ISSN 0105-8517

The Development of Interactive Systems:
Bridging the Gaps
Between Developers and Users

Jonathan Grudin

DAIMI PB - 320

July 1990
COMPUTER SCIENCE DEPARTMENT == 7] |
AARHUS UNIVERSITY : _4
Ny Munkegade, Building 540 TF T
DK-8000 Aarhus C, Denmark - |

The Development of Interactive Systems:
Bridging the Gaps Between Developers and Users

Jonathan Grudin

Computer Science Department, Aarhus University
Ny Munkegade Bygning 540 8000 Aarhus C

Abstract

A framework for interactive systems development projects is outlined.
Three development paradigms are contrasted: competitively bid contract
development, product development, and in-house or custom development.
They vary as to when in a project the users and the developers can be
identified -- a distinction that is particularly significant for systems with a
human-computer interface component. The historical influence of each of
these paradigms on interactive systems development is reviewed. Other
factors affecting the flow of information between users and developers are
outlined. For each development paradigm, I identify the opportunities for
adopting an effective “user focus,” the obstacles, and the mediators who
contribute to bridging the gaps between developers and users.

Introduction: Early Calls for More Focus on Users

The importance of understanding the intended user when designing
interactive computer systems is widely enough acknowledged in 1990 that
it is easy to forget how little emphasis it received as recently as 1980. This
is of more than historical interest, because system development companies
will need time to translate this new understanding into reliable, effective
practice. Most major companies defined their current organizational
structures and development processes without having to consider the
particular needs of designing the dialogue between computer systems and
computer users. This raises some questions: Can these companies develop
effective interactive systems? What changes are required to bring greater
knowledge of users and their work environments into systems
development?

Until 15 years ago, most computer system users were engineers and
programmers. The system use environment was very similar to the system
development environment. Developers felt no need to seek “user
participation” in design -- developers themselves were good user
representatives. Now, computer use has spread to workplaces very unlike
engineering laboratories. Bridging the widening gulf between developer
and user environments requires greater effort. Contact with system users
is required, but determining how direct or extensive this contact need be is
more difficult, and actually achieving such contact has often proven
surprisingly difficult.

Early proponents of greater user involvement included both human factors
specialists and systems developers. An IBM usability research group
stressed “an early focus on users” in the 1970's and in an influential 1983
paper recommended that “typical users (e.g., bank tellers, as opposed to a
'group of expert' supervisors, industrial engineers, programmers)...
become part of the design team from the very outset when their
perspectives can have the most influence, rather than using them to
review,' 'sign off on,' 'agree’ to the design before it is coded,” (Gould and
Lewis, 1983). Perhaps coincidentally, this appeared when popular books
such as In Search of Excellence (Peters and Waterman, 1982) were urging
industry to cater to “the customer.” A user focus was further emphasized
in Norman and Draper's (1986) book User Centered System Design. Also
in the 1970s and 1980s, European projects experimented with greater user
participation in systems design (Bjerknes, Kyng, and Ehn, 1987). Perhaps
because it demonstrates how the principle of user involvement might
actually be applied, the Scandinavian approach in particular has recently
drawn attention (see e.g., “Designing with the user,” Suchman's (1988)
review of Bjerknes et al., 1987).

The challenge of designing interactive systems has not gone unnoticed in
software engineering. Boehm (1988) stated that the dominant waterfall
model of development “does not work well for many classes of software,
particularly interactive end-user applications.” His proposal, a “spiral
model” of software development, incorporates user involvement,
prototyping, and iterative design, steps recommended by Gould and Lewis
(1983).

However, the spiral model is not yet widely used, and Boehm notes that it
may be difficult to apply in some contexts. Software methods employed
more widely today, developed prior to the importance of “interactive end-
user applications,” do not provide for “early and continual focus on the
users,” Gould's (1988) central recommendation. Quite the contrary. De
Marco's (1978) structured analysis approach relegates the task “establish
man-machine interface” to one sub-phase of system development. Jackson
(1983) states that “(Jackson System Development) excludes the whole area
of human engineering in such matters as dialog design... it excludes
procedures for system acceptance, installation, and cutover.” Because such
methods do not specify user involvement in design, project plans do not
anticipate it. Development organizations are not structured to facilitate it.
In fact, organizational structures and processes often work strongly against
user participation. Many development projects never have a significant
possibility for direct user involvement, as described in the next section.
Such projects may acquire knowledge about system users indirectly,
finding some way to bridge the gap between developers and users. These
indirect methods sometimes work, but may not succeed in meeting the
rising expectations of computer users.

Users identified

COMPETITIVELY BID L

CONTRAGT DEVELOPMENT |

Developers identified

Users identified

——
|

Developers identified

PRODUCT DEVELOPMENT

Users identified

IN-HOUSE OR {

CUSTOM DEVELORPMENT

Developers identified

time —» Project System
Start Delivered

Figure 1. Project time lines with points of user and developer
identification.

Projects Vary as to When Developers and Users Are ldentified

Figure 1 presents three paradigms for software project development based
on when users and developers can be identified. The left edge of each
horizontal bar in Figure 1 represents the point at which a substantial subset
of the project's developers or eventual users are known. Not every project
matches one of these time courses precisely. It may be difficult to pin
events down to one moment in time, for example. Projects that begin with
a decision to build, modify, or replace a system or application and that
include a planned completion or delivery date are most directly addressed
here (although ongoing operation and maintenance occur, of course).
However, each of the three paradigms describes a large set of projects
which has had a major influence on interactive systems development.

In competitively bid contract development, the user organization is known
from the outset, but the development organization is identified only after a
contract is awarded. For example, a government agency prepares a design

specification for a new computer system and awards the contract to the
developer with the lowest bid. Actual practice may involve some
ambiguity or complication. The user organization may have some idea
who will get the contract, the user population may change before the
system is completed, and contracts may be awarded in stages. But the
essence of a competitively bid contract development project is that the
users are identified before the developers.

In an “off-the-shelf” product development effort, the developers are
known from the outset, but the users are often not known until the product
is marketed. This is again a simplification. Development team members
may change over time, and more importantly, development of any product
begins with some idea of its intended users, whether they are an existing
customer base or a new market. But uncertainty about the eventual user
population is an important facet of product development, as the unexpected
fates of many products, positive as well as negative, remind us. The IBM
PC and Apple Macintosh are successful systems whose market was not
initially foreseen, and the designers of countless failed products anticipated
user populations that did not materialize.

Finally, in in-house or custom development, both the eventual users and
the developers are known at the outset of the project. For example, the
computer services division of a bank develops a system for the bank's
platform managers. Again, the user population may evolve or be too large
or dispersed to be dealt with individually, but the degree of initial project
member identification is very high. This also occurs when external
developers are engaged from the start in developing a system for a specific
customer.

Projects may not be pure expressions of one paradigm. When a contract is
negotiated without bidding, the eventual developer may influence its terms
and thus be involved in advance, a situation that may lie somewhere
between competitively bid contract development and in-house/custom
development. A different merging of paradigms occurs when a
development company takes on a contract for a single system with the idea
of subsequently developing it into a product. Similarly, an in-house
project acquires characteristics of product development if the organization
has a large, diverse, and geographically dispersed user population, as when
the data processing department of a bank develops a system for branches
that vary in size and manner of operation.

It should not be surprising that conditions for user participation vary
across these development contexts. The separations in the timing of
involvement in product and competitively bid contract development
projects lead to potential or even probable obstacles to active collaboration
of users and developers. Many aspects of development practice have
evolved in effect to “communicate across time” -- to bridge the gaps shown
in Figure 1 -- as well as to bridge the physical distances that may separate

developers and users, so that one group becomes better informed about the
other. These “bridges” or mediators include consultants, independent or
third-party software developers and vendors, domain experts hired by
development companies, internal market research or development groups,
users and standards organizations, and flexible or multi-stage contracts.
Such mediation works better in some cases than in others. But keep in
mind the chorus of recommendations for early and continual collaboration
of developers and users in building interactive systems, and keep in mind
the widening gulf between development and user environments. Intuition
1s becoming a less reliable guide to development, and the effectiveness of
such indirect measures requires continual reexamination.

The Influence of 3 Development Paradigms on Interactive Systems

Each of the three development paradigms in Figure 1 has contributed to
contemporary practices in developing interactive systems. Understanding
these influences may eliminate some confusion that exists and allow us to
weigh the merits of approaches based on different research and
development experiences.

Contract development and the focus on software methods.

From the beginning of commercial computer development, government
contracts have been a powerful force in the industry. The U.S.
government has been and remains the largest computer user (Friedman,
1989). Government-initiated large-scale projects introduced a level of
complexity that focused attention on software development methods.
Major contributions to the stage model of systems development appeared at
a 1956 Office of Naval Research Symposium and a 1966 Air Force Exhibit
(Boehm, 1981; 1988). The waterfall model of the software life cycle
(Royce, 1970) became the basis for most government software acquisition
standards. The waterfall model describes an unvarying sequence of stages
in which feasibility is established, requirements are specified, and
preliminary and detailed designs are drawn up prior to coding, followed
by testing, integration, implementation (or installation), operation, and
maintenance. This provides minimal opportunity for the prototyping and
iterative design that are the basis of “early and continual user
involvement.” The model restricts iteration to feedback from adjacent
stages, and restricts prototyping to “build-it-twice” development,
limitations recognized early in interactive systems development and a
source of criticism that has gathered force with the spread of such systems.
But the waterfall model is a natural fit to competitive contract development
specifically, wherein the user organization determines feasibility and
prepare a requirements specification, and then may issue successive
contracts for design, development, installation, and maintenance.

Perhaps because the waterfall model and its refinements were particularly
suited to the competitively bid contract paradigm that dominated early
systems development, they underlie many of the structures and procedures

found in systems development more generally. It was the first carefully
evolved software development method. It was successful for the more
predictable, non-interactive systems that were then the focus of
development: with less initial requirements uncertainty, the heavy emphasis
on design made sense. Also, many companies were simultaneously
engaged in contract and product development. However, for today's
developer of interactive systems, competitively bid contract development
imposes a “wall” between users and developers: the reliance on
specifications documents. This wall may not be impenetrable, but it
clearly impedes iterative design and significant user involvement. The
other development paradigms for interactive systems face the challenge of
freeing themselves from problematic organizational structures and
development practices that originated in contract development.

Product development and the focus on human-computer interaction.

As hardware costs fell and the market for computer systems broadened
through the 1960s and 1970s, product development came to dominate in
the U.S. The discretionary nature of product acquisition meant that
systems had to appeal to actual customers, rather than meet written
requirements specifications. However, product development companies
are buffered from “end-users” by two intermediaries: the market and the
customer. The size of the market meant that a product need not appeal to
any one person -- it could do very well if only a modest fraction of the
market found it acceptable. In addition, especially in the beginning, the
product generally had to appeal only to the customer -- the person
responsible for the purchasing decision, often a manager or information
systems specialist -- not the end user. These customers shared with the
product development company the job of assuring system acceptance.
They could hire systems administrators, provide training, establish internal
development groups to tailor the product, supplement the product with
third-party software, or even mandate compliance. Thus, if the
specification requirement in contract development is a wall between
developers and users, the market and the customer in product development
represent a thick hedge -- information about users' needs gets through, but
it takes time and is muffled. Individual voices are not heard, with
consequences for the field's development.

The delay in having to respond to users' needs allowed product
development companies to focus on core functionality that might meet only
a fraction of most actual or potential users' usability needs. Product
development organizations could both discount the importance of the
human-computer dialogue and develop an array of indirect methods to
discover some of those needs in potential users. Now, as usability
expectations in many markets increases, product development companies
are entering the phase in which “user needs” replace “software constraints”
as the dominant influence on development (Friedman, 1989). (Lacking
these buffers between developers and users, internal systems development

entered this phase a decade earlier, as described below.) We will see that
the indirect, mediating organizational structures and processes that product
developers formed to bridge the gap to users may actually inhibit direct
user-developer contact.

The muffling of individual users' voices meant that as usability became an
issue in the 1980s, product developers could focus on the “generic” aspects
of the human-computer dialogue that are shared by almost all users. This
includes aspects of motor control, perception, and lower cognitive
processes -- the “look and feel” of software. These were the issues
explored by researchers and developers in the field of “human-computer
interaction,” which established an identity at the 1982 Gaithersburg
Conference on Human Factors in Computing Systems, forerunner of the
annual ACM Special Interest Group on Computer and Human Interaction
(CHI) Conferences. Industry representation at these conferences and in the
related journals (e.g., Human-Computer Interaction, established in 1985)
has been predominantly from product development companies.

The product developers' focus on perceptual and cognitive aspects of
usability at the expense of social or organizational concerns was further
justified by declining systems costs and the arrival of multi-tasking systems
and personal computing. Single-user systems and applications could be
very profitable. So profitable, in fact, that American product development
companies have had the resources to staff internal research groups, recruit
heavily from leading universities, and influence the direction of academic
research. This field, human-computer interaction, has had less
involvement from those working in the contract development paradigm,
where usability is taking even longer to come into focus. In-house or
custom development also remains relatively uninvolved. This may be
partly due to relatively scarce resources, but more likely results from
differing interests: internal development must focus on the individual and
group differences and social dynamics that product developers can largely
ignore -- these are central to the acceptance of a specific in-house or
custom-built system.

In-house or custom development and the new focus on user participation.

In-house or internal development, in which the developers and users work
under the same corporate roof, may have been the original development
paradigm -- when the system developers were themselves the users.
Today, it lacks some of the visibility in the U.S. that the other paradigms
have achieved through their concentration of resources and association
with the major computer manufacturers. But it is a major generator of
development projects and in much of Europe remains the dominant
paradigm. In-house and custom development afford an obvious potential
advantage to user participation in design: the developers and the eventual
users are known when the project is initiated. But there are potential
obstacles as well. These projects are often for multi-user systems, and no

wall exists between the developers and the users -- or if one does, it comes
down immediately upon completion of the system. Many of the challenges
of designing interactive systems for “end users” were first fully
experienced in this environment, where success requires that a pre-defined
set of users accept the system. (The alternative, replacement of the users
by people who can handle the system, is an undesirable outcome from
everyone's perspective.) Successful contract development requires
conformance to a written specification; successful product development
does not depend on appealing to any one individual or group. But an
internal development project must be accepted by a specific group of users.

Friedman (1989) states that by the early 1980s, “user needs” had replaced
software constraints as the dominant concern within the internal systems
development paradigm. It is not surprising that this occurred just as
interactive systems were replacing batch processing. Design approaches
based on the active involvement of users gathered strength, notably in
Scandinavian projects of the late 1970s and 1980s (see e.g. Bjerknes et al.,
1987). Many of these were collaborations between researcher-developers
and specific user organizations; the projects belong to this paradigm in that
all development partners were identified at the outset.

Cultural and political factors, including a strong trade union movement,
are often credited for the rise of collaborative design in Scandinavia. They
surely contributed, but the dominance of the in-house development
paradigm in these countries presented precisely the right motivation and
conditions for such experiments. Unlike in the United States, R&D
resources were not absorbed by large government contracts and product
development, contexts in which “user needs” have been slower to come
into focus and in which some of the conditions for engaging users in
development are less favorable.

Today, usability is becoming more important to product and contract
development organizations. These organizations are still to some extent
buffered from the end-users by the size of the product market and by the
reliance on contract documents, but resistance to “unfriendly” systems is
growing. There is greater competitive pressure for “usability” in the
marketplace, particularly in mature application domains, and greater focus
on the human-computer dialogue in contracts. The success of the
Macintosh in the mid-to-late 1980s was a turning point -- a good interface
drove hardware and software sales.

Although some people working in the product and contract development
contexts foresaw the importance of usability and considered user
involvement as an approach to obtaining it, they encountered obstacles, and
the overall record of achievement is not impressive. Today, researchers
and developers in product and contract paradigms who wish to accelerate
the pace of user involvement are turning to European researchers and
developers with a track record in such collaborations. For example, at the

ACM-sponsored Conference on Computer-Supported Cooperative Work
held in Portland, Oregon in September, 1988, six of the 30 papers
presented were of Scandinavian origin. Thus, this third paradigm is today
contributing techniques and approaches to interactive systems development.

Product and contract developers may obtain insight from the European
approaches, but should bear in mind that the approaches originate largely
in a different development paradigm, internal or custom development.
Today, product development projects in particular have acquired the same
motivation to involve users that in-house development projects had ten
years ago. However, they experience different conditions within which to
try to engage users in development. Roadblocks to “an early and continual
focus on users” include the timing of involvement depicted in Figure 1 and
organizational structures and processes that were established prior to the
importance of the interaction dialogue. Adapting to the new situation may
ultimately require significant organizational change. To guide that change,
and to work effectively in the meantime, we can identify each paradigm's
unique advantages and disadvantages for realizing successful user
participation in design.

Factors Influencing Interactive Systems Development

Before exploring the opportunities and obstacles that each paradigm offers,
we will identify several constraints on development projects that can
influence the conditions for user involvement. One, the timing of
involvement of development partners, was used to identify our three
paradigms for projects: a single development group with a single user
organization (internal or custom development), a single development
group with many potential users (product development), and a single user
organization for which there are many potential developers (competitively
bid contract development). Other factors are: the size, charter, and
structure of the development organization; the nature of the user
population; the presence or absence of other partners or contributors to the
project; the nature of the commitments and agreements among the parties
involved; societal conditions over which the partners may have little
control; and changes encountered over the life of the project.

The size and charter of the development company or organization. This
paper generally focuses on projects in larger organizations. Projects in
small organizations may differ. A start-up or a small product development
company may have fewer resources, less division of labor, fewer installed
customer base concerns, and may succeed with far fewer sales. These
permit greater flexibility, more latitude for (inexpensive) innovation, and
of particular significance for user involvement, the possibility of focusing
on a few potential customers (even, for example, by finding one willing to
cosponsor development). In these ways, a small product development
company may take on characteristics of in-house or custom development.
At the other end of the size continuum lies pre-divestiture AT&T and

10

today's partly cooperating regional telephone companies. These large,
influential organizations have characteristics of both product development
and in-house development organizations, catering to the needs of large
segments of the population.

Organizational charters also vary. A company may work in more than one
paradigm: for example, most large product development companies will
pursue government contracts for systems that can be built on their
products. A separate “Federal Systems Division” may be established to
manage these projects, but influences are likely to be felt across divisional
boundaries. A product development company that is considering entry
into a new market may experiment by custom building a system for one
customer in order to obtain domain expertise. The Scandinavian UTOPIA
project did the reverse experiment: methods from the in-house/custom
development paradigm were adapted to a product development effort
(Ehn, 1988). A similar blurring of paradigms may occur gradually, as
when a company develops a system under contract to one user
organization, then decides to market it more broadly. Finally, several
influential Scandinavian projects have involved development teams drawn
from university research laboratories, small groups with a mixed agenda
of research and development interests.

Mediators: additional partners in the development project. Although we
have considered primarily users and developers, it may be an unusual
project that does not involve other parties. These include other groups
within the development and user organizations, as well as external
consultants, subcontractors, independent sales organizations, third-party
developers, product user organizations, trade unions, and standards
organizations. Such mediators may play incidental or central roles,
informing developers of users' needs and informing users of technological
opportunities. The adequacy of these channels for “indirect collaboration
in development” is a critical question for interactive systems development.

Organizational structures and procedures within the development
company. Companies doing similar work may develop similar approaches
to dividing responsibility and meeting obligations. Certain job descriptions
and work procedures are widespread in the industry. However, companies
of similar size and charter are often organized differently, distribute
power differently, and employ different approaches to system
development. Some companies are driven by their marketing division,
others by engineering. Some companies are hierarchic bureaucracies,
others are strongly divisionalized into semi-autonomous sub-units, and
some have experimented with almost ad-hoc approaches. Even where
high-level approaches to organizational structure and process are shared,
small variations in structure and process may greatly affect individual
development projects. Reorganization is often experienced as almost
continual within development companies.

11

The nature of the system user population. The generic term “user” masks
a tremendous diversity of computer users and contexts of use. This
diversity will continue to increase -- even if progress in hardware stopped
today, the current technology would not fully realize its potential for some
time. The number and heterogeneity of users is a factor that is often of
particular concern for internal development. Users may be “captive
audiences,” using systems acquired for them by others, or they may be
discretionary users. At the extreme end of discretionary use, those who
pay for their own systems may become involved through their personal
economic stake -- an Apple developer said, “We don't have to ask our
users for advice, they volunteer it.” Physical separation of developers and
users or the geographic dispersal of the user population may be critical, as
may be barriers of class, culture, or language. The sensitivity of the users'
work is another factor: a group designing a system for the CIA may
quickly appreciate the potential limits to one's ability to “know the user!”

Commitments and agreements among the groups involved. These range
from informal understandings between individuals or groups within one
organization to binding contracts among companies. Agreements also vary
in content, focus, and flexibility. The content may be restricted to
technical aspects of the system or may include such commitments to the
users as organizational impact statements, installation, or training.
Similarly, an agreement may be restricted to the system to be developed or
it may specify aspects of the development process, including the use of
techniques to facilitate user involvement, such as prototyping or scheduled
reviews. Contracts may vary in flexibility -- even a formal contract might
specify times at which its terms could be reconsidered, again permitting
design changes reached with user involvement (Grgnbak et al., 1990).

Societal conditions and change over time. Grgnbazk et al. also describe
dynamic influences over which the development partners may have little
direct control. These include aspects of the labor market, economic
considerations of supply and competition, available technology, formal
standards, and legal restrictions on the use of technology or requirements
for safeguards. These and the other factors described in this section are
subject to change within the life of a project; it may be a rare project that
enjoys static conditions from start to finish.

Focusing on Users: Opportunities, Obstacles, and Mediators

Every system development project has particular advantages and
disadvantages for involving users and specific strategies to cope with
incomplete communication between developers and prospective users.
These are explored here at a more general level -- as they affect projects
within each of the three development paradigms.

12

User
Organization

Development
Organizations

Systems
Analysts

Management § Standards 3
2 Organizations 2

nf. System \

pecialists

In-house ' System
Developers Users

\.

Figure 2. Competitively bid contract development: only the users are
specified fully at the outset.

1. Competitively bid contract development.
User involvement faces the most formidable obstacles in this paradigm.

Opportunities. Starting with a well-defined user population is an
advantage in obtaining user involvement. Of course, the users themselves
typically do not compose specifications documents, but the opportunity
exists to enlist their cooperation. Also, contract development projects are
often large, providing substantial development resources, and slow-
moving, potentially providing time for iterative development with user
involvement. High-level management is committed to the success of the
project, an important factor in system acceptance. Finally, within
constraints described below, the user organization has the power of
authoring the contract, and thus can obtain greater user involvement either
directly or indirectly (e.g., contract provisions may require prototyping or
periodic review; interface features, usability targets, training
requirements, or an organizational impact statement may be specified).

Obstacles. Consider a typical case: first a requirements specification is
prepared by the user organization, a large government agency, followed
by a request for proposals to develop the system design. A contract is
awarded and completed, resulting in a design specification that is the basis
of a request for development proposals, leading to the development
contract (Gundry, 1988). User involvement in specifying the requirements
is not assured in the large bureaucracy contracting the work. Once the
request for design proposals is issued, communication between potential
designers and the user organization is sharply curtailed and monitored, to
prevent any bidder from acquiring unfair advantage. When the contract

13

for design is awarded, the designers may not contact the user organization,
to avoid influencing the subsequent bidding on the more lucrative
development contract. The organization with the design contract does not
always obtain the development contract issued later. Thus, the designers
may be unable to contact the users, and the developers are not yet known.
Even when the same company obtains both the design and development
contracts, the development team is often distinct from the design team,
who move on to other design proposals. In addition, companies often
minimize risk by preparing joint bids, so development may be divided
across two or more organizations. Contact with users continues to be
curtailed during development, for reasons of security, geographic
separation, or to avoid influencing later bidding (for example, on
implementation or installation of the system, or on system maintenance,
which is often the most lucrative contract of all). The designers and
developers have another good reason to avoid contact with the users.
Contract compliance is based on conformance to the written specifications.
Programmers may even code non-functioning procedures described by a
miswritten specification to avoid jeopardizing compliance. The
development organization might well prefer the commitment to a
relatively comprehensible and static document to the alternative of trying
to satisfy unpredictable users. “Usability requirements” in contracts for
interactive systems may consist entirely of statements such as “the system
shall present information succinctly” or “the system shall be easy to
operate efficiently,” (Gundry, 1988). Contracts may provide for
demonstrations of prototypes fo users while legally restricted contact
precludes feedback from the users. This has the unfortunate effect of
doing little beyond alerting users to inadequacies of the system they will
receive (Gundry, 1988).

Mediators. Figure 2 illustrates several groups and organizations that play
mediating roles in the communication between system users and contract
developers. Within the user organization, information system specialists
negotiate the system requirements and internal developers may tailor
aspects of the system's use. Similarly, analysts or specialists in the
development organization write proposals and negotiate contracts, with
developers assigned to projects after a contract is awarded. External
consultants may play a “surrogate developer” role early in the
requirements definition stage, providing the customer with insight into
feasible technologies. Other consulting contracts may be issued as well --
for system implementation (installation), for example. In fact, contractors
working on one phase of the project are in a sense consulting on
subsequent phases; e.g., those writing the design specification provide
guidance to the as-yet unidentified developers. Similarly, development
teams that are barred from direct access to users may seek “surrogate
users” -- consultants familiar with the user environment, subcontractors,
or even “domain experts” hired from the customer organization to help
staff the project. The user organization may address eventual

14

shortcomings in the system through modifications by in-house or third-
party developers. More broadly, contractors communicate their needs by
working collectively with vendors to develop formal standards, adherence
to which may be required by subsequent contracts. (A large enough
customer organization, such as the U.S. Defense Department, can by itself
promote standards development and compliance.) Gundry (1988) has
proposed that the customer organization supplement the requirements
specification with a “concepts of use” document: an extended description of
the users, their work practices, and their working organization. That this
static view of the users' environment can be viewed as a major step
forward is a dramatic statement of how little contact currently exists.
Finally, as noted above, the contract itself may be used to open up
communication. Where legal barriers do not intervene, contracts with a
process focus can define user involvement and even a formal contract may
address the uncertainties of dialogue design by providing points for
renegotiation of terms based on prototype testing (Grgnbzk et al., 1990).
Experiments have been tried with design-to-cost contracts, reward-for-
effort contracts, and multi-stage contracts in which several developers
build and test prototypes prior to the final development contract award
(Boehm, 1988).

s

Consultants
and Third-Party
Developers
) 4

Product
Development
Organization 2

* rore
iGroups?

' Product ' NN \ -/ {Analysts, IS
| Marketing Specialist
l "Support Customer 4‘ System ' In-house

Jeere Developers

User
Organizations

\.

Figure 3. Product development: only the development group is fully
specified prior to design.

2. Product development.

Opportunities. Because development costs are amortized over many sales,
product development organizations typically have considerable resources
and a large number of potential users, each of which could be drawn upon
to improve usability. Competition in the marketplace provides a motive
for doing so -- the attention being given to “look and feel” reflects the

15

growing awareness of the importance of usability. Product development
companies are major employers of human factors engineers, technical
writers and other user interface specialists. Continual product upgrades or
new releases free some developers from “single-cycle” development:
evaluation of existing practice feeds into the design of the next version, and
good ideas that arrive too late for one project may be held for later use.
Finally, while these companies can succumb to inertia or conservative
forces, they were founded on change and at some level recognize that
survival requires openness to new ideas and approaches.

Obstacles. First, the development team members must commit to user
involvement. Developers isolated in large engineering laboratories may
not empathize or sympathize with users who are inexperienced, non-
technical, or have different values and work styles. Even identifying the
development team can be difficult: project membership changes over time
and developers of different user interface components -- such as software
dialogue, documentation, and training -- often communicate very little
(Grudin and Poltrock, 1989). Gould's (1988) solution -- to put all aspects
of usability “under one roof” -- conflicts with deeply-rooted aspects of
organizational structure and process in many of these companies. Also, the
difficulty of identifying future users is a major obstacle to involving them.
Strategic marketing decisions may be carefully guarded by upper
management lest the competition make use of the information;
development teams may not even know which applications will be
marketed as packages. In addition, before reaching an “end user,” many
products are extensively modified or tailored by other developers, either
third-party or internal to the customer organization. These developers are
users of the product, too. Another obstacle is the difficulty of accessing
potential users, once they have been identified. Product development
companies try to shield developers from the distraction of answering
individual user requests. Figure 3 identifies several groups whose
responsibilities include communicating user needs information, and who
may therefore discourage direct developer-user contact: product
management, marketing, and customer support in the development
organization; IS staff in the user organization. Unfortunately, these
mediators may not be effective conduits of usability information, in part
due to inexperience with this newly prominent concern. Obtaining
adequate time and interest from potential users may also be particularly
difficult in this paradigm, where an individual user's investment is low.
When contact does occur, product developers risk overgeneralizing from a
few contacts and must contend with conflicting user views. Finally,
information that is obtained must be worked into the development process,
which is fraught with competing interests and tradeoffs. The development
process may be designed to maximize predictability and error detection in
developing non-interactive systems, but work less well with less
predictable interactive systems development. Another obstacle is the great
pressure to produce new releases of existing products -- the relatively

16

short development cycle favors small enhancements over substantial
innovation (Poltrock, 1989) and works against providing time for users
and developers to educate one another through iterative design. This
perceived need for rapid development leads to attempts at routinization
through early approval of specifications and schedules, again limiting
flexibility.

Mediators. As shown in Figure 3 and described above, sales and
marketing, management, customer support, and other groups within large
product development companies mediate between users and developers.
Even other development groups form part of a “corporate memory” that
for usability issues may operate more effectively than formal records.
External consultants serve as “surrogate users,” providing information on
market direction and detailed product critiques. Although consulting,
market research, and competitive analysis are undertaken to support
marketing campaigns for existing products, they can also provide direction
to developers. Independent software vendors and value-added resellers,
who adapt products to specific vertical markets, stand between
development and user organizations. Customer organizations engage
consultants as “surrogate developers” to advise on purchasing or
installation. Product buyers rely on third-party developers, independent
software vendors, or internal development groups to supplement or tailor
products for their environments. Most customers exert little direct
influence on product development companies individually, but user groups
representing many customers can have an effect. This communication
channel may be less effective if meetings are attended by “customers” or
buyers rather than by users and by marketers rather than by developers.

4)

(Alternative)
Development
Organization

User/Developer
Organization

Analysts, 19\
pecialist

ln»houseSystem
Users

Developers

\. J

Figure 4. In-house or custom development: developer and user populations
are known at outset.

17

3. In-house or custom development.

This paradigm appears to offer good prospects for collaboration among
users and developers, but the challenges can be substantial.

Opportunities. Collaboration is logically easier when both users and
developers are known from the beginning. An early relationship can lead
to a better design. It can also help with system acceptance by investing
participating users in the outcome -- some warn that gestures toward user
collaboration may “coopt” users into accepting undesirable system features
(Friedman, 1989). In “in-house” development, communication among
developers and users may be enhanced by the shared corporate culture (but
see below). Also, the transitions across development phases are smoother;
in particular, the developers are accessible during product introduction and
use. A further advantage of such development projects is that they have a
particularly high level of management support, an important element in
obtaining system acceptance. Finally, they may enjoy a less pressured or
more flexible development schedule -- shifting from a product focus to a
process focus occurs most naturally in this environment.

Obstacles. A major challenge to projects in this paradigm is that they are
often systems designed to support organizations, in contrast with
applications designed to support individuals. In addition, identifying
future users does not insure collaboration. Conflicts of interest exist
within organizations. Management may be the ultimate beneficiary of a
proposed system; if its interests do not coincide with the users' interests,
user alienation may be more likely than user cooperation. Conflicts also
occur between different worker groups -- Ehn (1988) describes
jurisdictional disputes among typesetters, journalists, and administrative
workers in one project. Friction may develop between developers and
users due to differing codes of values, conduct, and dress, as well as
disparities in age and salary (Friedman, 1989). Selecting representative
users can be a problem -- not all potential users have the time or
inclination to participate fully, management may wish to participate or to
control participant selection, and workers with greater knowledge of
technology may be more interested but less representative. Potential
participants' political roles in the organization must be balanced against
their potential roles as system users. In addition, some techniques must be
used especially carefully in internal development -- prototyping can unduly
raise users' expectations of the system's capabilities or state of completion,
which is not usually an issue in product development. In-house
development projects may have fewer resources than projects in the other
paradigms. Individual efforts to build systems for use over many years
provide fewer opportunities for evaluation, feedback, and catching missed
windows of opportunity “the next time around” than product development.
Prototyping and iterative design are not infinitely flexible, so the internal
or custom development team must plan carefully, considering the full
expected context of use and the likely organizational impact. Such

18

planning is beneficial, but given the inherent uncertainty of interactive
systems development, the need to anticipate correctly is not an advantage.

Mediators. As noted above, the spread of interactive systems in the early
1980s immediately confronted in-house developers with the needs of “end
users” (Friedman, 1989). The other paradigms delayed their entry into
this phase, developers being separated from users by the conditions of
development and coping by means of the assistance of the mediating groups
described above. Such mediation is less available to internal development
projects, unless upper management or “Human Resources” departments are
considered mediators. Friedman explores five possible approaches to
bridging the gap between users and developers in internal development:
direct user participation in development based on traditional methods, end-
user computing (effectively, trying to eliminate the developer),
decentralizing the information center (to bring the developer into closer
contact with users), changing the systems development approach (through a
process focus, notably an emphasis on prototyping and iterative design),
and relying more heavily on information systems specialists with both
domain expertise and development skills. These are not mutually
exclusive: the Scandinavian experiments have merged most of them,
employing direct user involvement, prototyping, and the education of
developers in the domain area. In fact, these approaches can all be
considered “user participation in design,” if “participation” is extended to
include education that precedes a particular project.

Prospects for Change in Interactive System Development

Several convergent influences are pushing systems development rapidly
toward greater concern for users' needs. First, as with any new
technology, reaching untapped markets requires learning more about them.
The versatility of the computer enhances the likelihood of finding some
way to support any group of people whose concerns are properly
understood. In addition, where individuals have discretion or control over
the tools they use, improving usability is an obvious key to convincing
them to exercise this discretion favorably. Discretionary use underlies the
recent focus on the “look and feel” of the user interface to software
products. Also, understanding user needs is more important in efforts to
support groups. Systems have focused on supporting organizations and
applications have focused on supporting individuals in their work. Now,
networking and powerful multitasking systems make group-level support
feasible. “Groupware” product developers are confronting issues that
were previously encountered mainly in internal development, such as the
need to appeal to diverse sets of people. The focus of application
development will shift from individual similarities (with the goal of
appealing to a large, possibly homogeneous set of people) to individual
differences and social dynamics (to attract all members of groups,
independent of background, role, preferences). Here, application
developers may be at a disadvantage relative to system developers, since

19

there is less corporate commitment to a groupware product than to a large
system. Finally, the cost of computation may be the greatest obstacle to
providing more usable systems, apart from development time. As
processing time, memory, and maintenance costs fall, computational power
is increasingly underutilized. Today, the cost of a better interface is not
much more than what is required to build it or buy it.

In summary, vendors' interests, workers' interests, and economic factors
are working in concert. Prospects for rapid advance are further enhanced
by the possibilities for sharing experiences across the three developmental
paradigms. CSCW '88 and the 1990 Participatory Design Conference
preceding CHI'90 in Seattle brought together Scandinavian and American
researchers and developers. Boehm (1988) outlines recommendations for
contract development drawn from prototyping-based in-house
development. Techniques developed in one paradigm may be modified and
applied in others. The process focus and low-cost techniques that
developed naturally in in-house development environments may have
broader application (see e.g., “Designing for a dollar a day,” Kyng, 1988).
Experimental techniques such as “Wizard of Oz” prototyping that have
been used in product development are being adapted for in-house projects.
The prevalence of specific paradigms may shift with societal changes. For
example, the formation of the European Community may promote
competitively bid contract development as a means of insuring equal access
to government projects. Europeans may profit from American experience
and find ways to introduce approaches that achieve higher levels of user
involvement.

The debate over the routinization of software development illustrates the
different paradigmatic perspectives. Data that suggest deskilling has
occurred emerge primarily from large product development organizations,
where strong competition and pressure for frequent releases create a
tremendous desire to control the development process and render it
immune to the loss of any individual (e.g. Kraft, 1977). An absence of
deskilling is observed in internal development, where competitive
pressures are lower and developers may more readily acquire domain
knowledge, increasing their value to their organization (Friedman, 1989).
Recognition of the different conditions associated with these paradigms
may enable us to apply the hard-earned lessons of one in the others.
Changes in techniques, in the over-all focus (e.g. process vs. product), and
in the design of organizations are among the potential benefits.

Acknowledgment

Kaj Grgnbak, Susanne Bgdker, and Liam Bannon participated in the iterative design of
this paper and are anticipated future users -- although, as with any product development
project, who will find this useful remains to be seen. Andrew Friedman's book is an
inspiration and an excellent source of information on internal development. Steve
Poltrock, Henry Lahore, Craig Will, Larry Verner, and Liam Bannon contributed to my
understanding of contract development, although their full understanding is not reflected
here. Students at Aarhus University commented helpfully on an earlier draft.

20

References

Bjerknes, G., Ehn, P., and Kyng, M. (Eds.), 1987. Computers and democracy - a
Scandinavian challenge. Aldershot, UK: Gower.

Boehm, B., 1981. Software engineering economics. Englewood Cliffs, NJ: Prentice-
Hall.

Boehm, B., 1988. A spiral model of software development and enhancement. /EEE
Computer, 21, 5, 61-72.

De Marco, T., 1978. Structured analysis and system specification. NY: Yourdon Press,
Inc.

Ehn, P., 1988. Work oriented design of computer artifacts. Stockholm: Arbetslivcentrum.

Friedman, A.L., 1989. Computer systems development: History, organization and
implementation. Chichester, UK: Wiley.

Gould, J.D., 1988. How to design usable systems. In M. Helander (Ed.) Handbook of
Human-Computer Interaction. Amsterdam: North-Holland.

Gould, J.D. and Lewis, C.H., 1983. Designing for usability -- key principles and what
designers think. In Proceedings CHI'83 Human Factors in Computing Systems, 50-
53.

Grudin, J., 1989. Why groupware applications fail: Problems in design and evaluation.
Office: Technology and People, 4, 3, 245-264.

Grudin, J., 1990. Obstacles to participatory design in large product development
organizations. In Proceedings Participatory Design Conference (Seattle, April 30 -
May 1).

Grudin, J. and Poltrock, S., 1989. User interface design in large corporations:
Coordination and communication across disciplines. In Proc. CHI'89 Human Factors
in Computing Systems (Austin, April 30 - May 4).

Grgnbak, K., Grudin, J., Bgdker, S., and Bannon, L., 1990. Improving conditions for
cooperative system design - shifting from product to process focus. Manuscript
submitted for publication.

Gundry, A.J., 1988. Humans, computers, and contracts. In D.M. Jones and R. Winder
(Eds) People and computers IV. Cambridge, UK: Cambridge University Press.

Jackson, M., 1983. System development. Englewood Cliffs, NJ: Prentice-Hall.

Kraft, P., 1977. Programmers and managers: The routinization of computer programming
in the United States. NY: Springer-Verlag.

Kyng, M. Designing for a dollar a day. Office: Technology and People, 4, 2, 157-170.

Norman, D.A. and Draper, S.W., 1986. User-centered system design: New perspectives
in human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Peters, T. and Waterman, R.H., 1982. In search of excellence: Lessons from America’s
best-run companies. NY: Harper and Row.

Royce, W.W., 1970. Managing the development of large software systems: concepts and
techniques. In Proceedings WESCON, August.

Suchman, L., 1988. Designing with the user. ACM Transactions on Office Information
Systems, 6, 173-183.

