Type Substitution

ISSN 0105-8517

for Object-Oriented Programming

Jens Palsberg
Michael I. Schwartzbach

DAIMI PB - 317
July 1990

COMPUTER SCIENCE DEPARTMENT
AARHUS UNIVERSITY

Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark

nsi

I




ISSN 0105-8517

PB - 317 Palsberg & Schwartzbach: Type Substitution



Type Substitution for
Object-Oriented Programming

Jens Palsberg Michael I. Schwartzbach

Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark
Internet addresses: palsberg@daimi.dk and mis@daimi.dk

Abstract

Genericity allows the substitution of types in a class. This
is usually obtained through parameterized classes, although
they are inflexible since any class can be inherited but is not
in itself parameterized. We suggest a new genericity mech-
anism, type substitution, which is a subclassing concept that
complements inheritance: any class is generic, can be “instan-
tiated” gradually without planning, and has all of its generic
instances as subclasses.

©ACM. A reformatted version of this report is to be pre-
sented at OOPSLA/ECOOP’90, ACM SIGPLAN Fifth An-
nual Conference on Object-Oriented Programming Systems,
Languages, and Applications, to be held 21-25 October 1990,
in Ottawa, Canada. Citations should refer to the Proceedings.




1 Introduction

This paper proposes type substitution as a new genericity mechanism for
statically typed object-oriented languages. With this concept we avoid
type variables and second-order entities and obtain the natural comple-
ment of inheritance; both are subclassing mechanisms and they differ as
follows.

¢ Inheritance. Construction of subclasses by adding variables and
procedures, and by replacing procedure bodies.

e Type substitution. Construction of subclasses by substituting
types.

Type substitution is supportive of the real-life process of software de-
velopment. Every type occurring in a class can be specialized through
substitutions. This allows old generic classes to be refined to new generic
ones which may be further specialized by subsequent subclassing. Also,
every type can be viewed as a potential parameter. Not everything can
be predicted in advance, and it is awkward to go back and restructure an
existing class hierarchy to introduce parameterized classes. The ability
to perform arbitrary substitutions, rather than predicted instantiations,
maximizes possibilities for later, perhaps unforeseen, code reuse.

In the following section we outline a core language that will be used in
examples. In section 3 we discuss code reuse, polymorphism, inheritance,
and genericity. In section 4 we introduce type substitution as a new
subclassing mechanism to complement inheritance. In section 5 we show
how to program with type substitution, and note that it solves some
problems in the EIFFEL type system that were reported by Cook [7]. In
section 6 we show that polymorphic procedures declared outside classes
can be provided as a shorthand, allowing a symmetric programming style.
In section 7 we demonstrate the usefulness of opaque definitions. In
section 8 we discuss heterogeneous variables. Finally, in section 9 we
present the type-checking rules.

Throughout, we use examples which are reformulations of some taken
from Meyer’s paper on genericity versus inheritance [20], Sandberg’s pa-
per on parameterized and descriptive classes [26], and Cook’s paper on
problems in the EIFFEL type system [7].

2




2 The Core Language

To avoid purely syntactic issues, we use a core language with PAscAL-like
syntax and informal semantics, inspired by SimMuLA [11], C++ [31], and
EIFFEL [21]. The major aspects are as follows.

Objects group together variables and procedures, and are instances
of classes. The built-in classes are object (the empty class), boolean,
integer, and array. Variables and parameters must be declared together
with a fype, which is a class. In assignments and parameter passings,
types must be equal. In procedures returning a result (functions), the
variable Result is an implicitly declared local variable of the procedure’s
result type; its final value becomes the result of a call. When a variable
is declared, an instance of the variable’s class is notionally created. In an
implementation, heap space is only allocated when dynamically needed,
i.e., the first time the instance receives a message. This technique ensures
that variables are never nil; we also avoid a new (create) statement. Extra
class names can be specified in two ways: through the transparent

let name = class
which yields a synonym, and through the opaque
let name = class

which yields new type with the same implementation.
Let us now examine different approaches to introducing code reuse
into this core language.

3 Code Reuse

Object-oriented programming strives to obtain reusable software com-
ponents, e.g., procedures, objects, classes. The two major approaches to
this are polymorphism and prefizing, see figure 1.

¢ Polymorphism. A component may have more than one type.
Examples: ML-functions [22], generic ADA-packages [12], parame-
terized CLU-clusters [17].

o Prefixing. A component may be described as an eztension of
another component. Examples: Delegation [16], SIMULA-prefixing
[11], SMALLTALK-inheritance [13].

3



Code reuse

Polymorphism; Prefixing;

code reused in  code reused in
applications definitions

Figure 1: Two approaches to code reuse.

In typed languages, a component can be used only according to its type.
A polymorphic component has several types; hence it can be used in sev-
eral different ways. In this approach, code is reused in applications. If
the behavior of a component is completely described by its type, then
that type is unique and polymorphism is of course not possible. Alterna-
tively, a description can be used as a prefix of other descriptions. In this
approach, code is reused in definitions.

A class completely describes the behavior of its objects. Many object-
oriented languages use classes as types, have inheritance as prefixing
(subclassing) mechanism, and allow variables and assignments. Major
examples are SIMULA, C++-, and EIFFEL. Inheritance gives a particular
style of code reuse in definitions. It allows the construction of subclasses
by adding variables and procedures, and by replacing procedure bodies.
This has inspired a development of polymorphic languages seeking to ob-
tain the same style of code reuse in applications. They are functional
languages using object interfaces as types [30]. By allowing a type to be
a subtype of (conform to) other types, an object can be viewed as having
both the declared type and its supertypes. Hence, code applicable to
objects of some type can also be applied to objects of a subtype.

Since Cardelli’s seminal paper [3], the definition of the subtype re-
lation has undergone a number of modifications to achieve a closer re-
semblance to inheritance. Bounded parametric polymorphism was intro-
duced by Cardelli and Wegner [4] to avoid type-loss in applications, and
recently F-bounded polymorphism [10, 2, 8] has been proposed to resolve
a number of shortcomings involving recursive types. It should be noted,
though, that these polymorphic languages cannot emulate inheritance
of classes with variables because mutable types have no non-trivial sub-

4



Polymorphism Prefixing
inclusion
bounded inheritance
F-bounded
modifiability
parametric 1
type substitution

Figure 2: Polymorphism and prefixing.

types, as observed by Cardelli [5]; this is further discussed in the section
on heterogeneous variables.

Some polymorphic languages allow parameterized types which give
a different style of code reuse that cannot be expressed through inheri-
tance. Parameterized types can be used to describe generic components,
i.e., components whose type annotations can be substituted. This has
inspired several attempts of providing a notion of generic class. The sim-
plest approach is to use parameterized classes. A parameterized class is
a second-order entity which is instantiated to specific classes when ac-
tual type parameters are supplied. Together with parameterized classes,
Sandberg introduces descriptive classes as an alternative to subclassing
[26]. Descriptive classes are used to avoid passing procedure parameters.
Ohori and Buneman combine parameterized classes and inheritance with
static type inference, though disallowing reimplementation of inherited
procedures [23]. Language designs with both parameterized classes and
inheritance include E1FFEL [21], TRELLIS/OWL [27], and DEMETER [15].

Instantiation of parameterized classes is less flexible than inheritance,
since any class can be inherited but is not in itself parameterized. In
other words, code reuse with parameterized classes requires planning;
code reuse with inheritance does not. Another drawback of parameter-
ized classes is that they cannot be gradually instantiated. This makes
it awkward to, for example, declare a class ring, then specializing it to a

5




class matrix, and finally specializing matrix to a class booleanmatrix.

Another approach to generic classes is the use of modifiable declara-
tions, exemplified by the SIMULA [11] and BETA [18, 14] notion of virtual
attributes. This technique allows types to be modified in a subclass, thus
providing substitution of type annotations in a generic class as a sub-
classing mechanism. Unfortunately, individual conflicting modifications
may yield type-incorrect subclasses; this leads to a fair amount of run-
time type-checking [19], which is superfluous if the resulting class is in
fact type-correct.

A summary of polymorphism and prefixing is provided in figure 2. In
the following section, we introduce type substitution as a new approach
to generic classes. It is a subclassing mechanism without the drawbacks
of parameterized classes and modifiable declarations.

4 Type Substitution

Inheritance is not the only possible subclassing mechanism. This section
discusses a more general notion of type-safe code reuse of class defini-
tions, and suggests type substitution as a new subclassing mechanism to
complement inheritance. The discussion is informal; formal definitions
and proofs are given in [24].

class sequence
var head: object
var tail: sequence
end

var head: e var tail: o

object &

Figure 3: Sequences.

Let us first define the universe of all possible classes. A class can
be thought of as untyped code in which type annotations are included
whenever variables and parameters are declared. Since types are classes,
this gives rise to a tree denotation of a class. The root is the untyped code
of the class, and for each position where a type annotation is written,

6



aebec aebef

dede
aebec aebecf
A
dd d de

Figure 4: Monotonicity and stability fail.

aebec aebecf

dede

Figure 5: Monotonicity and stability.

there is a subtree with the tree denotation of the corresponding class.
The only exception is that recursive occurrences of the class itself are not
denoted explicitly, but by the symbol &. Notice that a tree denotation
may still be infinite if it contains other recursive types. As a simple
example, a sequence class and its tree denotation is presented in figure 3.
Note that the standard dynamic semantics of method lookup [9, 25, 6]
can be based exclusively on these denotations. Thus we need only explain
inheritance and type substitution by their effect on denotations; their
dynamic semantics can then be inferred.

There is a relation < on tree denotations that indicates the possibilities
for type-safe code reuse, i.e., if Ty < T, then T} may be reused in the
definition of T,. We need the following two requirements:

e Monotonicity: the code in T} must nodewise be a prefix of the code
in T2.

e Stability: if two types in T; are equal, then the corresponding two
types in T3 must be equal.

These requirements ensure that type-correctness of procedure calls
and assignments in T} is preserved in Tb, as discussed in a later section
on type-checking. Figure 4 shows how monotonicity and stability may

7



class list inherits sequence
var empty: boolean
end

var head: e var tail: e var empty: o

object & boolean

Figure 6: Lists.

sequence[object « integer]

var head: e var tail: o

integer <o

Figure 7: Integer sequences.

fail, whereas figure 5 illustrates a situation where both properties hold.
The relation < is a decidable, partial order. We generalize the usual
terminology by calling T, a subclass of T;. When opaque definitions are
considered, then <« is only a preorder, i.e., a class and its opaque versions
are different but mutually <-related.

We observe that if T inherits T}, then it is indeed the case that
T; «T,. Monotonicity holds since the root of T} is a prefix of the root of
T5. Stability holds since no type in Tj is changed.

A simple example of inheritance is presented in figure 6. The use of &
ensures that the subclass has the same recursive structure as the super-
class it inherits. If instead the denotation was completely expanded, then
only the first element of a list instance would have an empty component.

The key observation is that < contains possibilities for substituting
type annotations that are not realized by inheritance. This leads us to
introduce the following new mechanism. If C, A;, and B; are classes, then

C[A1,...,As « By,...,By]

is a type substitution which specifies a class D such that C <« D and all
occurrences of A; are substituted by B;. As a simple example, consider
the type substitution and its resulting denotation in figure 7.

8




class C1

var x: object
end
let C2 = Cl[object « integer]
class D1

var c: Cl

proc p(arg: object)

begin c.x:=arg end

end
let D2 = D1[C1 « (2]

Figure 8: Not textual substitution.

var c: e proc p(arg: ¢) begin c.x:=arg end
var x: e object

object

var c: e proc p(arg: ¢) begin c.x:=arg end

var x: e integer

integer

Figure 9: Denotations of D1 and D2.

Clearly, not all specifications can be realized. For example, we could
not specify that object should be substituted by both boolean and integer.
We say that a specification as the above is consistent when a tree with A;-
subtrees is <-smaller than the same tree with B;-subtrees instead. Every
consistent specification can be realized by a unique most general class, i.e.,
one whose types are the least specialized; furthermore, this unique class
can be computed from the specification, and is by definition <-related to
its superclass.




type substitution

subclasses

of C

» inheritance

Figure 10: Two dimensions of subclassing.

In figure 7, type substitution appears indistinguishable from textual
substitution. This, however, is only because the example is simple. In
general, textual substitution will not yield a type-correct class, as il-
lustrated by figure 8. If we try to obtain D2 as D1 with C1 textually
substituted by C2, then the assignment in procedure p involves different
types: an integer and an object. Using type substitution, D2 is the small-
est type-correct subclass of D1 with C1 substituted by C2. This means
that also object is substituted by integer. In fact, an equivalent specifi-
cation of D2 is D1[object « integer]. The relevant denotations are shown
in figure 9.

We now have two mechanisms which exploits the <-relation: inher-
itance and type substitution. Obviously, we must consider if there are
more possibilities for code reuse left. It turns out that the answer is no:
every subclass of a class C can be obtained through a finite number of
inheritance and type substitution steps. Furthermore, inheritance and
type substitution can be shown to form an orthogonal basis for «, as in-
dicated in figure 10. Thus, genericity and inheritance are reconciled as
independent, complementary components of a unified concept [20]. Also,
every subclass can in fact be obtained by one type substitution followed
by one application of inheritance. The converse is false because the extra
code may exploit the larger types.

Type substitution solves some problems in the EIFFEL type system
that were reported by Cook [7], since attributes cannot be redeclared in
isolation in subclasses, there are no asymmetries as with declaration by

10




association, and parameterized class instantiation can be expressed as
subclassing.
The following section shows how to program with type substitution.

5 Programming Examples

Consider the stack classes in figure 11. In stack, the element type is
object, and likewise the formal parameter of push and the result of top
are of type object. The classes booleanstack and integerstack are type
substitutions of stack. For example, booleanstack is the class obtained
from stack by substituting all occurrences of object by boolean, leaving
all assignments legal.

class stack
var space: array of object
var index: integer
proc empty returns boolean
begin Result:=(index=0) end
proc push(x: object)
begin index:=index+1; space[index]:=x end
proc top returns object
begin Result:=space[index] end
proc pop
begin index:=index-1 end
proc initialize
begin index:=0 end
end
let booleanstack = stack[object < boolean]
let integerstack = stack[object « integer]

Figure 11: Stack classes.

Thus, stack acts like a parameterized class but is just a class, not a
second-order entity. This enables gradual instantiations of “parameter-
ized classes”, as demonstrated in the following examples.

Consider next the recursive ring classes in figure 12. The class boolean-
ring inherits a type substitution of class ring; thus, booleanring is a sub-
class of ring.

11




class ring
var value: object
proc plus(other: ring)
proc times(other: ring)
proc zero
proc unity
end
class booleanring inherits ring[object «— boolean]
proc plus
begin value:=(value or other.value) end
proc times
begin value:=(value and other.value) end
proc zero
begin value:=false end
proc unity
begin value:=true end
end

Figure 12: Ring classes.

class matrix inherits
ring[object « array of array of ring]
proc plus
var i,j: integer
begin
for i:=1 to arraysize do
for j:=1 to arraysize do
value[i,j].plus(other.value[i,j])
end

end
let booleanmatrix = matrix[ring < booleanring]
let matrixmatrix = matrix[ring < matrix]

Figure 13: Matrix classes.

This illustrates how type substitution and inheritance complement
each other: first object is substituted by boolean; then the inherited
procedures are implemented appropriately.

12




class rr
var value: array of array of ring
proc plus(other: rr)
proc times(other: rr)
proc zero
proc unity
end

Figure 14: Recursive structure is preserved.

Since the recursive structure of a class is preserved during type sub-
stitutions, we do not need the association type like Current as found in
EIFFEL [20, 21].

This can be further illustrated by the matrix classes in figure 13.
Again, the class matrix is obtained through a type substitution followed
by an application of inheritance. Note that we, as opposed to EIFFEL,
do not need a dummy variable of type ring serving as an anchor for some
association types [20, 21]. In class booleanmatrix occurrences of ring are
substituted by booleanring, and consequently occurrences of object are
substituted by boolean. Class matrixmatrix is obtained analogously. That
the recursive structure of a class is preserved in its subclasses can be seen
by focusing on the class ring[object « array of array of ring], which has
the same denotation as the class in figure 14; the occurrence of ring in
the type of value is not subsumed.

6 Polymorphic Procedures

Polymorphic procedures declared outside classes can be provided through
type substitution. This allows symmetric operations and a more func-
tional programming style.

Consider, for example, the swap procedure in figure 15. When swap
is called with two objects of the same type, the compiler will infer that it
would have been possible to write the program in the following way:

1) Place the procedure in an auxiliary class with no other procedures
or variables.

2) Identify a subclass where object is substituted by the type of the
actual parameters.

13



proc swap(inout x,y: object)
var t: object
begin t:=x; x:=y; y:=t end

Figure 15: Swap procedure.

class order
var value: object
proc equal(other: order) returns boolean
proc less(other: order) returns boolean

end
class integerorder inherits order[object « integer]
proc equal
begin Result:=(value=other.value) end
proc less
begin Result:=(value<other.value) end
end
proc minimum(x,y: order) returns order
begin

if x.less(y)

then Result:=x

else Result:=y
end

Figure 16: Order classes and a minimum procedure.

3) Perform a normal call to the procedure in a notional object of the
subclass.

Note that the formal and actual parameters specify the substitution. A
call is, of course, only legal when this specification is consistent. Such
polymorphic procedures can be called without sending a message to an
object. Actual parameters can be instances of subclasses of the formal
parameter types, but if two formal parameter types are equal then the
corresponding two actual parameter types must be equal as well. This
parallels the developments in [28, 29].

Consider next the order classes and the minimum procedure in fig-
ure 16. Instances of order may be compared for equality and inequality,
though in an asymmetrical way, as is usual in object-oriented program-
ming. The minimum procedure is declared outside class order, is symmet-

14



rical, and takes two arguments of the same type provided the arguments
are instances of a class which is a subclass of order. This gives an effect
similar to bounded parametric polymorphism [4].

class list
var empty: boolean
var head: object
var tail: list
end
proc cons(x: object; y: list) returns list
begin
Result.empty:=false;
Result.head:=x;
Result.tail:=y
end
let orderlist = list[object « order]
proc insert(x: order; y: orderlist) returns orderlist
begin
if y.empty or x.less(y.head)
then Result:=cons(x,y)
else Result:=cons(y.head,insert(x,y.tail))
end
proc sort(x: orderlist) returns orderlist
begin
if x.empty
then Result:=x
else Result:=insert(x.head,sort(x.tail))
end
let integerorderlist = orderlist[order «— integerorder]

Figure 17: List classes and a sort procedure.

As a final example, consider the list classes and the (insertion) sort
procedure in figure 17. We have obtained the functional programming
style by declaring procedures outside classes. The sort procedure takes
an argument whose class is a subclass of orderlist. It gives back a list of
the same type with the components of the argument sorted in ascending
order. Notice the polymorphic calls of cons, and that sort can be called
with an integerorderlist.

15




7 Opaque Definitions

let arg = object
let res ~ object
class map
var a: arg
var r: res
var next: map
proc update(x: arg; y: res)

begin ... end
proc inspect(x: arg) returns res
begin - .. end

end
let phonebook = map|arg,res «— text,integer]

Figure 18: Use of opaque definitions.

The consistency condition on type substitutions seems at first to impose
unwanted restrictions. We may have that two occurrences of e.g. object
in a class are intended to play entirely different roles. However, in a
type substitution they must be substituted by the same type to uphold
consistency. Such problems can be avoided by judicious application of
opaque definitions, as illustrated in figure 18.

In the class map we clearly want to allow arbitrary argument and re-
sult types. This suggests that they should both have type object; but we
also want the types of arguments and results to be completely indepen-
dent. By defining the types of arg and res to be opaque versions of object,
we can achieve both aspirations simultaneously. The class phonebook can
now be obtained through a type substitution of text for arg and integer
for res.

8 Heterogeneous Variables

Assignments between unequal types were not needed to construct generic
classes. Actually, most parts of a program do not need such assignments
[1]. However, they are clearly required to build heterogeneous data struc-
tures. This suggests that genericity and heterogeneity are independent
issues.

16




To obtain a comprehensive language, we now introduce heterogeneous
variables, i.e., variables which may hold not only instances of the declared
class but also those of its subclasses. They are declared as

var name:< type

Such variables are needed for the programming of databases, for example,
where instances of different classes are stored together. While allowing
more programs, such variables disable compile-time type-checking. Run-
time type-checking under similar circumstances were first used in SIMULA
implementations, and later adopted in the implementation of BETA.

class list
var empty: boolean
var head:< object
var tail: list

end

Figure 19: A heterogeneous list class.

class parent
proc base
proc get(arg: parent)
begin arg.base end
end
class son inherits parent
proc extra
proc get(arg: son)
begin arg.extra end
end
var p,q: parent
var s: son
begin
p:=s;
p.get(q)  (* run-time error *)
end

Figure 20: Cook’s example.

The list class in figure 19 is heterogeneous, since it contains a hetero-
geneous variable. All subclasses of list are again heterogeneous. When

17




a class is heterogeneous then all variables of the corresponding type are
automatically heterogeneous themselves. All polymorphic procedures de-
clared outside classes can, however, be reused. Thus, the sort procedure
does not have to be altered.

Let us reexamine (a reformulation of) one of the EIFFEL programs
that Cook provided in his paper on problems in the EIFFEL type system
[7], see figure 20. Class parent specifies a procedure base and a procedure
get which takes an argument of type parent and calls the base procedure
of this argument. Class son is a subclass of parent and specifies in addition
a procedure extra. It also reimplements procedure get to call instead the
extra procedure of its argument (which in class son is of type son).

Cook notes that in EIFFEL it is (erroneously) statically legal to declare
a variable of type parent, assign a son object to it (because in EIFFEL son
conforms to parent), and then use the parent variable as if it referred to a
parent object, for example by calling the referred object’s get procedure
with an argument of type parent. This will lead to a run-time error
because when the get procedure in the son object is executed, it will try
to access the extra procedure of its argument which does not exist.

Cook claims that the problem in the type system stems from consid-
ering that son conforms to parent; the restriction of the argument type of
procedure get in class son violates the contravariance of function types.
But, since EIFFEL uses variables and assignments, an analysis based on
subtyping is not appropriate, as noted in section 3. In our analysis, the
parent variable p should be declared as heterogeneous in order to allow
the assignment of a son object to it. This declaration also signals a warn-
ing that run-time checks may be necessary. When calling the referred
object’s get procedure, the compiler will know that the object need not
be of type parent, and thus insert a run-time type-check of the argument
(which will fail in this case).

To further illustrate the problem with variables and subtyping, see
figure 21. An execution of this program will lead to a run-time error
because b.x is in fact of type object. In Cardelli’s analysis, big is not
a subclass of small since they both contain variables; hence, the call of
switch with the actual parameter b is illegal. An analysis analogous to
the ones of Cook [7] would erroneously deem the program legal since
variables are ignored and only the usual subtyping rules are considered.
In our analysis, the program is illegal because consistency fails in the
call of switch: b and s have different types. Note that we will allow a

18




class small
var x: object
end
class big
var X: integer
end
proc switch(p,q: small)
begin p.x:=q.x end
var s: small
var b: big
var i: integer
begin
switch(b,s);
ii=b.x+1  (* run-time error *)
end

Figure 21: Variables cannot be ignored.

call of switch(b,b); Cardelli prohibits this even though it will not lead to
run-time errors. SIMULA and BETA’s assignable variables can only be
heterogeneous; hence superfluous run-time type-checks will be inserted
by their implementations in such situations.

In the following section we give the complete type-check rules which
also considers heterogeneous expressions.

9 Type-checking

The traditional purpose of type-checking in object-oriented languages is
to ensure that all messages to objects will be understood [1]. In the
homogeneous subset of our language this can be entirely determined at
compile-time. The rules to check whether source code is type-correct are

o Early checks: verify for all calls x.p(...) that a procedure p is im-
plemented by the declared type of x.

¢ Equality checks: verify for all assignments and parameter passings
that the two declared types are equal.

Note that in theory these checks should be performed on the denotations
of the classes. However, because of monotonicity and stability of «, the

19



validity of such checks will be preserved when code is reused through
inheritance and type substitution. More specifically, monotonicity pre-
serves early checks and stability preserves equality checks. Hence, source
code need only be checked once, as usual.

If heterogeneous variables are introduced then compile-time checks are
no longer sufficient. One solution to this predicament is to switch entirely
to run-time checks of individual messages, in the style of SMALLTALK. It
is, however, a vast improvement to direct the attention towards assign-
ments, which allows the mixture of compile- and run-time checking that
is used in SIMULA and BETA. It turns out that in many cases, run-time
checks are not needed anyway.

First of all, the usual early checks are performed. Only the equality
checks need to be revised. For this analysis, we can identify assignments
and parameter passings. We now have four cases, as both the left- and
right-hand object can be homogeneous or heterogeneous. Let stat(x) be
the statically declared class of an object x and dyn(x) its dynamic class.
If x is homogeneous then stat(x) = dyn(x), whereas if x is heterogeneous
then stat(x) < dyn(x). We consider the assignment L:=R.

1) L and R are both homogeneous: At compile-time we verify that
stat(L) = stat(R).

2) L is heterogeneous, R is homogeneous: At compile-time we
verify that stat(L) « stat(R).

3) L is homogeneous, R is heterogeneous: At compile-time we
verify that stat(L) > stat(R). At run-time we verify that stat(L) =
dyn(R).

4) L and R are both heterogeneous: If, at compile-time, stat(L) <
stat(R) then no run-time checks are necessary. If, at compile-time,
stat(L) > stat(R) and stat(L) # stat(R) then we verify at run-time
that stat(L) < dyn(R).

Note that because < generalizes inheritance, this technique saves many
run-time type-checks that are inserted by SIMULA and BETA implemen-
tations.

20



10 Conclusion

We have presented a new approach to genericity in object-oriented lan-
guages. It has none of the drawbacks of parameterized classes and offers
many pragmatic advantages: any class is generic, can be “instantiated”
gradually without planning, and has all of its generic instances as sub-
classes.

Acknowledgements. The authors thank Peter Mosses and Ole Lehrmann
Madsen for helpful comments on a draft of the paper.

References

[1] Alan H. Borning and Daniel H. H. Ingalls. A type declaration and inference system
for Smalltalk. In Ninth Symposium on Principles of Programming Languages, pages
133-141. ACM Press, January 1982.

[2] Peter S. Canning, William R. Cook, Walter L. Hill, and Walter G. Olthoff. Inter-
faces for strongly-typed object-oriented programming. In Proc. OOPSLA’89, Fourth

Annual Conference on Object-Oriented Programming Systems, Languages and Ap-
plications. ACM, 1989.

[3] L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen, and
Gordon Plotkin, editors, Semantics of Data Types, pages 51-68. Springer-Verlag
(LNCS 173), 1984.

[4] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17(4), December 1985.

[5] Luca Cardelli. Typeful programming. Technical report, Digital Equipment Corpo-
ration, 1989.

[6] W. R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown Univer-
sity, 1989.

[7] William Cook. A proposal for making Eiffel type-safe. In Proc. ECOOP’89, Euro-
pean Conference on Object-Oriented Programming, 1989.

[8] William Cook, Walter Hill, and Peter Canning. Inheritance is not subtyping. In Sev-

enteenth Symposium on Principles of Programming Languages. ACM Press, January
1990.

9] William Cook and Jens Palsberg. A denotational semantics of inheritance and its
correctness. In Proc. OOPSLA’89, ACM SIGPLAN Fourth Annual Conference on
Object-Oriented Programming Systems, Languages and Applications, 1989,

[10] William R. Cook, Walter L. Hill, and Peter S. Canning. F-bounded polymorphism
for object-oriented programming. In Proc. Conference on Functional Programming
Languages and Computer Architecture, 1989.

21




[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[21]

[22]

[23]

[24]

O. J. Dahl, B. Myhrhaug, and K. Nygaard. Simula 67 common base language.
Technical report, Norwegian Computing Center, Oslo, Norway, 1968.

J. D. Ichbiah et al. Reference Manual for the Ada Programming Language. US DoD,
July 1982.

A. Goldberg and D. Robson. Smalltalk-80—The Language and its Implementation.
Addison-Wesley, 1983.

B. B. Kristensen, O. L. Madsen, B. Mgller-Pedersen, and K. Nygaard. The BETA
programming language. In B. Shriver and P. Wegner, editors, Research Directions
in Object-Oriented Programming, pages 7-48. MIT Press, 1987.

Karl J. Lieberherr and Arthur J. Riel. Contributions to teaching object-oriented de-
sign and programming. In Proc. OOPSLA’89, Fourth Annual Conference on Object-
Oriented Programming Systems, Languages and Applications, ACM, 1989.

H. Lieberman. Using prototypical objects to implement shared behavior in object-
oriented systems. In Proc. OOPSLA’86, Object-Oriented Programming Systems,
Languages and Applications. Sigplan Notices, 21(11), November 1986.

Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Scaffert. Abstraction
mechanisms in CLU. Communications of the ACM, 20(8):564-576, August 1977.

Ole L. Madsen and Birger Mgller-Pedersen. Virtual classes: A powerful mechanism
in object-oriented programming. In Proc. OOPSLA’89, Fourth Annual Conference
on Object-Oriented Programming Systems, Languages and Applications. ACM, 1989.

Ole Lehrmann Madsen, Boris Magnusson, and Birger Mgller-Pedersen. Strong typ-
ing of object-oriented languages revisited. In Proc. OOPSLA/ECOOP’90, ACM
SIGPLAN Fifth Annual Conference on Object-Oriented Programming Systems, Lan-
guages and Applications; European Conference on Object-Oriented Programming,
1990.

Bertrand Meyer. Genericity versus inheritance. In Proc. OOPSLA’86, Object-
Oriented Programming Systems, Languages and Applications. Sigplan Notices,
21(11), November 1986.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood
Cliffs, NJ, 1988.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17, 1978.

Atsushi Ohori and Peter Buneman. Static type inference for parametric classes.
In Proc. OOPSLA’89, Fourth Annual Conference on Object-Oriented Programming
Systems, Languages and Applications. ACM, 1989.

Jens Palsberg and Michael I. Schwartzbach. Genericity And Inheritance. Computer
Science Department, Aarhus University. In preparation.

22



[25]

[26]

[27]

[28]

[29]

(30]

[31]

U. S. Reddy. Objects as closures: Abstract semantics of object-oriented languages.
In Proc. ACM Conference on Lisp and Functional Programming, pages 289-297.
ACM, 1988.

David Sandberg. An alternative to subclassing. In Proc. OOPSLA’86, Object-
Oriented Programming Systems, Languages and Applications. Sigplan Notices,
21(11), November 1986.

Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An
introduction to Trellis/Owl. In Proc. OOPSLA’86, Object-Oriented Programming
Systems, Languages and Applications. Sigplan Notices, 21(11), November 1986.

Erik M. Schmidt and Michael I. Schwartzbach. An imperative type hierarchy with
partial products. In Proc. of Mathematical Foundations of Computer Science 1989.
Springer-Verlag (LNCS 379), 1989.

Michael I. Schwartzbach. Static correctness of hierarchical procedures. In Proc. In-

ternational Colloguium on Automata, Languages, and Programming 1990. Springer-
Verlag (LNCS), 1990.

A. Snyder. Inheritance and the development of encapsulated software components.
In B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Pro-
gramming. MIT Press, 1987.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

23



