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Abstract

We give a simple extension of Smolensky’s method by replacing Smolen-
sky’s concept of Uz-completeness by a new definition: F-hardness. An
easy consequence of this definition is that F-hard functions do not have
constant depth, polynomial size Boolean circuit with Mod,, where pis the
characteristic of F'. By this extension, we can explicitly show many func-
tions are hard, we establish a Hardness Lemma for a class of functions,
and characterize when a function over a finite field is hard to compute by
a small depth with Mod, gates. Furthermore, we discuss the difficulties
in extending Smolensky’s theory over a general ring. While in general
the nice relationship between the Boolean circuit model and the algebra
of functions representing Boolean functions over a ring collapses, we can
still extend the complexity theoretic notions introduced by this extended
Smolensky’s theory to a ring in order to classify functions over such a
ring by their relative complexity. A result states that any representation
of Majority over any ring R = Z/(r) for any fixed » € N is hard. This
provides a kind of evidence that Majority is not AC? reducible to Mod,.




1 Introduction

Since the seminal paper of Furst, Saxe and Sipser [FSS], in which they
proved that AC? Boolean circuits (i.e. constant depth, polynomial size,
in the sequel, we will call them small depth circuits) could not compute
the Parity function (this result was also independently proved by Ajtai
[Aj83]), small depth Boolean circuits have been under extensive investi-
gation, which turned out to be very successfully: first by Yao [Ya 85] and
later improved by Hastad [Ha 86], an exponential lower bound on the size
of constant depth Boolean circuits computing Parity was obtained. Cai
[Cai 86] (and independently Babai) proved that small depth circuits not
only fail to compute Parity but also give eventually 50% of error. More
recently, Linial, Mansour and Nisan [LMN 89] proved that AC° Boolean
functions have essentially only non-vanishing coeffiecients in lower degree
terms.

A natural extension of AC? circuits is to provide them with more
powerful gates e.g. Parity (Mody) or Mod, gates, where p is a fixed
prime. This motivated the definition of AC? reduction: a function f is
AC? reducible to a function g (g1,...,9,) if there exists a small depth
Boolean circuit with g (gi1,...,9,) as new gate(s) computing f. It was
conjectured in [F'SS] that Majority is not AC? reducible to Parity. This
conjectured was proved by Razborov [Ra 87] who showed an expenen-
tial lower bound for computing Majority using constant depth Boolean
circuits with Parity. Shortly afterwards, in his ingenious paper [Sm 87],
Smolensky extended Razborov’s result to any fixed finite field of charac-
teristic p, by purely algebraic methods, showing that there are no small
depth circuits with Mod, that can approximate Mod, well, where p, ¢ are
distinct primes. Hence, Mod, is not AC® reducible to Mod,. Apparently,
his method could not be extended to a general ring, hence he conjectured
that for a fixed composite number 7, and for a fixed prime g, if g does not
divide 7, then Mod, is not AC? reducible to Mod,, in particular, Mod;
is not AC? reducible to Mod,.

In their studying of polynomial length nonuniform deterministic finite
autamata (NUDFA) over monoids and groups, Barington and Thérien [Ba
86, BT 87, BT 88] defined the complexity class ACC which is the AC?
closure of Mod, gates for any fixed » € N and conjectured that Majority
is outside ACC. Although they have discovered and established many
interesting and enlightening relationships between various classes inside
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NC' and families of polynomial legth NUDFA over different types of
monoids and groups, so far they still could not resolve their conjecture.

In [Sm 87], in order to show Mod, is not AC? reducible to Mod,,
Smolensky introduced the concept of Uj-completeness, which enabled
him to achieve his goal. However, this concept became a major obstacle
when trying to apply his method to show some other functions are hard to
compute by a small depth Boolean circuit with Mod,. UZ-completeness
is too restrictive a condition for many other functions. In section 2, we
replace his concept of UZ-completeness by a new definition: F-hardness.
This comes from a simple but keen observation: We say a function is Fp-
hard, if to force it to have low degree in some quotient algebra over F,, we
always have to ignore a large fraction of inputs, thus the dimension of the
quotient algebra is very small; on the other hand, we know small depth
Boolean circuits with Mod, yield polynomials which have low degrees
over some quotient algebra of not too small dimension. Hence, the main
theorem of Smolensky becomes an easy consequence of this definition of
F-hardness — F-hard functions cannot be approximated well by small
depth Boolean circuit with Mod, gates. What left now is to show some
classes of functions are F-hard. We establish a Hardness Lemma for a
class of functions which we call semi-threshold functions, where Majority
and all T'hreshold functions are important examples among them. The
idea and the proof technique can be applied to other functions, too. It’s
not too hard to foresee that essentially all dense, high degree polyno-
mials over a fixed finite field do not have small depth Boolean circuits
with Mod, where p is the characteristic of the field, this gives a sort of
supplement to the result of Linial, et al [LMN 89].

In section 3, we discuss the difficulties in extending Smolensky’s the-
ory to a general ring. The problem lies in the insurmountable gap between
the Boolean circuit model and any model we choose to represent Boolean
functions by polynomials over a ring. The nice relationship between the
small depth Boolean circuits with module gates and the algebra of func-
tions representing Boolean functions which enables us to establish the
theory over a field simply collapses over a general ring. However, we can
still extend the complexity theoretic notations induced by this extended
Smolensky’s theory to a ring in order to classify functions over such a ring
by their relative hardness. We prove that any representation of Majority
is hard over any such rings, this gives an evidence that Majority cannot
be aprroximated well by Mod,. Then, a remaining open problem is how
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well this classification reflects the complexity of the Boolean functions.
We conjecture that any R-hard function over R = Z/(r) cannot be ap-
proximated well by a small depth Boolean circuit with Mod, gates, hence
it is not AC° reducible to Mod,.

2 Smolensky’s Method and F-hardness

F-algebra Uj and its quotient algebra

Recall some basic notations and definitions in [Sm 87].

Let F, be a finite field of characteristic p, B= {0,1}.

The Fp-algebra Uy is defined as the set of functions f(z) : B" — 7,
or the set of polynomials over F, with the degree in each variable being
linear. Formally,

Folz
oy = Dokl

where
2 2
J = (] — T1y., Tp — Ty)

The superscript n in Uf,denotes the input size, throughout the paper, we
assume 7 is very large.
UF, is both an Fp-algebra and a vector space over F,. Each function
f(z) c Uy, are umquely determinated by its set of nonvamshmg points,
as

Fact B; = {HiES T; HieS‘(l — w,)| S C {1,...,’}2}} and B, = {Hz‘ES :Ezl S C
{1,...,n}} are two bases for Uy . Moreover, dim Uj = 2".

Let a € B" = {0,1}", define z(a) = Ml4,=1 ®; [Io;=0(1 — z;), then B; =
{z(e)| @ € B"}. Each function can be uniquely expressed in B; (the
interpolation) or in B, (the usual polynomial representation ).

Let E C B",V = B"\ E, define I = I(V) = { f(z) € Uz | f(a) is zero
on V}, an ideal of Uy . Obviously, I = span{z(a)| a € E} as a linear
subspace, dim I = |E|. And all ideals of U},‘. are generated in this way.

n

U
The quotient algebra of Uf,is defined as An = —2, obviously dim A“
= 2" —dimI = 2" — |E|. We use Q% to denote the set of all quot1ent

algebras of Uy . For any fe AFp,degA(f) = min{deg(f) such that f —
fel}.

Complexity Theory on Uj




We follow the definitions of Smolensky.
First observe that a Boolean circuit with Mod, induces naturally a
polynomial over F, as

n n
Not(z) > 1 -z, Az — [[a,
i=1

i=1

1

z; — 1+ [[(1 - =),
=1 =1

Mod,(z) — (3 i)?™*

=1

Clearly, when restricted to B", the induced functions always have
zero-one outputs.

Over F,, we will represent a Boolean function g(z) by a function
f(z) € Ug, such that f(z)|g» = g(z), where f(z)|gn : B" — B. This
representation is unique. Therefore, we can identify a Boolean function
with its representation over 7.

We point out here that over a general ring, the above remark is not
true (Refer to section 3).

Definition 1 A function f(@1,...,am) € Uf is Fp-easy if f(z) can be
represented as a polynomial of constant degree over F,.

Examples of F-easy functions are Not over any finite field and Mod,
over any fixed finite field of characteristic p.

Definition 2 A function f € Ug, is nearly Fy-easy if for any l, there
exists a quotient algebra A% € Q% of dimension at least 2" — 2" such

that dega(f) < Al.
Lemma 1 Or and And are F-easy over any fized finite field F'.
Now we introduce the concept of F,-hardness.

Definition 3 A function f € Uy is Fp-hard if for any Ap € QO such
that dega(f) = o(v/n), then dim A} < 2" — 2"~°1%8" for some constant
n

U
c. Bqually, suppose A}, = —IFE, where I = {z(a)|a € E}, then dimI =
|E| > 2n—c¢lo8™  for any constant c.




An easy consequence of this definition is that all F,-hard functions
do not have good approximation by a small depth Boolean circuit with
Mod,. This can be seen as follows.

First we record a Lemma in [Sm 87] with a slight modification.

Lemma 2 Let C" be a depth k circuit with any number of F,-easy gates,
2" nearly F,-easy gates where r = o(nili?), then there exists a quotient
algebra A% € QOF with dim A} > 2" — 2n—clogn for any constant ¢ such
that the degrees of all outputs in A%, are of order o(+/n).

Proof Just take, say, I = r +log®n in Smolensky’s original proof instead
of | = 2r.

Main Theorem

Let C™ be of depth k and use ewp(o(nﬁ)) nearly Fp-easy gates and an
arbitrary number of F,-easy gates. Then the output g of C™ will differ
from any F,-hard function on at least 2"¢'o8™ — o(2m¢len) gssignments,
where c is a constant. Therefore, F,-hard functions cannot be approz-
imated well by a small depth circuits with Fp-easy and nearly F,-easy
gates.

Un
Proof By Lemma 2, there exists a quotient algebra A’}p = —IEP- such that
dega(g) = o(v/n),dim A} > 2" — 2"¢18™ for any constant c.
Ignore all assignments g such that f(a) # g(a), we go into a smaller

algebra A%p where g(z) = f(z), so degA% (f) = o(y/n). As f is Fp-

hard, dim A~’131p &K 2™ — 2n—cl8™ for some constant ¢, so at least 2nclogn _

o(2"~¢!°¢") inputs have been ignored. O

Fy-hard Functions
We will establish a general technique to show some classes of functions
are JFp-hard. For clarity, we first fix some terminology, then demonstrate
the technique by proving a Hardness Lemma for a class of (symmetric)
Boolean functions, which we call semi-threshold function STy(z):
f(z) € STy(z) if for z € B" = {0,1}" f(z) =0 if |z| <t
fle) =1 if |z|=1
f(z)=0o0rl if |z|=>¢
where |z| =, @;.
Ezxact;(z), Threshold,(z), Majority (t = %), Mody(z) and Mody(z)
(t = p*) are examples of semi-threshold functions.
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Furthermore, we say a function f(z) € Ug is an Extended semi —
threshold, function, denoted as f(z) € ESTy(x) if

forz e B f(z)=0 if |z|<t
f(z) #0 if |z|]=t
f(z) = arbitrary value in F, if |z| >t
Clearly, the representation of any semi-threshold Boolean function over
Fp is an Frtended semi-threshold function.

We say ¢ is suitably large if ¢ > \/n (and n —t >> /) and (})>
gn—clogn — i—t for some constant c.

As t > 4/m, and n is very large, in general, we will assume t — /n
is still suitably large. For example, for a constant k, t =% =k is suitably
large, whereas t = n — k is not, it is too large!

We say a function f(z) € Ug, is of low degree if deg(f) is at most /n.
Otherwise, we say it is of high degree.

Suppose f is a (symmetric) function of high degree in Uf,, | induces

a sequence of functions fy, fi, ..., fi, where f; € U¥ . The induced
q ) ) J F,
functions are defined recursively as follows:

fo=Ff

for 1 <j <1, fioi=wfj+ f; for some i

where f;, f} contains no ;.

f; is obtained from f;_; by grouping terms containing x; together,
then extracting «; out; fJ’ is obtained from f;_; by grouping terms without
x; together. If f is symmetric, then f;_; is symmetric, the choice of 7 is
immaterial. However, in general, by choosing different ¢ at each stage, we
will obtain different sequences of functions with different possible length
I. For our purpose, we will assume we always choose some sequence of
largest possible length I. As f is of high degree, [ > /n. Without loss of
generality, we assume ¢ = n — (j — 1) at stage j. Note f;_; € U;p_(j _1), a
function of n — (j — 1) variables, all of linear degree, as f; contains one

n—J

less variable than f; i, hence f; € Up

Example Let f(z) € Uf, be a representation of a semi-threshold function
in STy(z), or f(z) € ESTi(z), where t is suitably large. By considering
interpolation at its nonvanishing points, it is easy to see f has only mono-
mials of degree greater than or equal to ¢. Hence, f(z) is of high degree,




f induces a sequence of functions fy, fi, ..., fi. The induced functions
are all Extended semi-threshold functions, as we
Claim For 0 < j <, f;(z) has the property that

for z € {0,1}"7 fi(z)=0 if|z|]<t—j

file) #0 iflz[=t—

Proof by induction:

If j =0, fo = f, the claim is trivial.

Assume the claime is true for f;_;. We prove it is also true for f;.

Note that fj_1(21, ..., Tu—(j-1)) = Ta—(i-1) Fi(T1; -0y Tnj) + [} (@15 00y Tnj).

Counsider @' = {a1,...,an—;} € {0,1}*7, by induction hypothesis,

for |a'| < t — j, we have

£i-1(',0) = Fi(@) = 0 and f1(d,1) = (@) + fi() = £,(@).

Therefore,

for |a'| < t — 4, fi—1(a’,1) = 0, hence f;(d') = 0.

for |a'| =t — j, fj—1(a’,1) # 0, hence f;(a') # 0. O
Remark
1. Suppose f(z) is a semi-threshold function, then when |a| = t — 7,
fila) =k #0, k71 f;(a) = 1. Without loss of generality, we can assume
fi(e) =1 when |a| = ¢t — j. Hence f; can be regarded as a representation
of some semi-threshold function f' € STi_j(x1,...,2n—;). Note as t is
suitably large, if we cut the sequence at j < /m, then t' = ¢ — j is still
suitably large.
2. If f is the representaion of a specific semi-threshold Boolean function,
say, Exzact,(z), then fi, ..., fi are not necessarily representations of the
same function, say, Fracty(z) for some #', but they are still representa-
tions of some semi-threshold functions.

Some more notations.

Denote S; = {a € B||la| = t}, S;ic1 = {a € B"|la| =t -1}, 8, ; =
{d e B |d|=t—1}. 2= {1, ..., .}, &' = {21, 00, Tn1}.

Suppose P is a predicate on z € S C B" = {0,1}". We say for many
z € § P(z) holds if |[{a € S C B"| P(a) is true}| > Z: for some constant
c. We state the converse as for almost all z € S, P(z) does not hold, i.e.
[{a € § C B"| P(a) is false}| < £ for any constant c.

Define N, = {a € B"|g(a) # 0}, the set of points where g(z) do not
vanish.



We are now ready to prove the Hardness Lemma for semi-threshold
functions STy(z) and Extended semi-threshold functions EST}(z), where
t is suitably large.

Hardness Lemma For ST;(z) And EST}(z)
Let f(z) € Ug be a representation of a semi-threshold function in
STi(z) or f(z) € ESTy(z) where t is suitably large. For any A} € Q%

if dega(f) = o(y/n), then dim A% L 2" -2 —clogn for some constant c

U
In other words, let A} = , I = span{z(a)|a € E C B"}, if there
exists a g(z) € I such that h( ) f(z) + g(x) has deg(h) < \/n, then
dim I = |E| > 2" ¢16" for some constant c.

Remark Since I is the ideal of functions which are zero outside E, and
g € I, g is zero outside E. Therefore if g(a) # 0 then ¢ € E. We
have dimI = |E| > |N,|. It suffices to show |N,| 3> 2"clogn = Z. for
some constant ¢ (where ¢ depends on the parameter ¢ and the quantity
of ‘many-ness’ below).

Proof It suffices to prove the lemma for EST;(z), where ¢ is suitably large.
We prove, by induction on the degree of h, the following assertion:

Let f(z) be a function in EST}(z), where ¢ is suitably large. If
there exists a function g(z) € Ug, such that h(z) = f(z)+g(z)
has degree less than \/n, then |N;| > £ for some constant c.

Induction Basis
deg(h) = 0. Assume h(z) =k € Fp. k= f(z) + g(z).
As t is suitably large, and the field is fixed and finite, there exists a
ko € Fp, ko # 0 such that for many a € S, f(a) = k.
1) If k # ko, then for many a € St, f( ) =ko, g(a) =k — ko #0

Hence |Ny| > |{ many z € S;}| > Z for some constant c, as ¢ is suitably
large and by the definition of many -ness’.

2) If k = kq, then for any a € S;_1, f(a) =0, g(a) = ko # 0

Hence |Ny| > |S5;-1] —(t 1)>> for some constant ¢ , as ¢ is suitably
large.

Induction Hypothesis

Suppose that for any h(z) € Up with deg(h) < d < /n, if h(z) =
f(z) + g(z) for some g(z) € ng, then |N,| > i—t for some constant c.
Now consider any h(z) with deg(h) = d < 4/n. Suppose there exists a
g(z) € Ug, such that h(z) = f(z) + g().
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Write h = x,hy + hyy f =2, fi + fo and g = 2,91 + 9o
where h;, fi, gi, © = 1,2, contain no x,, that is, they are the induced
functions on 2’ = {zy,...,z,_1}.

For any z' € B"!, we have
h(z',0) = ha(z') = fo(z') + g2(2)

@', 1) = (&) + ha(2) = fi(2) + fola ')+91(£')+92(£')
Hence, hi(2') = fi(z') + g1(z'), where deg(h;) = d — 1.
We know fi(2') is an Extended semi-threshold function in EST, 4(2'),
where t — 1 is still suitably large. (Note: as d < y/n , the induction

goes at most d < 4/n steps. All f's in question are some Extended semi-
threshold functions of suitably large ¢.)

By induction hypothesis, |N,, | > ng—:ll)? for some constant ¢
%% as n is large.
Consider 2' € B"!, we have

g(z',1) = g1(z') + g2(2'), g(z',0) = ga(2')

1) If for many 2' € B"™', gy(z') # 0, then g(',0) # 0 for many («',0) €
B". Hence
[N 2 [{(«',0)] g(2',0) # 0, 2' € B" '}
> (n Ty for some constant ¢
~ 7-1— by the definition of ” many-ness”.

2) Otherwise, for almost allz' € B™!, gy(z') = 0, that is, for any constant
¢, | Ng,| <

But, remember |Ng,| >> £ for some constant c. Since g(z',1) = gi(2') +
g2(z'), we have

|Ng| > |Ng,| — |Ng,| > £ for some constant ¢. O

Theorem 3 For t suitably large, any Fztended semi-threshold function
in ESTy(z) is Fp-hard. Especially, any semi-threshold function in ST;(z)
is Fp-hard, therefore they do not have small depth Boolean circuits with
Mod,,.

Corollary 4 Fort suitably large, Exzact,(z), Threshold,(z) are F,- hard.

In particular, Majority is F,-hard. Therefore, they are not AC° reducible
to Mod,.




Corollary 5 Forr suitably large (hénce r must be a function of n), Mod,
is Fp-hard. In paticular, if r = p™ is suitably large, Modym is Fp- hard.
Therefore, they are not AC® reducible to Mod,.

Remark This corollary cannot be proved by Smolensky’s original method,
which is only applicable to a fixed prime.

Now we discuss for what kind of functions we can establish a Hardness
Lemma.
Let f(z) € U}ﬁp, we say it satisfies the Hardness condition if its induced
sequence of functions fo = f, fi,..., fi has length { >+/n and for each 7,
0 <7 <+v/n <, fi(z) has the following property:

(%) there exist suitably large t; and t}, t; # t; such that
for many z € 8, fi(z) =0
and for many z € Sy fi(z) #0

We see that the proof of Hardness Lemma for EST;(z) functions holds
for functions satisfying Hardness condition with almost no modifications.
Hence, the corresponding Boolean functions they represent are hard to
compute by small depth Boolean circuits with Mod,. We suspect that
almost, all high degree, dense polynomials over F, satisfy the Hardness
condition, thus are hard to compute.

As for a low degree polynomial, its induced sequence of functions
has length at most d < \/n, where d is its degree. In other words, the
sequence stops at d with fy(z) is identically a constant in F,. Obviously,
low degree polynomials do not satisfy the Hardness condition. Similarly,
the Hardness Lemma does not hold for those high degree polynomials
whose all possible induced sequences of functions have length I </, or
at some stage j <+/n, the induced function does not satisfy the condition
(%). flz) =11 —=;) and f(z) = 2+ 2129+ -+ - + 12y - - - T, ave such
examples.

Lastly, we remark that Smolensky’s result that for any fixed prime
q # p, Mod, is not AC® reducible to Mod,can also be proved by this
general technique.

Let f(z) be the representation of M odg over F,. It is well known that
f(z) has degree O(n) (e.g. by Chevalley-Warning’s Theorem, see, for
example, Chapter 10 in [IR 84] or Chapter 6 in [LN 83]). So its induced
sequence of functions has length O(n). Now consider those induced func-
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tions f;j(z) with 0 < j < 4/n. One can check that they satisfy (%) i.e.
f(z) satisfies the Hardness condition. Therefore, we have

Theorem 6 Mod, is Fp-hard over F,. In other words, Mod, is not AC®
reducible to Mod,.

3 Dilemma Over A Ring

It was natural to try to extend Smolensky’s theory to a general ring.
However, it turned out to be a failure. There is an insurmountable gap
between the model of constant depth, polynomial circuits with module
a fixed composite number gates and any model of representing Boolean
functions by polynomials over the corresponding ring by some specific
criteria: under any such representing model, either the nice relationship
(as in the case of a field) between the complexity of the circuits and
the hardness of the induced polynomials by the circuits collapses, or the
circuits do not always induce a polynomial satisfying the criteria set for
our model. Let’s elaborate more on this.

As in the case of a field, we would naturally represent a Boolean
function by a polynomial over a ring such that when restricted to {0,1}",
the polynomial only takes 0 or 1. As we are only interested in zero-one
inputs, we assume the degree in each variable is reduced to linear. It is
not hard to see that such a polynomial is uniquely determined by its zero
set (one set), i.e. the set of inputs where the polynomial takes value 0
(1).

Now consider the circuits with Mods. The corresponding ring is R =
Z/(6) = Fy x F;5. Let f(z) be the representation of Mods over such that
when restricted to B", it takes value 1 if || mod 6 = 0, otherwise it takes
value 0. Since f(z) is determined by its nonvanishing points, hence f(z)

has the form
fle)= X z(a)

acB”
|@|=0mod 6

Let fi(z) and fo(z) be its components in Up, and U respectively, then
fi(z) ( f2(z)) is a representation of Mods over F, (F3) which is Fp-hard
(Fs-hard), by Smolensky’s theory over fields. It can be argued that if a

Notice that at some stage the induced function may not have a zero output, however, it
always have at least two distinct output values, thus by adding a constant, we can adjust it into
our model.
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function is hard over one of the component field, then it is hard over R
(e.g. by a direct translation of the definition of hardness from a field into
a ring). Therefore, this model provides us only a distorted image of the
Boolean circuit model.

Then, what about considering the model of representing Boolean func-
tions as follows:

We say a function f(z) over R is a representation of a Boolean function
g(a) if

for Ve € B" g(z) =0 then f(z)=0

g(z) =1 then f(z)#0

Note that we assume that the degree of each variable in f(z) is linear.

More generally, we can represent a Boolean function g(z) in the foll-
wing manner:

Let 0 # S C B, we say f(z) is a representation of g(z) if
for any z € B” g(z) =0 iff f(z) € S

The latter model is in general a stronger model, and contains the
former as a subcase. For our purpose, it suffices to investigate the former
model.

Without loss of generality, we assume r» = pips---ps with all p;’s
distinct. Hence R = Z/(r) is the direct product of F,,Fp,,...,Fp,-
Clearly, under the former model we defined, Mod, can be represented by
a polynomial f(z) = ¥, «; which is of linear degree. Note that f(z) can
take any value in R. Due to this fact, when making the naive bottle-up
transformation from a circuit into a polynomial, we will soon find that
we will get stuck somewhere producing polynomials which are no longer
consistent with our representing model, for example, we cannot simply
replace the AND of m Boolean functions by the multiplication of their
corresponing representations, as the final representation can take value 0
where none of its multiplicand take value 0. Similarly for Mod,. For NOT
gate, we simply cannot find a representation which is consistent with our
model, hence is the case for OR. This model turns out to be disaster
to us: although we know any such circuit defines a Boolean function,
hence inducing a class of functions over R which are representations of
the Boolean function under our model, it merciless defles our attempt to
inductively construct such a representation directly from the circuit.

Although we lose track of what the function computed by a Boolean
circuit looks like under this model of representing Boolean functions, we
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believe there is still some relationship between the Boolean function com-
puted by a Boolean circuit with Mod, gates and its representations over
the corresponding ring R = Z/(r) under this model, hence by investigat-
ing the relative hardness of these functions, we can gain some information
or evidence about the relative complexity of the Boolean functions they
represent. This is the main theme of the next section.

4 Classifications Of Functions Over A Ring

For our purpose, it suffices to consider rings which are direct product of
fields. Hence, we assume

R=FixF,x...F,

where F; is a finite field, 1 <7 < s.
Analogous to the case of fields, we define R-algebra and quotient al-
gebras as follows.

Let J = J; = = J, = (2§ — 21,...,22 — z,) over R, Fy,...,F,
respectively.
Define
UR:Tng XfN le“‘XUF,

the algebra of functions defined from B” to R.
Let I ~ I} x .- x I, where I is an ideal of U%, and I; is an ideal of
Up,1<i<s.

Consider f(z) € I, f(z) e (fi(@),...,fs(@)), fi€ [, 1 <i < s,
Clearly, for ¢ € B", f(a) = 0 z'ff Vi, fila;) = 0, and f(a) # 0 iff
34, fi(a;) = 0, where @ & (a4,...,a,), a; € B". Since 0 « (0,...,0) and

l1e(1,...,1),a=a;,1<i<s.
Let E; be the set of points in B" where not all functions in I; vanish, i.e.
I; = span{z(a)|a € E;}.

Define F' = Uj_; E;. It is easy to check that for ¢ € B"\E, f(a) =
0 for all f(z) € I and for a € E, f(a) # 0 for some f(z) € I

Hence I is the ideal of functions which are zero outside E. In other
words, I is generated by {z(e)|e € E} as in the case of a finite field.
Since each f; is uniquely determined by its nonvanishing points, so is f.
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We measure the size of I by the cardinality of F, which we still call the
dimension of I by abuse of terminology (Rank might be a better name).
Hence, we have

dim I = |E| > maz; |E;| = maz; dim I

In particular, dim Uy = 2",
The quotient algebra, as usual, has the form

. Urp Ug Uz n n
ARz—I—szI—l—x---x T = Ap X x AL

Clearly,

dim A = dim U —dim I < dim Ug — min; dim I;, as dim I > dim I;,
1<i<s.
Finally, Q% denotes the set of all quotient algebras of U}.

Due to the model we chose for the representation of Boolean functions,
we introduce a new concept:

Definition 4 Let f(z) and f(z) are functions in UZ, we say f(z) and

F(z) are compatible over A%, where A% = QIE, I = span{z(a)|la € F C

B"} if {a]| f(a) = 0 but f(a) # 0, or f(a) # 0 but f(a) =0} C E. In
other words, f(z) = 0 iff f(z) =0 over A%.

We denote it as f(z) ~4 f(z)
In particular, if f(z) ~Un f(z) then f(z) = 0iff f(z) =
Lemma 7 If f(z) ~4 f(z), where A%, = gﬁ, then there exist an f'(z) €
U% and a g(z) € I such that f(z) = f'(z) + g9(z) and f'(z) ~Un f(z).

Proof Suppose I = span{z(e)|a € E C B"}, define f'(z) and g(z) as
follows:
for all z ¢ E define f'(z) = f(z) and g(z) = 0
and forallz € F
if f(z) # 0 and f(&) #0, then define f'(z) = f(z) and g(z) = 0
if f(z) =0 but f(w) #0, then define f'(z) =0 and g(z) = f()

if f(z) # 0 but f(z) =0, then define f'(z) = f(z) and g(z) = —f(z)
It is easy to see that f'(z) and g(z) are required functions. O

Now we define R-easiness, nearly R-easiness and R-hardness over R.
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Definition 5 R-easiness, nearly R-easiness and R-hardness

1. A function f(z) € UR is R-easy if it has constant degree.

2. A function f(z) € U is nearly R-easy if there exists a quotient algebra
A%e Q% and a function f(z)€ UL such that dim A% > 2" — 27—clogn fop
any constant ¢, deg( f(z)) = o(v/n) and f(z) ~a F(z).

3. A function f(z) € U} is R-hard if for any quotient algebra A%e Q%
and any function f(z) with deg(f(z)) = o(y/n) such that f(z) ~4 f(z),

then dim A% < 2™ — 2"¢1%8" for some constant c.

Notice the difference in the definition of nearly R-easiness over a ring
R and that of nearly F-easiness over a field F'. Informally, a function
over R is nearly R-easy, if by ignoring a small fraction of inputs, we can
force it to have low degree; while for R-hard functions, we have always
to ignore a large fraction inputs.

We say a Boolean function g(z) is R-easy or nearly R-easy if it has a
representation which is R-easy or nearly R-easy. And a Boolean function
is R-hard if all of its representations are R-hard.

Clearly, all R-easy function can be computed by a small depth Boolean
circuits with Mod, gates where R = Z/(r). A lemma in [BT 87] states
that any R-easy function can not represent the Boolean operation AND.
But clearly, both AND and OR are nearly R-easy. And we conjecture
that any Boolean function computed by a small depth Boolean circuit
with Mod, gates is R-easy or nearly R-easy. This is equivalent to say
that the set of the input points which turn the Boolean function on have
such a pattern that by ignoring some small fraction of the input points
or adding some small fraction of input points and carefully choosing the
value the function might take, we are able to construct a polynomial
by interpolation such this polynomial is compatible with the Boolean
function in the resulting quotient algebra.

Conjecture Any Boolean function computed by a small depth Boolean
circuit with Mod, gates has an R-easy or a nearly R-easy representation
over R = Z/(r). In other words, any R-hard function cannot be computed
by a small depth Boolean circuit with Mod, gates.

Now we show some classes of functions are R-hard.

As in section 2, we define the class of Extended semi-threshold func-
tions as follows:

Let f(z) € U}, we say f(z) is an Extended semi-threshold function

15



EST(z) if

for any z € B", f(z)=0 if |z|<t
flz)#0 if |e|=t
f(z) = arbitrary value in R if |z| >t

Note that any function in ESTi(z) is of degree at least t, as the
coefficients of monomials of degree ¢ do not vanish. For t suitably large,
it can be checked that any sequence of functions induced by an EST;(z)
functions are still Extended semi-threshold functions for some suitably
large t'.

Observe that the proof of Hardness Lemma in section 2 actually does
not rely on the fact that the underlying structure is a field, it works also
for a ring. Hence, we have

Hardness Lemma For EST;(z) Over R
U‘n

Let f(z) € ESTi(z), where t suitably large. For any A% = =E, if there
ezists a g(xz) € I such that h(z) = f(z) + g(z) has degree o(y/n), then
dim I >> 2"=¢18™ for some constant c, hence dim A% < 2" — 2n—clogn

Now we prove that for suitably large ¢, any function in ESTy(z) is
R-hard.

Theorem 8 Fort suitably large, any function in ESTy(z) is R-hard. In
particalur, any semi-threshold function in ES;(z) do not have small depth
circuit with Mod,.

Proof Let f(z) € ESTy(z). For any f(z) and any A% € Q%, suppose
f(z) ~4 f(z), then by Lemma 7, we know there exist an fl(z) e UL and a
glz) € I with the property that £(z) ~grp £'(z) and (z) = f(z) +9(a).
As f'(z) is compatible with f(z) over U}, we have f'(z) € ESTi(z).
Applying the Hardness Lemma to f'(z), it follows that dim 4% <« 2" —
2n—clog™ for some constant c. Therefore, f(z) is R-hard.

Since any representation of a semi-threshold Boolean function in ESy(z),
where ¢ suitably large, is a function in EST;(z), hence any semi-threshold
Boolean function in STj(z) is R-hard functions over R = Z/(r). O

In particular, we have

Corollary 9 Majority is R-hard over R = Z/(r) for any fized r € N.
For t large, Exacty(z), Threshold,(z), are R-hard functions over R =

Z/(r).
16



Corollary 10 Fort suitably large, Mod,(z) is R-hard, and in particular,
for v™ suitably large, Mod,~(z) is R-hard functions over R = Z/(r).

As in section 2, we can extend the proof of Hardness Lemma to show
that all high degree, dense polynomials which satisfy the Hardness con-
dition are R-hard.

To show Mod, is R-hard over R = Z/(r), where ¢ is a fixed prime and
q does not divide r, we only have to show all possible representations of
Mod, over R have high degrees, then as in section 2, we can check that
its induced sequence of functions satisfies the Hardness condition.

Therefore, if all possible representations of Mod, are of high degree,
then Mod, is R-hard over R = Z/(r). We can show this is true for r
satisfying certain condition (see the following lemma); however, in the
general case, we are still not able to produce a rigorous proof.

Lemma 11 Let q be a fized prime, r = pypy---ps be a fized squarefree
number, all p;’s and q being distinct. If there exists i such that pyu; > v
where u; is the inverse of p; in Fy, then any representation of Mod, over

R = Z/(r) under our model has degree O(n).

Sketch of the proof Let f(2) be any represenation of Mod, over R = Z/(r).
For any a such that |a| mod ¢ = 0, then f(a) € R\{0} = {1,2,...,7—1}.
Let f'(z) be the function in Ug corresponding to the function f(z)@~1#(r),
where ¢(r) is the Euler function, i.e. ¢(r) equals the order of the
multiplicative group of R. Then for any a such that |a| mod ¢ = 0,
f'(a) mod ¢ = 1. Hence f'(a) =1 — (@1 + 22 + - + 2,)?" ! (modgq). By
careful comparison of the coefficients from the lower degree monomials to
the higher degree ones, we find out that for any a such that |a| mod ¢ = 0,
f'(a) = 1(modr). Hence f'(z) has degree of order O(n), so is f(z). O

Theorem 12 For r and q satisfying the condition in the above lemma,

Mod, is R-hard over R = Z/(r).
It is easy to see that 5 and 6 satisfy the condition, hence

Corollary 13 Mods is R-hard over R = Z/(6).
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5 Conclusion

We gave a simple extension of Smolensky’s method by replacing Ur,-
completeness with a weaker definition F,-hardness, we were able to demon-
strate explicitly and argue more directly that many more functions are
hard to compute by small depth Boolean circuits with Mod,. We estab-
lished a Hardness Lemma for a class of functions and characterized when
a function over F, is hard to compute by a constant depth, polynomial
size circuit with Mod, gates.

Although we cannot extend Smolensky’s method directly to a gen-
eral, due to the insurmoutable gap between the Boolean circuits with
gates module a composite number and any model of representing Boolean
functions by functions over the corresponding ring, we introduced the
analogous complexity theoretic notions into a ring, and gave a classifica-
tion of functions accoring to their relative hardness. This classification
provides some information about the relative complexity of the Boolean
functions they represent. In particular, we proved that any representation
of Majority over a ring R is R-hard.

To finally resolve the open problems in [Sm 87] and in [BT 87], we
have to find new algebraic models which have a strong connection with
the Boolean model and allow new techniques to be applied. Algebraic de-
cision tree model [SY 82] is one possible approach, where each query node
is a bounded degree polynomial over a ring. However, we suspect this
model is too weaker. Recently, Szegedy [Sz 90| suggested using communi-
cation complexity approach, which yieded some weak results. One of the
very promising approach was the joint work of Barrington and Thérien
[BT 87, BT 88]. They established a very interesting and nice relation-
ship between non-uniform deterministic finite automata over monoids and
groups and subclasses of NC! class. They proved that ACC corresponds
exactly to the families of languages recognizable by NUDFA over solvable
monoids, whereas NC? corresponds to families of lauguages recognizable
by NUDFA over unsolvable groups. In spite of many efforts devoted to
this area, so far, the aforementioned two open problems remain widely
open.
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