

{id,} if fin A’

{} otherwise

Conversely, such a simulation relation R determines a slim subcategory of A, whose
morphisms are those related to id, by R. Thus simulation relations with codomain 1
directly correspond to program properties that are satisfied by identities and preserved by
composition. More complicated behaviours for .4 are obtained by expanding the codomain

of R.

(i1) if f: A — B then Rap f =4 {

Simulation relations compose, and so can be used to model stepwise abstraction. Let
R : Ax— B and S : B »— C be simulation relations. Then R;S : Ax—C is the
simulation relation defined by

() (B;S)A =4 S(R(A))
(ii) if f: A — B then (R;S)a5f =4 U{Srarpg|9€ Ranf}.

For example, R may represent a translation into another programming language, whose
behaviour is given by S (Section 4.3). Note that B plays the role of observations for R and
also that of language for S. This phenomenon was the reason for us to model observations
by categories.

Mycroft and Jones [MJ86] modelled abstraction using logical relations, which are
like simulation relations, except that they use a relation between the objects of the two
categories instead of a function. This additional freedom allows a single type to be
abstracted to a family of types, which is counter-intuitive for abstraction, as is the fact
that composites of logical relations are not necessarily logical relations. We will introduce
a notion of abstraction that generalizes simulation relations while avoiding these problems
(Definition 3.9).

Categorical products are used to represent a pair of morphisms B : £ x— O and
B’ : L ~— O by a single morphism < B,B’ >: £ »—s @ x @'. The original morphisms
are recovered by projection. Thus, if the morphisms are behaviours then the induced be-
haviour into the product represents their simultaneous observation. Therefore, we claim
that any adequate category of behaviours must have products in order to allow the mod-
ular construction of complex behaviours from its components. This excludes the category
of simulation relations:




Proposition 3.3 The category of simulation relations does not have binary products.

Proof: It suffices to show that there is no product of 1 with itself, i.e. thereis no category
A such that for each category A, the simulation relations A4 »— X are in bijection with
pairs of slim subcategories of A (Example 3.2). Assume that such a category X exists.
1 has a unique slim subcategory. Thus there is a unique simulation relation 1 x~— X,
which forces X' to have a unique object *, whose monoid of endomorphisms X (*,x) has a
unique submonoid, i.e. is trivial. Thus X is isomorphic to 1. On the other hand, simu-
lation relations into 1 are in bijection with individual slim subcategories, which yields a
contradiction. a

In order to guarantee the modularity of the framework, one must generalize from
relations to laz functors between ordered categories, whose definition is our next goal.

3.2 Ordered Categories

One abstract interpretation is correct (or safe) wrt another if the denotations of the
former have weaker (fewer) properties. To capture this ordering of properties we interpret
programming languages in ordered categories, which generalize categories of domains.

Definition 3.4 An ordered category is a category, whose homsets are partially ordered,
with composition preserving the order, i.e. if f<g: A — B and f'<g' : B — C then

<959 : A— C. In short, an ordered category is a category enriched over partial
orders [KS74].

Example 3.5

1. Let Dom be the category of domains. With the pointwise ordering of continuous
functions it is an ordered category.

2. Let O be any category. Then its power category PO has the same objects as O
with homsets given by the powersets of those of O

PO(A, B) =4 P(O(A, B))

ordered by subset inclusion. The identity for an object A is {¢d4} and composition
is computed pointwise: given two morphisms f = {f;i € I} : A — B and g =
{957 € J} : B — C of PO then

fr9=a{fsglicl,jeJ}.

For instance, let 1 be the terminal category with one object * and whose sole mor-
phism is id,. Then 2 =4 P1 is the category with one object * and two morphisms
{} <{id.}. If O is a category of properties then PO is a category of families of
properties, with larger morphisms representing more properties.



3. If B is an ordered category then B, the local dual of O, is the ordered category
obtained by reversing the orders on the homsets. Thus the local duals of power
categories represent stronger properties by smaller morphisms, as is usual. For
example, in 2° we have {id.} < {}. This ordered category will be used to represent

a single property, and so deserves special terminology: we call it { and denote {id\}
by L and {} by T.

4. Any ordinary category £ may be coerced to a discrete ordered category by giving
its homsets the discrete order, i.e. f <giff f = g. Then, £ = L.

5. Categories and simulation relations form an ordered category in the obvious way:
Composition is defined in Section 3.1 and clearly, the identity functors are the
identity simulation relations. Simulation relations are ordered by letting

if they agree on objects and if Rypf C Sapf for every morphism f: A — B.

3.3 Lax Functors

Lax functors are a weak notion of functor appropriate to ordered categories and the study
of behaviour. The laxness of the functor reflects the loss of information that arises when
approximating the behaviour of a large program by composing the behaviours of its parts.

Definition 3.6 Let A and B be ordered categories. A lax functor or behaviour F :
A x— B consists of

(i) @ function, also called F, from objects of A to objects of B, and

(ii) for each pair of objects A and A’ of A, an order preserving function
Fau : A(A, A') — B(FA, FA')

which together satisfy

(iii) given morphisms f: A — A’ and g: A' — A" then
F(f;9)<Ff;Fg

(iv) given an object A of A then
Fidy <idpy,

If these inequalities are actually equalities then F is an ordered or rigid functor. Also,
if the inequalities (iii) and (iv) are reversed (so that F'f; Fg< F(f;g) and idgs < Fidy)
then F' is called an oplaz functor. Note, the oplax functors F' : A »—s B are just lax
functors A% x— B,

Given a fixed start state, a typical behaviour for an imperative language would be to
simply consider the effects of programs on a distinct variable that we regard as input-
output parameter. This behaviour is certainly not compositional (i.e. does not define
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a rigid functor), because side effects of the first program part on other variables may
change the effect of the second program part. Thus the behaviour of a composite cannot
be inferred from its component behaviours. However, it can be safely approximated by
“no information”, which guarantees the properties of a lax functor. Another example is
the strictness behaviour of functional languages. We will concentrate on this example in
the sequel:

Example 3.7

1. Strictness ([AH87]) for Dom is given by the lax functor B’ : Dom »— §, which
maps all domains to * and which is defined for a continuous function f : X — Y by

B,f:{L if f(L) =1

T otherwise

Subcategories of Dom inherit this behaviour, by composition with the inclusion
functor.

2. Let £ be a programming language, i.e. a discrete ordered category. Then every
denotational semantics D : £ — Dom yields a strictness behaviour for £:

D;B': L »— Q

3. Any functor F : A — B is a lax functor if we regard A and B as discrete ordered
categories.

4. Composites of lax functors are lax. They can be used for stepwise construction of
behaviours. For example,if T': £ — L' is a functor (perhaps realizing a translation
from £ into £') and B’ : £’ x~— B is a behaviour for £ then T;B' is a behaviour for
L (see Section 4.3).

5. Let R: L »— O be a simulation relation. It can be thought of as an oplax functor
L »— PO or equivalently, a lax functor £ x— PO (since L is discrete). For
example, slim subcategories of £ correspond to lax functors £ ~— .

The ordered categories and lax functors themselves form an ordered category 0rd, wherein
F<G: Ax— Bif F and G agree on objects and Ff <Gf for each morphism f. In
contrast to simulation relations, lax functors can represent simultaneous observations, as
can be inferred from:

Proposition 3.8 Ord has cartesian products. The cartesian product of ordered categories
O and O' is their cartesian product O x O as ordinary categories with pointwise ordering
on the homsets.

Proof: First note that the pointwise ordering in O x O’ ensures that the ordinary pro-
jections w1 : O x O' — O and w3 : O x O' — O are lax, in fact, rigid functors. Now let
F:C»— O and F' : C x— O’ be lax functors. Then, pointwise pairing of objects and
morphisms defines a lax functor

<FF>Cx»— O0x0
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It is easy to establish that this lax functor has the universal properties that make @ x ¢’
into a categorical product in Ord. a

This proposition can be extended to arbitrary limits, so that general methods of combining
observations are possible, e.g. pullbacks could be used to represent sharing constraints.

Lax functors are the promised elaboration of simulation relations, which constitute an
adequate notion of abstraction between behaviours, and in particular, abstract interpre-
tations:

Definition 3.9 Let B: L x— O and B’ : L x— O' be behaviours for L. An abstraction
F :B' x— B is a laz functor making the following diagram commute:

L
N
v N
O «— 5 O
F

The behaviours for £ and the abstractions between them form its category of behaviours,
denoted B(L). It is also known as the comma category L /0rd.

3.4 Correctness and Completeness

Let B,B' : £ x~— O be two behaviours. As established above, we consider small mor-
phisms in O to be more informative than large ones. Thus B’ is correct (or safe) for B
if

B < B
Dually, it is complete for B if B’ <B. Correctness implies that B’ yields no more informa-
tion than B, while completeness implies that it yields at least as much.

Now, fix a programming language £, which we regard as a discrete ordered category,
and consider the following diagram of lax functors:

L

N
A

' B’
O

D

Then D is correct and complete for B iff there is a lax functor B’ such that D;B’ is both
correct and complete for B, i.e. iff there exists a morphism B’ : D ~— B in B(L). —
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Of particular interest are decidable correct and complete abstract interpretations for B,
because they specify complete data flow analysis algorithms for B.

It does not make sense to define either correctness or completeness separately, without
first specifying B/, e.g. strictness for domains, since almost every abstract interpretation
D would be correct (complete) for some behaviour on D. This is true in all approaches,
though often the behaviour is merely implicit. Logical relations improve on the general
situation, but still account for B’ indirectly, at the technical level of domain equations
([JN90, MJ86]). Here B’ is accounted for directly, which yields greater clarity and flexi-
bility: D is correct (complete) for B if D;B’ is correct (complete) for B. This definition of
correctness (completeness) is transitive and non-symmetric, as can be illustrated by the
following example, involving higher-order strictness analysis. The formalism used here is
new: the proofs are in the original paper [BHAS6].

Let £ be a programming language generated from a single type A and equipped with
a denotational semantics D : £L — D, where D is the full subcategory of Dom generated
by the image of A in Dom. The standard strictness behaviour B’ for D inherited from
Dom (Example 3.7(2)) yields strictness for £ via

B =df D; B'

Thus, D is correct and complete for B by definition. Let B be the full subcategory of
domains generated by 2 =4 {L < T}. There is an abstraction abs : D ~— B, which is
correct for the strictness behaviour B'.

From this (or directly) can be constructed a (smallest) rigid functor (an abstract inter-
pretation) D' : £ — B, which is correct for D; abs. A short diagram-chase now shows that
D' is also correct for B since D’;B’ > D;abs;B’ > D;B' = B.

Correctness is the critical notion for abstract interpretation, because the safety of a
program transformation depends on the correctness of the properties it is based on. Com-
pleteness naturally arises as the exact dual of correctness in our framework. Of course,
for “standard behaviours”, complete abstract interpretations are usually undecidable, and
so completeness was neglected. However, there may well be decidable abstract interpre-
tations for “nonstandard behaviours”. Thus, completeness can express useful minimal
requirements for data flow analysis algorithms. Further, there are situations, where com-
pleteness is critical. For example, in data refinement (e.g. [HJ88]) an implementation
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must have at least the properties of the specifying abstract data type. We conjecture that
these properties define a behaviour in our framework, and that successful data refinement
is simply completeness there.

4 Characterization of Behaviour

We wish to construct an abstract interpretation from a behaviour. Each behaviour yields
an equivalence relation on the programs obtained by relating those programs, which be-
haveidentically. Abstract interpretations are behaviours that are characterized by yielding
a congruence relation.

The point of the characterization functor is to associate each behaviour with an ab-
stract interpretation that corresponds to the largest congruence, which refines the equiva-
lence relation of the behaviour, i.e. which relates programs that have the same behaviour
in any context. This yields a categorical congruence (cf. [Mac71, BW85]) on the category
of programs, whose quotient will be the desired characterization of the original behaviour.

4.1 The Characterization Functor

Definition 4.1 Let C be a category. A congruence on C is a family E4 p of equivalence
relations on the homsets C(A, B) (where E4 (f, f') is written f = §' when the congruence
E is understood) satisfying, for f,f': A— B and g,¢': B — C

f=Ffandg=g imply fig=f'; 9

Given a congruence E on a category C there is a quotient category C (E) having the same
objects as C whose morphisms are the equivalence classes of morphisms in C.

Of course, there is also a quotient functor Q : C — C(E), which maps each morphism
to its congruence class. It is injective on objects (preserves datatypes) and is also surjective
on objects and morphisms (is computationally relevant). The category of quotients Q(L)
is the full subcategory of B(L) of quotient functors, where we consider quotient functors
as lax functors between discrete ordered categories (see Example 3.3.3). The universal
property of quotient functors is given by

Proposition 4.2 Let E be a congruence on C with quotient Q. If H : C »—s O is a laz
functor such that for all morphisms f,f': A — B inC

f=f implies Hf = Hf'

then there is a unique laz functor H' : C(E) »— O satisfying Q; H' = H.

c
AN
Ve N
O — 5 C(E)
Hl

Moreover, if H is an rigid functor then H' is an rigid functor too.

12



Proof: (Sketch) H' agrees with H on objects, and maps a congruence class [f] of mor-
phisms to H f. a

Example 4.3 Let D : £ — D be a denotational semantics and define two parallel mor-
phisms f and f’ to be denotationally equivalent, Ep(f, f"),ifDf = Df". Then D factorizes
through the corresponding quotient functor QD in a unique way:

/\

R B c(ED)

We have:
Proposition 4.4 Q(L) is a meet semi-lattice.

Proof: Let Q : L — U and Q' : L — U’ be quotient functors arising from congruences E
and E’ respectively. It follows from Proposition 4.2 that there is at most one lax functor
F :U »~— U’ satisfying Q; F = @', which must then be a quotient. We then say Q < Q"
Such an F exists iff £ C E' that is, E(f, f') implies E'(f, f'). The meet of Q and Q'

(their categorical cartesian product) is the quotient corresponding to E N E'. O

Definition 4.5 Let B : £ x— O be a behaviour. Morphisms f,f' : A — B in L are
behaviourally congruent if, for all morphisms g: A' — A and h : B — B’ we have

B(g; f3h) = B(g; f'; )

that is, f and f' have the same behaviour in every (input-output) context. Then the
quotient functor @B : L — U corresponding to this congruence is the characterization of
the behaviour B.

Applying Proposition 4.2 to the behavioural congruence on £ generated by B with
H = B shows that B = ()B;cp for some behaviour ¢g, i.e. QB is correct and complete for
B. This characterization of behaviours is the object part of the functor Q specified in the
following theorem:

Theorem 4.6 (Characterization Theorem)

Q(L) is a coreflective subcategory of B(L), i.e. the inclusion of Q(L) in B(L) has a
right adjoint Q, the characterization functor.

13
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0

Proof: Let B : £ «~— O be a behaviour. Then its image under Q is defined to be the
quotient functor @B : L — U as described in Definition 4.5.

The counit of the coreflection is ¢g : QB ~— B. To see its universal property, let
Q" : L — U’ be another quotient functor, which is correct and complete for B, i.e.
Q'; B’ = B for some behaviour B'. Then Q'f = Q'g implies that f and g are behaviourally
congruent since Q' is a functor. Thus, @B(f) = @B(g) and so applying Proposition 4.2
with Q" as quotient shows there is a unique functor F : Y’ — U making all triangles in
the diagram above commute. a

Note that the universal property is more general than it may at first appear, since Example
4.3 shows that every abstract interpretation factorises through some quotient functor.

The Characterization Theorem 4.6 generalizes the well-known result that there exists
a unique largest congruence relation in every equivalence relation. — Let us now illustrate
the situation obtained so far by means of strictness analysis.

4.2 Strictness Analysis

The behaviour of a program is usually given by the behaviour of its denotation, but
may also be determined in other ways, e.g. by first manipulating the syntax. Here both
methods are used to obtain strictness analyses [AH87] for some simple languages, which
illustrate the main features of this framework. First, we consider the behaviour of the
denotations.

Let D be the full subcategory of domains generated by N, the flat natural numbers. Its
behaviour B’ : D »— Q is induced by the strictness behaviour of Dom (Example 3.7(2)).
The structure of Dom is so rich that it prevents identifications through behavioural
congruence (unlike many languages).

Lemma 4.7 The characterization for the strictness behaviour B' : Dom »—  on do-
mains is the identity.

Proof: Let f,g: D — D’ be continuous functions, which are behaviourally congruent.
Given z € D let h : D' — 2 be the unique continuous function specified by h71(L)
is the down-closure of f(z) in D’. Then f = g implies B'(hf(z)) = B'(hg(z)) whence
9(z) < f(z). By symmetry, f(z) < g(z) and so f(z) = g(z). o
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Consider a simply typed A-calculus with natural numbers whose types are freely gener-
ated by a type NV (natural numbers) and which is equipped with zero 0 : N and successor
s : N — N, and perhaps some other constants. Let £ be the corresponding category
whose objects are the types, and whose morphisms X — Y are equivalence classes under
a-conversions of terms ¢ : Y equipped with a context T of type X. Additional conversions
(e.g. the 8- and - conversions, which would make the category cartesian closed [LS86])
are not imposed since they are not syntactic, but arise from the behaviour.

The standard denotational semantics for £ is given by D : £ — D, where N is mapped
to N, and constants, including zero and successor, receive their standard interpretation
as lifted functions (though non-deterministic choice requires powerdomains, see below).
The behaviour for £ is then given by B =4 D;B': £ »— Q.

The constant numerals of £, e.g. 0,s0,..., when regarded as morphisms N — N
with free variable = : N, e.g. Az.0,)z.s0,... are all non-strict, while the denotation of
a variable z is the identity, which is strict. Thus, numerals and variables are not be-
haviourally congruent. If the language is pure, i.e. there are no other constant symbols,
then an inductive argument shows that the constant numerals are all behaviourally con-
gruent. However, in the presence of additional constants, more distinctions can be made.
Consider, for example

(i) addition, +: Nx N —- N
(ii) bottom, 1: N
(iii) non-deterministic choice, | : N x N - N

(The denotation of non-deterministic choice requires powerdomains, though its strictness
behaviour is clear: it is strict iff both of its arguments are.)

There are now six separate congruence classes of morphisms Nx N — N (equivalently,
N — N — N), represented by the following A-terms:

Azy.0

Azy.z |y

PN

Azy.z Azy.y

~N 7

Azy.xz +y

Azy. L

They correspond to the strictness values of Burn, Hankin and Abramsky [BHAS86] for this
type, which form the domain 2 — 2 — 2. However, if the language has fewer constants
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then there are fewer congruence classes, which is not reflected in their model since it is
independent of the language.

Conversely, more constants may yield more distinctions. For example, let £ also have
a conditional, c: N - N — N — N, whose denotation is given by

m ifb=1
Dic)bmn=< n ifb=0

1 otherwise

Then truth values (where true and false are represented by 1 and 0 respectively) are
distinguished from each other and from the other constant numerals. By contrast, their
abstraction abs (Section 3.4) identifies all the numerals. Thus abs is incomplete for B, or
more precisely, D;abs;B' > B .

Note that often the strictness of first-order functions is all that we are interested in.
However, the characterization of the corresponding behaviour is the same as that of B
since higher-order morphisms yield first-order morphisms in appropriate contexts. Thus,
the behaviour of interest may be extremely simple, and yet specify complicated abstract
intepretations.

4.3 Compositionality of the Characterization

Behaviours may be constructed by means of simultaneous observation < B,B’ > and
stepwise abstraction B';B". In this section, we establish how to hierarchically develop the
characterization of a behaviour along this structure. This is based on two corollaries to
the Characterization Theorem 4.6.

Corollary 4.8 (Modularity)
Q preserves all limits in B(L). In particular, given two behaviours B : L »— O and

B': L ~— O then the characterization Q < B,B' > of their simultaneous observation is
the meet of QB and QB'.

Proof: Right adjoints preserve limits. O

This result generalizes the well-known fact that the intersection of two congruence rela-
tions is a congruence relation itself.

Example 4.9 Let £ be the richest language considered in Section 4.2. For m > 0 we
define a non-standard denotational semantics D,,, : £ — D, which differs from D in that
D(s) is the successor mod m, i.e. the lifted function n + n+1 (mod m). Let B, =4f Dpn; B
be the corresponding behaviour of £. Then the congruence classes of numerals are those
of mod-m arithmetic and {L1}. These cannot be identified since every numeral can be
mapped to the congruence class of 0 (= “false”) by sufficient applications of s.
Simultaneous observation of B,, and B, is characterized by @B, where ¢ is the least
common multiple of m and n. Note that @B, distinguishes only those programs, which
need to be distinguished for realizing simultaneous mod-m and mod-n observations.

Corollary 4.10 (Functoriality)
Let B=B'; B": L x— O »— O’ be a composite of lax functors. Then we have

QB = QB'; Qg p(B") = QB';Q(e;B")
In particular, @B factors through QB'.
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Proof: The lax functor B” : B' x— B is a morphism of B(L). Since functors preserve
domain and codomain of morphisms, we have Qg g(B") : @B’ — @B, which yields the
result. a

Stepwise abstraction of behaviours arises naturally in the search for the right level of
abstraction. Consider data flow analysis: Decidable abstract interpretations directly
specify data flow analysis algorithms. Usually however, the abstract interpretation as-
sociated with a certain data flow problem is not decidable. Thus further abstractions
are necessary. A common such abstraction step is to interpret conditional branching by
non-deterministic choice. It can be realized by a syntactic translation as in the following

Example 4.11 The conditional ¢z y z can be translated into the non-deterministic choice
y|z. This syntactic translation determines a functor T : £ — L (which is not mirrored
by any endo-functor on the category of denotations). It yields a new behaviour B; = T;B
on L, which is correct for B without being complete for it. Thus, given g then @B,
is correct for B and complete for B;. Now functoriality shows that QB; decomposes as
Q(T); Q(eT; B), which may thus simplify its calculation.

5 Conclusion

We have presented a language independent framework for abstract interpretation that ex-
plicitly deals with behaviours of programs, with the benefit that the notion of correctness
is simplified and the notion of completeness naturally arises as its dual. These improve-
ments do not require considering observations (properties) as morphisms of a category.
The usual relational approach with sets of observations would do. However, our frame-
work additionally supports the hierarchical development of abstract interpretations and
data flow analysis algorithms along the structure of the specifying program behaviour,
by means of stepwise and modular refinement in the categorical framework. All these
features have been illustrated by means of some simple strictness analyses.

6 Future Work

In this paper the characterization of a behaviour is universal amongst quotient functors.
It therefore focuses on substitution as a language construct and on datatype preserving
abstract interpretations. This suggests two directions for generalizations. First, other
language constructs such as fixpoints, products, general limits, or A-abstraction should be
considered. We believe that the development in this paper can be reformulated for quo-
tient functors that also preserve these language constructs, to achieve this generalization.
Second, one could generalize to abstract interpretations that do not necessarily preserve
data types. Here an approach using “coequalizers” rather than“quotient functors” seems
appropriate.
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