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Abstract

In the literature neural networks are usually understood in the domain of
real activation functions and connection weights. The concept of neural
networks was generalized by one of us [Szi88] to include complex con-
nections between complex units. In the present note this idea is further
developed. A mathematical model is presented, an expression for the
network’s energy as well as a complex learning rule are proposed.

1 The Model

The model we have used to describe complex networks is the ordinary
Hopfield network of N neurons [Hop84], which in the real case is described
by N differential equations, also called the network equations:

du.: N

d—t"’ = kz::lekfk(uk(t)) + I;(1), (1)
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2 1 The Model

where j = 1,2,...,N. Here u; are the unit input activations, f; are the
output activation functions and I; are the external inputs. The weight
matrix constituted by the wj;’s is symmetric, so that wj; = wy;.

To make a model of a complex network, we will simply allow all of
the values (except for the time ¢) to be complex. The only thing changed
is the symmetry demand, which becomes a requirement that the weight
matrix is hermitian: wj, = wy;.

Now let’s try to split up the network equation into real and imaginary
parts. We have

uj(t) = z;(t) +iy;(t) (2)

Wik = Pjk + 1G5k (3)

file +iy) = gj(z,y) +ih;(z,y) (4)

Lit) = J;(t) +iK;(t), (5)

where j,k =1,2,...,N, t,2,y,px,qx € R, ;,y;,J;,K; € R — IR and

g5, hj e R? - R.

We can then rewrite the network equations as:

d(z;(t) + iy;(t))
dt

B é(pjk + 1) (gr (i (2), y (2)) + ihr (i (t), (1))
+ J;(t) + 1K;(t)
_ % (Psrg0(@x(2), 9e(2)) — giuha (21 (2), 1 (1))

+ i(pjrha(xk(t), ye(t)) + gingr(zr(t), yr(2))))
+ J;(t) + iK(t), (6)

which we can separate into two differential equations, one for the real
and one for the imaginary part:

% = é(pjkgk(mk(t)ayk(t)) - ijhk(wk(t)vyk(t))) + Jj(t) (7)
% - k:(ijhk(wk(t),yk(t)) + giegr(zi(t), i (t))) + K;(t).  (8)

From now on we shall write these network equations somewhat simpler
as
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dw,- N

o = > (Pirgr — girhe) + J;
k=1

du. N

gytl = Y (pjrhe + girgr) + K, (9)
k=1

(j =1,2,...,N). Thus, we have described the network of N complex
neurons by a system of 2V coupled differential equations in real variables.

2 The Energy of the Network

The energy function we would like to propose looks like

1N N
=32 3 ffuaf —Re(Z ;L) (10)

i1=1k=1

or written in vector form (with f and I as column vectors):

= F*W - Re(FD). (11)

Furthermore, since the matrix A with fiwirfi as its element at row
J and column k is hermitian, we have

(fiwinfu)* = fiwi fi = ffweifj, (12)

and Im (A) must be antisymmetric with zeros in the main diagonal.
Therefore,

N N
(gg Tk fr) = (13)

so E is all real and we can alternatively choose to write (10) as

E =Re(—

N =

N N
DD f Wik fr — Z:lf;lj)‘ (14)

j=1k=1
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2.1 Proof of Energy Relationship

We shall prove that the energy proposed is a non-increasing function of
time. We see that

Re (fjwirfs) = Re((g5 — ih;)(pjx + ign)(gr + ihi))
9iPik gk + higirgr + hipirhe — g;qikhi
= pir(9igr + hihx) — Gx(gihr — grh;) (15)

Re(f;I;) = Re((g; —ih;)(J; +iK}))
= g;J; + h;K; (16)

which means that we can write (14) as

N N N
}; Zl(pjk(gjgﬁhjhk)—ij(gjhk—gkhj))—Z(ngjJrthj)' (17)

J=1

l\’)lr—k

Now let’s prove that

OF diL‘j OF dyj

8g;  dt " Oh; ~ dt’ (18)
First we see that by arguments similar to the ones in [Szi89] page 34, we
have

9 N N

'é_ Z Z DPixg;9k = 2 Z PjikGk, (19)
95 j=1k= k=1

provided that p;; = pi;. But we know that the weight matrix is hermitian,
so this must be the case. Similarly, we have, of course:

9 N N N
7= 2o 2 Pikhihe =23 piha, (20)
k=1

h’] Jj=1lk=1
while on the other hand:

9 N N
Z E Dikgigh = 7— > > Pikhjhy = 0. (21)
6h3 Sl 0

g5 j=1k=1

Since the weight matrix is hermitian, we have g;5 = —qi;. Thus,
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N N N N N N
> 2 Gkl — grhs) = 30 3 gigihe — X X qirgrh;
7j=1k=1 j=1k=1 j=1k=1
N N N
= > ) girgihe — > E Qi g;h
J=1k=1 k=17=1
N N N N
= > Z ‘Iﬂcgjhk + Z Z qjkgjhk
J=1k=1 k=1j=1
N N
= 23> gxgihe. (22)
Jj=1k=1

When we differentiate this with respect to g; and hj, respectively,
we’ll get

9 N N N
2 2 Gkgihe = Y givha (23)
dg

95 j=1k=1 k=1
and

9 N N 9 N N N N
A Z Z aixgihe = Do 20 Gigkhi = XC arigk = — X qirgr.  (24)
Oh; ;=1 k=1 Oh; k=1 ;=1 k=1 k=1

We should now be well equipped to look if the energy as written in
(17) fulfils (18). For the first half of (18) we have by (9), (19), (21), (22)
and (23) that

OF 1 XN
55;_ = -3 2 Pirgr + 0 — 2Z%khk) J;
daz:J

dt

(2

N
= (X (pixgi — gjehi) + Jj) = (25)
For the second half of (18) we correspondingly have by (9), (20), (21),
(22) and (24) that

oOF 1 N N
T —=(0+2> pirhe +2 Y gjrgr) — K;
ah] 2 k=1 k=1

N du.:
—(kzl(ijhk + girgr) + K;) = —%. (26)

Il
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Using these two results, we can now look at the derivative of the
energy F with respect to time ¢:

éﬁ _ N (BEng BEdhj)
dt — ;Z'0g;j dt ' Oh; dt
N dx;dg; dy;dh;
= - X dtJ % d at
j=1
_ i(dfva(agg dz; . Og; dy]) dyj(ahj dz;  Oh; dyj))
=1 dt "0z dt 8yJ dt dt “Oz; dt Jy; dt
. N Bg] da:J 2 6h dy.7 2 da:jdyj 3gj 6[’&]
If we add the constraint that g—Zf a—h’- the last line becomes:
dFE N 0Og; dz; 2, hj dy;.,
= —j_;(amj< P+ AR (28)

Provided that °< ag > 0 and 2% 5y > 0, we see that dE < 0. So, we must
demand the followmg of the activation functions fJ to ensure that the
energy is a non-increasing function of time:

B:c] 3yj
dg; 6h;
-] e
2 dy; Oz; ° (29)

Note that if f; should be holomorphic, we know by the Cauchy-
Riemann differential equations that:

_ Ok,

99; _ _Ohs

dg; j
A =—
Oz; 9y;  Oy; Oy’ (30)
so in that case it’ll suffice to demand that > 0.
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2.2 Complex Energy

When one looks at (14), one is certainly tempted to investigate the com-
plex number

Eo= —

N =

N N N
> 2 fiwifs — Zlfffj, (31)
3:

J=1k=1

and, in particular, E; = Im(E¢). By (10) we easily see that

N
Er = - Z%Im(f;Ij)- (32)
=

Note that, when the pattern constituted by the I;’s is identical to the
output pattern, we have f; = I; for all j = 1,2,..., N, so I;f} is real.
This means that E; becomes zero then. It is, however, also possible for
Er to become zero without f; = I; being true, e.g. if I; = 0.

Other than this it is hard to see what E; can be used for, but it could
be interesting to keep it in mind till later.

3 Learning Rule

The energy surface has to be shaped in order to make the network learn.
L.e. we are going to alter the entries in the weight matrix by means of
a learning rule which is to be used during the training of the network.
Each vector in the training set have to become an attractor. This is
accomplished when minima are created in the energy surface such that if
we present a vector which “looks like” one in the training set, the network
completes it and ends up in the right attractor. The topology of the basins
of attraction corresponding to each attractor determine the capability of
the network to discriminate between individual inputs coming from the
environment.

The learning rule we have developed is very much like the Hebbian
learning rule as stated in [Szi89] page 31. Our version is:

Awjr = nf;fr, (33)
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or more compactly

W = ﬂff+, (34)

where f is a column vector of outputs and 7 is the learning rate which
takes different values depending on the learning mode:

IR, in learning mode
n € { {0} no learning (35)
IR_ anti-learning mode

Anti-learning takes place when I = 0, i.e. with no influence from the
environment, and is used in order to improve the performance of the
neural network. (This is also compared with REM! sleep in [KS].)

The weight matrix W is hermitian and should continue to be such
during learning. AW is hermitian because

(Awi)™ = (nfif)" = nf] fr = Awp;. (36)
It then follows that W stays hermitian.

The energy increase AE must be non-positive. This can easily be
verified from (11) and (34):

E+AE = _%f’+(W+AW)f”_ Re(F*1),

which implies that:

1
AE= - f*AWf = —-—n (frf)* <o, (37)
when n € R,.
In connection with this learning rule we performed some simple expe-
riments with content-addressable memory. In this case the weight matrix

is constructed analytically as described in [Szi89] p. 33:

p= 3 VOV 38
Wik = 2_:1 i Yk o ( )

1Rapid eye movements - appear during dream sleep.
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where V() are the output vectors (training patterns) and p is the number
of patterns/vectors to be stored in the neural network. This, of course,
follows from (33). The activation function used was f(z+iy) = tanh(z)+
itanh(y) which is described in the next section.

The configuration was 24 neurons in the network and the training set
contained 3 random vectors from €**. The performance of this network
was succesful and it could reconstruct very noisy patterns. Often vectors
with over 50% of the entries altered could be recognized?.

4 Finding a Proper Activation Function

Finding the right activation function is not easy. We have the two re-
quirements for this function as stated in (29) and these are not making
the conquest any simpler.

The apparently obvious choice is to transfer the mostly used activation
functions from the real to the complex domain. We have studied three,
viz. tanh(z), 1/(1+exp(—2z)), and atan (z). All of these have singularities
in the complex plane which are z = i(n + 3)m, z = —i(2n + 1), and
z = =i, respectively (n € Z). None of the functions are limited in the
neighbourhood of these singularities, and such properties are unwanted
because we then cannot guarantee that the network will not end up in an
undefined state. But the crucial point is that the functions do not satisfy
our requirements in (29). More specifically, they all violate gj% > 0. (The
three functions are holomorphic so they do fulfil 2. in (29).)
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Figure 1: Output domains of two activation functions.

Another function one could think of is f(x+iy) = tanh(z)+itanh(y).
It satisfies all of our requirements, but has the disadvantage of being

2This depends on the orthogonality of the original training vectors.
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too simple. The function returns values confined to a box as shown in
figure 1. Most often the output values end up in one of the four corners
of the box. So, all entries in the training vectors should in this case be
chosen as pointing to one of the corners.

In a Hopfield-type network, it is often the case that the outputs end
up on the rim of the output domain (depending on the type of activation
function). This could be an advantage to real valued networks which
are bounded to values on the real axis. Take e.g. the circle-shaped do-
main in figure 1. Here each coordinate in the training vectors have some
kind of a direction® which could be useful in the context of continous
interpretations instead of just discrete as in the real valued network.

Our efforts until now haven’t yielded a more compound activation
function. But the search continues because it is very important to develop
one that would show the real strength of complex-valued neural networks.
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