ISSN 0105-8517

Two Analyses of CSCW and Groupware

Jonathan Grudin

DAIMI PB - 323
July 1990

COMPUTER SCIENCE DEPARTMENT
AARHUS UNIVERSITY]

Ny Munkegade, Building 540 ﬁ;
— |

HjjiEl

DK-8000 Aarhus C, Denmark

TWO ANALYSES OF CSCW AND GROUPWARE

Jonathan Grudin

Department of Computer Science
Aarhus University, Denmark
(on leave from MCC, Austin, Texas, USA)

1. CSCW: The convergence of two development contexts

2. Seven plus one challenges for groupware developers

ABSTRACT

This report consists of two papers on the topics of computer supported
cooperative work and groupware. The first examines the emergence of
CSCW in the mid-1980s, finding that its timing and composition reflect
changes within one context of systems development, product development.
Many of the issues -- and some of the participants -- have a history in
internal systems development; some confusion of identity in the field may
be traced to the merging of these development paradigms. The second
paper examines eight challenges in designing and evaluating groupware or
CSCW applications, challenges that are new for product or application
developers. One that is particularly problematic, due to the way software
products are marketed, is the need to address a range of organizational
factors on a site-by-site basis to obtain acceptance of systems developed to
support groups.

CSCW: THE CONVERGENCE OF TWO DEVELOPMENT CONTEXTS

Jonathan Grudin

CSCW research and groupware development represent converging
interests from two contexts of interactive systems development. Issues of
group dynamics and organizational impact have primarily been explored
in the context of the internal or in-house development of systems for
organizations -- systems that support organizational goals. Many of the
same or similar issues are now being encountered by the researchers and
developers with a product development orientation who are seeking to
support small groups. To integrate effectively the interests, experiences,
and approaches arising in these two contexts, we have to go beyond what
is shared and explore the differences.

INTRODUCTION: THE EMERGENCE OF CSCwW

If Computer Supported Cooperative Work is a discipline, it can only be
characterized as an unruly discipline. Some authors have lauded the lack
of definition, observing that it contributes to a healthy cross-fertilization
by attracting researchers from different backgrounds (Bannon, Bjgrn-
Andersen and Due-Thomsen, 1988). A similar confusion accompanies the
often-associated technology description “groupware.” For example, at a
CHI’90 panel on groupware, one panelist argued that network file servers
are groupware, another panelist argued that the only groupware success is

electronic mail, and a third argued that there are no groupware successes
(Ensor, 1990).

Uncertainty and disagreement are evident in conference programs,
published papers, reviews, and informal comments. The thirty papers of
the CSCW’88 Conference included four centered on video and three
studies of work practices involving little or no computer use. Six papers
drew from the Scandinavian participatory or collaborative development
tradition: the collaboration did not center on computer use, only three of
the six described the development of computer systems, and even those
were systems supporting organizations, not “groupware.” Strong
reactions to this composition! may partially account for the quite different
mix at CSCW’90. In another demonstration of the unsettled nature of the
field, Bannon and Schmidt (1990) argue against considering electronic
mail a “CSCW application” and for including Computer Integrated
Manufacturing, both relatively iconoclastic positions.

However, the field is not incoherent. The participants have histories, the
issues have histories, and both are situated in a broader context of systems
development that is becoming much better understood (e.g., Friedman,
1989). By taking into account the roots of CSCW research and
groupware development, the purposes of those participating, and the
trajectory (or trajectories) of systems development as a whole, we can
position our efforts and avoid cutting against a strong historical grain.

The field has a strong technology interest, so it is worth noting explicitly
that its foremost concern is with aspects of the behavior of people and
organizations. This is implicit in the terms “groupware” and “CSCW”
and is accepted by those whose daily work may be strictly technical, such
as working out algorithms to support concurrent activity. Some are more
focused on utility and some on usability, as reflected by the joint
sponsorship of CSCW by SIGOIS and SIGCHI. But the line between
CSCW and its technological substrate, however uncertain its precise
placement, is drawn at a relatively high level for a field of computer
science.

1 These have been expressed verbally and noted in written conference reviews; they also appear in anonymous paper

reviews, even two years after CSCW’88.

Organizations

Individuals

IT/MIS
1965-

Applications

Systems

Figure 1. CSCW and Groupware in the development and research
contexts.

Each ring in Figure 1 represents one focus of computer development and
the principal “customer” or “user” of the resulting product. The outer
ring represents entire systems designed to serve organizational goals --
large transaction processing systems, management information systems,
computer integrated manufacturing systems, order and inventory control
systems, etc. The inner ring represents applications designed for
individual users, such as word processors, graphics programs,
spreadsheets, games, etc. The middle ring represents groupware,
designed with groups in mind. There are of course complications, but
before delving into them, consider the remaining elements of Figure 1.

On the right are the software development contexts that dominate system,
application, and groupware development. Software systems that support
entire organizations are not usually bought at the local computer store or
even at the local IBM sales office. The hardware and some software
components might be acquired that way, but a great deal of the

development is unique to the organization, done by internal developers or
through a contract to another party. Single-user applications, on the
other hand, are the province of the product development companies. The
developers rely on the large potential market to provide sufficient sales
and do little or no customization for individual customers. Groupware
logically lies between and does in fact draw on both development
contexts, but for several reasons discussed below, its emergence in the
1980s represents above all else the movement of product developers into
this middle ground.

On the left is the research context associated with each development
context, along with its approximate date of emergence. The literature
associated with systems in organizations arrived with the “third
generation” computer systems built with integrated circuits, in the mid-
1960s. Friedman (1989) summarizes, “There is very little on the subject
up to the mid-1960s. Then the volume of literature on (computers and
the) organization of work explodes. Issues of personnel selection,
division of labour, monitoring, control and productivity all subsequently
receive considerable attention.” Single-user applications drew substantial
research interest following the spread of interactive systems in the mid-
1970s. The Human Factors Society provided one showcase in the United
States for such work prior to the emergence of the CHI organization.
Finally, the field of CSCW emerged in the mid-1980s, with a small
workshop in 1984 and the CSCW ’86 Conference in Austin, Texas. The
term “groupware” was coined at around the same time.

CSCW has drawn developers and researchers from each of the pre-
existing development cultures. It represents a merging of issues,
approaches, and languages. With two boundaries to contend with, CSCW
and groupware are more difficult to define and no definition satisfies all
the people who identify themselves as working in the field. And as
Bannon et al. (1988) noted, it is the differences and the potential for
cross-fertilization or synthesis that gives the field much of its excitement.

THE TIMING OF THE EMERGENCE OF CSCwW

Why has the focus on computer support for groups formed last? In this
section, the timing of the emergence of each development focus is taken
up in turn.

Computer support for organizational goals attracted developers and
researchers first due to the tremendous expense of developing,
purchasing, and maintaining early computers. Systems were expensive,
required hiring new personnel, and generally involved a long-term
commitment and significant organizational change. Through the 1960s,
these expenses could be justified if the system promised to help meet
organizational goals. Although the organizational goals could hinge on
prestige as much as real economic return (Greenbaum, 1979), acquiring a
system had substantial economic and organizational consequences.
Following the introduction of the IBM 360 series in 1965, the impact of
computers on organizations became substantial. As noted by Friedman in
the passage quoted above, this led to the development of the
corresponding research field. Internal and contract development of large
systems, and research into their use and impact in organizations, remains
active.

Until time-sharing systems began edging out batch processing and
computing costs dropped, single-user applications were primarily a semi-
illicit pastime enjoyed by a few programmers during slow moments in
computing centers. Stephen Levy’s book Hackers captures the mid-1970s
transition of software applications from hobby to business. Even in the
early 1970s, text editing was too costly to be more than a programming
tool (Irons and Djorup, 1972). This changed with the arrival of home
computers and interactive word processing systems in the mid-1970s.
While the 1960s saw some research on computer “console operators” and
a lot on computer programming, studies of computer use by individuals
took off in the late 1970s.

Computer support for groups, as embodied in the use of the terms CSCW
and groupware, required conditions that were not present when these
earlier foci were established. In some sense, each previous advance in
technology use did support certain groups within an organization.
Management Information Systems provide information to the managerial
layer, whether or not they participate directly in the use of the system,
and single-user applications indirectly affect the groups to which their
users belong. What has changed is that groupware is designed with the
explicit intention of supporting groups and with the assumption that all or
most group members will use it. The conditions required for serious
research and development in this area were: i) a low enough cost of
computation that virtually all members of groups can afford to use

computers; ii) the development of the technological infrastructure for
supporting communication and coordination, notably networks linking
computers; iii) widespread familiarity with computers, creating sufficient
numbers of groups that are willing and able to try the software. These
conditions are only now emerging, and still only in certain workplaces.
Two forces motivating research and development are: 1) declining system
costs mean that smaller organizational units can afford powerful systems;
ii) the maturing of some single-user applications areas pushes developers
to look in new places for product enhancement or differentiation.

Activity in ACM itself underlines the sequential emergence of the outer
ring, the inner ring, and then the middle ring. In 1976, CACM
introduced the department “Social Impacts of Computing,” stating
“During the last decade, computer based technologies have become
common in complex organizations in the industrial and public sectors.”
In 1980, the department “Human Aspects of Computing” was introduced
with “Recently, there has been emerging interest by both industry and
universities (focused on) the human user,” and two years later SIGCHI
formed. More recently, ACM partially sponsored CSCW’86, and
SIGCSCW is forming this year. Similarly, when Computing Reviews
revised its classification scheme in 1982, the social and organization
categories were consolidated and expanded, whereas the topic of human-
computer interaction, hitherto not represented at all, received a few
scattered entries.2 Another major revision, expected in 1990, will
consolidate and expand the human-computer interaction categories, and
may introduce a few scattered entries in the CSCW/groupware area.

By examining the systems development contexts that diverged, evolved,
and are partially reconverging under the CSCW umbrella, we can better
understand the issues in the field, the different approaches being suggested
for addressing them, and the opportunities and obstacles to applying these
approaches successfully.

2 «“User interfaces” appears as a subject under Software Engineering, Tools and Techniques; “User/Machine Systems”

appears under Information Systems, Models and Principles; and “Human Factors” is a General Term.

THE EMERGENCE OF CSCW IN THE PRODUCT DEVELOPMENT
CONTEXT

Early systems were expensive and geared to large organizations, whose
specific requirements were addressed through in-house or contracted
systems development. Beyond the hardware and core system software,
these systems were not amenable to the “off the shelf” or even
aggressively marketed product development that marks single-user
applications. Internal systems development and to a lesser extent contract
development dominated the industry at the outset,? and historical surveys
and studies of organizational impact have focused on them (e.g.,
Friedman 1989).

However, with the emergence of interactive systems, product
development has attracted far more attention, particularly in the United
States. Established product vendors -- IBM, Digital, Hewlett Packard,
etc. -- also sell hardware and system software for internal development
and may have “Federal Systems Divisions” that compete for contracts.
But as hardware profit margins decline and the industry settles on a few
software system platforms, applications are increasingly central. Many of
the successful new companies of the 1980s -- Lotus, Microsoft, Ashton-
Tate, etc. -- primarily sell applications. Product development dominates
usability research in the United States, as reflected in the CHI Conference
programs and attendance.

The varied pedigree of CSCW research issues is discussed in the next two
sections. Nevertheless, we can trace the emergence of the field in the
1980s to the interest of product developers. The term “CSCW” was
invented by employees of two product development companies. The first
CSCW Conference was co-sponsored by a consortium of product
development companies. And about 50% of CSCW’86 and CSCW’88

3 For example, twenty years ago, industry-wide expenditures on in-house programming and in-house data preparation
were estimated at $6 billion each, while only $0.5 billion was spent on external software (CACM, 1970). In much

of Europe, product development still has a much smaller role than in the United States.

4 A rank ordering of CHI Conference attendance since 1985 attendance lists these five companies first: IBM, AT&T,
Xerox, Hewlett-Packard, and Digital, alone accounting for over 15% of the attendance. Organizations represented on
the CHI'90 technical program were about 40% academic, 30% computer product development, 10%

telecommunications, 10% consulting, 5% government and 5% internal software development.

registrants were from product development companies,> with
approximately 25% from academic institutions and 25% from
government, consulting companies, or the internal systems groups. A
product orientation is suggested by the terms “CSCW applications” and
“multi-user applications,” and of course “groupware” has the ring of a
product marketing concept.

The tie between groupware and product development is natural:
Justifying a project to develop software for one group may be difficult,
but the allure of the multitude of “groups” in the working places of the
world as potential users is understandable. For CSCW, with its more
exploratory approach to technology and workplaces, the identification
with product development is not so tight. The result is a convergence of
workers from product and internal development contexts, bringing some
similar and some different issues and approaches.

THE INFLUENCE OF LARGE SYSTEM DEVELOPMENT ON CSCW

Groupware development highlights several issues rarely encountered in
single-user application development. Social, political, and motivation
aspects of computer use environments that can be ignored in designing a
word processor, programming language, or business graphics application
suddenly become important. Individual impact in terms of productivity
or preference may be measured relatively easily; organizational impact is
more complex. Software acceptance is highly dependent on a host of
factors in the workplace, including management attitude, training and
support, and group composition.

These issues were occasionally anticipated in the product development
literature (e.g., Ehrlich, 1987), but have received steady attention in the
internal systems development context for a decade (Friedman, 1989). In-
house development targets specific groups of users -- it does not have the
luxury of putting its product on the market to find customers.
Researchers and developers working in this context have had to deal with
the complexities of group dynamics, organizational change, and
acceptance problems. Researchers have experimented with observational
and quasi-experimental approaches to the issues. New systems
development approaches have also evolved, such as the sociotechnical

5 This includes 5% from the difficult-to-categorize telephone operating companies.

10

systems approach in England and participatory or collaborative design in
Scandinavian countries. Some work in this field has been able to ride the
declining cost curve down from organizations to groups: expensive Group
Decision Support Systems that could once only be justified for upper
management have evolved into less expensive applications that could
support almost any team, for example.

Researchers from the organizational system / internal development
context may have been surprised and pleased in equal measures when
some product developers turned to issues that they had worked on for
years. But the match is not perfect. Many of the CSCW researchers who
come from the internal development context are committed to developing
systems for organizations -- hence calls for including Computer
Integrated Manufacturing in CSCW, for example. This may not appeal to
product developers. Also, development approaches, such as the
Scandinavian approach, evolved in the context of internal development.
They may not easily be understood by researchers or developers from the
product development context and “porting them” may not be easy
(Grudin, in press). To summarize, tension within the CSCW field that
has been attributed to conflicting “cooperative work” and “computer
support” camps is at times due more to conflicting preferences for
organizational issues vs. smaller group issues, for systems vs.
applications.

THE INFLUENCE OF PRODUCT DEVELOPMENT ON CSCWwW

If the “outer ring” contributes familiarity with the social issues and
possible approaches to dealing with them, the “inner ring” contributes
new challenges, most of the workers (in the United States), and a new set
of constraints on the solution space. The interest in “CSCW application
areas” such as meeting management, decision support, co-authorship,
project management, and electronic mail comes mainly from product
development (and academic research). Product development provides
opportunities unfamiliar to large systems developers, such as development
costs amortized over many sales and no need to satisfy a particular
customer. These opportunities are accompanied by new constraints,
including less well defined or accessible user populations, more tightly
controlled development schedules, and a reduced ability to influence
organizational change in user environments.

11

Researchers and developers from product organizations also bring
motivation to the CSCW melting pot, born of a less than impressive
groupware success rate and a growing awareness that the issues are
complex and require new approaches. For example, the Scandinavian
researchers have been working for over a decade, but the interest in their
work is suddenly intense (books and reviews recently published in the
United States include Bjerknes, Ehn, and King, 1987; Suchman, 1988;
Ehn, 1989; Floyd, Mehl, Reisin, Schmidt and Wolf, 1989; Bedker, 1989;
Greenbaum and Kyng, 1990; Schuler and Namioka, in press). The
interest is not uniform, of course, and there is a hesitation on both sides as
people push beyond the shared interests to discover the differences, and
confront the degree of adjustment needed to communicate clearly and to
profit from one another’s experiences.

DEFINING GROUPWARE

Much of the time it may not matter precisely what is and is not considered
“groupware” or “a CSCW application.” Each software object has its own
set of system contexts and work contexts and needs to be considered
accordingly. However, when Kraut (1990) writes “the only successful
CSCW application has been electronic mail,” and Bannon and Schmidt
(1990) declare that electronic mail is an “enabling technology” and not a
CSCW application, the terms are being used differently and establishing a
common usage would help. In principle, any agreement would be
workable; in practice, there is concern that software not categorized as a
CSCW application (or groupware) will receive less attention from
researchers (or popularizers and consumers).

12

Drawing a line between Groupware and its Substrate

Advanced Groupware

< Bannon & Schmidt
(1990)

Electronic Mail

< Kraut (1990)

Databases, Code Management

< Grudin (1990)

Network File Server

< Crowley (1990)

0S, Networking, TC

Figure 2. Everything above each arrow is considered
groupware or “CSCW applications” by the author(s) to
its right; elements below an arrow are considered a
foundation. (Grudin, 1990, is agnostic but discusses
databases and other object management systems.)

The range of opinion to be found is illustrated in Figure 2. At each point,
software above the line can be meaningfully distinguished from that
below. Crowley writes that in the PC and workstation worlds, “...the lack
of a shared file system was the biggest impediment to cooperative work.”
Moving up a step, I have found it useful to discuss “object management”
software along with more standard groupware applications because these
products, used in group settings, have been more successful and offer
interesting contrasts. But a database is not “group-aware,” in Rein’s
(1990) words -- apart from password protection, it has no sense of
different individuals or their roles. Only in the initial inspiration of these
systems did the designer consider the needs and dynamics of groups.
Thus, we might join Kraut and consider them to be the foundations on

13

which to build CSCW applications® -- for example, a database that
considers people’s roles in alerting them to relevant changes. Finally,
Bannon and Schmidt apply the same argument to electronic mail, which
recognizes no role beyond the sender-receiver distinction but is a
foundation for advanced applications such as The Coordinator or Object
Lens.

The issues raised by these authors is more important than choosing one
arrow in Figure 2 to make thicker than the others, but I will use this
opportunity to suggest that we try to adopt the computer users’
perspectives and understand the distinctions they make.

At the lower end, engineering distinctions may be transparent to users --
users will notice something built on a network file server, but not the file
server per se. On the higher end, electronic mail users define their own
groups through practice (and perhaps with aliases and distribution lists),
imbuing electronic mail with clear qualities of CSCW or groupware -- in
effect, users extend the design they are given. In the middle, the
perception of applications such as databases and code management systems
may vary with the context. If so, we cannot avoid considering the context
in our discussions, and more may be lost than gained by categorizing the
application in advance.

CONCLUSION

Whether or not we are involved in CSCW research or groupware
development ourselves, we can learn from this dynamic field. We can see
the influences of the different contexts in which interactive systems are
developed. Over the past decade or two, these development contexts have
faced different problems and developed different approaches. By
watching them reconverge and relearn a common language, as is
happening in the CSCW field today, we may get a better sense of our own
position in the rapidly-changing computer systems world. We may
discover similar opportunities to benefit from experiences that are very
unlike our own.

6 However, some anonymous reviewers are upset by a failure to define databases, version control systems, efc. to be

successful groupware.

14

REFERENCES

Bannon, L., Bjgrn-Andersen, N. and and Due-Thomsen, B., 1988. Computer support
for cooperative work: An appraisal and critique. In Bullinger et al. (Eds.),
EURINFO’88: Information systems for organizational effectiveness. Amsterdam:
North-Holland.

Bannon, L. and Schmidt, K., 1990. CSCW, or What’s in a name? Manuscript.

Bjerknes, G., Ehn, P. and Kyng, M. (Eds.) (1987). Computers and democracy: A
Scandinavian challenge. Brookfield, VT: Gower Press.

Bgdker, S., 1990. Through the interface: A human activity approach to user interface
design. Hillsdale, NJ: Lawrence Erlbaum Associates.

CACM, 1970. Data processing industry assessed by consultant. Communications of the
ACM, 13, 11, 704.

Crowley, T., 1990. In Ensor (1990).

Ehn, P., 1989. Work oriented design of computer artifacts. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Ehrlich, S.F., 1987. Strategies for encouraging successful adoption of office
communication systems. ACM Trans. on Office Information Systems, 5, 340-357.

Ensor, R. (Moderator), 1990. How can we make groupware practical? In Proc. CHI'90
Human Factors in Computing Systems (Seattle, April 1-5), 87-89.

Floyd, C., Mehl, W.-M., Reisin, F.-M., Schmidt, G. and Wolf, G. (1989). Out of
Scandinavia: Alternative approaches to software design and system development.
Human-Computer Interaction, 4, 4, 253-349.

Friedman, A.L., 1989. Computer systems development: History, organization and
implementation. Chichester, UK: Wiley.

Greenbaum, J., 1979. In the name of efficiency. Philadelphia: Temple University Press.

Greenbaum, J. and Kyng, M. (Eds.), 1990. Design at work: Cooperative design of
computer systems. Hillsdale, NJ: Lawrence Erlbaum Associates.

Grudin, J., 1990. Seven plus one challenges for groupware developers. Manuscript
submitted for publication.

Grudin, J., in press. Obstacles to participatory design in large product development
organizations. In Schuler and Namioka (in press).

Irons, E.T. and Djorup, F.M., 1972. A CRT editing system. Communications of the
ACM, 15, 1, 16-20.

Kraut, R., 1990. In Ensor (1990).
Levy, S., 1985. Hackers. Garden City, NY: Anchor Press/Doubleday.
Rein, G., 1990. In Ensor, 1990.

Schuler, D. and Namioka, A. (Eds.), in press. Participatory design. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Suchman, L., 1988. Designing with the user. ACM Trans. on Office Information
Systems, 6, 173-183.

15

SEVEN PLUS ONE CHALLENGES FOR GROUPWARE DEVELOPERS

Jonathan Grudin

Design and evaluating applications to support groups introduces
challenges that do not affect single-user applications or information
systems that support organizational goals. Repeated, expensive failures
have resulted from not recognizing and meeting these challenges.

INTRODUCTION

Computer applications that are designed to support groups are commonly
known as groupware. The ‘groups’ are relatively small or are narrowly
focused, as in the case of a ‘computer conference’ interest group.
Although electronic mail and bulletin boards or conferences are the best
known examples, considerable effort has gone into developing other
groupware applications. As networks spread, we will see more voice
applications, coauthoring tools, intelligent databases, group decision
support systems, and other applications designed to support work in its
social context. However, progress may be slow and may go in
unanticipated directions. This paper first describes problems that have
led to expensive failures of groupware development efforts, then
examines groupware successes to find better approaches to computer
support of work in group settings.

Groupware, also called work-group computing or multi-user applications,
fits into the software universe somewhere between single-user
applications and information systems that support organizations. A field
is emerging that looks at how the following fit together, or might fit
together: individual computer users, groups, and organizations;
applications designed for individual users but often used in group and
organizational contexts, groupware designed to support multiple users
while interacting with each person individually and also adjusting to
organizational contexts, and systems developed to support organizational
goals that must of course act through individuals and groups. This field is
called computer-supported cooperative work, or CSCW.

16

The terms groupware and CSCW were coined in the mid-1980s. Many of
the issues encountered in groupware development are discussed in the
“Information Technology” literature, but there are important differences.
The IT focus is on systems designed to support organizational goals, such
as order-and-inventory-control, computer integrated manufacturing or
large office automation systems. These systems are often developed in-
house or tailored for a specific customer. Groupware comprises
applications supporting more restricted goals and is typically developed
by product development companies.! Internal development and product
development are very different contexts, with different objectives,
constraints, and modes of operation. Problems may occur in one context
that do not occur in the other, or may occur in different ways with
different weights.

One important distinction is that product developers focus on design and
evaluation in producing an application with broad appeal, whereas
systems development efforts place more emphasis on system acceptance
by a specific set of computer users. Product developers generally have
very limited involvement in or control over the installation of their
software. Internal developers have a greater investment and involvement
in installation. Therefore, the IT literature has emphasized issues
affecting the acceptance of organizational systems, whereas the groupware
literature has focused more on design and evaluation. This paper follows
the latter course, presenting seven challenges to groupware design and
evaluation. However, acceptance is trickier and more important for
groupware than for other application product development. Difficult as it
may be for “off-the-shelf” product developers to jump over the counter
and help out with product acceptance, they may have to try: the eighth
challenge for groupware developers.

The term ‘groupware’ focuses on technology, the technology supporting
cooperative work. Although most work is carried out in a social or
group context, ‘groupware’ designers explicitly consider the multi-person
aspect, in which individuals take on different roles. Almost any useful
technology can claim to support group activity; at issue is whether this is
reflected in the design or is incidental to its use. Word processing does

1 Electronic mail may be available throughout an organization, but electronic mail
transactions overwhelmingly support group functions.

17

not become groupware if different users access and edit the same
document sequentially. A co-authorship application might support
document preparation as a group activity by allowing co-authors to work
simultaneously, by supporting their communication, by identifying edits
according to the user making them, or by interacting with users according
to their role -- principal author, co-author, editor. Similarly, if a
database provides multi-user access but does not distinguish among users
beyond password recognition, is it groupware or is it a foundation upon
which to build groupware? This question is revisited below.

A note on sources: My interest in these issues arose from living through
the failure of applications that as a developer or user I had embraced
enthusiastically. I worked on, or belonged to a small group that worked
on, time management, project management, group decision support,
voice, and other groupware applications or features. My own work tools
have included time management (including meeting and resource
scheduling) and voice applications, a group outline editor, bulletin boards,
and electronic mail. Some observations are supported by a survey of
over 200 designers (Grudin and Poltrock, 1989). The published
literature in this area is growing rapidly -- 17 of the 40 references were
published in the past two years. And conversations with many other
developers and researchers have provided insight into experiences that all
too often remain undocumented.

PROBLEMS IN GROUPWARE DEVELOPMENT

Why is groupware difficult to design and evaluate? Since individuals
interact with a groupware application, it has all the usual interface design
problems. In addition, group members with different backgrounds,
experiences, and preferences may all have to use the same groupware
application. For example, different individuals may choose to use
different word processors -- or some may choose to write by hand -- but
two co-authors must agree to use the same co-authoring tool! Each of the
several people to be supported as they work together on a task has a
different and potentially shifting role. Various social, motivational,
political, and economic factors that can be ignored in designing single-
user applications (e.g., word processors or spreadsheets) are central in the
design of groupware (e.g., a system to support meeting management).

Group processes are difficult to study. They are often variable, context-
sensitive, and unfold over a longer interval than individual activities. Key

18

activities may occur relatively infrequently. Weeks may be needed to
observe the pattern of use of a group calendar or even electronic mail
system, with the further complication that the activity takes place in
different locations. Organizational change that results from introducing
the technology may take even longer to observe. And finally, it is hard to
generalize -- each group is different and their experiences with an
application are highly influenced by the conditions under which it is
introduced.

Thus, the complexity means that no one person’s intuitions are likely to
provide the necessary insight, yet acquiring understanding is particularly
difficult. Further analysis of these problems enables us to identify seven
major factors contributing to failure of groupware:

1. Groupware applications often require that some people do additional
work, while those people are not the ones who perceive a direct benefit
from the use of the application.

2. Groupware may lead to activity that violates social taboos, threatens
existing political structures, or otherwise demotivates computer users who
are crucial to its success.

3. Groupware may not allow for the wide range of exception handling
and improvisation that characterizes much group activity.

4. Groupware may not reach the “critical mass” of users required to be
useful, or may not be used because while it would be beneficial, it is
never to any one individual’s advantage to use it (the “prisoner’s
dilemma” paradox).

5. Features that support group processes may be used relatively
infrequently, presenting challenges of unobtrusive accessibility and
integration with more heavily used features.

6. The almost insurmountable obstacles to meaningful, generalizable
analysis and evaluation prevent us from learning from experience.

7. Our intuitions are especially poor for multi-user applications,
resulting in bad management decisions and a more error-prone design
process.

Confronting each of these challenges requires both a greater
understanding of the intended use environment and a corresponding
adjustment in the development environment. However, progress on the

19

first four requires primarily a greater understanding of the intended
users’ work environments, whereas the latter two primarily argue for
changes in the development environment to remedy known problems.
The fifth challenge requires a balanced effort in both design and use
environments.

Application developers traditionally provide relatively little support for
their customers: documentation, on-line help (perhaps), and training
(sometimes). Such is the nature of selling products. Unfortunately,
groupware can be extremely sensitive to aspects of its introduction -- so
much so that software that is more or less thrown over the transom in the
usual fashion may have negligible chance of being accepted. Therefore,
the eighth challenge differs in that it may require application developers
to change their basic conception of their product:

8. Groupware requires extreme care regarding the circumstances of its
implementation (introduction) in the workplace.

Not all of these challenges confront every effort. Every application and
use situation is unique. The developer must carefully decide which
challenges apply.

1. THE DISPARITY BETWEEN WHO DOES THE WORK AND WHO
GETS THE BENEFIT

Given the different preferences, experience, roles, and tasks of members
of a group, a new groupware application never affords every member
precisely the same benefit. When it is introduced, a collective benefit is
expected, but some people have to adjust more than others. Ideally,
everyone will benefit individually, even if some benefit more; however,
this ideal is rarely realized. Most groupware requires some people to do
additional work to enter or process information that the application
requires or produces.

Consider the automatic meeting scheduling feature that accompanies many
electronic calendar systems. The underlying concept is simple: the person
scheduling the meeting specifies a distribution list and the system checks
each person’s calendar, finding a time that is convenient for everyone.
The immediate beneficiary is typically a manager or secretary who
convenes a meeting, but for the feature to work efficiently, everyone in
the group must maintain a personal calendar and be willing to let the
computer schedule their free time. Otherwise, the scheduling program

20

will create conflicts by scheduling meetings in time that only seems to be
open. However, electronic calendars are typically used as communication
devices by managers and are often not maintained by individual
contributors (Ehrlich, 1987a). Thus, successful use of automatic meeting
scheduling requires additional work for those group members who would
not otherwise maintain electronic calendars. As a result, this groupware
feature is rarely used.

Similarly, consider voice products, such as voice annotation to documents.
The advantages of digitized voice over handwritten or typed input are
almost all advantages for the speaker: speaking is faster than writing or
typing, conveys emotion and nuance easily, and may be transmitted by
telephone. The disadvantages to digitized voice, however, are
overwhelmingly problems for the listener. It is harder to understand than
typed or written material, slower to take in, not easily scanned or
reviewed, more likely to contain errors, and more difficult to manipulate
-- for example, proposed edits to a document will have to be typed in by
the listener anyway. When is it acceptable for speakers to burden
listeners thus? Possibly when users speak and listen in equal measure, or
when there is no alternative, as when use of hands or a keyboard is
impossible. A disparity may also be accepted when the speaker is of
higher status than the listener, as with dictaphone machines, where an
executive’s time or convenience is considered valuable enough to warrant
the arduous transcription effort. But in general, the disparity in effort
and benefit may work against acceptance in many situations and help
explain the failure of voice products to meet expectations (Aucella, 1987).

As a third example, consider a project management application on a
distributed system, covering the scheduling and chronicling of activities,
the creation and evaluation of plans and schedules, the management of
product versions and changes, and the monitoring of resources and
responsibilities (e.g., Sathi et al., 1986). The primary beneficiary is the
project leader or manager, but to be used successfully, other group
members must enter considerable information that is not typically kept
on-line. This may be resisted. For example, McCracken and Akscyn
(1984) describe a ten year project to develop a “computer-assisted
management system” for an aircraft carrier, “its primary purpose to help
the Commanding Officer and his department heads administer the ship.”
One factor contributing to its eventual replacement by a system that

21

lacked management features was the difficulty of getting everyone to use
it (Kling, 1987).

2. SOCIAL, POLITICAL, AND MOTIVATIONAL FACTORS

Groupware may be resisted if it interferes with the subtle and complex
social dynamics that are common to groups. The computer is happiest in
the world of explicit, concrete information. Central to group activity,
however, are social, motivational, political, and economic factors that are
rarely explicit or stable. Often unconsciously, our actions are guided by
social conventions and our awareness of the personalities and priorities of
people around us, knowledge not easily made available to the computer.
For example, secretaries know that managers’ unscheduled time is rarely
really free; unauthorized scheduling of a manager’s apparently open time
can lead to total rejection of automatic meeting scheduling (Ehrlich,
1987a). Even trying to make tacitly understood personal agendas and
priorities explicit may be a problem -- we often tactfully leave such
matters unspoken. Yet unless such information is made explicit,
groupware will be insensitive to it.

With one work management system, any employee who reported a
priority problem received system-generated requests to forward progress
reports to the Chief Executive Officer -- an extreme example of a design
that ignores the sensitivity of certain communications. Employees
stopped reporting problems. The vigilant system noted this and alerted
the administrator. The employees dealt with the resulting complaint by
writing programs that periodically opened files and changed dates, which
satisfied the watchful, automatic monitor. Thus “sabotaged,” the work
management system was of little use and was eventually quietly
withdrawn.

Meeting management or group decision support systems have also failed
to meet expectations (Kraemer and King, 1988). The appeal of
improving the efficiency of meetings is clear, but the decision-making
process is often complex and subtle, with participants holding partially
hidden agendas, relying on knowledge of the personalities of the others
involved, and showing sensitivity to social customs and motivational
concerns. Since such factors are never represented explicitly in a support
system, the computer participates at a great disadvantage. In one case, a
leadership group considered using an issue-based information system in
which arguments, counter-arguments, and decisions are entered by

22

participants, creating a record of the decision-making process that can be
used for subsequent review and exploration of alternatives. The plan to
use the system was abandoned because the manager wanted the group to
project a strong impression of consensus; the explicit record of opposing
positions that the system would immortalize was politically unacceptable.

3. EXCEPTION HANDLING IN WORKGROUPS

Software may be designed to support group activities or procedures as
they are “supposed to” happen, but descriptions of “typical” procedures
can be misleading. Suchman (1983) argues persuasively that a wide range
of error, exception handling, and improvisation are characteristic of
human activity. Group activity may be particularly variable -- strict
adherence to a standard procedure may be more the exception than the
rule. But given the overall difficulty of developing software to support
group activity, the desire to build the design around specific work
procedures may be especially strong.

The problems that can result are illustrated in a case study by Rowe
(1985, 1987). Computerized stock control and sales order processing
systems were introduced at a chocolate factory that is part of a large food
company. Severe problems arose when the Computer Services division of
the food company installed the systems in the chocolate factory: “(People
in) Computer Services refer to a ‘production mentality’ where (chocolate
factory) staff respond to problems as and when they arise, are eager to
keep production operating and are loathe to indulge in long-term planning
and adopt specific procedures. Most important, they expect others to
adjust to them, and resist the discipline the computer imposes...
Moreover, not only did management fail to impose set procedures, but
further ad hoc arrangements were positively encouraged by the sales
department, as in the case of one customer who was assured that they
could amend their Friday order up to 1:00 pm on a Monday... No doubt it
believed it was working in the best interests of the company, but its
actions created considerable problems for those trying to operate the
computer.” In some areas the manual system continued to be used out of
necessity. At one point, the general manager “became convinced that
someone was sabotaging the system.”

Here Suchman’s observation is critical: if more human activity is ad hoc
problem solving then we realize, if descriptions of “standard process” are
often post hoc rationalizations, then the workers’ behavior that seemed

23

pathological to the computer services division may well have been an
optimal response to the work environment. After all, catering to the
needs of specific customers is often considered a virtue, not a vice.

The general manager recommended that the system be withdrawn, but “he
was overruled by group head office who were not prepared to lose face
over the installation.” By hiring new personnel and taking other
expensive measures, the system was made to work. This anticipates our
discussion of groupware acceptance. The system described by Rowe was
a large, expensive system: upper management was prepared to do a lot to
make it succeed. But a typical groupware application or feature, such as
meeting scheduling or voice annotation or even meeting support, will
rarely have the same degree of visibility and backing -- and thus would
fail under similar circumstances.

4. CRITICAL MASS AND PRISONER’S DILEMMA PROBLEMS

Most groupware is only useful if a certain percentage of group members
use it. The percentage may be high -- a co-authorship system, for
example, may not help much unless all authors use it. Ehrlich (1987b)
noted the importance of a “critical mass” of users for communication
systems. Even one or two defections may cause problems for meeting
scheduling, decision support, or project management applications.
Markus and Connolly (1990) point out that even in an idealized situation
in which every individual would benefit from the use of a groupware
application, they may never use the application long enough to discover
this. The early adopters will not find it useful and may abandon it before
the critical mass is reached. Grudin (1989) describes an expensive voice
messaging system that failed initially to reach a critical mass of users:
those who did leave messages became discouraged because all too often
the receiver did not use the system. However, this system became highly
successful, even in the eyes of some initial detractors, when top
management forced its use by removing the alternative (receptionists
taking messages). But that was an expensive organization-wide system; a
less expensive groupware application is unlikely to be given such a
forceful shove past the critical point. A less visible voice annotation
feature will not be made obligatory, employees with discretionary control
over their own time may not be forced to keep on-line calendars, and so
forth.

24

Markus and Connolly (1990) also point out the possibility of “prisoner’s
dilemma” situations, in which everyone acting in their own best interest
leads to a worse situation not only for the group but for each individual.
They suggest that with some discretionary databases, as long as anyone
updates them, your optimal strategy is to “freeload,” but of course if
everyone tries to “freeload,” the system is not used at all. A critical
point also exists here: the number of non-freeloaders who must use it
before each user gets more out of it than he or she puts in.

These analyses show that even equalizing costs and benefits for all
groupware users (and insuring a net benefit) would not assure success.
Markus and Connolly suggest management solutions, such as mandating
system use. But this particular approach seems unpromising for low-
visibility groupware applications. It seems preferable, where possible,
for designers to build in features that do provide strong enough incentives
to users. If this is impossible, product developers might consider
directing their efforts to projects with more chance to succeed! This may
seem obvious, but there is an almost lemming-like drive to embrace
certain ill-starred applications, which is the subject of the seventh
challenge.

5. RECOGNIZING AND DESIGNING FOR INFREQUENTLY USED
FEATURES

We have a natural tendency to exaggerate the importance or frequency of
the objects or events that we are attending to. If “to a hammer,
everything looks like a nail,” then perhaps to a groupware designer, every
work situation calls out for communicative or social support. To
maintain perspective, recall that many organizations are structured and
responsibilities divided in order to minimize the overall communication
requirements and social interdependencies. The decrease in efficiency
that accompanies increase in size, much of it due to increased
communication overhead, is well known. Work does have important
social elements that call out for support, but groupware features will
generally be used much less frequently than many features supporting
individual activity. This has two important implications.

First, it may be necessary or desirable to integrate groupware features
with those supporting frequent individual activity. Consider co-
authorship applications. Anyone who has written collaboratively may
visualize the potential benefit, but most writing is done alone, whether on

25

single-authored efforts or on a section of a jointly written document. As
a result, most people would be unwilling to abandon their favorite word
processor in order to use a co-authorship application. Features to support
co-authorship need to be integrated with those already supporting
authorship. A corollary of this is that stand-alone groupware applications
may not justify high purchase costs and be perceived to fail simply
because they are relatively infrequently used. How often, really, do you
call a meeting, manage a meeting of the size that a group decision support
system could facilitate, etc.? Rather than as applications launched with
fanfare, groupware may succeed as features slipped into already
successful applications.

This brings us to the second implication. If groupware features are
relatively infrequently used elements of frequently-used applications,
developers must keep them in the background so they do not impede more
frequently-used individual-use features, yet insure that they are known to
and accessible by users when it is time to use them. These conflicting
requirements are faced by the designers of any relatively infrequently-
used feature; it is perhaps the greatest interface challenge of the future.

6. THE UNDERESTIMATED DIFFICULTY OF EVALUATION

Task analysis, design, and evaluation are never easy, but they are far
more difficult for multi-user applications than for single-user
applications. An individual’s success with a particular spreadsheet or
word processor is unlikely to be affected by the differing backgrounds or
by the personalities of other group members. Single users can be tested
in a laboratory on the perceptual, motor, and cognitive aspects of human-
computer interaction that are central to many single-user applications, but
lab situations cannot capture the social, motivational, economic, and
political dynamics that often strongly affect the use of groupware. In
addition to being used in this more complex setting, groupware itself has
more complex requirements, needing to interface simultaneously to users
with different roles, backgrounds, and preferences. And due to the ways
these factors interact, evaluation of a partial prototype may not capture
crucial influences; a full implementation may be required.

The evaluation process is far more time-consuming. Much of a person’s
use of a spreadsheet might be observed in a single hour, for example, but
group interactions typically unfold over days or weeks. Furthermore, the
evaluation methods used are less precise. Evaluating groupware in the

26

field is remarkably complex due to the number of people to observe at
each site, the wide variability of group composition, and the range of
environmental factors that play roles in determining how it is used. The
evaluation of groupware requires an approach based on the methodologies
of social psychology and anthropology. These skills are absent in most
development environments, where human factors engineers and cognitive
psychologists are only starting to be accepted.

Finally, the greatest problem in generalizing from experience is that
establishing success or failure is much easier than identifying the
underlying factors that brought it about. A highly-motivated group may
find a way to use a seriously flawed product, and a badly-managed
installation may cripple a good product, with the result that one generally
finds both successes and failures.

7. THE BREAKDOWN OF INTUITIVE DECISION-MAKING

Often the problem lies not in the detailed design of an application but in
its very conception: decisions are frequently made to develop unworkable
systems. To understand why, note that decision-makers in product
development environments rely heavily on intuition. The experience and
track record of today’s development managers is likely to be based on
single-user applications. Intuition can be a far more reliable guide to
single-user applications than to multi-user applications. A manager with
good intuition may quickly get a feel for the user’s experience with a
word processor or spreadsheet, for example, but fail to appreciate the
intricate requirements of a groupware application that requires
participation by a range of user types.

Decision-makers are often drawn to applications that selectively benefit
one subset of the user population: managers. Consider these active
groupware development areas: project management applications primarily
benefit project managers; meeting schedulers and meeting management
systems benefit those who convene meetings; decision support systems
primarily benefit decision-makers; digitized voice products appeal to
those who rely on speech (remember the dictaphone). Similarly,
managers may see themselves as prospective casual users of features such
as a natural language interface and support its development, without
recognizing their limited utility or development cost (Grudin, 1989).

27

This bias is understandable -- each of us has ideas about what will help us
do our job. But managers may underestimate the down side, the
unwelcome extra work required of other users to maintain such an
application, a burden that often leads to neglect or resistance. For
example, a group decision support or work management application may
require many people to learn the system and enter data, it may record
information that participants prefer not to have disseminated, and it may
block other means to influence decision-making, such as private lobbying.
The decision-maker’s intuition will fail when an appreciation of the
intricate dynamics of such a situation is missing. Also, as described
above, managers may fail to appreciate the difficulty of developing and
evaluating good groupware. Finally, they may not recognize that as
systems and applications become cheaper and thus less visible to
management, users will less often be forced to do additional work to
insure their success.

No one has good intuition for multi-user applications. As researchers,
designers, implementers, users, evaluators, or managers, our computer
experience is generally based on single-user applications. This history
determined the skills we acquired, the intuitions we developed, and the
way we view our work. For example, human factors engineers are
trained to apply techniques based on perceptual, motor, and cognitive
psychology to study phenomena of brief duration but are unfamiliar with
the techniques of social psychology or anthropology needed to study
group dynamics over time.

In particular, we are not trained to consider many of the issues discussed
here. Once a project is set in motion, researchers or developers may rely
on feedback from a few potential users. Often these are the expected
beneficiaries of the application, and often that means managers. For
example, while the greatest interface challenge for an intelligent project
management application may be to minimize the information entry effort
required of each worker or provide compensatory benefits for doing this
work, attention may instead be directed toward information visualization:
the interface for the project manager. “Managers must know what
information is needed, where to locate it, and how to interpret and use it.
Equally important is that they be able to do so without great effort,”
(Sathi et al., 1986). This may appeal to the manager sponsoring the
project, but it is not wise to focus exclusively on designing groupware for

28

the principal beneficiary, whose satisfaction may be critical but who may
be relatively highly motivated from the start.

The converse intuition failure also occurs: a decision-maker may not
recognize the value of an application that primarily benefits non-
managers, even when it would provide a collective benefit to groups and
organizations. This is particularly true for applications that might create
additional work for managers. This point is addressed below in the
context of electronic mail: a groupware success story.

REVIEWING THE RECORD

The same mistakes are made over and over again. The proponents of a
product call attention to the successes and quietly move on if, as often
happens, the product fails. Thousands of developer-years and hundreds
of millions of dollars have been committed to various application areas
that could be termed groupware despite little or no return. Consider two
of the oldest areas of research and development: A review of group
decision support systems concluded that after decades of work, “their use
is far below what could be expected given their need and promise,” and
“although some for-profit companies have built (group decision support
systems), they are not yet making much money,” Kraemer and King
(1988). At a panel titled “Voice: Technology searching for
communication needs,” it was stated that after 25 years of research, no
company specializing in voice technology had become profitable and that
projected sales of voice products had been revised sharply downward
(Aucella, 1987). In most instances of failure, of course, a substantial and
timely return on investment had been anticipated.

Nor is the pattern confined to the commercial world -- each generation of
researchers may rediscover these problems in technologically flashier
forms. Two examples: Zellweger (1990) shows a fictional enactment of
the use of a new voice editor. Someone receives a voice message
containing directions for driving to a party, which they carefully edit and
forward to a third person. Since the final recipients must transcribe the
directions, probably requiring several passes through the voice message, a
substantial burden has been given to the editor-intermediary and
recipients. Considerable reduction in effort would result if anyone in the
chain simply typed in the directions; in a real situation this would
hopefully happen. Similarly, Beard et al. (1990) report on an automatic
meeting scheduler developed in apparent ignorance of the fate of almost a

29

decade of commercially available meeting schedulers. The system
encountered interesting if predictable problems: unwillingness to place
true priorities on a public system, incomplete adoption of the system by
group members, etc., but the developers concluded only that if the system
is rewritten in C to run on a more convenient computer, these problems
may disappear. Evaluating groupware is difficult.

Others have noted the lack of progress. For a CHI’90 panel titled “How
can we make groupware practical?” Bob Kraut wrote “the only successful
CSCW application has been electronic mail,” (Ensor, 1990, p. 88). Lee
Sproull wrote “Groupware will never be practical and widely used in
organizations if it follows its current trajectory,” (p. 89). She argued for
a focus on either applications for individuals or systems to support entire
organizations -- essentially denying the possibility for groupware as
typically defined: marketable products developed with an expanded,
group focus.

A SOURCE OF POOR INTUITIONS: TWO MISLEADING ANALOGIES

Groupware lies between two worlds. It is a new class of products
attracting interest in organizations heretofore focused on single-user
applications and it encounters problems in organizational dynamics
heretofore experienced primarily by internal or contract-based IT
projects. These provide the two natural but ultimately misleading
analogies: 1) between multi-user applications (groupware) and multi-user
systems (supporting organizational goals), and 2) between multi-user
applications and single-user applications. Designers and decision-makers
fail to recognize the limits to the analogies, to intuitions based on these
different experiences.

I have so far stressed the differences between groupware and single-user
applications. Now consider the second potential source of confusion:
similarities and differences of groupware and more familiar systems
introduced to support organizational goals. Here we do not refer to
central, timesharing computers that primarily support individuals and
single-user applications, but rather to hardware and software systems
developed to support organizational goals, such as management
information systems, computer-integrated manufacturing systems, or
inventory control systems.

30

These highly visible, expensive systems arrive with an anticipation of
substantial collective benefit and an expectation of some organizational
change. Upper management may express its commitment through a) job
redesign or creation: e.g., word processing skills are made a job
requirement for new secretaries and a new database administrator job is
created; b) support for training and education of the users to the
collective benefit, which may create a willingness to support the use of the
system; c) reorganization to work around important individuals who do
not use the system (e.g., a manager who will not use a terminal); d)
positive leadership through inspiration or example. These forces may
work to the advantage of the system, but even so, successful
implementation is not assured.

In contrast, less expensive groupware applications will rarely have the
same level of management commitment. It has some advantages -- most
users may be familiar with the computer system already in place; the
smaller group may be relatively homogeneous and share many goals. But
the organization cannot restructure itself around each new application,
nor will management work as hard to ensure full participation. For
example, maintaining a personal calendar in order to support automatic
meeting scheduling is unlikely to become a job requirement. In general,
the organization may adapt to a computer system, but an application
program must adapt to the organization, fitting into existing work
patterns and appealing to all the people needed to support it. A system
may provide group members with several (single-user) text editors to
choose among, for example, but all must agree to use the same group
decision support system.

Thus, our final challenge is a merger of two converging problems: as
product developers, groupware designers must pay greater attention to
the problems of system acceptance than they have before, just when these
problems are becoming a greater challenge!

8. THE DYNAMICS OF ACCEPTANCE: A NEW CHALLENGE FOR
PRODUCT DEVELOPERS

The Information Technology field has been substantially concerned with
system acceptance or adoption -- often called “implementation,” (a term
used synonymously with “development” in many product organizations);
e.g., Lucas (1976), Lyytinen and Lehtinen (1987). In application
development environments, however, designers and developers are

31

shielded from acceptance or implementation concerns. This is partially
due to the nature of “off-the-shelf” product marketing, where the buyer
exchanges the right to choose among alternatives for the responsibility for
finding an acceptable one, but mediators also play a role in bringing about
acceptance. Within the development organization, they include groups
such as marketing and customer support or field service. Training
materials or programs are often developed by groups located outside
software development and even documentation may be produced by
writers who have minimal contact with application designers and
developers. User organizations may rely on consultants, internal
developers, or other groups to help tailor or supplement the product and
oversee implementation or acceptance.

The mediation that works for individual applications and general-purpose
systems may be unreliable for groupware applications that are more
sensitive to social dynamics. Designers and developers may not learn
enough about user environments to develop useful systems, and
conversely I have seen marketing representatives ignore carefully
researched recommendations for implementation. While these mediators
may be a fact of life, product designers and developers should be aware
of those factors independent of the quality, utility, and even usability of a
product that can determine its acceptance. Discussion of application or
small system acceptance has entered the research literature (e.g., Gaffney,
1985; Ehrlich, 1987b). Ehrlich’s strategies for encouraging successful
adoption of “office communication” systems, broadly defined to cover
several groupware categories, are summarized here.

First, a group’s problems must be identified and the computer solution
matched to it. For example, geographic proximity of group members
may indicate whether voice or electronic mail, or synchronous or
asynchronous decision support might be appropriate. Next, appropriate
pilot groups and individuals must be selected. Systems may fail if placed
on executive desks when their secretaries would be more appropriate, or
if restricted to secretaries when professionals should be included, for
example. The adopting group should be given a clear understanding
(perhaps through a site visit) of what the mature use of the application
might be, to overcome uncertainty; providing education that demonstrates
the positive impact on the work day may help here. Also, step-by-step
training on unfamiliar features, even if not enough to insure later recall
of the details of use, may reduce anxiety. Many observers have

32

commented that the attitude of management is critical to acceptance. For
less expensive applications, requiring less organizational investment, this
may require particular attention. Finally, someone must be educated to
anticipate early problems so that they can be dealt with immediately to
prevent premature rejection, and follow-through support must be in place
to handle the post-“honeymoon” period, when the group’s curiosity wanes
and need to get on with work moves back to center stage.

These considerations, crucial for systems introduced in group settings, are
traditionally beyond the control of application designers and developers.
Groupware developers may have to address them to succeed. They must
insure that their product meets real needs (for instance, by involving
prospective users in the process), support some of these requirements
through the design itself, or by working more closely with the mediating
groups (e.g., marketing) than they have in the past.

MEETING THE CHALLENGES
SHIFTING TO A WORK PERSPECTIVE

The problems described above suggest that the intuition-governed,
technology-driven approach to progress that works relatively well with
single-user applications is failing with multi-user targets. Some visionary
writers have stressed the need for designers to understand more about
how groups and organizations function and evolve, as well as more about
individual differences. But it is easier to recognize the problem than to
truly escape the technology orientation that is reflected in the term
“groupware” itself.

In the world of large systems development, methodologies that truly focus
on users’ work and workplaces have been developed. Scandinavian
researchers stress the importance of “workplace democracy” -- engaging
the users or workers meaningfully in the design process, a slow mutual
education process that results in users becoming true members of the
design team. Such projects have brought systems developers into
meaningful contact with labor unions, historians, and economic theorists,
groups with a history of concern for social and motivational issues in
group situations. These approaches are reaching application developers
through books (e.g., Bjerknes, Ehn, and Kyng, 1987; Docherty et al,
1987; Ehn, 1989; Bgdker, 1990; Greenbaum and Kyng, 1990) and
conferences (e.g. the CSCW’88, EC-CSCW’89, and 1990 Participatory

33

Design Conferences). However, adapting these time-consuming, labor-
intensive approaches to product development environments may not be
easy, due to the very nature of product development (Grudin, 1990b).
Methodologies for accomplishing this are only starting to appear (e.g.,
Whiteside et al., 1988).

Although many researchers and developers from product development
companies have adopted the term “computer supported cooperative
work,” with its explicit focus on work as the central concern, a substantial
technology-driven element remains. But the technology-driven, trial-and-
error approach is proving to be too expensive and failure-prone in this
area, suggesting that work-centered approaches must be examined. Yet,
there have been successes in groupware development; their examination
may offer some guidance.

VIEWING ELECTRONIC MAIL AND OTHER GROUPWARE
SUCCESSES FROM AN ORGANIZATIONAL PERSPECTIVE

What are groupware successes? First, we must review the question raised
in the previous paper: what is groupware and what is its substrate? The
most inclusive interpretation argues that any application used successfully
in a group setting qualifies. For example, Nardi and Miller (1990) find
that spreadsheets may usually be developed and used by teams, even
though they lack features designed to support this aspect of cooperative
use. Crowley (in Ensor, 1990) includes network file servers as
groupware, which is relatively low (see Figure 2, p. 12). In contrast,
“object management systems” such as databases and code management
systems, are often categorized as (potential) groupware substrates because
they do not distinguish among users, apart from some password
protection -- the design does not support different roles, preferences, etc.
Kraut, in Ensor (1990), termed email the only groupware success,
thereby drawing the line above object management systems. Most
extreme are Bannon and Schmidt (1990), who consider even electronic
mail to be a substrate for groupware, rather than being groupware itself.
Without worrying too much about whether we are discussing successful
groupware or successful groupware foundations, we will draw the line
between Crowley and Kraut, although we will focus on electronic mail,
broadly defined to include bulletin boards or computer conferencing.

The potential for electronic mail to augment group activity was foreseen
thirty years ago; today, a variety of related computer-mediated

34

communication forms have succeeded. How were the pitfalls avoided? Is
electronic mail a potential model for groupware?

1) Who does the work and who benefits? Electronic mail provides an
equitable balance insofar as sender and recipient are concerned. The
person with a message to communicate does a little more work to type it,
while the receiver can read it easily and whenever convenient; thus, the
primary beneficiary typically does a little more work. 2) Compatibility
with social practices: The essentially conversational format of electronic
mail allows us to apply existing social conventions. However, there are
differences, which lead to clearly identified problems such as “flaming,”
“junk email,” “smileys,” e.g., :-) and to more subtle but significant
problems described below. 3) Exception-handling: the asynchronous,
informal nature of most electronic mail makes it flexible, although mail
applications have been developed that impose more structure -- and may
suffer accordingly (e.g., Carasik and Grantham, 1988; Erickson, 1989;
Bullen and Bennett, 1990). 4) Critical mass problems: these can affect the
utility of email, although either one other user or a connection to any
external bulletin board or conference may be enough to insure its utility.
5) Frequency of use: for many users email is quite heavily used and
requires relatively little learning and recall. 6) Difficulty of evaluation:
As with all groupware, the overall costs and benefits of electronic mail
are difficult to assess. 7) Poor intuitions for groupware: Not all mail
applications succeeded, but our intuitions on the topic may be improving
as email use spreads.

Electronic mail has avoided most of these problems. That leaves our
additional challenge: 8) Acceptance. An interesting anomaly is that email
has spread less through the normal product development and marketing
processes than by spreading from academic and public sources.
Understanding this may be the key to understanding the future of
groupware and the impact of information technology on organizations.

The key user distinction for electronic mail in many organizations is not
that of sender and receiver, it is that of manager and subordinate. This is
not because the technology recognizes the supervisor-subordinate
distinction, but because that distinction is so critical in the workplace. We
may have a bias to focus on the distinctions designed into the technology,
but its reception in an organization is determined by the distinctions that
exist there. In hierarchic organizations, the work and the rewards going

35

to managers and other workers are quite different. We may downplay
the differences and seek cooperation between labor and management, but
some tension exists in most organizations large enough to profit from
electronic mail. Even where tension is not evident, the roles of manager
and subordinate differ.

Unlike most groupware applications, electronic mail does not selectively
benefit managers or decision-makers. In fact, the contrary is probably
true. Asynchronous interrupts may bother managers whose time is
tightly budgeted: “Mostly, a lot of times, I won’t respond. I'll print the
message and stick it in their file and wait until their weekly meeting,” said
one manager. The ability for anyone to disseminate information rapidly
can create new and not always welcome challenges for managers whose
jobs involve filtering and routing information. In a classic hierarchic
bureaucracy, lateral communication is minimized -- information flows up
and down through the hierarchy. The resulting inflexibility can lead to
inefficiency; rigid bureaucracies, from the Soviet Union to the U.S. Navy,
spawn tales of undercover exchange systems devised to cope with it.
Electronic mail, even more than a telephone on each worker’s desk,
supports efficient lateral communication -- but may create difficulties for
managers in organizations built on the hierarchical model.

One managerial responsibility may be to absorb information from higher
levels and tailor its presentation to subordinates to maximize their
understanding or obtain a desired response. But if such information is
received electronically, it is easier to forward it without such tailoring. In
fact, editing may be counterproductive, since other electronic versions of
the message may be forwarded laterally into the group, revealing the
tampering. This may place a manager in a no-win situation. Similarly,
the ability of anyone to send a message instantly to everyone in an
organization creates a volatility that management must cope with.

The anthropologist Constance Perin (1989) analyzed field studies and
suggested that “these electronic social formations represent new sources
of industrial conflict... they are seen as subverting legitimated
organizational structures.” While noting the collective value of electronic
communication to large organizations, Perin describes how it can conflict
with traditional organizational practices. For example, “the very
‘invisibility’ of electronic social fields, which may be cultivated
bureaucratically because they are believed to enhance productivity, also

36

delegitimates them and becomes the source of managerial negativism and
suspicion.” One case study concluded that electronic mail “is simply not a
management tool, if by management we mean those above the level of
project leader... a medium which allows widely separated people to
aggregate their needs is, in fact, quite frightening. Some managers
correctly foresee that such a system can be most upsetting to the current
established order, and do not participate in it as a result,” (Fanning and
Raphael, 1986).

What are the implications for electronic mail and groupware built on it?
While there are cases of individual managers discouraging or terminating
its use, many organizations have assumed an overall benefit and
successfully introduced it. Many students and professionals are now
accustomed to it. Thus, the forces Perin describes may play themselves
out over time. Organizations designed around notions of efficiency and
control that become outmoded may evolve; finding new organizational
forms and minimizing the cost of shifting to them are challenges for the
near future.

“Object management” applications used by groups, such as databases and
code management systems, share some properties with email. In
particular, they primarily benefit not managers or decision-makers, but
people who use computer systems more routinely in their work.

POSSIBLE DIRECTIONS FOR GROUPWARE DEVELOPMENT

This picture requires balancing. Technical obstacles that are in the
process of being addressed may also be factors, such as the processing and
storage requirements of voice technologies or lack of sufficient
networking. Development is sometimes indirectly motivated; for
example, one company may build an automatic meeting scheduler simply
because it is technically easy -- after which its rivals may feel forced to do
so to maintain competitive positions. On the positive side, the problems
may be mitigated in some contexts. If an application targets relatively
homogeneous groups, intuition may be a better guide, facilitating both
evaluation and design. Also, most of the application areas described have
enjoyed some successes and are potentially important. Investing resources
adequate to the solution of the problems, developing the appropriate
research and development methodologies, finding niches where the
problems do not arise or where applications will succeed in spite of them,

37

and adequately preparing users for the introduction of groupware are all
approaches that may lead to success.

Beyond that, managers and developers must be educated -- about
groupware, the risks involved, and the resources and approaches required
to minimize the risks. We will have to learn more about how different
kinds of people work together. Given the expense of developing
groupware and the current prevalence of failure, time-consuming “front-
end” activities -- careful needs-finding, prototyping, and iterative design -
- may be cost-effective, leading to changes in software development
practices.

While a groupware application may lead to gradual organizational
evolution, its introduction must be smoother. This makes the job of the
designer and implementer more difficult. Groupware applications will
have to be more “group-friendly” than systems have been. The focus will
shift to user interface issues to minimize the disruption. Approaching the
ideal in which everyone benefits directly will require minimizing the
extra work required of anyone or providing a compensatory benefit. It
may require interfaces that vary according to a user’s background, job,
and preferences. This is a substantial undertaking.

We must also develop a better understanding of our own decision-making
processes as researchers and developers. Too often we see researchers
studying other researchers, developers building systems because the
technology exists, and managers supporting the development of systems
that will appeal to other managers. We must make a strong effort to
broaden our intuitions because experiments in the cooperative work area
are so expensive and time-consuming.

Since executives and managers are typically not heavy computer users, it
may not be surprising that the most successful groupware applications
have been the few whose primary beneficiaries were non-managerial.
This has several implications for groupware developers.

First, if an application will primarily benefit managers or decision-
makers, focus strongly on finding ways to provide benefits for other
group members. One approach is to supplement the technology with a
design for the process of its use. The importance of carefully managing
technology use has been reported in two successful implementations of
group decision support systems (Whiteside and Wixon, 1988; McGoff et

38

al., 1990). In the latter case, the process of use ensured a strong, visible
buy-in by management and clear benefits to all participants.

Second, look to existing computer use as a starting point. Extend or build
on single-user applications used in group settings. The group use of
spreadsheets reported by Nardi and Miller (1990) might be facilitated
through the addition of specific features. Similarly, features supporting
co-authorship could be built into a successful word-processor. Co-
authors who exchange drafts by email would likely use a facility that
automatically converts a document to an interchange format and posts it
to co-authors, perhaps assigning a version number -- if it did not require
learning a new word processor.

Third, focus on object management applications, which have so far fared
better than process management applications. Building on electronic mail
offers particular promise. One ambitious development effort is Object
Lens (Lai and Malone, 1988), whose users can fill in message templates
and other forms to filter or share information in varied, flexible ways.
Networks are already being used to guide research, development, and
even marketing (Perlman, 1985). Grudin (1990a) describes real and
speculative extensions of “electronic markets” (Malone et al., 1987).

An email system may be likened to a highway through an organization, an
information-bearing interstate highway that may cross organizational
boundaries. Pursuing the metaphor for a moment, the U.S. interstate
highway system was designed for a military purpose that is not reflected
in its subsequent use, which led slowly to changes in transportation
systems (e.g., freight shifted from railroads to trucks), demographics, and
patterns of automobile use, sales, and design. Technology can produce
organizational and societal change that may not be predictable or easily
hurried. The effects of groupware will surely follow that pattern. By
enhancing communication, groupware may erode the authority structure
of some hierarchic organizations. This decentralization of control may
further reduce the promise of groupware that selectively benefits
management -- which includes most groupware being developed today.
Because these failure-prone applications seem to emerge from a product
development process that is heavily driven by technology and managed by
intuition, we may shift to a development process based on obtaining a
deeper understanding of the structure of workplace activity.

39

REFERENCES

Aucella, A.F., 1987 (Moderator). Voice: Technology searching for communication
needs. In Proc. CHI+GI' 87 Human Factors in Computing Systems (Toronto, April
5-9), 41-44.

Bannon, L.J. and Schmidt, K., 1990. CSCW, or What’s in a name? Manuscript.

Beard, D., Palaniappan, M., Humm, A., Banks, D., and Nair, A., 1990. A visual
calendar for scheduling group meetings. In Proc. CSCW’90 Conference on
Computer-Supported Cooperative Work, (Los Angeles, October 7-10), in press.

Bjerknes, G., Ehn, P., and Kyng, M. (Eds.), 1987. Computers and democracy - a
Scandinavian challenge. Aldershot, UK: Gower.

Bullen, C.V. and Bennett, J.L., 1990. Learning from user experience with groupware.
In Proc. CSCW’90 Conference on Computer-Supported Cooperative Work, (Los
Angeles, October 7-10), in press.

Bgdker, S., 1990. Through the interface: A human activity approach to user interface
design. Hillsdale, NJ: Lawrence Erlbaum Associates.

Carasik, R.P. and Grantham, C.E., 1988. A case study of computer-supported
cooperative work in a dispersed organization. In Proc. CHI 88 Human Factors in
Computing Systems (Washington D.C., May 15-19), 61-66.

Docherty, P., Fuchs-Kittowski, K., Kolm, P., and Mathiassen, L. (Eds.), 1987.
System design for human development and productivity: Participation and beyond.
Amsterdam: North-Holland.

Ehn, P., 1989. Work-oriented design of computer artifacts. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Ehrlich, S.F., 1987a. Social and psychological factors influencing the design of office
communication systems. In Proc. CHI+GI 87 Human Factors in Computing
Systems (Toronto, April 5-9), 323-329.

Ehrlich, S.F., 1987b. Strategies for encouraging successful adoption of office
communication systems. ACM Trans. on Office Information Systems, 5, 340-357.

Ensor, R., 1990 (Moderator). How can we make groupware practical? In Proc. CHI’ 90
Human Factors in Computing Systems, (Seattle, April 1-5).

Erickson, T., 1989. Interfaces for cooperative work: An eclectic look at CSCW’88.
SIGCHI Bulletin, 21, 1, 56-64.

Fanning, T. and Raphael, B., 1986. Computer teleconferencing: experience at Hewlett
Packard. In Proc. CSCW’86 Conference on Computer-Supported Cooperative
Work, (Austin, December 3-5).

Gaffney, C.T., 1985. Avoiding the “seven deadly sins” of OA implementation. In Proc.
Syntopican XIII Making Business Systems Effective (Washington, D.C., June 17-
20), 241-254.

Greenbaum, J. and Kyng, M., 1990. Design at work: Cooperative design of computer
systems. Hillsdale, NJ: Lawrence Erlbaum Associates.

Greif, I. (Ed.), 1988. Computer-supported cooperative work: a book of readings. San
Mateo: Morgan Kaufmann.

Grudin, J., 1989. Why groupware applications fail: Problems in design and evaluation.
In Office Technology and People, 4, 3, 245-264.

Grudin, J. and Poltrock, S., (1989). User interface design in large corporations:
Communication and coordination across disciplines. In Proceedings CHI’' 89
Human Factors in Computing Systems, (Austin, April 30-May 4).

Grudin, J., 1990a. Groupware and cooperative work: Problems and prospects. In B.
Laurel (Ed.) The art of human-computer interface design. Reading, MA: Addison-
Wesley.

40

Grudin, J., 1990b. Obstacles to user involvement in interface design in large product
development organizations. In Proc. INTERACT 90 Conference on Human-
Computer Interaction, in press.

Kling, R., 1987. The social dimensions of computerization. Plenary address given at
CHI+GI ’87 Human Factors in Computing Systems (Toronto, April 5-9).

Kraemer, K. and King, J., 1988. Computer-based systems for cooperative work and
group decision making. ACM Computing Surveys, 20, 115-146.

Lai, K.Y. and Malone, T.W., 1988. Object Lens: A “spreadsheet” for cooperative work.
In Proc. CSCW’88 Conference on Computer-Supported Cooperative Work
(Portland, September 26-28, 1988).

Lucas, H.C., Jr., 1976. The analysis, design and implementation of information
systems. New York: McGraw-Hill.

Lyytinen, K. and Lehtinen, E., 1987. Seven mortal sins of systems work. In Docherty,
P., Fuchs-Kittowski, K., Kolm, P. and Mathiassen, L. (Eds.) System design for
human development and productivity: Participation and beyond. Amsterdam: North-
Holland.

Malone, T.W., Yates, J., and Benjamin, R.I. 1987. Electronic markets and electronic
hierarchies. Communications of the ACM, 30, 6, pp. 484-497.

Markus, M.L. and Connolly, T., 1990. Why CSCW applications fail: Problems in the
adoption of interdependent work tools. In Proc. CSCW’90 Conference on
Computer-Supported Cooperative Work, (Los Angeles, October 7-10), in press.

McCracken, D.L. and Akscyn, R.M., 1984. Experience with the ZOG human-computer
interface system. Int. J. Man-Machine Studies, 21, 293-310.

McGoff, C., Vogel, D., and Nunamaker, J., 1990. IBM experiences with
GroupSystems. In Proc. DSS-90, May.

Nardi, B.A. and Miller, J.R., 1990. Twinkling lights and nested loops: Distributed
problem solving and spreadsheet development. In Proc. CSCW’90 Conference on
Computer-Supported Cooperative Work, (Los Angeles, October 7-10).

Perin, C., 1989. Electronic social fields in bureaucracies. American Anthropological
Association, Organized Session, “Egalitarian Ideologies and Class Contradictions in
American Society.” Washington, D.C., November.

Perlman, G., 1985. USENET: doing research on the network. UNIX/World,
December, 75-81.

Rowe, C.J., 1985. Identifying causes of failure: a case study in computerized stock
control. Behaviour and Information Technology, 4, pp. 63-72.

Rowe, C.J., 1987. Introducing a sales order processing system: the importance of
human, organizational and ergonomic factors. Behaviour and Information
Technology, 6, pp. 455-465.

Sathi, A., Morton, T.E., and Roth, S.F., 1986. Callisto: An intelligent project
management system. In Greif (1988), 269-309.

Suchman, L., 1983. Office procedures as practical action: Models of work and system
design. ACM Transactions on Office Information Systems, 1, 320-328.

Whiteside, J., Bennett, J., and Holtzblatt, K., 1988. Usability engineering: our

experience and evolution. In M. Helander (Ed.), Handbook of human-computer
interaction. Amsterdam: North-Holland.

Whiteside, J., and Wixon, D., 1988. Contextualism as a world view for the reformation
of meetings. Presentation at CSCW’88 Conference on Computer-Supported
Cooperative Work (Portland, September 26-28, 1988).

Zellweger, P., 1990. More Voice Applications in Cedar. SIGGRAPH Video Review,
59, Entry 4.

