A Note on Opaque Types

Michael I. Schwartzbach

DAIMI PB - 313
April 1990

ISSN 0105-8517

COMPUTER SCIENCE DEPARTMENT
AARHUS UNIVERSITY

Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark

n=a

A Note on Opaque Types
Michael I. Schwartzbach!

Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Arhus C, Denmark

Abstract

We extend the results in [1] to include opague types. An opaque version
of a type is different from the original but has the same values and the
same order relations to other types. The opaque types allow a more flexible
polymorphism and provide the usual pragmatic advantages of distinguishing
between intended and unintended type equalities. Opaque types can be
viewed as a compromise between synonym types and abstract types.

1 Introduction

This note extends the results in [1] and is based on the definitions and
results presented there.

A transparent type definition such as
Type Money = Int

provides Money as a synonym for the type Int. This allows us to arbi-
trarily mix values of types Money and Int, which may not be what we
wanted. In particular, if we had two definitions such as

Type Apples = Int
Type Oranges = Int

then it is possibly a mistake to compare such values.

1E-mail address: mis@daimi.dk

The usual alternative is an abstract type definition where the represen-
tation type is completely hidden. This certainly provides the desired
protection. However, it is now necessary to re-implement all the stan-
dard Int operations for the abstract type. This is clearly unwanted in
this situation and a high price to pay for protection.

A third possibility is an opaque type definition that offers protection
but simultanenously makes all the usual operations available. This is a

compromise between the two other kinds of type definitions. The types
defined by

Type Apples« Int
Type Oranges « Int

are different from each other and from Int, but they all allow the usual
integer constants, + and — operations, and so on.

In the following sections we incorporate opaque types into the hierarchical
type system presented in [1]. We indicate the minor modifications that
are required to carry all major results through. As a very significant
special case we obtain a more flexible hierarchical polymorphism by using
opaque versions of the type Q as type “variables”.

2 Opaque Types

Rather than merely provide opaque definitions, we introduce opaque
types through an opacity operator. This is preferable to introducing O
directly and axiomatizing its properties.

We extend the language of types as follows

7 ::= Int | Bool | simple types
N; | type names
*7 | lists
(ny:71,...,mp:7) | partial products, k > 0, n; # n;
nO7T opaque versions

Here n and the n;’s are names. Notice that type definitions may involve
arbitrary recursion.

We consider O to be a unary type constructor that creates named, opague
versions of its argument type. The values of an opaque version are the
same as those of the original.

Type Equivalence

In [1] type equivalence is defined to be equality of normal forms. The nor-
mal form of a type is a (possibly infinite) labeled tree that, informally, is
obtained by the unfolding of the type definitions. This technique gener-
alizes without problems, so that

’I’LlDTl ~ ’IZzDTz Zﬁ ni=mn9 N Tl =~ Tz
Thus, among the following types

Type A = Int
Type B = bOlInt
Type C = cOInt
Type D =b0B
Type E =b0A4

only B and E are equivalent. Type equivalence is still computable.

Type Ordering

The type ordering in [1] concerns itself with possibilities for code reuse.
The idea is that code written for smaller types can be reused for larger
types. For this purpose we want to ignore the protection offered by
opacity. Thus, the finite ordering <y must further satisfy

(nDTjOS(:)TjOS) A (TjonDS@Tjos)

As before, the type ordering < is the closure of <;. Notice that we now
have a preorder rather than a partial order; for example, Int < mOInt
and mOInt < Int but Int % mOInt. This will in no way influence our
results; it is just an observation that two types may be unequal and still
be able to reuse each other’s code. In general, two types S and T are
opaquely related,if S < T, T < S, and S % T. They are different but they
have the same order relations to all other types, which may be illustrated
as follows

The type (pre)ordering, least upper bounds, and greatest lower bounds
remain computable.

The Language

The only required extension to the example language is the opaque types
themselves. We add to our grammar the production

T = nUr

For convenience, we also introduce type equations of the form
D ::= Type N1

They abbreviate the more involved equations
Type N = NOr

While the N on the left-hand side is simply a variable that can be a-
reduced, the N on the right-hand side is an integral part of the type.
This allows us to write opaque definitions such as

Type Money « Int

Here, Money is no longer merely a synonym for Int; it is a new and
different type.

Since opaque definitions merely abbreviates opaque types, we also have
a natural interpretation of recursive opaque definitions such as

Type F—F
Type G — %G

While the usefulness of such types may be questioned, their properties are
at least simply understood. For example, F' enjoys the unique property
of being equal to an opaque version of itself.

3 Extended Types

We now have a new class of polymorphic constants besides [] and (b:87) ;
for example, the constant 7 denotes a value not only of type Int, but also
of all opaquely related types.

To handle this situation we extend the x-types to

X = 1| (any type)
*X |
Al
M(ny : Xyq,...,np : Xy) |
OxX

The elements of OX are the elements of X and their opaque versions.
The computations on x-types must be modified as follows

Proposition 5.6: X is the smallest symmetric relation which satisfies

T1XT;, if Ty =T; are types

AXA

AXxX

*Xl[X]*Xz Zﬁ XﬂX]Xz

(i : T)XI(my 2 Y5) iff {m;} C {n} A (V4,5 : ni=m; = T;XY))
II{n; : X;)XII(m; : Y5) iff (Vi,j: ny=m; = X;XY;)

XXOX

OX;MOX, iff XXX,

nOTXNOX iff TROX

Proposition 5.8: Whenever its arguments are related by X, then ® can
be computed as follows

T1 X T2=T1, if T1 "—"Tz are types

A®A=A

A@*xX =xX

* X1 ® *Xz=*(.X1 X Xz)

(ni : Ti) @ I(m; : Y3)=(n; : T))

I(n; : X;) @ (m; : Y;)=II(z), : Z) where {z;}={n;} U {m;} and

Y; if zp=m; & {ni}

o X ®DOX =X
o UX; ®0X, =0(X;® X>)
o nOT @ OX =nOT

Proposition 5.10: The relation S <X determines if there is an element

of the x-type X which is larger than the type S. It is the smallest relation
which satisfies

S<T,ifTisatypeand S < T

QX

*S axX iff SaX

*S <A

(ni 2 8i) <I(my : X;5) iff (Vi,5: ny=m; = S; 1 X))
nOS <X iff S<«X

S<0X iff S«X

All proofs of propositions in section 5 in [1] generalize without difficulties.

4 Correctness

The extensions in the preceding section allow us once again to assign
unique x-types to expressions

Definition 5.13: If £ is an environment and ¢ is an expression, then

E[l¢] is defined inductively as follows

E[0] = Olnt
Elp*1] = Elp-1] = £[4]
Elo]=¢1lo

g[[¢1 = d)z]] = OBool

o E[lp1,...., 1] = Ox(®:E[¢]), if & > 0
o £[[1] = OA

o £[I¢1] = Dlnt

o El(niig0] = OM(n, : E[$])

e E[has(¢,n;)] = OBool

Until the type of an expression has been fixed, it will match all opaquely
related types alike.

No other definitions need to be changed; in particular, the definitions of
correctness and soundness remain the same.

The proofs of lemmas 6.5, 6.6, 6.7, 6.9, 6.11 and 6.12 only require minor
modifications to handle the extra cases in the structural induction. The
proofs of the main results, lemma 6.10 and theorem 6.4, can remain
unchanged. The proof of optimality in theorem 6.16, only requires a
trivial modification of lemma 6.15. All of section 7 in [1] go through
unchanged.

This shows how opaque types with remarkably little effort can be inte-
grated into this hierarchical type system. In the following section we
demonstrate how they even provide an added flexibility.

5 Hierarchical Procedures

As demonstrated in the introduction, it is pragmatically useful to distin-
guish between intended and unintended type equalities. In connection

with the polymorphic mechanism of [1] opaque types can serve another
important function.

A hierarchical call of a procedure such as

Proc P(var x,y:Q2)
X:i=X; yi=y
end P

requires that the actual types of x and y are equal, since their formal
types are equal. However, since the procedure keeps the two variables
separate this is actually too strict. By specifying the formal types as two

7

opaque versions of {2 we guarantee that they will never be mixed and,
hence, we can allow more hierarchical calls of the procedure.

As a more telling example, consider the following “generic” type of finite
maps. Without opaque types we could not avail ourselves of two type
“variables”.

Type Arg — Q
Type Res — ()
Type Map = (a:Arg, r:Res, next:Map)

Proc Update(var m:Map, val a:Arg, val r:Res)
m:=(a,r,m)
end Update

All these Map-procedures can now be reused for maps with arbitrary
types in place of Arg and Res.

6 Conclusion

The introduction of opaque types seems to fill a gap between synonym
types and abstract types. Another view is that they provide a unification
of structural and name equivalence of types; the programmer can decide
on the combination which is most suited for the application.

Opaque types have been smoothly integrated with the hierarchical system
[1]; they can even be seen to increase the available polymorhic flexibility.

Acknowledgement: The idea to obtain extra type variables as opaque
versions of {2 originated through discussions with Jens Palsberg.

7 References

[1] Schwartzbach, Michael I. “Static Correctness of Hierarchical
Procedures” in Proceedings of ICALP’90, LNCS, Springer-Verlag,
1990.

