ISSN 0105-8517

Optimal Detection of Query Injectivity

Michael I. Schwartzbach
Kim S. Larsen

DAIMI PB - 311
April 1990

COMPUTER SCIENCE DEPARTMENT I
AARHUS UNIVERSITY -

Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark

1B




Optimal Detection of Query Injectivity

Michael I. Schwartzbach!
Kim S. Larsen?

Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Arhus C, Denmark

Abstract

Most unary relational database operators can be described through func-
tions from tuples to tuples. Injectivity of the specified function ensures that
no duplicates are created in the relational result. This normally reduces the
complexity of the query from O(rlogr) to O(r), where r is the number of
tuples in the argument relation.

We consider functions obtained as terms over a general signature. The se-
mantic properties of the operators are specified by Horn clauses generalizing
functional dependencies. Relative to such specifications, we present an op-
timal algorithm for detecting injectivity of unary queries. The complexity
of this algorithm is linear in the size of the query.

It turns out that relational functional dependencies are very easily incor-
porated into this framework. As a further result, we provide a Horn clause
characterization of the functional dependencies that can be propagated to
the result relation.

1 Introduction

Most unary relational database operators can be expressed in terms of
a function from tuples to tuples. The result relation is the union of
the individual applications of this function to the tuples in the argument
relation. Examples of such operators are project, extend, and rename.
Since the resulting tuples need not be distinct, it is necessary to remove
potential duplicates. If r is the number of tuples in the argument relation,

Internet address: mis@daimi.dk
’Internet address: kslarsen@daimi.dk



then this costs O(rlogr), which will often dominate the complexity of the
query. If the tuple function is known to be injective, then no duplicates
can occur. For example, extend and rename are injective, whereas
project is not.

It is often very convenient to directly specify a query by its tuple function.
If # denotes the argument tuple, then the result tuple could be specified
by
[CUIZ fl(il_ﬁ), Qo fz(f), ey Ot fk(f)]

Here, the a;’s are the new attribute names and the f;’s are functions. This
is a query style that is vaguely similar to QBE [Zlo77]: in more involved
cases it is easier to directly specify what the resulting tuples should look
like than to compose a relational expression to achieve this. Of course,
any query language can benefit from our results if its unary queries can
be interpreted in the above manner. We give an example where the
argument relation has attributes [Sal, Bon] (for Salary and Bonus). Then
the query

[Tax: 0.28 (Sal + Bon), Pct: (Sal + Bon)/Sal, Large: Bon > 500]

could compute information for taxation purposes.

A generalization of this technique that allows all standard relational op-
erators to be expressed in a similar manner (together with an infinitude of
variations) is presented in [LSS89]. In the general case, the argument rela-
tions are not simply decomposed into tuples; instead, they are factorized
into a matrix-like structure of subrelations. In [LSS89] we demonstrate
that a fixed, uniform implementation of this new operator allows all the
usual operators to retain their optimal complexities—except for the case
of injective unary queries, where an unnecessary sorting is performed.
This connection provides further motivation for obtaining an algorithm
that decides injectivity of arbitrary tuple functions.

2 Outline

In this section we outline our approach to detecting injectivity.

We allow the involved functions to be terms generated over an arbitrary
signature. This is much more general than merely considering a fixed,
predefined set.



To decide injectivity we need, of course, some semantic information about
the operators in this signature. The obvious choice is to specify an equa-
tional theory on the terms. This has, however, several disadvantages.

Firstly, injectivity of an equationally defined function is in general un-
decidable. Consider a theory with signature ) = {a,b}, &; = {f},
Yy = {K}, and &3 = {S}. The equations are

Szyz = x2(yz) f(Szyz) = Szyz
fao =t f(fx) = fa
fb =t

where ¢; and t; are arbitrary SK-terms. The function f is injective if and
only if ¢; # ;. This is clearly undecidable as the SK-calculus is Turing
complete. A possible solution to this problem is to seek a conservative
algorithm that wrongly deems some functions to be non-injective. This is
not a satisfactory solution, since it would not be very transparent which
injective functions could in fact be detected. We would much rather
restrict the permitted equations to a (large) class for which injectivity is

decidable.

Secondly, a particular operator may be very easy to implement and yet
be very difficult to axiomatize. This would inflict an unreasonable extra
burden on the programmer.

Thirdly, an equational theory is not very modular. If we add a new
operator, then we may have to relate it to all the existing ones. We
would like to specify information for each operator purely locally.

A different approach addresses all of these concerns. In reality, we are
not interested in which values an operator computes. We only want to
know the properties of injectivity that it satisfies. Looking to functional
dependencies in relational databases, we find a useful technique.

The semantic constraints on an operator in the signature will be specified
as a Horn clause program with integers as propositions. Clauses such as

12 and 21

state that the resulting value, together with the second argument, com-
pletely determines the first argument, and vice versa. Both are true of



e.g. the + operation on integers. Such specifications are local to the op-
erator, they are easy to construct and verify, and they will prove quite
sufficient to obtain interesting injectivity results.

In section 3, this framework is described in detail. In section 4, we de-
velop an optimal algorithm for detecting injectivity of functions described
by terms, and we prove its correctness. The algorithm is very efficient:
its complexity is linear in the size of the term, which in the database
application is the size of the query. In section 5, we extend the algo-
rithm to consider functional dependencies in the argument relation. As a
by-product of the injectivity algorithm, we obtain information about the
dependencies in the result relation; this leads us to a complete syntactic
characterization of the valid functional dependencies in the result.

3 The Framework

This section contains a precise statement of the problem we must solve.
We work in an algebraic framework; standard definitions may be found
in great detail in e.g. [Wir89]. However, our application is slightly non-
standard.

3.1 (X%,A)-algebras

For this application the types of values are not important, so we will
work with homogeneous algebras. We use a fixed set of attribute names
A whose elements are z1,...,z,.

Definition 3.1 A signature is a ranked set

Y= =
keIN
where ¥, contains the operators of arity k, and 4 C %,. a

Definition 3.2 The terms over the signature ¥, Term(X), are defined
inductively to be the least set such that

¢ 0 €Yy = o€ Term(%)



o o€k, k>0,andty,... & € Term(X)

4
o(t,...,tx) € Term(X)

Henceforth, a term is an element of Term(X). O

Such terms will be used to denote function expressions.

Definition 3.3 An operator clause is of the form |dy « di,...,dn],
where dy,ds,...,d, € IN\{0} and m € IN. O

Operator clauses will be associated operator symbols to specify their
properties of injectivity. If o is an operator symbol of arity k, then the
clause |dy « di,.. .ydm| should be interpreted: “from the result of an
application of o to k arguments and the d;th to the d,,th argument we
can uniquely determine the dyth argument”. (The floor symbols | and |
are only used as delimiters).

Definition 3.4 A pair (£, A) is a specification if ¥ is a signature and A
maps operators to sets of operator clauses such that

o€y A l_d()(——-dl,...,deEA(O') = {d{),dl,...,dm}g{l,...,k}

We will use a fixed specification (¥, A) throughout the paper. a

Definition 3.5 If D is a set, then ¥ denotes the tuple {(vi,...,vp), where
V1,...,v € D. Ifi € {1,...,p} then 7.i denotes the value v;. Ifp=n
(the cardinality of the fixed set of attribute names A) and a € A, then
a = z; for some z; € A and we let 7.a denote v;. O

Our models will be algebras over (¥,A). Such an algebra should, of
course, be faithful to the information in (2,A), i.e. for each operator
symbol in ¥, we will have an operator in our algebra with the correct
arity (as specified by £) such that the properties of Injectivity promised
in A are actually fulfilled.

Definition 3.6 M is a (X, A)-algebra if it provides a carrier domain
DOMys and for each o € ¥\ 4 a function o™ such that

5



e oM: pomk, — DOMy,

e for each [dy «dy,...,dn] € A(o) we have for all 7,% € DoME, :

(0.diy .., 0dp, oM(0)) = (W.dy,..., 0.dp,oM(©))
§

’lj.do == ’iTJ.d()

Let Alg(Z, A) be the set of all (2, A)-algebras. As the specification (X, A)
is fixed, an algebra, henceforth, denotes a member of Alg(Z, A). O

A term t can in a given algebra be interpreted as a function of arity n.

Definition 3.7 Let M be an algebra and ¢ a term. We obtain the func-
tion t¥: DOM?, — DOMy, from ¢ as follows:

o ift =2; € A, then t¥(7) = 5.i
o ift € 3\ A, then t = o(¢4,...,t) for some o € I} and
tM(v) = oM (8 (3), ..., 1" (1))

This simply interprets ¢t as a function of the n variables ;. a

3.2 The Decision Problem

What we are really interested in is injectivity in the usual mathematical

sense. That is, when is a term, interpreted as a function in a model,
injective?

Definition 3.8 Let M be an algebra. A term ¢ is called semantically
injective w.r.t. M if t¥: pDOM?, — DOMyy is an injective function in the
usual mathematical sense, i.e.

Vo, € DOMY;: D # w = t"(3) # tY(w)

We will use SEM(t) to denote that ¢ is semantically injective w.r.t. any
algebra. U

Section 4 will establish the following result.

Main Result Let t be a term. There is a linear-time algorithm to decide
SEM(t). O



4 The Solution

It is not at all obvious how to decide a “semantic” property like SEM(t).
Therefore, we find a more “syntactic” property to check instead. Of
course, we then show that these two properties are equivalent.

As seen from definition 3.2, terms are built from attribute names and
constants using operator symbols to combine terms. We want to obtain
complete information (as a Horn clause program) as to which attribute
names can be retrieved from a term. That is, if we know the value of
t" (), for some model M and values &, which v,’s can we then retrieve? If
all v;’s can be retrieved, then t¥ has a left inverse and, hence, is injective.

Definition 4.1 If ¢ is a term, then SUB(t) is the set of subterms of ¢
defined recursively by

suB(t) = {t} UJsuB(t;)

where t = o(t1,...,t). O

Definition 4.2 Let ¢ be a term. Then a t-clause is of the form

|50 < $1,...,8k]

where s; € SUB(t). O

Definition 4.3 The denotation [t] of a term t is the least finite set of
t-clauses containing

e The main clause [t «|.

e The clauses in A, defined as

A= U U {I_sdof—sdw'”?sdmasJ}

s€SUB(t) 5€A (o)
where s = o(s1,...,s5:) and § = |dy — dy,...,dp].
e Foreach o € ¥p\A and o(s4,...,sx) € SUB(t), a functionality clause
lo(s1,. ..y 8k) <« S1y. .., 58]

7



As we shall later see, the denotation contains all the information perti-
nent to t. u

The desired syntactic property can now be expressed by deductions in
the denotation.

Definition 4.4 A term s can be deduced in [t], written [t] + s, if
ls & s1,...,8:) € [t] and Vi € {1,...,k}: [t] F s;. Deductions can
conveniently be represented as proofs of the form

Le. finite trees where each line represents an application of a clause. O

Definition 4.5 A term ¢ is syntactically injective, written SYN(t), if
Ve, € A: ﬂt]] Fx;

As we shall see, this property exactly captures injectivity. O

4.1 Soundness

We now set out to prove that syntactic injectivity implies semantic injec-
tivity.

Definition 4.6 A ¢-clause |sy « s, .. .8k is sound if for all algebras
M and 7,w € DoM%, we have

(s1(8), -, s1(0), M (2)) = (s¥(®),..., s} (w),t™ (w))
4
sg' (9) = s¢(w)
This is in line with the definition of operator clauses. O

Lemma 4.7 All clauses in [t] are sound.

8



Proof For all algebras, M, we have
e Soundness of the main clause states that
(tY(9)) = (tM(w)) = t"(3) = M (w)

e Soundness of the A-clauses states that

(531 (),..., s (v), sM(7)tM (7))
= (s (@), ..., s} (), sM(@)t" (w))
implies s3!(v) = s} (w).
This holds since s¥(a) = oM (s{(a),...,s¥(a)) and M is an alge-

bra.

o The functionality clauses are sound since each o™ is a function in
the model.

We show that the deduced terms can be retrieved semantically.

Lemma 4.8 Let ¢t and s be terms. Then for all algebras, M , we have

[t] F s
Y

V3, % € DoMY;: tM (D) = tM(w) = sM(7) = sM(w)

Proof We proceed by induction in the size of a proof of the form

By hypothesis the result holds for the s;’s since they have shorter proofs.
We have used the clause |sq < s1,..., 1], which is already proved sound
in lemma 4.7. But then

tM(7) = tM ()
Vie{l,...,k}: sM(v) = sM(w), by the induction hypothesis

537 (v) = s} (w), by soundness of the clause

9



Notice that the base case is when s is a fact. |

Theorem 4.9 (soundness) Let ¢t be a term. If ¢ is syntactically injec-
tive, then ¢ is also semantically injective, i.e. SYN(t) = SEM(2).

Proof

SYN(t)
4

Ve, € A: [[t]  z;, by definition
4

VM € Alg(%,A) Va; € A Vo, € DOMY,:

t"(v) = tM (@) = v.x; = W.x;, by lemma, 4.8

4

VM € Alg(Z,A) Vo, € DoMy: tY (D) = tM(w) = 7 = w
4

VM € Alg(%,A) V8,% € DOMY,: ¥ # © = tM () # tM(w)
4

SEM(t), by definition

4.2 Optimality

We now endeavor to prove that the other implication holds too, i.e. that
semantic injectivity implies syntactic injectivity. Inspired by complete-
ness proofs in logic, the most natural approach is to construct a falsifying
model when syntactic injectivity fails. In our case, this means finding two
different arguments which yield equal results. In order to obtain these,
we introduce some distinct constants.

Definition 4.10 Let X" be ¥ with for each z; € A two extra constants
z, ] € Ng. If t € Term(X), then t° € Term (") is obtained by replacing
each x; with z;. We similarly define ¢* by replacing each z; with ;. O

10



We want to generate the term model from a very weak theory that is
designed to be only just strong enough to prove the two results equal.

We then show that this theory is too weak to force the arguments to be
equal.

Definition 4.11 If t € Term(X), then MOD(¢) is the initial model over
¥+, where the defining equations are:
¢ The main equation: t° = ¢°.
e The A-equations: for each |s0 < $1,...,5k] € A, we include
(s]=8])A...A (s} =s3) = s5 = 50
Values are congruence classes of Term(X') under the least congruence

generated by the defining equations. The class with representative s is
denoted [s]. O

There is a standard theory of term models:

Lemma 4.12 M0D(t) is completely axiomatized by the theory EQ(t) ob-
tained by adding to the defining equations:

o reflexivity: a=a

e symmetry: a=b=b=a

e transitivity: (a=b)A(b=c)=>a=c

o substitutivity: (@1 =Db1) A--- A (ar = by)
4

o(ai,...,ax) = o(by,...,bs)
i.e. in MOD(t) we have [t;] = [t;] if and only if EQ(¢) I ¢; = ¢5.

Proof Immediate from definitions; for details see [Wir89]. O

The following result will facilitate the analysis of transitivity inferences
in later proofs.

11




Lemma 4.13 Any proof in EQ(¢) concluded with a transitivity inference
has a normal form of the following kind:

where the concluding inferences in the P;’s are not transitivity. If such a
concluding inference is symmetry, then the inference immediately above
is neither symmetry nor transitivity. Let R; be the last inference in P,
that is not symmetry. We call Ry the left-hand inference and Ry, ..., R,
the right-hand inferences.

Proof By applying the transformation,

b=c c=a c=a b=c
b=a a=c c=
___)
a=>» a=1>o

we eliminate the symmetry inferences below transitivity inferences. Next,
sequences of symmetry inferences are replaced by a single or none. Fi-
nally, by applying the transformation,

a=d d=c d=c c=5b
a=c ¢ “ d=1b
—_>
a=1b a=1»
we move transitivity inferences to the right. O

We next show that we are justified in calling MOD(t) a model.

Lemma 4.14 MoD(¢) is a (£, A)-algebra, when o € T3\ 4 is interpreted
as the function o™°*®): ([r(],...,[r]) = [o(r1,...,75)].

12



Proof Substitutivity ensures that ¢™°*® is in fact a function. We must
further show that it satisfies the requirements given by A(c). Look at
the definition of any such requirement. It is vacuously satisfied unless we
have an equality of the form

aMOD(i)([al], colak]) = aMOD(i)([bl], vy [br])
By lemma 4.12, we have such an equality if and only if
EQ(t) Fo(a,...,ar) = o(by,...,b)

We proceed by induction in the size of such a proof and look at the last
inference performed.

o A-equation or the main equation: The conclusion is of the form
s° = s°*, where s € SUB(t). By definition, all A(c)-requirements on
such subterms are directly included as defining equations.

e Reflexivity: Here a; = b; and we are done.

e Symmetry: The result follows trivially from the induction hypo-
thesis.

¢ Transitivity: From lemma 4.13, we can assume that the proof is in
normal form. We have two cases:

— If the left-hand inference or all the right-hand inferences are
substitutivity or reflexivity, then the following will be true of
the final transitivity inference assumptions: one has all ar-
guments pairwise equal, and the other satisfies by the induc-
tion hypothesis all the A(o)-clauses. It follows easily that the
conclusion of the final transitivity inference also satisfies the
A(o)-clauses.

— If the left-hand inference and some right-hand inference both
are A-clauses or main clauses, then a shorter proof of the origi-
nal equality can be found among the right-hand inferences. We
now appeal to the induction hypothesis.

o Substitutivity: Here all the arguments must be pairwise equal, so
[a;] = [b;], and any A(c)-requirement is trivially satisfied.

13




a

The next result provides the important link between the model and the
denotation.

Lemma 4.15 Model equality implies denotational deduction, i.e.

Vs € sUB(t): EQ(t)Fs°=3s* = [t]F s

Proof We inductively transform one proof into another. In EQ(t) we
have a proof with conclusion s° = s*. We consider the last inference
performed:

e The main equation:

1o — to
The result is trivial since [¢ «| € [t].

¢ A A-equation:

o 't L0 e
$1 =581 S =5}

sO — 8.
By s; € suB(t) and the induction hypothesis, we have [t] F s;.
The A-equation comes from the A-clause |s « s1,...,81], so we
conclude [[t] F s.
o Reflexivity:
SO — s.

In this case s contains no z;’s. An easy induction shows that any
such s € SUB(t) can be derived from [t] using only functionality
clauses.

¢ Symmetry: From lemma 4.13, we can assume that the symmetry
inference is not immediately below a transitivity or another sym-
metry inference. Since we have a situation like




we can also eliminate A-equations and the main equation. If sym-
metry is below reflexivity, then we proceed as above. Finally, if
symmetry is below substitutivity, then we obtain shorter proofs of
pairwise equality of the arguments in s° and s*. By the induction

hypothesis, these can all be deduced, and with a functionality clause
we deduce s.

o Transitivity: From lemma 4.13, we can assume that the proof is
in normal form. If the left-hand or some right-hand inference is a
A-equation or the main equation, then we have a shorter proof of
s = s* and use the induction hypothesis. Otherwise, if all left-hand
and right-hand inferences are reflexivity or substitutivity, then we
obtain shorter proofs of pairwise equality of the arguments in s°
and s°. By the induction hypothesis, these can all be deduced, and
with a functionality clause we deduce s.

o Substitutivity:

O _ """ 0o __ _e
81—31 Sk—Sk

sO — s.
where s° = o(s],...,s7) and 5* = o(s},...,s}). Since s € sUB(t)
implies that SUB(s) C sUB(t), we can apply the induction hypo-

thesis to conclude that [t] - s;. As we further have the functionality
clause |s « s1,...,s;], we are done.

Since we have covered all cases, the result follows. a

Theorem 4.16 (optimality) Let ¢ be a term. If ¢ is semantically in-
jective, then ¢ is also syntactically injective, i.e.

SEM(t) = SYN(%)

15



Proof Assume —SyYN(t). Then MoOD(%) is a falsifying model:
—SYN(t)

Jdz; € A: [t] t z;, by definition
dz; € A: EQ(¢) f 22 = 2, by lemma 4.15
dz; € A: [2f] # [2}], by completeness of EQ(t)

(l23], - [=R]) # ([=1], . ., [=3])
But in MOD(t) we have [¢°] = [t*], which is the same as
£ oPO(([23],. ., [25]) = 2PO(([a3], ..., [23]))

Hence, the interpretation of ¢ is non-injective in MOD(t). The existence
of such a model implies =SEM(t). O

= = = =

4.3 The Algorithm

We are interested in deciding SEM(t), for a term ¢. But from theorem 4.9
and theorem 4.16 we can instead decide SYN(t).

We first compute the denotation. It is a Horn clause program with sub-
terms as propositions. By traversing the parse tree of ¢, we enumerate all
such subterms and use these numbers for proposition symbols. We have
O(|t|) subterms of t.

Apart from the main clause, the denotation contains A-clauses and func-
tionality clauses. Let |o| denote the total number of propositions in A(o).
Then each subterm of ¢ contributes at most max,ex |o| propositions to
the A-part of the denotation. As each subterm appears as a proposi-
tion at most twice in a functionality clause, this part of the denotation
contains at most 2|¢| propositions.

Thus, the denotation has size O(|¢|max,ex |o|), and it can clearly be
computed in this time, too. We are left with verifying the n deductions
[t] & @;. An algorithm in [DG84] can do this in a single computation in
time O(|[¢]| + nlogn). In conclusion, SYN(t) can be decided in time

O(]t| meazx]a| + nlogn)

16



For the usual case of a fixed (X, A), this is the optimal time O(]t|).

4.4 Databases Revisited

We are now able to (efficiently) decide if a term is injective, but the

database application called for a tuple of terms [ti,t,,. . ., tx]. However,
this is a term, too, if we regard [-,-,...,-] € Z; as a k-ary operator
with A([-,-,...,-]) = {[1 «],[2 «],..., [k ]}, i.e. a totally injective

function. This also demonstrates a further generality of our result: it
works equally well for relations where attributes are not atomic values,
but themselves tuples or even more complicated structures.

To illustrate our technique we apply the algorithm to the example query
given in the introduction:

[Tax: 0.28 (Sal 4 Bon), Pct: (Sal + Bon)/Sal, Large: Bon > 500]

The available A-information is

Al+) = {1 <2],[2«1]}
A()) = {[2<1]}

A(0.28) = {|1 <]}
A(>) =0

Al ) ={ll <] 2«13}

If ) denotes the entire query, then the denotation is as follows.

e Main clause:

@ <]

o A-clauses:
028 (Sal + Bon) « Q] L =] €Al ])
[(Sal + Bon)/Sal Q] 2 € Al )
|Bon > 500 « Q| 13 ] € A([,])
|Sal + Bon « 0.28 (Sal + Bon)]| |1 —] € A(0.28)
|Sal « Bon, Sal + Bon| |1 2] € A(+)
|Bon « Sal, Sal + Bon | 12— 1] € A(+)
[Sal « Sal + Bon, (Sal + Bon)/Sal | 12 —1] € A(/)

17




e Functionality:

|Sal + Bon « Sal, Bon |
10.28 (Sal + Bon) « (Sal + Bon)|
500 « |

In this Horn clause program we have the following deductions:

Q _
0.28 (Sal + Bon) Q
Sal + Bon (Sal + Bon)/Sal

Sal

Sal Sal + Bon
Bon

where the last deduction can be completed with subdeductions from the
first. Hence, the query is injective.

5 Functional Dependencies

Our term clauses resemble generalized functional dependencies. We can
exploit this connection in various ways.

In our framework a functional dependency is a term clause in which
all terms are singleton attribute names; it is well-known that functional
dependencies can be expressed as Horn clauses [Mai83].

Definition 5.1 If ¢ = |24, < 24,,...,24, ] is a functional dependency,
then we define (%, w) to denote that
(B.dyy...,0dp) = (@Wdy,...,0.dy,) = 0.dy=1w.dy

If & is a set of functional dependencies, then ®(,w) is an abbreviation
for Vo € ®: (7, w). O

18




5.1 Incorporating Dependencies

When the argument relation satisfies a set of functional dependencies,
®, then more queries will be injective. Accordingly, we generalize the
definitions of semantic and syntactic injectivity.

Definition 5.2 We introduce SEMs and SYNg as

SEMg(t): VM € Alg(Z,A) V5, € DOMY, :
T # oA DB, W) = tM (D) # tM(w)
SYN@(t): Ve, € A: [[t]] U®d+ x;

Notice that SEMy = SEM and SYNy = SYN. O

Theorem 5.3 Semantic and syntactic injectivity are equivalent, i.e.

SEMg < SYNg
Proof Straightforward generalization of the methods from section 4. O

Of course, the same linear-time algorithm can still be used to decide
syntactic injectivity. This extension greatly increases the importance of
the results obtained in the previous sections.

5.2 Propagating Dependencies

In a database model where functional dependencies are used, these must
be specified manually each time a new relation is created. This is nec-
essary because functional dependencies reflect the semantic view of the
data and cannot be inferred from mere tuple values. However, if a relation
is created by a unary query that has been analyzed using our technique,
and attributes retain their meanings, then we can determine all the func-
tional dependencies that will be valid for the new relation. For example,
if Id is a key in the scheme [Id,Name, Age], then it will also be a key
in the projection [Id, Name], provided both relations exist in the same
semantic framework.

19



Definition 5.4 If t is a term, then the set of functional dependencies
U ={y|VM € Alg(2,A) Vv,% € DOMY,: ¢(tM(TJ),tM(7IJ))}
is the mazimal one satisfied by all pairs of tuples in all ¢-results. O

This is another interesting semantic entity for which we can provide a
syntactic characterization. As before, the query looks like [t,t,,.. ., tr).
We express the new dependencies as Horn clauses with propositions taken
from the set {¢1,%5,...,%}; of course, these can be rephrased in terms of
the new attribute names.

Theorem 5.5 The dependencies in ¥ can be characterized as follows:

|_tdo — tdl,...,tdm_] eEw
T
[T {lta, <], [ta, <1} F ta,

Proof Another straightforward generalization of the methods from sec-
tion 4. O

This immediately gives rise to a naive exponential-time algorithm.

Incorporation and propagation of functional dependencies are orthogonal
and can easily be combined.

6 Conclusion

We have shown how various semantic properties of queries can be cap-
tured syntactically. We feel that these results demonstrate how one can
benefit from viewing relational operators as term-based expressions.

The concept of term clauses provides a basis for a new class of depen-
dencies using term expressions rather than just single attributes. The
consequences of this will be investigated further.

If unary queries are injective, then certain query rewrite rules will not
increase efficiency. Hence, it may also be interesting to determine that
queries are non-injective.

The optimization aspect of our results will be exploited in a new database
language currently being implemented [LSS*].

20



References

[DG84]

[LSS*]

[LSS89)

[Mai83]

[Wir89]

[Z1o77]

William F. Dowling and Jean H. Gallier. Linear-time algorithms
for testing the satisfiability of propositional horn formulae. Jour-
nal of Logic Programming, 1(3):267-284, 1984.

Kim S. Larsen, Erik M. Schmidt, Michael I. Schwartzbach, Erik
Jacobsen, and Per O. Jensen. RAS - a database language with
functions. In preparation.

Kim S. Larsen, Erik M. Schmidt, and Michael I. Schwartzbach.
A Universal Relational Operator. PB 297, Computer Science
Department, Aarhus University, 1989.

David Maier. The Theory of Relational Databases. Computer
Science Press, Inc., 1983.

Martin Wirsing. Algebraic Specification. MIP 8914, Fakultit
fiir Mathematik und Informatik, Universitit Passau, June 1989.

To appear in Handbook of Theoretical Computer Science from
North-Holland.

M. M. Zloof. Query-by-example: a data base language. IBM
Systems Journal, 16(4):324-343, 1977.

21




