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Abstract

We present a simple iterative algorithm for computing the smallest en-
closing circle and the farthest-point Voronoi diagram of a pointset and the
ordinary Voronoi diagram of a convex polygon. The algorithm(s) takes
O(nlogn) time for n points. This is not optimal for any of the prob-
lems, but the simplicity of the algorithm(s) makes it a better alternative
for medium sized problems than earlier published methods.

1 Introduction

Suppose we are given n points S = {p;,ps,...,p,} in the Euclidian plane
R?. The smallest enclosing circle of S, SEC(S), is the circle with min-
imal radius enclosing all points in S. It is trivial and well-known that
SEC(S) = SEC(H), where H C S are the extreme points of the convex
hull of S.

In the next section we present the algorithm for computing SEC(S).
The algorithm is closely related to construction of the farthest-point
Voronoi diagram and if S are points forming the vertices of a convex
polygon to the construction of the ordinary Voronoi diagram too. The
construction of Voronoi diagrams is presented in Section 3. The algo-
rithms take O(nlogn) time, are very easy to implement, and numerically
sound. Migiddo ([3]) has given linear time algorithms for linear pro-
gramming in R> which applies to the enclosing circle problem. Aggraval,
Guibas, Saxe and Shor ([1]) recently gave linear algorithms for computing
the Voronoi-diagrams of points when these form the vertices of a convex
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polygon. Both algorithms are recursive algorithms and the involved con-
stants hidden in O(n) are large.

2 The Algorithm

Assume we are given n points S = {p;,ps,...,ps} in R?, where S forms
the vertices of a convex polygon. More specifically the points are stored
in a double linked list such that next(p;) (before(p;)) is the clockwise
(anticlockwise) neighbour of p; on the polygon. In the sequel we will just
say that S is a convex set of points.

radius(p, ¢, 7) denotes the radius of the circle through the three points p,
q and r if they are different. If two points are identical, then it denotes
half the distance between one of those and the third one. angle(p,q,r)
denotes the angle between the line segments from p to g and ¢ to ». It
will always be the case that p # ¢ and g # r, but not necessarily the case
that p # .

Algorithm 1

if | S| # 1 then
finish := false;
repeat

(1) find p in S maximizing
(radius(before(p), p, next(p)), angle(before(p), p, next(p)))
in the lexicographic order;
(2) if angle(before(p), p, next(p)) < m/2 then
finish := true
else
remove p from S
fi
until finish
fi;

The algorithm will terminate since either the size of S is 1 to start with




or the size of S will decrease at most until it has size 2 in which case the
involved angle is 0. In fact, it will decrease to size 2, 3 or 4.

Upon termination, the last chosen p (possibly the only point in S to
start with) will have the property that SEC(before(p), p, next(p)) =
SEC(S,), where Sy is the original pointset. This follows from the following
Observations and Lemma.

The first two Observations are proven by standard geometrical arguments
and not included here.

The line segment from a point p to ¢ is denoted by pg and ¢ is said to be
to the right (left) of 7g if the points p, ¢ and t form a right (left) turn.
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Figure 1: Observation 1

Observation 1

If a and b are points in R?, C a circle through a and b, with radius » and
centre ¢ to the right of ab then r < radius(a, b, p) for a point p inside C
to the left of ab (area 1 on Figure 1) or outside C to the right of ab (area
2 on Figure 1).




Observation 2

If a, b and c are three points in R? and C a circle with radius less than
radius(a,b,c) that encloses a and ¢, then C encloses b if and only if
angle(a,b,c) > w/2.

Lemma 1

Let S be the vertices of a convex polygon in R% If (a,b,c) maximizes
(radius(a, b, c), angle(a,b, c)) in the lexicographic order, then

i) a, b and ¢ are consecutive vertices on the polygon.

ii) circle(a,b,c) encloses all points in S.

Proof

Case 1: angle(a,b,c) < w/2.

All angles in the triangle with vertices a, b and c are less than or equal
to m/2, since angle(a,b,c) is the larger of the three. Since radius(a, b, c)
is maximal, Observation 1 applied to {a,b} implies that no point in §
can be in areas numbered 3, 4 or 6 on Figure 2. Applied to {b,c} and
{a,c} it follows that no point in S can be in areas numbered 2, 4, 5 or
1, 5, 6. Since S is a convex set of points, all points of S must be on the
circle through a, b and c so circle(a,b, ¢) encloses S. That a, b and c are
consecutive is then an implication of angle(a,b, ¢) being maximal among
all occurring angles. Note that S can only contain one more point than
a, b and c and that the points then form the vertices of a square.
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Figure 2: Lemma 1, case 1

Case 2: angle(a,b,c) > 7/2.

Applying Observation 1 again to {a,b}, {b,c}, and {a,c} ensures that no
point in S can be in area 1 on Figure 3. A point p from S cannot be
in area 2 because then b would be a convex combination of a, p and c
violating § being a convex set of points. The maximality of angle(a, b, c)
ensures once again that a, b and c are consecutive. If pisin S — {a,b,c}
then p must be situated in the unhatched area and statement (ii) of the
Lemma follows. a



Figure 3: Lemma 1, case 2

The correctness of Algorithm 1 now follows. Observation 2 and Lemma 1
imply that if the “else” part of statement (2) is executed, then SEC(S) =
SEC(S —{p}) and in the case of the “then” part being executed no circle
with radius less than radius(before(p), p, next(p)) can contain before(p),
p, and next(p), so p and its neighbours determine SEC(S) which in turn
is the smallest enclosing circle of the original given pointset.

Algorithm 1 can easily be implemented to run in time O(nlogn). By
removal of a point from S we only have to recompute the radii and angles
for the old neighbours which can be done in constant time. Note that the
new radii are not less than the old ones. Several datastructures support
the actual deletions and insertions involved in statements (1) and (2) in
overall time O(nlogn).

Remarks

(1) If we a priori know that the radius of SEC(S) is bounded above by R,
we may successively remove points from S where radius(before(p),
p, next(p))> R without testing for maximality.
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(2) If S does not form the vertices of a convex polygon to start with,
Graham’s scan (see [2] or [4]) can be incorporated naturally in Al-
gorithm 1 by letting radius(a, b, c) be infinite if ¢ is to the left of
ab.

(3) Remark (1) and (2) implies that by altering Algorithm 1 as indicated
in (1) the existence (and a possible construction) of an enclosing
circle with given radius R is tested (constructed) in linear time for
a star shaped polygon.

3 Construction of Voronoi diagrams

In this section we demonstrate that with a simple extension, basically the
same algorithm as the one presented in the previous section can be used
to construct the farthest-point Voronoi diagram of a convex pointset S.

Let centre(a,b,c) for three non colinear points in R® denote the centre of
the circle through a, b and c.

We will treat the farthest-point Voronoi diagram of S, denoted by V_;(S ),
as a graph (K, F) where the degree of the Voronoi-vertices K are either
1 or 3. If v has degree 1 it is a vertex “at infinity” on a bisector of two
neighbour points in S (an “endpoint” of the half infinite line segments of
the diagram). If v has degree 3, it is centre(a,b,c) of three points in §
and no points in S are farther away from centre(a, b, ¢) than a, b and c.

If (v1,v2) is a Voronoi-edge from E, then for some points ¢ and b in 9,
the line segment 7773 is contained in the bisector of a and b and no points
in S are farther away from points on 7793 than a and b.

Note that if no four points in S are cocircular then V_;(9) is unique.

Otherwise the distance between v; and v, for some edges (v1,v2) in F
might be 0.

In Algorithm 2 to follow v(p) will be a point on the bisector of p and
next(p). On removal of p, v(p) will be a vertex of V_;(S).

Initially v(p) is a point on the bisector of p and next(p) “at infinity” to
the right of p next(p).



Algorithm 2

for all p in S add v(p) to K;
if n > 2 then
repeat
find p maximizing
(radius(before(p), p, next(p)), angle(before(p), p, next(p));
q := before(p);
c := centre(q, p,next(p));
add ¢ to K
add (¢,v(p)) and (c,v(q)) to E;
v(q) = ¢;
next(q) := next(p);
before(next(q)) := g;
n:=n-—1;
until n = 2;
add (v(g),v(next(g)) to E
else
if n =2 then {S = {p1,p2}}
add (v(p1),v(p2)) to B
fi
fi;

Lemma 1 from Section 2 ensures that when p is chosen the circle(before(p),
p, next(p)) with centre ¢ = centre(before(p), p, next(p)) encloses all points
of 5. Thus c is a Voronoi-vertex and (c,v(p)) as well as (c,v(before(p))
are Voronoi-edges. That all Voronoi-vertices and edges are found follows
by recognizing, that if n > 1, the number of vertices of degree 3 for
Voronoi-diagrams is n — 2 and the number of edges is 2n — 3 matching
the number of vertices and edges created by Algorithm 2.

To construct the ordinary Voromoi-diagram V(S), where vertices are
points of minimal equal distance to three points in S instead of maxi-
mal distance and equivalently edges determined by minimal distance to
pair of points, it suffices to alter Algorithm 2 by adding a minus before
radius in line 5, that is to choose p such that the corresponding radius is
minimal and among those the p maximizing the angle. In addition v(p)
must initially be a point on the bisector of p and next(p) “at infinity” to
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the left of p next(p).

The correctness of the construction is a consequence of the following
Lemma 2 which is an analog of Observation 2 and Lemma 1. The proof
is similar and not included here.

Lemma 2

Let S be the vertices of a convex polygon in R% If (a,b,c) maximizes
(—radius(a,b, c), angle(a, b, c)) in lexicographic order, then

i) a, b and c are consecutive vertices on the polygon.

ii) No point from S is inside circle(a, b, c).

iii) If b is inside circle(a’,b', ¢') for three points a’, b’ and ¢’ from S then
either a or c is inside too.
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