Genericity and Inheritance

Jens Palsberg
Michael I. Schwartzbach

DAIMI PB - 318
July 1990

ISSN 0105-8517

COMPUTER SCIENCE DEPARTMENT Hinnl

AARHUS UNIVERSITY -

Ny Munkegade, Building 540

DK-8000 Aarhus C, Denmark

LH]

ISSN 0105-8517

PB - 318 Palsberg & Schwartzbach: Genericity and Inheritance

Genericity And Inheritance

Jens Palsberg! Michael I. Schwartzbach?

Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Arhus C, Denmark

Abstract

We present type substitution as a new genericity mechanism for object-
oriented languages. It is a subclassing concept on the same footing as
inheritance, and is more flexible than parameterized classes. We prove
that type substitution and inheritance together form an orthogonal basis
for a general subclass relation that captures type-safe code reuse. Thus,
genericity and inheritance are independent, complementary components of
a unified concept. Our result is obtained in a novel model of classes which
encompasses classes as types and assignments.

1 Introduction

Genericity and inheritance are different mechanisms for type-safe code
reuse in object-oriented languages [21]. Genericity allows the substitu-
tion of types in a class, whereas inheritance allows the construction of
subclasses by adding variables and procedures, and by replacing proce-
dure bodies [14, 32]. The general syntax for inheritance is given in figure
1. Usually, parameterized classes are offered as the genericity mechanism,
exemplified by Eiffel [22], Trellis/Owl [27], and Demeter [17], by the Ada
construct of generic packages [13], and by parameterized CLU clusters
[18].

A parameterized class is a second-order entity which is instantiated to
specific classes when actual type parameters are supplied. Such instan-
tiation is less flexible than inheritance, since any class can be inherited

1E-mail address: palsherg@daimi.dk
2E-mail address: mis@daimi.dk

class C inherits P
... more code ...
end

Figure 1: Inheritance.
PViy... Vo &= Wy,...,W,]

Figure 2: Type substitution.

but is not in itself parameterized. In other words, code reuse with pa-
rameterized classes requires planning; code reuse with inheritance does
not.

This paper introduces type substitution as a new genericity mechanism.
The general syntax for type substitution is given in figure 2. It is a speci-
fication of a type-correct subclass of P in which occurrences of the classes
Vi have been substituted by subclasses W;. As opposed to parameterized
classes, type substitution cannot be explained as textual substitution be-
cause the result would not necessarily be type-correct. Instead, we prove
the existence of a unique most general such subclass, which is taken to
be the meaning of the specification. We also indicate efficient algorithms
for an implementation.

Type substitution is a subclassing mechanism on the same footing as in-
heritance, and it involves no second-order entities or type variables. This
gives many pragmatic advantages: any class is generic, can be “instanti-
ated” gradually without planning, and has all of its generic instances as
subclasses.

We also define a new model of classes which, unlike more traditional
models, encompasses classes as types and assignments. A class is modeled
as a possibly infinite, regular, node-labeled, ordered tree. The labels
correspond to the untyped code of classes.

In this model, we prove that type substitution and inheritance together
form an orthogonal basis for a general subclass relation that captures
type-safe code reuse. We also prove that any subclass in a unique way
can be obtained by one type substitution followed by an application of

inheritance. Thus, genericity and inheritance are independent, comple-
mentary components of a unified concept. This reconciles genericity and
inheritance [21], and shows that they are two dimensions [31] of subclass-
ing, see figure 3.

type substitution *

E subclasses
' of P

» inheritance

Figure 3: Two dimensions of subclassing.

In the following section we informally discuss the details and use of type
substitution. In section 3 we formally define a class model, a general
subclass relation, type substitution, and inheritance. Finally, in section
4 we prove our results.

2 Type Substitution

As an example of the use of type substitution, consider the monoid classes
in figure 4.

In the class monoid[object « boolean] the type of value (declared in
monoid) is substituted by boolean. Class booleanmonoid then implements
the inherited procedures appropriately. Notice that monoid is a superclass
of monoid[object «— boolean] which again is a superclass of booleanmonoid.
In other words, because monoid is in itself generic, we can “instantiate”
it to monoid[object «+ boolean] which then can be inherited. Obviously,
booleanmonoid cannot be obtained from monoid using only either type
substitution or inheritance.

Using parameterized classes the instantiation of monoid must be planned

3

class monoid
var value: object
proc plus(other: monoid)
proc zero
end
class booleanmonoid inherits monoid[object < boolean]
proc plus
begin value:=(value or other.value) end
proc zero
begin value:=false end
end

Figure 4: Monoid classes.

class Cl1

var x: object
end
let C2 = Cl[object « integer]
class D1

var c: C1

proc p(arg: object)

begin c.x:=arg end

end
let D2 = D1[C1 « C2]

Figure 5: Type substitution is not textual substitution.

ahead. An alternative to parameterized classes is the use of modifiable
declarations, exemplified by the Beta notion of virtual class attributes
[16, 19]. In the example, the declaration of object in monoid would be
made modifiable; consequently, in booleanmonoid it could be modified to
boolean. This technique also allows generic instances to be subclasses,
but it still requires planning. Furthermore, individual conflicting modi-
fications may yield type-incorrect subclasses; this leads to a fair amount
of run-time type-checking [20], which is superfluous if the resulting class
is in fact type-correct.

As an example of why type substitution cannot, in general, be explained
as textual substitution, consider figure 5. If we try to obtain D2 as D1
with C1 textually substituted by C2, then the assignment in procedure p

4

proc swap(inout x,y: object)
var t: object
begin t:=x; x:=y; y:=t end

Figure 6: A polymorphic procedure.

involves different types: an integer and an object. Using type substitution,
D2 is the most general type-correct subclass of D1 with C1 substituted
by C2. This means that also object is substituted by integer. In fact,
an equivalent specification of D2 is D1[object « integer]. Of course, we
must avoid inconsistent specifications, which cannot be realized. For
example, one cannot substitute object by both boolean and integer. A
formal definition of consistency is given in a later section.

Type substitution can also be the basis of another construct: polymor-
phic procedures declared outside classes, as illustrated in figure 6. Such
procedures can be called independently of objects, allowing a symmetric
programming style. When such a procedure is called, the compiler will
(from the actual and formal parameter types) infer the required type sub-
stitution, verify that it is consistent, and perform it on a notional class
that contains only the procedure. In the example, swap can be called
with any two objects of the same type.

For further examples of how to program with type substitution, see [25].

3 The Class Model

To obtain a framework in which to prove our results, we provide a model
of classes.

3.1 Motivation

Usually, formal models of typed object-oriented programming are based
on the lambda calculus. They represent objects as records, and methods
as functions, and involve for example subtypes [3, 24], polymorphic types
[23, 4], or F-bounded constraints [9, 7] in the description of inheritance.

These models, however, do not support two common features of object-
oriented languages, e.g. Simula [12], C++ [30], and Eiffel [22].

5

e The use of classes as types. In the previous models, types do not
represent classes, but interfaces [2].

o Variables and assignments. In the previous models, variable types
have no non-trivial subtypes. More specifically, as noted by Cardelli
[5], a variable can be understood as a fetch-store pair for a hidden
location, i.e. Var(T) abbreviates

Tuple fetch():T, store(:T):0k end

Since T appears in both positive and negative positions, the type
Var(T) is only related to itself.

We now define a novel model that supports both features. Since inher-
itance is about extending code, and type substitution is about changing
type annotations, the model explicitly involves these concepts.

3.2 Class Denotations

Source code for classes will be denoted by variations of the symbol 7.
They may contain variable and procedure declarations, procedure calls,
and assignments. Code segments are sequences of declarations, which are
prefix ordered such that v < v+'.

Source codes are untyped, but they have a number of positions in which
type annotations may be inserted. If ¥ < 4/ then the positions in v is a
subset of those in 4'. For example, the untyped code for the class monoid
in figure 4 is

var value: e proc plus(other: o) proc zero
where o indicates a type position. The code
var value: o

is an example of a prefix of the above. The rules to check whether source
code is type-correct are

o Early checks: verify for all calls x.p(---) that a procedure p is im-
plemented by the declared type of x.

6

¢ Equality checks: verify for all assignments and parameter passings
that the two declared types are equal.

Correctness guarantees that the run-time error Message-not-understood
will never appear; this is the traditional statement of correctness [1]. We
do not deal with heterogeneous variables which may hold objects of not
only their declared class but also its subclasses; this concept invariably
requires run-time type-checking [25, 20].

Since types are classes, we can provide a unique denotation for a typed
class; it is a node-labeled, ordered tree. The root is labeled by the code of
the class, and for each type position in the code there is a subtree which
is the denotation of the corresponding class. Because of recursion these
trees may be infinite. However, since a program can only employ finitely
many classes, we can assume that all denotations are regular, i.e. they
only contain finitely many different subtrees [11, 28]. We denote by U
the collection of denotations.

Named classes such as integer and boolean merely abbreviate denotations,
and object is simply the singleton tree whose label is the empty code
sequence.

Note that the standard dynamic semantics of method lookup [8, 26, 6]
can be based exclusively on these denotations. Thus we need only ex-
plain inheritance and type substitution by their effect on denotations;
their dynamic semantics can then be inferred.

Definition 3.1: Let T be a node-labeled ordered tree. We write o € T
when « is a valid tree address in T'. The empty tree address is denoted
by A. If o € T then T[] denotes the label with address o in T, and T' |

denotes the subtree of T' whose root has address .. The 7’th immediate
subtree of T' is denoted by T'(7).

Proposition 3.2: Every regular, labeled tree T' can be represented by
a finite, partial, deterministic automaton with labeled states, with lan-
guage {a | @ € T'}, and where o is accepted in a state labeled T'[a].

Proof: The finitely many different subtrees all become accept states with
the label of their root. The transitions of the automaton are determined

by the fan-out from the corresponding root. O

These automata provide finite representations of denotations. All later
algorithms on trees will in reality work on such automata.

Definition 3.3: A tree is eztended when its leaves may contain the spe-
cial label ©. There is a partial order C on extended trees such that
G1 C Gy iff G can be obtained from G, by replacing some subtrees by
<&. The unique smallest extended tree is < itself. If G is an extended
tree, then G(T') is obtained from G by replacing all occurrences of & with
T.

Proposition 3.4: For every tree T there is a unique C-smallest extended
tree GEN(T') such that T is the C-smallest fixed point of GEN(T'). We call
this the generator of T'.

Proof: GEN(T) is obtained from T by replacing all maximal proper oc-
currences of T' with <. For details on such fixed points, see [10]. O

Note that there is a 1-1 correspondence between trees and generators. We
call T' recursive when at least one {-label occurs in GEN(T'), i.e. when
T # GEN(T'). The generator may be an infinite tree when T' contains a
recursive class other than itself.

var value: e proc plus(other: o) proc zero

object &

Figure 7: An example generator.

Figure 7 shows the generator of the recursive monoid class from figure 4.
Its denotation is an infinite, linear tree.

3.3 Subclassing

We can now define a general subclass relation T3 <75 on U that captures
type-safe code reuse; here, T} is the superclass and T is the subclass. By
code reuse we mean that the code of the superclass is a prefix of the code
of the subclass. By type-safe we mean that type-correctness is preserved,
i.e. we must guarantee that all early and equality checks will still hold in
the subclass.

Definition 3.5: The relation G1<gG2 on generators holds precisely when

o YVa€ G : Gila] < Gsla] (monotonicity)
o Va,e€G: Gila=G 1|8 = Gla=Gy B3 (stabilz'ty)

The relation T7 < T holds when GEN(T}) <g GEN(T3).

Monotonicity means that code can only be extended; stability means that
equal types must remain equal.

Notice that the relation is defined in terms of the generators of class
denotations. If a similar concept of generators is introduced in the type
system underlying F-bounded polymorphism [9, 7], then an F-bound is
the ordinary subtype ordering of generators.

Finally, we define two relations <7,<g C < which capture inheritance and
type substitution.

Definition 3.6: The relations «; and <g are defined as follows

o T« Ty iff Th<Ty AN VaeT: T]layéT] :Tl[a]=T2[a]
® T1 g T2 Zﬁ T14T2 AN Tl[/\]=T2[)\]

Informally, if T <; T> then T, contains more code, and if Tj < T then
T, contains larger types. Figure 8 illustrates the <g-relationship between
the denotations of the classes D1 and D2 from figure 5.

var c: ¢ proc p(arg: ¢) begin c.x:=arg end
var x: e object ds

object

var c: e proc p(arg: ¢) begin c.x:=arg end

var x: ¢ integer

integer

Figure 8: An example of <.

4 Results

The subclass relation < is a partial order, and any class has only finitely
many superclasses.

Proposition 4.1: The relation < is a decidable, partial order. Further-
more, for any T the set {T" | T" < T'} is finite.

Proof: That «¢ is a partial order follows immediately from the fact that
< and = are partial orders. An algorithm in [29] decides <¢ in time
O(nlogn), where n is the size of the corresponding automata. Since
generators can easily be computed, < is decidable. For the finiteness of
{T" | T"«T}, let A be an automaton for T'. If T" is strictly <-smaller than
T then it has an automaton which is obtained from A by deleting states
and transitions, and reducing labels to proper prefixes. There can only
be finitely many such automata.O

A partial order may have an orthogonal basis, in the following sense.

10

Definition 4.2: Let P be a partial order. We write @ Lp R, if Q and
R are partial orders such that @ N R = idp and (Q U R)* = P. When

1) Q Lp R
2) @LlpR = QCQ
3) QLpR = RCR

we call Q, R an orthogonal basis for P. This generalizes the notion of
basis in [15].

For example, if P; and P; are partial orders then P; x idp, and idp, X Py
form an orthogonal basis for P; x P,. We can now state our main theorem.

Theorem 4.3: <;,<s is an orthogonal basis for <, and VT} <« T, T :
T1 g T 7 Tz.
Proof: See appendix A. O

Notice that in general there does not exist T" so that T} <y T" <g Ty. This
is because the extra code in T may exploit the larger types.

The general syntax for type substitution requires that the argument vec-
tors are consistent, in the following sense.

Deﬁmtlon 4.4: Let V W € U™ be vectors of class denotations. We call
V and W consistent when

ViaWi AVo,B: Vila=V;|8 = Wila=W;|p
Informally, W must be pointwise <-larger than V, and leave equal classes

equal.

The set of all possible realizations of V « W can then be defined as
follows.

Definition 4.5: Let T' € U be a class and 17, W € U™ consistent vectors
11

of classes. We then define
SUB(T,V,W) = {t|T<st A Vi,j: GEN(T)(i)=V; = GEN(t)(i)=W,}

Informally, these are the subclasses of T' in which occurrences of V; have
been substituted by W;.

Note that only immediate subtrees of the root of T' are potential occur-
rences; this captures the idea that occurrences must be visible.

This set has an element with smaller types than any other.

—

Theorem 4.6: The set SUB(T,V,W) contains a unique nodewise <-

—_

smallest element which we denote T'(V — W).
Proof: See appendix B. O

This element is taken to be the meaning of the specification T[V — W].

Theorem 4.7: If T <s ¢ then t = T(V «— W) for some V, W.
Proof: Assume that T' has » immediate subtrees; then so does ¢, since
they have the same root label. We now have

t =T(T(1),T(2),...,T(n)—t(1),4(2),...,t(n))

Note that monotonicity and stability between T and ¢ ensure consistency
of the argument vectors. O

Hence, all «g-related subclasses can be expressed in this manner.

Theorem 4.8: Consistency is decidable, and the automaton for the class
T(V «W) can be constructed from the automata for T, V;, and W;.
Proof: Consistency reduces to <g on two trees with equal roots and
subtrees respectively {V;} and {W,}. Hence, decidability follows from
lemma 4.1. The construction of the automata is easily seen from the
proof of theorem 4.7. O

This shows that all relevant properties of T(V «— W) can be decided from
12

the specification itself.

5 Conclusion

A new genericity mechanism for typed object-oriented languages was de-
fined; it was proved to be the natural, orthogonal complement of inheri-
tance in a class model supporting classes as types and assignments.

Acknowledgements: The authors thank Peter Mosses, Flemming Nielson,
and Ole Lehrmann Madsen for helpful comments on a draft of the paper.

Appendix A: Proof of Theorem 4.3

Lemma A.1l: <;,<g are both partial orders, and <; N <g = id.

Proof: Clearly, <s is a partial order. The extra condition on T <;T5 sim-
ply means that for every o € GEN(T}) we have GEN(Th)[a] = GEN(T3)[q],
except for the root labels which are <-related. Hence, <; is a partial
order. If also T; g T then all labels must be equal, so the generators,
and the trees, are equal. O

Lemma A.2: VI3 <1, AT : T < T <5 Ts.

Proof: Suppose T7 <T;. Then GEN(T}) <g GEN(T3) by definition. Let v
be the root label of GEN(T}). Then the root label of GEN(T}) must look
like vy'. Let T' be obtained from GEN(T3) by removing the +'-part of the
root and the subtrees that occupy its positions. Since subtrees with the
same address in <g-related trees also will be <g-related, it follows that
GEN(T})<gT". But since they both have root label v, we also have Ty <gT".
It is trivially the case that T" <; T5, so we have shown that Ty <5 T" <1 T5.

For the uniqueness of T, suppose we also have T; <g T" «; T5. Then
for every a € GEN(T2) we have GEN(T3)[a] = GEN(T")[a] = GEN(T")[q],
except for the root labels; but we also have Ti[A] = T'[\] = T"[)\], so
TI — T". O

Lemma A.3: (q;U<g)* =4

13

Proof: Immediate from lemma A.2. O

Lemma A.4: No partial order < which is a proper subset of <g satisfies
(< U <pr)* = <. Also, no partial order <y which is a proper subset of <
satisfies (qy U <g)* = «.

Proof: Suppose we have such a <p. Choose (z,y) € <5\ <p. Then
z[A] = y[A], so no «r\ id steps can take place on a path from z to y.
Hence, (z,y) € <}y = <u, which is a contradiction. The result for <y is
proved similarly. O

Lemma A.5: Let P be a partial order, where all closed intervals are
finite. Let P;, P, C P so that Pf = Py = P. Then (P, N P,)* = P.
Proof: Clearly, (P, N P,)* C P. For the opposite inclusion, suppose
(z,y) € P. The proof is by induction in the size of the open interval
over P from x to y. If the interval is empty, then either (z,y) € id =
(PLNP)%, or (z,y) € (P N P,). Now, suppose the interval contains n + 1
elements. Choose z in it. Then both the open interval from z to 2z and
that from z to y contain at most n elements. Hence, by the induction
hypothesis, (z,z2),(z,y) € (P, N P)*. By transitivity of (P N P,)* we
conclude (z,y) € (PN Py)*. O

Lemma A.6: If Ay Lg<g then a7 C Q. AlSO, if r Lo <y then ds C «y.
Proof: Suppose <y L, <s. By proposition 4.1, all closed intervals of &
are finite, so by lemma A.5, < = ((<rU<g) N (< U<s))* = ((arN<pr) U<s)*.
By lemma A.4, <;N <y, cannot be a proper subset of <;. Hence, <;N<y =
dr, so <y C <pr. The other half of the lemma is proved similarly. O

Proof of Theorem 4.3: Combine lemmas A.1, A.2, A.3, and A.6. O

Appendix B: Proof of Theorem 4.6

Lemma B.1: If T} « T, then we can define a map MAP(T},T%) : U — U,
which is a <g-monotone, partial function where MAP(T1,T5)(X) = T2 |«
ifT|a=X.

14

Proof: MAP(T},T3) is well-defined since T} | a = Ty | 8 = X implies
T;|la=T,|B. It is monotone since T} <« T, implies T} <g T which again
implies T |a<g Ty | . O

Proof of Theorem 4.6: Let G = GEN(T') and let M be the union of
MAP(V;, W,) for which G(i) = V; for some 4. Since V and W are consis-
tent, M will be a well-defined functlon.

We construct a new generator G(V « W) which defines T(V —W). In G
we identify the unique set of maximal subtrees that belong to the domain
of M. These are necessarily disjoint proper subtrees. Now, G(V(—W) is
obtained from G by substituting every such subtree X by M(X).

We first show T(V «— W) € suB(T,V,W). Since M is monotone, it
follows that labels in T' must be smaller than the corresponding ones
in T(V — W) Suppose T|la=T|p=X. If X is in the domain
of M, then T(V « W) la =TV « W) | B = M(X); otherwise,
T(V—W)|la=TV W) |8 =X. Hence, stability holds, too.
The root label is unchanged, so T «s T(V — W) Finally, if T'(i) = V;
then T(V —W)(i) = M(V;) = W;.
Suppose that also T" € suB(T, v, W) We show that all labels in T(V«—-
W) are smaller than the corresponding ones in T". If T' | « is in the
domain of M, then T(V «— W)[a] = T'[a]. For all other labels, T(V «
W)[a] = T[a] < T'[a], since T <g T". O

References

(1] Alan H. Borning and Daniel H. H. Ingalls. A type declaration and inference system for
Smalltalk. In Ninth Symposium on Principles of Programming Languages, pages 133-141.
ACM Press, January 1982.

[2] Peter S. Canning, William R. Cook, Walter L. Hill, and Walter G. Olthoff. Interfaces
for strongly-typed object-oriented programming. In Proc. OOPSLA’89, Fourth Annual

Conference on Object-Oriented Programming Systems, Languages and Applications. ACM,
1989.

[3] L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen, and Gordon
Plotkin, editors, Semantics of Data Types, pages 51-68. Springer-Verlag (LNCS 173), 1984.

(4] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4), December 1985.

[6] Luca Cardelli. Typeful programming. Technical report, Digital Equipment Corporation,
1989.

15

[6]
7]
(8]

[9]

[15]
[16]

[17]

[18]

[19]

[20]

W. R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown University,
1989.

William Cook, Walter Hill, and Peter Canning. Inheritance is not subtyping. In Seven-
teenth Symposium on Principles of Programming Languages. ACM Press, January 1990.

William Cook and Jens Palsberg. A denotational semantics of inheritance and its correct-
ness. In Proc. OOPSLA’89, ACM SIGPLAN Fourth Annual Conference on Qbject-Oriented
Programming Systems, Languages and Applications, 1989.

William R. Cook, Walter L. Hill, and Peter S. Canning. F-bounded polymorphism for
object-oriented programming. In Proc. Conference on Functional Programming Languages
and Computer Architecture, 1989.

Bruno Courcelle. Infinite trees in normal form and recursive equations having a unique
solution. Mathematical Systems Theory, 13:131-180, 1979.

Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science,
25(1), 1983.

0. J. Dahl, B. Myhrhaug, and K. Nygaard. Simula 67 common base language. Technical
report, Norwegian Computing Center, Oslo, Norway, 1968.

J. D. Ichbiah et al. Reference Manual for the Ada Programming Language. US DoD, July
1982.

A. Goldberg and D. Robson. Smalltalk-80—The Language and its Implementation.
Addison-Wesley, 1983.

George Gratzer. General Lattice Theory. Birkh#user, 1978.

B. B. Kristensen, O. L. Madsen, B. Mgller-Pedersen, and K. Nygaard. The BETA pro-
gramming language. In B. Shriver and P. Wegner, editors, Research Directions in Object-
Oriented Programming, pages 7-48. MIT Press, 1987.

Karl J. Lieberherr and Arthur J. Riel. Contributions to teaching object-oriented design
and programming. In Proc. OOPSLA’89, Fourth Annual Conference on Object-Oriented
Programming Systems, Languages and Applications. ACM, 1989.

Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Scaffert. Abstraction mecha-
nisms in CLU. Communications of the ACM, 20(8):564-576, August 1977.

Ole L. Madsen and Birger Mgller-Pedersen. Virtual classes: A powerful mechanism in
ob ject-oriented programming. In Proc. OOPSLA’89, Fourth Annual Conference on Object-
Oriented Programming Systems, Languages and Applications. ACM, 1989.

Ole Lehrmann Madsen, Boris Magnusson, and Birger Mgller-Pedersen. Strong typing of
object-oriented languages revisited. In Proc. OOPSLA/ECOOP’90, ACM SIGPLAN Fifth
Annual Conference on Object-Oriented Programming Systems, Languages and Applications;
European Conference on Object-Oriented Programming, 1990.

Bertrand Meyer. Genericity versus inheritance. In Proc. OOPSLA’86, Object-Oriented

Programming Systems, Languages and Applications. Sigplan Notices, 21(11), November
1986.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood Cliffs,
NJ, 1988.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17, 1978.

16

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]

[32]

John C. Mitchell. Toward a typed foundation for method specialization and inheritance.
In Seventeenth Symposium on Principles of Programming Languages. ACM Press, January
1990.

Jens Palsberg and Michael I. Schwartzbach. Type substitution for object-oriented pro-
gramming. In Proc. OOPSLA/ECOOP’90, ACM SIGPLAN Fifth Annual Conference on
Object-Oriented Programming Systems, Languages and Applications; European Conference
on Object-Oriented Programming, 1990.

U. S. Reddy. Objects as closures: Abstract semantics of object-oriented languages. In
Proc. ACM Conference on Lisp and Functional Programming, pages 289-297. ACM, 1988.

Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An in-
troduction to Trellis/Owl. In Proc. OOPSLA 86, Object-Oriented Programming Systems,
Languages and Applications. Sigplan Notices, 21(11), November 1986.

Michael I. Schwartzbach. Static correctness of hierarchical procedures. In Proc. Inter-

national Collogquium on Automata, Languages, and Programming 1990. Springer-Verlag
(LNCS), 1990.

Michael I. Schwartzbach and Erik M. Schmidt. Types and automata. In preparation, 1990.
B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

P. Wegner. Dimensions of object-based language design. In Proc. OOPSLA’87, Object-
Oriented Programming Systems, Languages and Applications, 1987.

P. Wegner and S. B. Zdonik. Inheritance as an incremental modification mechanism or
what like is and isn’t like. In Proc. ECOOP’88, European Conference on Object-Oriented
Programming. Springer-Verlag (LNCS 322), 1988.

17

