ISSN 0105-8517

Data Flow Analysis as Model Checking

Bernhard Steffen

DAIMI PB — 325
July 1990

COMPUTER SCIENCE DEPARTMENT [
AARHUS UNIVERSITY] —
Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark

ISSN 0105-8517

PB - 325 B. Steffen: Data Flow Analysis as Model Checking

Data Flow Analysis as Model Checking

Bernhard Steffen *

Abstract

The paper develops the idea that modal logic provides an appropri-
ate framework for the specification of data flow analysis (DFA) algorithms
as soon as programs are represented as models of the logic. This can
be exploited to construct a DFA-generator that generates efficient DFA-
algorithms from modal specifications by partially evaluating a specific model
checker wrt the specifying modal formula. Moreover, the use of a modal
logic as specification language for DFA-algorithms supports the composi-
tional development of specifications and structured proofs of properties of
DFA-algorithms. These ideas are applied to the problem of determining
optimal computation points within flow graphs.

1 Introduction

Data flow analysis (DFA) is concerned with the automatic identification
of program points enjoying specific properties — for example lifeness of
variables, equivalence of program terms, etc. Typically, data flow analysis
algorithms are constructed for a given program property ¢ of interest
and therefore have the following functionality:

DFA-algorithm : programs — program points enjoying property ®

Model checking is concerned with the automatic identification of those
states of a finite state model! satisfying a specific modal (or temporal)
formula. Typically, such formulas express deadlock, divergence, liveness,
etc. Model checkers are parameterized on the formula of interest and
therefore have the following functionality:

model checker : modal formulas & x model — states satisfying ®

*Department of Computer Science, University of Aarhus, DK-8000 Aarhus C
!Essentially these models are finite automata.

Identifying programs with models, program points with states and pro-
gram properties with modal formulas, model checkers can be seen as DFA
algorithms that have the program property of interest as parameter.

In this paper we exploit this observation in order to develop an al-
gorithm that generates DFA-algorithms from specifications written in a
modal logic. In essence, this DFA-generator works by partially evaluat-
ing an appropriate model checker wrt its modal formula parameter; the
result is a bit-vector DFA-algorithm. Our framework covers the standard
bit-vector DFA algorithms [He] in an efficient manner: it allows concise
high level specifications, and the generated algorithms are guaranteed to
be linear in the size of the program being analysed.

Another benefit of the approach proposed here concerns the specifica-
tion and investigation of DFA-algorithms. Both can be done modularly
by reasoning within the modal logic serving as specification language.
All this is illustrated by means of an example of practical relevance: an
improved version of Morel/Renvoise’s algorithm for eliminating partial
redundancies [MR]. The algorithm generated here is linear in the size
of the argument program and its results are optimal. This improves on
the complexity estimation O(nlog(n)) given in [Dhal?. Moreover, to our
knowledge, the only comparable optimality results that have been proved
before are the ones in [SKRI, SKR2], which concern more complex place-
ment algorithms.

Summary of Technical Results

Section 2 presents the program representation, which consists of tran-
sition systems, where nodes and states are labeled. This representation
is very close to the standard models for modal logics [Stil], and it allows
a simple adaptation of the program representations used in DFA . For ex-
ample, nondeterministic flow graphs, a standard program representation
in DFA, can be easily transformed into this format.

Section 3 develops the specification languages: alow level specification
language with a general fixpoint operator, and a high level specification
language, where the general fixpoint operator is replaced by intuitively
easy to understand derived operators. The section closes with logical
characterizations of structural constraints of certain program models.

?Here n stands for the number of edges in the flow graph. Dhamdhere also mentions that his
algorithm is O(n) for specific graph structures. In contrast, the estimation here does not need
any structural requirements.

Section 4 deals with a “real life” example. A bidirectional DFA-
algorithm determining the optimal placement of computations within
programs is specified and its correctness and optimality is established.
All the reasoning is done purely within the high level specification lan-
guage.

Section 5 provides a correct and complete model checker, which is
linear in the size of the program model being investigated. The DFA-
generator works by partially evaluating this model checker wrt to the
modal formula used to specify the DFA-property of interest. The partial
evaluation process is illustrated by means of the generation of a DFA-
algorithm from the specification developed in Section 4.

Finally, Section 6 contains conclusions and directions for future work.

Related Work

Already in the seventies a DFA-generator has been developed that es-
sentially works on syntax trees and generates DFA-algorithms from speci-
fications given as computation functions for attribute values [Will, Wil2].
Thus the specifications explicitly describe the way in which the program
properties of interest are determined. To our knowledge, this principle
has been maintained in all later developments (cf. [Gie, Nie2, LPRS,
SFRW, Ven]). In contrast, we specify DFA-algorithms just by means
of the program properties under consideration. All the details about
the corresponding analysis algorithm are hidden in the model checker
our approach is based upon. This yields concise high level specifications,
simplifies the specification development and supports the reasoning about
features, such as correctness and optimality, of the corresponding DFA-
algorithms.

2 Models for Programs

We model programs as transition systems whose states and transitions
are labeled with sets of atomic propositions and actions, respectively. In-
tuitively, atomic propositions describe properties of states, while actions
describe (properties of) statements. As usual, the control flow is modelled
by the graph structure of the transition system.

Definition 2.1 A program model P is a quintuple (S, A, —, B, A) where

1. § is a finite set of nodes or program states.

2. A is a set of actions.

8. -C 8x2"%x 8 is a set of labeled transitions, which define the
control flow of P.

4. B is a set of atomic propositions.

5. A is a function X\ : S —B that label states with subsets of B.

We will write p—‘gq instead of (p,A,q) € —, and given o C 2" we will
call p an a-predecessor of ¢ and q an a-successor of p if A € a. The set
of all a-predecessors and a-successors will be abbreviated by Predy and
Suceq, respectively?.

Essentially, a program model is a combination of a standard labeled tran-
sition system and a Kripke structure, which allows us to speak about
state and statement properties explicitly and separately without using
any complicated encodings. New is only the fact that transitions are la-
beled with sets of actions, rather than just single actions, here, which
is necessary when dealing with abstract interpretations, where a concrete
statement is treated as a set of properties (cf. [CC1]).

Definition 2.2 A DFA-model is a program model with two distinct states
s and e satisfying:

® s and e do not possess any predecessor and successor, respectively.
e FEvery program state is reachable from s.

e e is reachable from every program state.

We call s and e start state and end state, respectively.

The additional constraints for DFA-models are standard in data flow
analysis, and in fact, they do not impose any restrictions there, because
flow graphs can be modified accordingly without any harm.

Modelling Nondeterministic Flow Graphs

We will consider nondeterministic flow graphs as DFA-models. Nonde-
terministic flow graphs are directed graphs whose nodes represent state-
ments (as usual, we will concentrate on assignments here) and whose

A A . .
8Note that the 2" -predecessors and 2" -successors are just the predecessors and successors in
the usual sense.

edges represent the flow of control. As mentioned above, we can addi-
tionally assume that they possess unique start and end nodes. There
are two straightforward ways to transform flow graphs into DFA-models.
First, by pushing the statements from the nodes into the outgoing edges.
In this case, we arrive at a precondition model, because here the nodes
will characterize preconditions to the statements that have been orig-
inally associated with the nodes. Second, and dually, by pushing the
statements upwards into the ingoing edges. Here one arrives at a post-
condition model*. In the discussion of our example we will deal with
postcondition models. In general, the appropriate choice of model de-
pends on the particular application.

In order to establish the setup for our “real life” example (see Sec-
tion 4), let V and T be sets of program variables and program terms,
respectively, and A, be the set of all assignments of the form v := t,
where v € V and ¢t € T. Furthermore, let B=4 {start, end} be a set
of state labels with the labeling function given by A, (s) = {start} and
Ac (e) = {end}. Then the postcondition models (or equivalently the pre-
condition models) of a flow graph form a DFA-model (S, Ac,—, B, A.),
where the state labeling just identifies the start state s and the end state
e and the transition labeling the corresponding statements.

We will refer to such DFA-models as concrete DFA-models. However,
the DFA-models we want to deal with, and which allow an automatic
analysis, arise as abstractions from concrete DFA-models. A typical ab-
straction is given by choosing A, = {mod(t) |t € T} U {use(t)|t € T}
as the set of transition labels together with the abstraction function
abstr: A, — A, which is defined by:

abstr ({v :=t}) =4
{mod (') | v is subterm of #'} U {use () |# is a subterm of t}

and the additivity property:
abstr(A) =U{ abstr(v:=1t) [v:=t € A}

Transitions labeled with mod(¢) or use(t) represent statements that mod-
ify or use the term t. Our illustrating example will work with this ab-
straction, which is tailored to address problems dealing with invariance

*In order to make these transformations work in general, we assume that start and end nodes
of flow graphs represent skip statements.

and usage of program terms, and in particular, program variables. In
fact, many DFA-problems can be dealt with by means of this abstrac-
tion or a slight extension. However, in general, the appropriate abstract
interpretation of the statements must be chosen problem dependently.

3 The Specification Languages

We have two specification languages, a low level language, which is pri-
mary, and a high level language consisting of derived operators of the low
level language. Whereas the low level language is used to formally define
the semantics of formulas, the high level language is easier to understand
and should be used for specification.

3.1 Low Level Specifications

Our low-level specification language is essentially a sublanguage of the
modal mu-calculus [Koz], which is characterized by a restricted use of
fixpoint constructions. The syntax of our low level specification language
is parameterized wrt denumerable sets Var, B and A of propositional
variables, atomic propositions and actions, respectively. Let X range
over Var, B over BB and « over subsets of 2°. Then the formulas of the
logic are given by the following grammar.

=X | tt| BAG | @ | B | [a]® | [a]® | vX.®

In formula v X.®, the free occurrences of X in & are bound by v in the
usual fashion, and the substitution ®[T'/X] is also defined in the standard
way.

The semantics of closed formulas is defined wrt a program model P.
Let us now provide the intuition behind closed formulas. Every program
state satisfies the formula #f, while program state p satisfies &; A &, if
it satisfies both ®; and ®,. Moreover, a program state satisfies =& if it
does not satisfy ®, and it satisfies 3 if it is labeled by a set containing (.
A program state p satisfies [a] ® if every a-successor satisfies ®. Note
that this implies that a program state p satisfies [«] ff exactly when p has
no a-successors. Analogously, a program state p satisfies m@ if every
a-predecessor satisfies ®. Thus in analogy, a program state p satisfies

[o] ff exactly when p has no a-predecessors. The formula v X.® is a

[[tt]] = S
[®1 A 8] [®4] N [®:]
[-2] = S\ [2]

[B] = {peS(BeAip)}
[[a]®] = {p€S|VYqe Succalp). ¢ € [2]}
[[a]®] = {g€S|Vpe Preda(q). p € [3] }
[vX.®] = U{S' CS|S' C[®s], where Bs is ® with X

interpreted as S’}

Il

Figure 1: The semantics of formulas.

recursive formula and should be thought of as the “largest” solution to
the “equation” X = ®. Since P is finite-state, this formula is equivalent
to the infinite conjunction A2, ®;, where

By = tt
Biy = B[;/X]

As usual, there is a syntactic restriction on expressions of the form X D,
which is necessary to ensure the continuity of the fixpoint operator: X
is required to appear within the range of an even number of negations in
®. All this is completely standard, except for the meaning of modalities,
which is defined for sets of transition labels, i.e. sets of sets of actions
here, rather than just for single actions. This double powerset construc-
tion arises naturally in our setting: the first level is necessary, because we
want to model statements abstractly by means of sets of properties, and
the second level corresponds to the convenient generalization of modal-
ities, which allows to speak about sets of transition labels, rather than
just singletons, which simplifies the representation of certain properties
enormously (cf. [BS]).

The formal semantic definition of the logic maps closed formulas to
sets of program states—intuitively, the program states for which the
formula is “true”. Figure 1 describes the formal definition. Note that the
semantics of »X.® uses the Tarski fixpoint theorem [Tar] to define the
meaning of this formula as the greatest fixpoint of a monotonic function

over the powerset of the set of states. The monotonicity of this function
follows from the monotonicity of the semantic interpretation of the other
propositional constructors. L

In the following we will write [.] or [.] instead of [2"] or [2”]. More-
over, we will use P |= & (or just |= ® if P is understood) to indicate that
every state of the program model P satisfies ®. As usual, we can define
the following duals to the operators of our language and the implication
operator = by:

7= -t
P,V P, ﬁ(ﬁ@l A ﬁ@z)
(@) 8 = -[a] (@)
{a]® = —[a] (-9)
pX.® = —vX.~([-X/X])
P=V = -dVT

Our low level specification language consists of all closed and gquarded
formulas, where no variables occur free inside the scope of a fixpoint
expression®. Closed means that all variables are bound by a fixpoint op-
erator, and guarded that all variables occur inside the range of a modality.

In future, we will also use the derived operators except for the minimal
fixpoint operator, which we avoid here in order to keep the presentation
of the model checker (Section 5.1) as simple as possible.

3.2 High Level Specifications

The recursive proposition constructors add a tremendous amount of ex-
pressive power to the logic (cf. [EL, Stel]). For example, they allow the
description of invariance (or safety) and eventuality (or liveness) prop-
erties. However, the formulas are in general unintuitive and difficult to
understand. We will therefore define a collection of intuitively easy to un-
derstand derived operators that are based on the following “Henceforth”-
operator of the temporal logic CTL [CES]:

AG3 = vX.(BA[.]X)

5The point of this condition is to avoid the possibility of alternated nesting [EL]. Of course,
there are weaker conditions to guarantee this, but they are unnecessarily complicated for our
purpose.

and its past-time counterpart:
AG?® = vX.(®A].]X)

AG @ holds of p if ® holds for every state of every path that starts in
p, while AG @ holds of p, if ®holds for every state of every path that
ends in p.

DFA is concerned with a specific kind of eventuality properties: certain
program transformations are only admissible if a specific value must be
computed before the program terminates, i.e. before the end state is
reached (cf. Section 4). This cannot be expressed with the standard
CTL operators. However, the following parameterized version of the
Henceforth-operator suites this purpose:

AG, ® = vX.(PA[a]X)

AG, ® = vX.(®A[a]X)
Intuitively, the parameter reduces the set of relevant paths to those being
labeled with elements of a. Thus in order to express that a computation
must happen before the end state is reached, one may equivalently express
that one never reaches the end state on a path, whose transitions do
not perform this computation. Formally, this is expressed by setting
® = —end and a = 24\{c°mp}, where comp represents the computation of
interest. This pattern is typical for specifications in our framework.

Our high level specification language arises from the low level spec-
ification language by replacing the general fixpoint operator with the
operators established above. This language is already quite expressive,
and it suffices for the specification of the standard bit-vector algorithms.
However, other operators, like for example the strong “Until”-operator
or the existential path quantifier of CTL [CES], may be added later to
enhance the expressive power of the language.

The three structural restrictions for DFA-models given in Definition
2.2 are characterized by:

Proposition 3.1 (DFA-Models)
A DFA-model is characterized by the following three properties:

1. | (start = [.Jff) A (end = [.]f)
2. =-(AG —end)

3. =-(AG —start)

Also, a property of postcondition models, which is important for the proof
of the Correctness Theorem 4.1 and the Optimality Theorem 4.2, can be
stated within our specification language:

Proposition 3.2 (Postcondition Models)
A postcondition model satisfies: | () (a)tt = [.](a)tt

This demonstrates that our specification language is not limited to specify
DFA-algorithms. It is expressive enough to cover structural properties of
program models as well. This allows us to prove properties of DFA-
algorithms within our logical framework, even if these properties depend
on structural restrictions of the program models under consideration. We
will illustrate this in the next section.

4 Example: Optimal Placement of Com-
putations

In this section we will develop a specification for a bi-directional DFA-
algorithm that determines optimal computation points for a given term
¢ within a DFA-model (flow graph). The development improves on the
original work by Morel/Renvoise [MR] in that it also establishes the opti-
mality of the placement. We will fix ¢ from now on, in order to be able to
drop t from the argument list of some predicates and therefore simplify
the notation.

4.1 Specifying the DFA-Algorithm

It is well-known that in completely arbitrary graph structures the place-
ment process may deliver unsatisfactory results, because specific patterns
may cause that the code motion process gets blocked. This problem
can be solved by means of the following transformation: insert an ar-
tificial state in each transition that starts at a state with more than
one successor and ends at a state with more than one predecessor (cf.
[Dha, SKR1, SKR2]%). For postcondition models, the essence of this

transformation can be characterized logically as follows:

6In [Dha] this is done implicitly by placing the computations in the edges of the flow graph
under consideration.

10

Placement Models = (2= [.][.]®) Vv ({.)® = [.]®)

Intuitively, this means that there are two classes of states in a placement
model:

e the ones that are “similar” to all their brothers, and
e the ones whose predecessors are all “similar”.

In fact, it is possible to obtain an optimal placement algorithm, as soon
as we restrict ourselves to postcondition models with this property, which
we call postcondition placement models (cf. Optimality Theorem 4.2).

In our framework DFA-algorithms are specified by means of the program
property they are checking for. Thus the DFA-algorithm to determine
the optimal placement of computations is specified by means of the spec-
ification of the optimal computation points. They can be characterized
in two steps.

First, the placement of a computation at a computation point must be
safe, i.e. it must not introduce computations of new values on paths. This
requirement is necessary in order to guarantee that no run time errors
(e.g. division by 0) are introduced: a safe placement does not change the
potential for run time errors. This property is satisfied if the inserted
computations are necessary, i.e. if their values will be computed on every
continuation of a program execution that terminates in e. Logically, this
property of a program point can be characterized by:

Guaranteeing Safety NEC =4 AGy. (—end A [MNU®]ff)

where M =4 {A|mod € A}, U=4{A|use € A} and “°” is the set
complement operator.

Second, to achieve optimality, we require that computations should
be placed as “early” as possible. This can be logically characterized as
follows: [Me] (AG ye —NEC), meaning that an “earlier” placement would
either be unsafe for ¢ or an evaluation of ¢ there would not always yield
the required value. Together we obtain the following characterization of

the (optimal) computation points:

The Computation Points INIT =4 NEC A [M¢](AG . —NEC)

11

In fact, INIT is already the complete specification of the DFA-algorithm
to determine the optimal placement of computations.

4.2 Correctness and Optimality of the Placement

Correctness of a placement of computations means that all computations
of the original flow graph are covered by computation points, i.e. the
initialization of an auxiliary variable at the computation points allows
to replace all original computations of the flow graph by the auxiliary
variable without changing the program semantics. In order to express this
property logically, we equip transitions ending in a state being labeled by
INIT with init. This reflects the idea of inserting computations at the
computation points in a postcondition model. The logical formulation of
correctness is the heart of the following theorem

Theorem 4.1 (Correctness)
For every postcondition placement model being equipped with init we
have:

= (U)tt = AG (—start A[M]ff)

where I =4 { A| INIT € A}.

In the following we are going to show that there does not exist any
placement of computations that is safe, covers all original computations
and improves on the placement specified by init. Let us therefore first
define the set of all admissible placements, i.e. those satisfying the first
two properties. As before with init, we describe a placement by means of

a transition labeling place. Admissibility is now logically characterized
by:

Admissible Placements

= NEC A ([U] = (AGp: (—start A[M]f)))

where P =4 { A|place € A}.

Intuitively this means that place specifies an admissible placement if
the placement is safe at the place-marked transitions and each original
computation of the program is covered by place-marked transitions (cf.
definition of correctness).

Now, optimality means that there does not exist any admissible place-
ment (here given by place) that improves on the placement specified by

12

init, i.e. on every computation path the number of transitions marked
by place is as least as large as the number of transitions marked by init.
The optimality of the placement can now be stated using the logical for-
mulation of optimality. This theorem is actually new for Morel /Renvoise-
like placement algorithms:

Theorem 4.2 (Optimality)
Every postcondition placement model and every admissible placement (here
given by place) satisfy:

F AG ([I] (AGp:(—end A[MNU°]f)))

The proofs of the Correctness Theorem 4.1 and the Optimality Theorem
4.2 can be derived from Proposition 3.2 and the defining property for
placement models, purely by reasoning within the modal logic. — More
details about placement algorithms can be found in [Dha, MR, RWZ,
SKR1, SKR2].

5 DFA-Generation

5.1 The Principle

The principle of the DFA-generator we propose is partial evaluation of
an appropriate model checker wrt the modal formula that serves as the
specification of the DFA-algorithm. The model checker we are going to
use is a variant of the algorithm proposed in [CES], modified to support
the partial evaluation wrt to the specifying formula. It iteratively de-
termines the set of all states of the program model under consideration
that satisfy the argument formula. This is done by computing a maximal
fixpoint over a node labeling consisting of bit-vectors that represent ap-
proximate truth values of certain (low level) modal formulas. Our model
checker works in four steps:

The Model Checker

1. Translate the high level specification into the corresponding low
level specification. This can be done in a straightforward manner.
However, one can also add “optimizations” here that yield an equiv-
alent, but more compact representation, as for example the shared
representation used in Section 5.2.

13

2. Construct a (higher order) function from the low level formula
that associates every potential program state with its corresponding
predicate transformer, i.e. with a function that computes the next
approximate bit-vector labeling for a given program state from the
current approximate solutions (bit-vector values) of its predeces-
sors and successors. The resulting predicate transformers operate
on bit-vectors that have one component corresponding to each sub-
formula that appears as an operand of a modality”. We will refer to
these subformulas as critical subformulas. Given a program point
p and a critical subformula ® the predicate transformers update
the corresponding bit-vector component with the truth value of the
formula that arises from ® by replacing all subformulas having a
modality as the top most operator by their truth value under the
current approximation.

All this is rather straightforward, except for the following fact: ap-
proximations for critical subformulas that are separated by negation
operations must be computed in a hierarchical manner, in order to
guarantee the monotonicity of the iteration process. Therefore, the
low level formula is also partitioned into monotonicity levels, the
iteration mechanism of the third step depends upon. Note however
that all this can be done independently of the particular program
model under consideration.

3. Compute the greatest fixpoint over the bit-vector labeling of the
program model under consideration wrt the predicate transform-
ers that have been generated by the algorithm of the second step.
This can be done by means of a standard work list algorithm® mod-
ified to determine the fixpoints monotonicity-level-wise: a level gets
executed, if all its sub-levels are already dealt with.

The computation of the greatest fixpoint for a given monotonicity
level proceeds in two steps:

(a) Initialize the bit-vectors of all program states to t¢°.

"In fact, it would be enough to consider only those subexpressions here that contain a variable,
which is not guarded by a modality.

8A work list is a mean to obtain a fair and therefore terminating computation.

®Note that the usual frame conditions are implicit in the atomic propositions the states are
labeled with, e.g. start and end of Section 4.

14

(b) Process the elements of the work list by applying their corre-
sponding predicate transformer, until the maximal fixpoint is
reached.

4. Finally, for each state the value of the complete specifying formula
is determined using the fixpoint values computed in the third step.
We will write p & if the complete formula holds of p.

This model checker is quite general: it can easily be extended to larger
high level languages just by extending the first step. In particular an
extension to CTL is straightforward. In analogy to [CES] we have:

Theorem 5.1 (Correctness, Completeness and Efficiency)
Let P be a program model and p be a state of P. Then we have: pt+ & iff

p € [®]. Moreover the effort to determine the set of all states satisfying
® is proportional to the size of P.

Partial evaluation of this model checker wrt a high level specification
consists of executing the first two (program independent) steps, which
results in a nested bit-vector algorithm. Instead of going into formal
detail here, we will rather continue our “real life” example for illustration:

5.2 Continuation of the Example: Generating the
DFA-Algorithm

The evaluation of the first step transforms the specifying formula

INIT = NEC A [M<](AG . —NEC)

by means of macro substitution into the following diagram:

15

—F

v)(./\é——j (Me]
/ [T

A

~
o i

Such shared representations take care of common subexpressions and
therefore improve the efficiency of the DFA-algorithm generated.

The second step constructs a higher order function that associates ev-
ery state of a program model with a predicate transformer, which realizes
the evaluation of the formula above in the current approximation:

Here, the next approximation for the first bit of the bit-vector in the
center of the picture is computed as the conjunction of f=af 7end A
[MNU®] ff and the approximate values of the first bits of the bit-vectors
of its U‘-successors. Analogously, the value of the second component of
this bit-vector is updated by means of the approximate values of its own
first bit and the ones of the second components of its M ¢-predecessors.
Note that the fixpoint computations for these two bits must be computed

16

hierarchically, because they belong to different monotonicity levels. —
The result of these two evaluation steps is essentially a standard iterative
DFA-algorithm for the predicate transformers specified above.

It is worth noting that we only need to iterate according to two
Boolean values here; one for each fixpoint expression, or, one for the for-
ward flow and one for the backward flow. Thus the generated algorithm
only uses a bit-vector of length two, which improves on the algorithms
proposed previously, see for example [Dha, MR].

6 Conclusion and Future Work

A framework has been developed, using a modal logic for the specifica-
tion of DFA-algorithms. Main achievements of this development are the
DFA-generator, which naturally arose by means of partially evaluating a
specific model checker, and the modularity of both the development of
DFA-specifications and the structure of proofs of properties of the DFA-
algorithms generated. All these features have been illustrated by means
of the problem of optimally placing computations within a program.

Currently, we focus on imperative languages and plan, as a first step,
to implement a generator for intraprocedural DFA-algorithms as an ex-
tension of the Edinburgh Concurrency Workbench [CPS1, CPS2]. Sub-
sequently, this generator will be extended to gemerate interprocedural
algorithms as well. This can be done along the lines indicated in [SP].

Ultimately, it is planned to achieve language independency by using
Mosses’ action notation (cf. [Mos, MW]) as a common intermediate lan-
guage. The program models for our DFA-generator will then be given
by abstractly interpreted transitions systems, which arise from the cor-
responding structured operational semantics (cf. [Plo]). This will allow
us to uniformly deal with imperative and functional languages and dis-
tributed systems.

Acknowledgement

I am very grateful to Rance Cleaveland, Hardi Hungar, Jens Knoop, Jens
Palsberg and Oliver Riithing for their careful proof reading and their
helpful comments.

17

References

[BS]

[CC1]

[CES]

[CPS1]

[CPS2]

[Dhal

[EL]

[Gie]

J. Bradfield, C.Stirling. Local Model Checking for Finite State
Spaces. LFCS Report Series ECS-LFCS-90-115, June 1990

P. Cousot, R. Cousot. Abstract interpretation: A unified Lat-
tice Model for static Analysis of Programs by Construction or
Approzimation of Fizpoints. In Proceedings 4th POPL, Los An-
geles, California, January, 1977

E. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of
Finite State Concurrent Systems using Temporal Logic Specifi-
cations: A Practical Approach. In Proceedings 10th POPL’83,
1983

R. Cleaveland, J.G. Parrow, B. Steffen. A Semantic-Based Ver-
ification Tool for Finite-State-Systems. Protocol Specification,

Testing and Verification, IX, Elsevier Science Publications B.V.
(North Holland), 287-302, 1990

R. Cleaveland, J.G. Parrow, B. Steffen. The Concurrency Work-
bench. Workshop on Automatic Verification Methods for Finite
State Systems, LNCS 407, 1989

D. Dhamdhere. A Fast Algorithm for Code Movement Optimiza-
tion. SIGPLAN Notices, Vol. 23, 1988

E. Emerson, J. Lei, Efficient model checking in fragments of
the propositional mu-calculus. In Proceedings LICS’86, 267-278,
1986

R. Giegerich. Automatic Generation of Machine Specific Code
Generation. In Proceedings 9th POPL, Albuquerque, New Mex-
ico, January, 1982

S.M. Hecht Flow Analysis of Computer Programs. Elsevier,
North Holland, 1977

G.A. Kildall. A Unified Approach to Global Program Optimiza-
tion. In Proceedings 1st POPL, Boston, Massachusetts, 194-206,
1973

18

[Koz]

[Mos]
[MR]

[MW]
[Niel]
[Nie2]
[Plo]

[LPRS]

[RWZ]

[SFRW]

[SKR1]

[SKR2]

D. Kozen. Results on the Propositional mu-Calculus. TCS 27,
333-354, 1983

P.D. Mosses. Action Semantics. To appear 1991

E. Morel, C. Renvoise. Global Optimization by Suppression of
Partial Redundancies. CACM 22, 96-103, 1979

P.D. Mosses, A.A. Watt. The Use of Action Semantics. In For-
mal Description of Programming Concepts - III, 1986

F. Nielson. A Bibliography on Abstract Interpretations. ACM
SIGPLAN Notices 21, 31-38, 1986

F. Nielson. A Denotational Framework for Data Flow Analysis.
Acta Informatica 18, 265-287, 1982

G. Plotkin. A Structural Approach to Operational Semantics.
University of Aarhus, DAIMI FN-19, 1981

Peter Lee, Frank Pfenning, Gene Rollins, and William Scherlis.
The Ergo Support System: An Integrated Set of Tools for Pro-
totyping Integrated Environments. SIGPLAN Notices, Vol. 24,
No. 2, 25-34, February 1989

B. K. Rosen, M. N. Wegman and F. K. Zadeck. “Global
Value Numbers and Redundant Computations”. 15" POPL, San
Diego, California, 12 - 27, 1988

S. Sagiv, N. Francez, M. Rodeh, R. Wilhelm. A Logic-Based
Approach to Data Flow Analysis Problems. To appear 1990

B. Steffen, J. Knoop, O. Riithing. The Value Flow Graph: A
Program Representation for Optimal Program Transformations.
In Proceedings ESOP’90, LNCS 432, 1990

B. Steffen, J. Knoop, O. Riithing. Optimal Placement of Compu-

tations within Flow Graphs: A Practical Approach. Submitted
for POPL'91

M. Sharir, A. Pnueli. Two Approaches to Interprocedural Data
Flow Analysis. In: S.S. Muchnick, N.D. Jones. Program Flow
Analysis: Theory and Applications. Prentice-Hall, Englewood
Cliffs , N.J., 1981

19

[Stel]

[Sti1]

[Tar]

[Ven)]

[Wil1]

[Wil2]

B. Steffen. Characteristic Formulae. In Proceedings ICALP’89,
LNCS 372, 1989

C. Stirling. Modal and Temporal Logics. In Handbook of Logics

in Computer Science, Vol. 1, Oxford University Press, to appear
1990.

Tarski, A. “A Lattice-Theoretical Fixpoint Theorem and its Ap-
plications.” Pacific Journal of Mathematics, v. 5, 1955.

G.A. Venkatesh. A framework for construction and evaluation

of high-level specifications for program analysis techniques. In
Proceedings SIGPLAN’89, 1989

R. Wilhelm. Global Flow Analysis and Optimization in the
MUG2 Compiler Generating System. In: S.S. Muchnick, N.D.
Jones. Program Flow Analysis: Theory and Applications.
Prentice-Hall, Englewood Cliffs, N.J., 1981

R. Wilhelm. Codeoptimierung mittels attributierter Transforma-

tionsgrammatiken. LNCS 26, 257-266, 1974

20

