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Abstract

In this paper we study the behaviour of distributed systems. We consider systems
composed of a fized number of sequential processes communicating by asynchronous
message passing. The behaviour is represented by a subclass of partial orders called
asynchronously communicating agent structures, abbreviated ACA structures.

We present a logical characterization of ACA structures in the framework of tem-
poral logic. The modalities of the logic capture the concepts of communication,

concurrency and locality. We define an axiomatic basis for the logic and show both
soundness and completeness.
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1 Introduction

Models of distributed systems are traditionally defined using interleaving semantics: the
behaviour is either represented as linear sequences or as tree structures. One consequence
of this choice is that events which can occur concurrently will be constrained by causality,
e.g. two events e and e’ which can occur concurrently will be modelled either as e occur-
ring before e’ or as e’ occurring before e.

In this paper we model the behaviour of distributed systems by structures of partial orders.
Concurrent events will be modelled as events which are unordered and thus interpreted
as events occurring independently.

We will model the behaviour of distributed systems composed of a fized number of se-
quential processes communicating by asynchronous message passing. The behaviour of
such systems defines a class of structures called asynchronously communicating agent
structures, abbreviated to ACA structures.

An ACA structure consists of set of event occurrences together with a causality relation.
The causality relation expresses the comes before relation between events, i.e. it reflects
the case that one event has to occur before another event can occur. An ACA structure is
partitioned into a fixed number of disjoint substructures each of which is totally ordered
by the causality relation. Thus two different events e and e’ from the same substructure
will be ordered: either e comes before e’ or ¢/ comes before e. The substructures are called
agents.

We can think of agents as modelling the behaviours or runs of sequential processes. A
distributed system composed of several sequential processes will be modelled by several
agents—one agent for each process—organized in an ACA structure. Asynchronous com-
munication between the processes will be reflected by causal dependencies between events
from different agents and expressed through the causality relation.

The main purpose of this paper is to give a logical characterization of ACA structures
in the framework of temporal logic. We adapt the idea from [LT87] and develop indezed
temporal operators which are used to describe the agents. The logical language consists
basically of three different kinds of operators. One operator which is taken from [LT87]
reflects communication in the past, and one operator reflects communication in the fu-
ture. Finally we define an operator reflecting concurrency. We also define other temporal
operators but they are all derived from these three operators. In particular we define
local past and local future operators which are identical to the operators P, F', H and G
in the framework of temporal logic [Bur84]. They are called local operators because they
can only be used in connection with single agents.

The logical language we develop is closely related to the concepts of communication,
concurrency and locality. We think it is reasonable to focus on these concepts in the
specification and verification of concurrent systems. The inclusion of locality is very im-
portant because it provides the possibilities of describing concurrent systems at the level
of individual components. In specifying large or complex concurrent systems it is desirable
to focus on the individual components of the system at first, because then the number
of properties to specify and verify will be minimised and a better understanding of the
overall system can be achieved. Having specified and verified the individual components



it becomes necessary to broaden attention to the entire system, where we wish to reason
about concurrency and communication between two components.

Related work: The foundation for the work presented in this paper is the work of K.
Lodaya and P.S. Thiagarajan [LT87]. In [LT87] a logical characterization of a class of
structures called n-agent event structures is presented. An n-agent event structure is a
structure consisting of n disjoint subsets each of which can exhibit causality and non-
determinism but no concurrency. Thus each subset can be organized as a tree structure.
The class of ACA structures which we consider in this paper may be considered as the
subclass of n-agent event structures in which each substructure is a sequence and not
a tree structure. The logical language developed in [LT87] mainly consists of temporal
operators reflecting communication that have occurred in the past.

Our work is also related to the work of M. Mukund and P.S. Thiagarajan [MT89]. In
[MT89] a logical characterization of a class of structures called prime event structures is
presented. The logic designed consists of operators reflecting the concepts of causality,
non-determinism and concurrency. Qur work is related to [MT89] especially concerning
the modalities reflecting concurrency. Because of the concurrency operators a rather
remarkable inference rule (which is adapted from [Bur80]) is included both in our work
and in [MT89] in order to obtain the proof of completeness. However, the style of the
two completeness proofs differ; we use a so-called Henkin proof style [Hend9] whereas in
[MT89] a novel proof style is considered.

Finally, but in a less direct way, our work is related to the work of W. Penczek [Pen88.
In [Pen88] a logical characterization of prime event structures capturing the concepts of
causality and non-determinism is presented.

The outline of the paper: In section 2 we define the ACA structures which are used
in a Kripke-style interpretation of the logical language defined in section 3. In section 4 we
present an axiomatic basis which is shown to be sound. In section 5 we show completeness
of thelogic w.r.t. the axiomatic basis and in section 6 we finish the paper with a conclusion.
Finally we have included four appendices containing rather comprehensive proofs of some
of the theorems presented in the paper.

Acknowledgements: The paper has been developed in connection with the ESPRIT
BRA CEDISYS project. I would like to thank Mogens Nielsen at Aarhus University who
has been my supervisor. I would also like to thank P.S. Thiagarajan at The Institute
of Mathematical Science in Madras, India who commented on an earlier version of the
paper. Finally I would like to thank Uffe Engberg, Glynn Winskel and Henrik Andersen
at Aarhus University for helpful discussions during the work.



2 ACA structures

Throughout the paper we shall let w denote the non-negative integers and let n € w be a
fixed number. The variables ¢, j and k will range over the set {1,...,n} if nothing else is
stated.

We begin by defining the class of ACA structures.
Definition 2.1 An ACA structure is a pair (E, <) where

(i) E is a set of event occurrences,

(i) < C F X E is the causality relation which is irreflexive and transitive,
(i) E=FE, W E, ...y E, where W denotes disjoint union, and

(iv) for each ¢ the structure (E;, <;) where <; is the relation < restricted to E; x E; is
a totally ordered set, i.e.

Ve,e' € E : e # ¢ implies e < e’ or e < e.

The structure (E;, <;) will be called the i** agent. [ |

Welet A, A", A", ... denote ACA structures and A;, A}, AY,... the i** agents of the struc-
tures A4, A', A", ... respectively. Finally we let e,e;,e;,...,€,€",... denote events.
We present an example of an ACA structure in which the value of n is two.

Example 2.2 Let A = (B, W Ey,<) with By = {eg; | j = 1,...}, Bz = {eg; | j = 1,...}
and the causality relation given by figure 2.1 below.

Figure 2.1
€11
€12
eis €21
€14 €23
€15 €23
€24




The first agent is supposed to model a producer and the second a consumer. The events
have been labelled in order to express that the producer is sending products via an un-
bound buffer to the consumer. The p; and p, actions of the producer indicate fabrication
and sending of the product respectively. The ¢, and ¢; actions of the consumer indicate
reception and treatment of the product respectively. For convenience we have just indi-
cated the “minimal” elements of the causality relation as directed arcs. For instance, e;3
is causal dependent on e;; but will not be drawn. Throughout the paper we will draw
the agents upwards down as the choice of the shape of the temporal operators are better
justified by this picture of agents. ]

Intuitively ACA structures can be thought of as composed of a fixed number of sequences
denoting the agents. Between the sequences there can exist causal dependencies and
this will reflect communication between agents. We would like to emphasize that ACA
structures are capable of expressing causality and concurrency. Concurrency is expressed
through the lack of ordering between events. For instance, the events e;3 and ey; of the
ACA structure defined in example 2.2 are out of order and thus interpreted as concur-
rent. However, ACA structures are not capable of expressing non-determinism or choice
available to the individual processes as the agents are sequences and not tree structures.

We think there are good reasons to study ACA structures. Firstly, they have been con-
sidered as models of distributed systems in the literature, e.g. [Lam78, CL85]. Secondly,
ACA structures are attractive in the semantic description of process languages based on
the denotational approach, e.g. [Chr89]. Thirdly, ACA structures can be viewed as a
special class of elementary event structures defined in [NPW80] and later developed in
many different ways by G. Winskel [Win80]. Event structures are by now appreciated as
attractive models for distributed systems.

For use later on we introduce some derived relations. Assume that A = (E,<)is an ACA
structure. Then

(i) id ¥ {(e,e) | e € E},

(i) > = {(e,e) | (¢,¢) €<},
(i) < ¥ < Uid,
(iv) > € > Uid,

(V) co ¥ EXE—(SU>).

Observe that the relation co is symmetric and irreflexive. It reflects the lack of ordering
between events, hence it models concurrency.

An important concept in connection with ACA structures is the concept of configurations.
A configuration is a set of events which have happened in the process of observing events.

Definition 2.3 Let A = (E,<) be an ACA structure and E’ a subset of E. The set '
is a configuration iff:

Ve € E'\Ve' € E :¢' < e implies e’ € E'.

Let U4 denote the class of all configurations for the ACA structure A. [



Thus the notion of configurations captures the intuition that an event can only occur if
all events which lie in its past have occurred. In general configurations will represent
global states of affairs. For instance, a configuration could capture the state of affairs for
two totally independent agents. Such configurations will be called global configurations.
Informally, a global configuration is a configuration which cannot be defined as the past
of a single event. In contrast to a global configuration, a local configuration represents a
state of affairs which can be defined as the past of a single event. Local configurations
are captured through the left closure of events.

Definition 2.4 Let A = (E, <) be an ACA structure and let e € E. The left closure of
e, denoted [e], is defined as:

el ={e' € E|e <e}.
|

Proposition 2.5 Let A = (E,<) be an ACA structure and let e € E. Then [e] is a
configuration.

Proof Follows easily from the definition of configurations. [ |

We let LCy = {[e] | e € E} denote the subclass of Cy of local configurations for the
ACA structure A = (E, <).

As in [LT87] we would like to justify viewing ACA structures as frames for our logic to
be developed in the next section. Standard frames for temporal logic or in general modal
logic consist of tuples (W, R) where W is a set of possible worlds and R C W x W is the
accessibility relation ordering the set of worlds.

Considering an ACA structure A = (E, <) we will view the set of local configurations
LC, as the set of worlds and the strict inclusion relation C as the accessibility relation.
But why only consider LC, as the set of possible worlds and not C4? As explained,
members of C4 will in general represent global configurations. We agree with K. Lodaya
and P.S. Thiagarajan in [LT87] finding it very difficult to justify asserting the truth
or falsity of a formula at global configurations without an omnipotent observer capable
of recording global configurations. Moreover, as the concept of locality is vital in our
approach, we necessarily have to represent the behaviour of concurrent systems by local
configurations and not by global configurations as it is seen in many other approaches,
e.g. [EH82, Pnu85, Maz86]. Thus we will only consider local configurations as the set of
possible worlds.

Given an ACA structure A = (E, <) it is easily seen that A = (E, <) and (LC4,C) are
isomorphic structures, hence we will perceive ACA structures themselves as frames. Thus
speaking of a formula a being true at the event e what we really mean is that the formula
holds at the local configuration [e].



3 The logic and its semantics

The logical language used to characterize ACA structures is based on Propositional Cal-
culus. We define a countable infinite set P = {pg,pi,...} of atomic propositions. Fur-
thermore, we let T' = {71,7;,...,7,} be a set consisting of n atomic type propositions.

We assume that PNT = (.

The intuition behind the set T' of type propositions is that we would like to identify par-
ticular agents in our logical language. Thus 7; is an identification for the i** agent. For
convenience we define P = P UT. We let p range over P.

Definition 3.1 Let W be the set of well-formed formulas. It is defined as the least set
satisfying:

(i) PC W, and
(i) if o, 8 € W then ~a,a VB, ]; a,T; a, Nja € W.
We let a, 8 and 4 range over W. [ ]

The interpretation of the logic is given by the so-called possible worlds semantics or Kripke
semantics [BS84]. The logic is interpreted in models where a model consists of a frame
and a valuation function.

Definition 3.2 A model is a pair M = (A4, V) where
(i) A=(E,<)is an ACA structure called the frame, and
(i) V : E — 2P is the valuation function satisfying:
Vee E:r; e Vie)iff e € E;.
We assume that M, M’,... denote models. | |

The next definition captures the semantics of the logic.

Definition 3.3 Let M = (A,V) with A = (E, <) be a model. Let e € E; and a,BeWwW
be formulas. The notion of a formula a being true at e in the model M is denoted
e, M |= a. The relation |= is defined by structural induction and given according to the
following rules:

(i) e, M [=p iff p € V(e),

(i) e, M = ~aiff e, M [«

(i) e,M = aVBiffe,M|=aore Mg,

(iv) e, M |= |;aiff 3e' € E;:e< e and e/, M |= a,
(v) e M= 1;aiff '€ E;: e <eand e/, M |= a,
(vi) e, M |= Njaiff de' € Ej:ecoe and ¢/, M |= a.



If a formula « is true at an event belonging to a model we will call « satisfiable. If « is
true at every event for all models we will call « valid. More formally we have:

Definition 3.4 Let K denote the class of all models. Suppose that a € W. Then

(i) a is satisfiable iff there exists a model M = (4,V) € K with 4 = (E, <) and an
event e € F such that e, M |= a,

(ii) o is M-valid iff e, M |= « for every event e at the model M, and
(iil) a € W is valid (denoted |= a) iff o is M-valid for every model M € K.

The modalities |; and T; are used to reflect communication. The relationship e, M =l a
expresses intuitively that at the event e it is known that in the future related to e there
will be an event ¢’ belonging to the j** agent satisfying a. On the other hand e, M |= 1;
expresses intuitively that in the past related to e there exists an event €’ in the j** agent
satisfying a. Finally the modality /\; is supposed to reflect concurrency. The relationship
e, M |= Aja expresses intuitively that concurrently with the event e there exists an event
e’ in the j** agent satisfying a.

We will also need derived logical connectives and modalities. The well-known connectives
of Propositional Calculus such as A, D and = are defined in terms of ~ and V in the usual
way. In addition we define:

Definition 3.5

@M T = pVep

(i) L e T

i) ia ¥ ~li~a

iv) fia ¥  ~fi~a

(v) Via &ef ~N\~a
(vi) i def AT
(vil)) <ia LA lia
(vii) B, ¥ A e

(IX) O;a déf T A Uz a

In the above clause (i) the atomic proposition p € P is arbitrary chosen. We note that
this is possible as P is assumed to be non-empty. The formulas T and L represent truth
and false respectively. [ |

Proposition 3.6 Let M = (A,V) with A = (E,<) be a model. Let e € E; and a € W
be a formula. Then we have the following:

(i) e,M|= Sjaiffi=jand Je' € E;:e' <;eand e, M |= o,
(ii) e,M |= Ojaiff i=jand Je' € E; :e <; ¢’ and ¢/, M |= a,

(i) e, M |= B;aiff 1 = j and Ve' € E; : if ¢/ <; e then ¢/, M |= a,
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(iv) ,M |= Ojaiff i = j and Ve' € E; : if e <; e then e/, M |= o,

(v) eeM |= J; aiff Ve' € Ej :if e < € then &/, M |= a,

(vi) &, M |= ft; aiff Ve' € E; :if ¢ < e then ¢/, M |= o,

(vii) e, M |= V;aiff Ve' € E; :if e co € then e/, M = a.
Proof Is easily seen to be a consequence of definition 3.3. |

We note that the modalities ©;, <;, B; and O, are purely local as they are restricted
to the j** agent. Intuitively they are equivalent to the operators P, F, H and G in the
framework of temporal logic.

The modalities {}; and {}; are the dual operators of l; and T; respectively and used to
reflect communication. The modality |}; is related to future communication whereas 1; is
related to communication in the past. The relationship e, M I= J; a expresses intuitively
that when events ¢’ in the j** agent can happen only if e has occurred (i.e. e < €') then at
e’ the formula a will be satisfied. The relationship e, M I= }; @ expresses intuitively that
if events ¢’ in the j** agent are demanded to occur before e can occur (i.e. € < €) then
a is satisfied at e’. The last derived modality v/; is the dual of A; and it is supposed to
reflect concurrency. The relationship e, M |= v/ a expresses intuitively that for all events
e’ belonging to the j** agent, which are in no causal order with e (i.e. e co €'), the formula
a has to be satisfied.

We conclude this section by arguing for the choice of the shape of the temporal operators.
We have followed tradition and used box and diamond notation for the local operators
whereas the shape of the global operators are new, though the triangle shape of the strong
concurrency operator, i.e. A, is also used in [MT89]. We will justify the choice of the
shape of the communication operators by referring to figure 2.1. As agents are pictured
upwards down communication in the future will occur following arrows in their directions,
i.e. down, and communication in the past have occurred following arrows opposite their
directions, i.e. up. For instance, if the formula |, ¢; is considered at the event e1; in figure
2.1 then it could express that moving down the arrows there will be a treatment event
belonging to the second agent which is modelling the behaviour of the consumer. If on the
other hand the formula T, ps is viewed at the event ey, then it could reflect that moving
up, i.e. in the opposite direction of the arrows, there has been a fabrication event in the
first agent which is modelling the producer.

10



4 The axiomatic basis

In this section we present an axiomatic basis for the logic defined in the previous section.
In search of an axiomatic basis we are guided both by tradition and by the proof of
completeness of the logic. Thus we haveindexed versions of standard axioms and inference
rules taken from [Bur84] but also special axioms and inference rules needed in the proof of
completeness. We first present the axiomatic basis in full and then go into details about
some of the axioms and inference rules afterwards.

Axioms

(A0)  All the substitutional instances of the tautologies of
propositional logic.

Deductive Closure:

(Ala) Ui(@adB)DdUliadl:p)
(ALb) fi(aDB)D(Mhiad:p)
(Al.c) Vi(aD B) D (Via D Vih)

Transitivity:

(A2.a) | ;liaD i
(A2b) Tj ThadT; a

Relating past and future:

(A3.a) mAaDl; Tia
(A3b) i NaD ﬂ’j li a

Type axioms:

(Ada) liaD li(nAa)
(A4.b) TsaDT; (Ti A a)
(Adc) AjaD Ai(mAa)
(A4.d) e (T A /\;;11 ~Ti A Nieiy1 ~T5)

Concurrent axioms:

(A5.a) 7D Wil
(A5.b) T AaD Vil

11



Relating communication and concurrency:

(A6.a) 7w AL NaD i«

(Aﬁ.b) T AT; N D T

(AG.C) wwiiaDd [ aVT,aVAaVa

(A6.d)  p' DU (~Lip A D) Aty (T p A ~Dip) AV 5(~Li p A ~Ti p)

In the above axiom (A6.c) the “formula” «;; a is syntactic sugar for the formula L TiaVv
TiliaV ]V T AaV AliaV AT eV A;Aa. In axiom (A6.d) p* denotes the
formula p A 8;(~p) A 0;(~p) for a fixed p € P.

Inference Rules

Let 8; € {{4,M:, Vi}. We have the following inference rules:

(MP)
a,a D f
B
(R1)
i
(R2)
pi D«
T O«

In (R2) we demand that « is free of p.

Axiom (A0) expresses that any substitution instance of valid formulas of propositional
logic are axioms of the logic. For instance, p V ~p, where p € P, is a valid formula of
propositional logic, hence a V ~a is an axiom of the logic. Axiom (A1) and inference
rules (MP) and (R1) are standard and require no explanation. Axiom (A2) captures
the transitivity of the causality relation. Axiom (A3) are standard and adapted from
[Bur84]. Axiom (A4) captures the identification of agents through the set {r1,...,7,} of
formulas. In particular, axiom (A4.d) is supposed to reflect the fact that each local stage
belongs to exactly one agent. Axiom (A5) are related to the concurrency operator: (A5.a)
reflects that the individual agents contain no concurrent events while (A5.b) expresses the
symmetry of the co relation. The remaining axioms may at first look a little remarkable.
They will be used in the proof of completeness to ensure that models for particular
formulas can be build. Axiom (A6.a) and (A6.b) reflect the way communication and
concurrency must be organized between agents. Axiom (A6.c) is supposed to ensure
that so-called maximal consistent sets have the proper orderings between each other, but
more about this in the next section. In order to explain the intuition behind the axiom
assume that the formula «j;; a is satisfied at an event e € Ej, in the model M = (4,V)
with A = (F,<). The formula expresses that via an event e’ € E; which we could call
the connecting link there exists an event ¢” € E; such that o is satisfied at ¢”. The

12



axiom expresses intuitively that the connecting link e’ can be ruled out. The axiom
makes essential use of the fact that {<,>,co,id} is a partitioning of F x F; a fact which
implies that the events e and e” satisfy (e,e”) € < U > U co U id. Axiom (A6.d) will be
used in connection with (A6.c) to ensure not only the proper relations between maximal
consistent sets but also uniqueness w.r.t. the possible relations. The formula p' expresses
that the atomic proposition p is true exactly at one event in the it* agent. Finally we
give a remark on inference rule (R2). It is adapted from [Bur80] and will be used to label
events uniquely in relation to the individual agents containing the events.

A formula a will be called a thesis iff it can be derived using the axioms and inference
rules of the axiomatic basis. We will let I « denote the fact that « is a thesis.

Theorem 4.1 (Soundness) We have: If - a then |= a.

Proof It is rather easy to verify all the axioms and all the inference rules except (R2).
The proof of soundness of (R2) is presented in appendix A. ]

Before going into the proof of completeness we present some derived inference rules and
theses.

Derived inference rules

(PR)
AlyeeeyUmyoi Ao Ay, DB

g

(DR.1)
adp
Lo D ;8
(SU)
o= f,%(a/y)
®(8/7)

In (DR.1) [; is supposed to range over {I};, 1), V:i}. In (SU) ®(«/v) denotes a formula &
in which « is substituted for ~.

Theses

(Tla) Aja=~Vica
(le) NAiCX — vZ‘NCt
(Tl.e) Ajva=~via
(TLd) lia=~l; ~a
(Tle) ~lia={; ~a
(T1) i ~va =~ a
(Tlg) T:a=~M~a
(Tlh) NT, x = ﬂ,, ~Q
(T1i) 1 ~a =~ a

13



(T2.a) Uz a A lz 8D ls (a A ,8)
(T2.b) TaAT; BD1; (Oé A ,3)
(T2.c) Via ADNB D Af(anp)
(T3.a) Li(aAB)DliaAl;B
(T3.b) Ti(aAB)DTiaAliB
(TSC) Az(a A ,B) D A,-a A Az,B
(T4a) Ti/\ﬁ/\ljai)lj(a/\Ti,B)
(T4b) mABAT; D T;(aAl;ip)
(T4c) T ABA Aja D Aj(a A Alﬁ)

(T5.a) 75 N\ lj tada
(T5.b) = A Tidiada

(T6) mAA;ViaDa

(T7) TiNews;aD iaVTiaVa

Proof of derived inference rules and theses are presented in appendix B.

14



5 Completeness

The completeness proof will be a so-called Henkin proof [Hen49], i.e. we prove that every
consistent formula can be satisfied. The proof method is strongly guided by [Bur84].

As usual, by a consistent formula we mean a formula whose negation is not a thesis of
our axiom system. The finite set of formulas {a,...,a,} is consistent iff oy A ... A ayy, is
consistent. A set of formulas is consistent if every finite subset is consistent. We let MCS
denote the class of mazimal consistent sets of formulas, i.e. consistent sets which are not
properly included in any other consistent sets. We assume that @, R, S range over the set
MCS. Finally we shall assume Lindenbaum’s lemma that any consistent set of formulas
can be extended to a maximal consistent set.

The next result concerning maximal consistent sets will be used often and sometimes
tacitly in what follows.

Proposition 5.1 Let Q € MCS. Then

() ~acQiffagQ,

(i) avBeQifacQorBeQ,

(i) aANBeQiffaec Qand B €Q,

(iv) if a is a thesis then a € @, and

(v) if aq,09,...,am € Qand ay Az A...Aay, DS is a thesis then 8 € Q.

Proof The proposition is shown by standard arguments. Consult for instance [HC68].
|

Definition 5.2 The function type : MCS — {1,...,n} is given by:
VQ € MCS : type(Q) =1iff i, € Q.
|

By proposition 5.1 and axiom (A4.d) it follows that the function type specified above is
well-defined.

Lemma 5.3 Let o € W and let ®; € {[;, 1:,A\;}. Then
if ®;a is consistent then « is consistent.

Proof Assume that ®;a is consistent but that « is inconsistent. Then F ~a. By
inference rule (R1) and theses (T1.b), (Tl.e) and (T1.h) we conclude that F ~@®; a which

cannot be the case. |

The next result follows from standard arguments. Consult for instance [Bur84].

Lemma 5.4 Let @Q,R € MCS such that type(Q) = 7 and type(R) = j. Then the

following statements are equivalent:

15



(i) if « € @ then T; a € R,
(ii) if « € R then |; a € Q,
(iii) if |}; @ € Q then a € R,
(iv) if {; @ € R then a € Q.

We define a relation between arbitrary elements from MCS. The relation is based on the
modalities reflecting communication.

Definition 5.5 The relation < C MCS x M(CS is defined as follows:
VQ,RE MCS:Q <R<ELVae W :if a € Q then Tepe(@) @ € R.

Observe that the definition of < is build upon clause (i) of lemma 5.4. By the equivalences
stated in the lemma we could have build the relation upon any of the clauses given in the
lemma.

Intuitively the relation < and the causality relation < are connected. This will become
clear once we have introduced the notions of chronicles and chronicle structures which are
concepts that combine frames and members of MCS. But more about this sub ject later
on.

Lemma 5.6 Let Q@ € MCS such that type(Q) = 7. Then

(i) if l; @ € @ then IR € MCS : type(R) = j and Q < R and o € R

(i) if T; @ € Q then 3R € MCS : type(R) = j and R < Q@ and o € R.
Proof We first prove (i). Let R~ = {1, |y € Q} U {7j,a}. As every consistent set
of formulas can be extended to a maximal consistent set it suffices to show that R- is
consistent. By proposition 5.1 and thesis (T3.b) it is enough to prove that if v EQ
then 7; A @ A 1; v is consistent in order to prove that R~ is consistent. Suppose v € Q.
Then v A |; @ € Q by proposition 5.1. As type(Q) = 1 it follows by thesis (T4.2) that
li (@ ATi9) € Q which by axiom (A4.a) implies Li(miANanTiy) € Q. We therefore

conclude that the formula is consistent. By lemma 5.3 it follows that T ATy is
consistent. Proof of (ii) can be given by similar arguments, hence we omit it. |

The next lemma is in nature similar to lemma 5.4. The proof follows from standard
arguments. Again we refer to [Bur84]

Lemma 5.7 Let Q,R € MCS such that type(Q) = ¢ and type(R) = j. Then the

following statements are equivalent:
(i) if @ € Q then A;a € R,
(ii) if @ € R then Aja € Q,
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(iii) if V;a € Q then a € R,
(iv) if Via € R then a € Q.

We define a relation, based upon the modalities reflecting concurrency, between arbitrary
elements of MC'S.

Definition 5.8 The relation b« C MCS x MCS is defined as follows:
VQ,RE MCS: QR EL YVaec W :if a € Q then Appe(@)® € R.

Observe that by lemma 5.7 the relation < is symmetric; a fact that justifies the choice of
the shape of the symbol expressing the relation. Intuitively < is connected to the relation
co reflecting events that are concurrent. This will become clear once we have introduced
the notions of chronicles and chronicle structures which, as mentioned, will be done later
on.

Lemma 5.9 Let Q € MCS such that type(Q) = i. Then
if Aja € @ then 3R € MCS : type(R) = j and Q < R and o € R.

Proof Let R~ = {Ayy | v € Q} U {r;,a}. As every consistent set of formulas can
be extended to a maximal consistent set it suffices to show that R~ is consistent. By
proposition 5.1 and thesis (T3.c) it is enough to prove that if v € Q then Ti NN Ayyis
consistent in order to prove that R~ is consistent. Suppose v € Q. Then YAA;a € Q. By
thesis (T4.c) and the case that type(Q) = ¢ we have Aj(aANAyy) € Q. Then by axiom
(Ad.c) it follows that A;(1; A @ A Ayy) € Q, hence the formula is consistent. Finally by
lemma 5.3 we conclude that 7; A @ A A,y is consistent. |

In the following we present some results concerning the relations < and <. The properties

we are going to show about the relations will be used later on when we have to build models
for particular formulas.

Lemma 5.10 Let Q, R € MCS such that type(Q) = 1. Then
if a € Q implies [; aVT;aV A;aVa€ Rthen (Q,R)e <U>UmU C,

where > = {(R,Q) | @ < R} and C is the normal inclusion relation on sets.

Proof Suppose first that (Q,R) ¢ < U > Ua. We want to show that Q C R must
be the case. Now (@, R) ¢ < U > U v« implies the existence of ag,ay, s € Q such that
Ticw € R, |i 1 & R and A;ay ¢ R. Suppose a € Q. Then we have a A & € Q, where
& = ap A og A a. By the hypothesis of the lemma we have |; (aN&)VTi(ahd)V
AaAN&)V (aA &) € R. It follows readily that @ A & € R is the only possibility and
therefore that o € R is the case.

In order to complete the lemma we have to consider the cases (Q,R) ¢ <U=UC,
(Q,R) ¢ <UaU C and finally (Q,R) ¢ > UaU C. By a proof method similar to the
above it follows easily that in the first case Q > R is satisfied, in the second case R < Q
is satisfied and in the last case Q < R is satisfied. |
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Corollary 5.11 Let @, R € MCS such that type(Q) = type(R) = i. Then
if @ € Q implies |; aV T; aVa € R then (Q,R) € <U > U C.
Proof Follows easily from lemma 5.10 and axiom (A5.a). [

Lemma 5.12 The relation < is transitive.

Proof Let Q,R,S € MCS such that type(Q) = 1, type(R) = j and type(S) = k.
Assume @ < R and R < S. We have to show that Q < S. By definition of < and
lemma 5.4 it is enough to show that if |, @ € Q then a € S. Assume therefore that
Jr @ € Q. Then, as Q@ < R and R < 3, it follows that T; T: Ux @ € S which by axiom
(A2.b) implies 1; | a € S. As type(S) = k it follows that 7, A 7; Ur & € S, hence by
thesis (T5.b) we conclude that o € §. [

As mentioned earlier, the relation < is intuitively related to the causality relation <. And,
as observed by the above lemma, < is transitive like the causality relation. However, <
will in general not be irreflexive as it is the case for the causality relation. We will not go
into further details as there will be no need to require irreflexivity of < in order to obtain
the proof of completeness.

We proceed by showing two more properties concerning the relations < and < before we
define the notions of chronicles and chronicle structures.

Lemma 5.13 Let Q,R,5 € MCS such that type(Q) = i and type(R) = type(S) = j.

Then we have the following:

(i) f @raRand Q < S then R < S, and
(i) if @< R and § < @ then S < R.

Proof We only prove (i) as proof of (ii) can be given by similar arguments. Assume
that Q@ >« R and Q < S. Let a € R. Now @ ba R implies Aja € Q and @ < S implies
Ti Ajo € S. As type(S) = j we conclude that 7; A T; Aja € S which by axiom (A6.b)
implies T; & € S, hence R < S. [

Lemma 5.14 Let Q,R,S € MCS such that type(Q) = i and type(R) = type(S) =J.
The relations < and v« will satisfy the following:

(i) f @ < Rand Q@ < S then (R,5) € <U > U =,

(ii) f R < Q and S < @ then (R,S) € < U = U =, and
(iii) if @ >« R and @ > S then (R,S) € <U > U =,
where = is the normal equality relation on sets.

Proof We first prove (i). Assume Q@ < Rand @ < S. Let « € R. Now Q < R
implies [; & € @ and Q@ < S implies T; |; & € S. As type(S) = j it follows that
7 ATi l; @ € S. By Propositional Calculus it follows readily that 7; A Ti |; « implies
Tj A e a because T; |; « is equal to one of the disjunctions constituting the formula
«=i; o (the formula is defined on page 12). Hence 7; A «w;; a € S and by thesis (T7) we
conclude that |; @V T; @ V a € § which by corollary 5.11 implies (R,S) € <U > U C.
Letting o € S we get by the same arguments that (S, R) € < U = U C. We now conclude
that (R, S) € < U > U =. Proof of (ii) and (iii) follows by similar arguments. [
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We need the notions of chronicles and chronicle structures before going into the proof of
completeness.

Definition 5.15 Let A = (F, <) be a frame. A chronicle on A is a function X : E —
MCS. We characterize a chronicle X as follows:

(i) X is strict iff for all e,e’ € E it is the case that X(e) and X (e') are related only by
one of the four relations <, =, ¢ and =,

(i) X is coherent iff

(a) Ve,e' € E :if e < ¢’ then X(e) < X(¢'),
(b) Ve,e' € E :if e co e’ then X(e) < X(e'), and
(c) Vee E:7; e X(e)iff e € E;,

(iii) X is prophetic iff
Ve€ E:ife€ E;and |; a € X(e) then 3¢’ € E; : e < ¢’ and a € X(¢'),
(iv) X is historic iff
Vec E:ifec E;and T; a € X(e) then 3¢’ € E; : ¢/ < e and a € X(¢'),
(v) X is concurrent iff
Ve€ E:if e € E; and Aja € X(e) then e’ € E; : €' coe and a € X(e'), and

vi) X is perfect iff X is coherent, pro hetic, historic and concurrent.
p b p p ?
|

Definition 5.16 Let A = (E,<) be a frame and X a coherent chronicle on A. The
structure CS = (A4, X) is called a chronicle structure. CS is called a strict chronicle
structure provided X is strict. Finally C'S is called a (strict) finite chronicle structure if
the set F is finite (and X is strict). '

Next we present some results relating models and chronicles. The results provide a method
of showing that consistent formulas can be satisfied.

Definition 5.17 Let M = (A,V) with A = (E, <) be a model. Xy is called the chronicle
induced by V and is defined as follows:

Vec E: Xy(e)={a|e,M = a}.
|

Definition 5.18 Let A = (E, <) be a frame and X a perfect chronicle on A. Vx is called
the valuation induced by X and is defined as follows:

Vec E:Vx(e)={p€ P|pec X(e)}.

19



Lemma 5.19 Let X be a perfect chronicle on the frame A = (E,<). Then Xy, = X.

Proof Let M = (A, Vx). By definition of Xy, (e) we have to show that
VaeW,Ve€ E:ae X(e)iff e, M |= (%)

in order to prove that Xy, = X. Hence suppose o € W and e € E;. The proof of (%) is
by induction on the structure of a. We omit the details. n

The strategy in showing completeness is to show that every consistent formula is satisfi-
able. Now lemma 5.19 suggests an obvious way of proving that a consistent formula « is
satisfiable: construct a perfect chronicle X on a frame A4 = (E, <) such that there exists
an e € E satisfying o € X(e). From now on we will concentrate on showing that the
perfect chronicle X on the frame A exists. First we show that a frame with a coherent
but not perfect chronicle can be extended to a frame with an improved chronicle. In this
connection it will be convenient to work with live requirements.

Definition 5.20 Let C'S = (4, X) with A = (E, <) be a chronicle structure. Let e € E;.
Then

(i) (e, l; @) is called a live prophetic requirement in CS iff
lja€ X(e) and fe' € Ej: e < ¢ and a € X(¢'),
(i) (e,T; ) is called a live historic requirement in C'S iff
Tja€ X(e)and ' € E; : ¢’ < e and a € X(¢/),
(iii) (e, Aja) is called a live concurrent requirement in C'S iff
Aja € X(e)and 3¢’ € E; 1 eco e’ and a € X(¢'), and

(iv) (e,B) is called a Lve requirement in C'S iff one of the above mentioned (1), (ii) or
(iii) is satisfied.

Obviously a chronicle structure C'S = (A4, X) containing a live requirement is a chronicle
structure in which the chronicle is not perfect. We want to show that if C.§ = (4, X )
contains a live requirement then C'S can be extended to a chronicle structure ¢'S' =
(A’, X') such that the live requirement in C'S is no longer a live requirement in C'S’. But
first we are going to work with strict finite chronicle structures.

Lemma 5.21 Let C'S = (A,X) with A = (E, <) be a strict finite chronicle structure.
Let (e1,8) be a live requirement in C'S. Then there exists a finite chronicle structure

CS' = (A", X') with A’ = (E',<') such that:
(i) E' = EU {ey} for some e, ¢ E,

(i) <’ restricted to E x E is <,
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(ili) X' restricted to E is X, and
(iv) (e1,) is no longer a live requirement in C 5.

Proof The proof is rather involved and must be divided into three parts according to
the three types of live requirements. See appendix C for a proof. ]

If we are capable of removing live requirements iteratively from a chronicle structure then
the limit of this process will be a chronicle structure with a perfect chronicle.

The next lemma enables live requirements to be removed iteratively.

Lemma 5.22 Let S = (4,X) with A = (E,<) be a finite chronicle structure. Let g
denote the number of elements in E. Let f(a), where a € W, denote the result of having
substituted p;1; for p; in a. Let f denote the extension of f to sets of formulas defined in
the obvious way. Finally let SC'S = (4,Y) be a strict finite chronicle structure satisfying:

Ve€ E: f4(X(e)) CY(e),

where f4(X(e)) denotes the result of having performed f on X(e) ¢ times.

Suppose (e, ) is a live requirement in C'S. Then there exists a finite chronicle structure

CS' = (A, X') with A’ = (E', <') such that:
(i) B' = EU {ey} for some ¢, ¢ E,
(ii) <’ restricted to E x E is <,
(iii) X' restricted to F is X, and
(iv) (e1,B) is no longer a live requirement in C.S".

Furthermore, a strict finite chronicle structure SCS' = (A4’,Y”’) can be constructed such
that:

Ve e E': frtl(X'(e)) C Y'(e).

Proof It follows readily that if (e;, 3) is a live requirement in C'S then (ey, fUB))tis alive
requirement in SC'S. By help of lemma 5.21 we can remove the live requirement (e1, f4(B))
in 5CS, i.e. there exists a chronicle structure C'S” = (4", X") with A" = (E", <)
satisfying:

(i) E" = E U {es} for some ¢, ¢ E,
(i) <" restricted to E x E is <,
(iii) X" restricted to E is Y, and
(iv) (e1, f4(B)) is no longer a live requirement in C'S".
We now define the chronicle structure C'S’ = (A’, X') as follows:
() 4= A,

1 f2(8) denotes the result of having performed the substitution f on 8 g times.
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(i) X'(ez) = f~4(X"(ez)), and
(iii) Ve € E': if e + e, then X'(e) = X(e)

?

where f~1(X"(e;)) = {a | f(a) € X"(ey)} and F79(X"(es)) denotes the result of having
performed this transformation ¢ times. It is readily verified that C'S’ is the required
chronicle structure.

We finally define the chronicle structure SC'S’ = (A',Y"), i.e. we have to define Y'. We
proceed as follows (assuming e, € E}):

() Y/(es) & F(¥(e2)) U {pi}, and
(i) Ve € E' — {ey} :

(a) if e <" ey then Y'(e) & f(Y(e))U{]; a| a € Y'(ep)},
(b) if €2 <’ then Y'(e) & F(Y(e)) U {f; | @ € Y'(e)}, and
(c) if e co’ e, then Y'(e) & f(Y(e)) U {Aja | a € Y'(ey)}.

In the above specifications pg is equal to po A Bj~po A O;~po and & denotes maximal
consistent extension. These maximal extensions are of course only successful if the sets
which are being extended are consistent. But this will be the case. Consult appendix D
for proofs.

Before completing the lemma we have to show that SCS’ is a strict finite chronicle
structure satisfying:

Vee B': frU(X(e) CY(e).  (¥)
By definition (*) is satisfied, hence we only have to prove that SCS’ is a strict finite
chronicle structure. As A’ = (E’,<') is a frame and E’ is finite we just have to prove that

Y’ is strict and coherent. By definition of Y’ and axiom (A6.d) it is easily seen that for
all e € E' — {e,} we have the following:

(i) if e <’ e; then Y’(e) < Y’(e;) and none of the other three relations =, > and = are
satisfied between Y'(e) and Y'(e,),

(i) if e5 <’ e then Y"(ez) < Y’(e) and none of the other three relations >, ba and = are
satisfied between Y'(e;) and Y(e), and

(iii) if e co’ e, then Y(e) b« Y'(e;) and none of the other three relations <, = and = are
satisfied between Y'(e) and Y'(e,).

Furthermore, by definition of ' and axiom (A6.d) we have Y'(e;) = Y’ (e2) and none of
the other three relations <, > and b« are satisfied between Y'(e;) and Y'(ey).

Finally we have to treat events e,e/ € E' — {e;}. Assume e € E; and ¢ € E. By
considering the possible relations between e, ¢/ and e, we get according to the definition
of §', axiom (A6.c), lemma 5.10 and the transitivity of < that at least one of the relations
<, >, b<d and = must be satisfied between Y'(e) and Y’(e/). For instance, if e co’ e, and
e’ co’ e then by definition of Y is follows that if o € Y'(e) then AN;j N € Y'(€') and if
B € Y'(e') then A;AB € Y'(e). By Propositional Calculus it follows that e € Y'(e)
and «w ;i B € Y'(e') respectively and by using axiom (A6.c) and lemma 5.10 the required
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result follows. The other possibilities are treated in a similar way except for the cases
where it is enough to use the transitivity of <, i.e.in the cases e < e; < ¢ and e’ < es < e.

By analysing the possible relations between e and e’ we can finish the lemma.

(i) Suppose e <’ ¢’. Then e < e will be satisfied which implies that Y(e) < Y(¢).
As 5CS is a strict chronicle structure we conclude that (Y(e),Y(e')) & = U pa U =.
As for all " € E we have that f(Y(e")) C Y'(e") it is readily observed that
(Y'(e),Y'(¢')) € > U ba U = is satisfied. The only possibility left is therefore Y'(e) <
Y'(e').

(i) The possibilities e’ <’ e, e co’ e and e = &' are treated by arguments similar to
those given in the previous case.

Theorem 5.23 (Completeness) Let « € W. If |= « then |

Proof We will show that every consistent formula is satisfiable. Let E be a countable
set of events. Fix an enumeration e, e,... of E and fix an enumeration o, Qz,...0f W,
the set of formulas. Fix an injective function g : E x W — w. Since E x W is a countable
set, there will be no trouble in finding such an injective function. In what follows, for
(e;a) € E x W, we will refer to g((e,@)) as the code number of (e, ).

Now, assume that « is a consistent formula. Pick an Q € MCS containing a. Assume
type(Q) = k. Let CS* = (A',X") where A* = ({e;},0) and X'(e;) = Q. Clearly O'S*
is a chronicle structure. Next define SCS* = (4!, Y?), where Yi(e;) ~ f(Xl(el)) U {pk}
and f is the function defined in lemma 5.22. Clearly SCS? is a strict chronicle structure
and it is easily seen that C'S* and SCS? satisfy the hypothesis of lemma 5.22.

We now proceed by iteratively removing live requirements from the chronicle structures
CS' and SCS* according to lemma 5.22. For m > 1, suppose the chronicle structure
CS™ = (A™,X™) is defined with A™ = (E™,<™) where E™ = {ej,es3,...,em}. Also
suppose that the strict chronicle structure SC'S™ = (A™,Y™) is defined with the chronicle
Y™ satisfying:
Vee E™: fm(X™(e)) C Y™(e).

Suppose C'S™ does not have any live requirements. Then set C.S™+! = ¢'S™. Otherwise
consider a live requirement (e,) in C'S™ which has — among all the live requirements
in 5™ - the least code number. By lemma 5.22 the structure CS™ can be extended
to the chronicle C'S™ = (Am+1, Xm+1) with A™+! = (Em+1, <™} and Emt! = Em
{e™*1} so that (e,3) is no longer a live requirement in C.S™*1, Furthermore, we know
by lemma 5.22 that there exists a strict chronicle structure SCS™+1 = (Amtl ymtl)
satisfying:

Ve € E™ . fm+1(Xm+1(e)) C Y™ (e).
Finally set C'S = (4, X) where A = (E,<), E = J®_, E™ and <= Um—1 <™. X is given
by:

Ve€ E: X(e) = X™(e) wheree € E™,
It is routine to verify that X is a perfect chronicle on ES. Hence by lemma 5.19, M =
(4,Vx) is a model in which e;, M |= a. ||
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6 Conclusion

In this paper we have succeeded in giving a logical characterization of ACA structures.
The logic designed is strongly related to the concepts of concurrency, communication and
locality. We have presented an axiomatic basis for the logic and have obtained proofs
of both soundness and completeness. The proof of completeness is considered the main
result of the paper.

A number of interesting extensions to the presented work can be considered. First of all it
would be preferable to allow the number of agents in the ACA structures to be unbound.
At present we consider only a fixed number of agents. A solution to this extension would
require a modification of the axiomatic basis. In particularly the type axiom (A4.d) will
have to be reconsidered and perhaps formulated as an inference rule. Secondly it would
be worth investigating whether the logic presented is decidable. At present we do not
know how to solve the question of decidability as the logic does not have the finite model
property.
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Appendix A
The purpose of this appendix is to prove that inference rule (R2):

PDOa
TiDa,

where a is free of p, is sound. First we present a lemma.

Lemma Letg:P — P. Let j: W — W denote the extension of g to arbitrary formulas
defined in the obvious way. Then

VB € W: if = 3 then = 3(B).

Proof Suppose 8 € W such that = 8. Let M = (A4,V) where 4 = (E,<) be an
arbitrary model. Let e € E. We want to show that e, M |= §(83) is the case. To this end
we construct a model M’ = (A', V') from M in the following way:

(i) A’= A, and
(i) Vee E: V'(e) = {p | g(p) € V(e)}.
The models M and M’ satisfy:
VyeWVec E:e,M'=viff e, M = §(v).
The proof of this statement is by induction on the structure of ~.

(i) Suppose v = pi. We have e, M’ |= p;, iff p, € V'(e). By definition of V' it follows
that p, € V'(e) iff g(pr) € V(e), hence iff e, M = G(ps).

(ii) Suppose ¥ = ~+'. By definition we have e, M’ = ~v' iff e, M’ ¥ 4'. By the
induction hypothesis this is the case iff e, M }£ §(7'), hence iff e, M |= §(~7').

(i) Suppose v = 41 V v;. By definition we have e,M' = vV oy iff e, M = v or
€, M' |= ;. Once again the required result follows from the induction hypothesis.

(iv) Suppose ¥ = |; 4'. By definition we have e, M’ |= 1; 7' iff there exists ¢’ € E; such
that e < ¢’ and €/, M’ = 4. By the induction hypothesis this is the case iff there
exists e’ € E; such that e < ¢’ and ¢/, M |= §(v'), hence iff e, M = §(1; 7).

The last two possibilities (i.e. ¥ = ;9" and v = A;y’) follow the same line as the case
7=

We now return to the proof of the lemma. As = 3 is assumed it follows that e, M’ = 8.
By the above result we immediately have e, M = §(5). |

Now we can return to the proof of inference rule (R2). We have to show that if = p' D «
then = 7, D « where p € P, p* = p A 8;(~p) A O;(~p) and « is free of p. Assume
therefore that = p’ O « is the case. Suppose that P = {po,p1,...}. Assume without
loss of generality that p = po. Let M = (4,V) with A = (E, <) be an arbitrary model.
Assume that e; € E. We want to show that eg, M |= 7; O a. Obviously we only have to
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consider the case eq € E;, and to show that eq, M = a is fulfilled in this case.

We define the transformation f : W — W such that f(8), where 8 € W, denotes the
result of having substituted p;y; for p; in 8. Let f denote the extension of f to sets of
formulas defined in the obvious way.

For technical reasons we define a model M’ = (A', V') from M as follows:
(i) A'= 4,
(i) V'(eo) = {po} U f(V(eo)), and
(iii) Ve € E :if e # eo then V'(e) = f(V(e)).
At first we present three claims.
Claim 1 We have ey, M' |= pi.

Proof Obviously by construction of V. |

Claim 2 Let 8 € W. Then
Vec E:e,M = Biff e,M' |= f(B),

Proof The proof is by induction on the structure of 3. We leave out the details as the
proof is very similar to the induction proof presented in the lemma stated at the beginning
of the appendix. ]

Let h : P — P be defined as follows:
(i) A(po) = po, and
(ii) Vp € P —{po} : h(p) = f(p),

Let h denote the extension of & to W defined in the obvious way.

Claim 3 We have A(p} D a) = p}, D f(a).
Proof Follows immediately from the fact that « is free of pq. |

We can now return to the proof of inference rule (R2). As hypothesis we have |= p} O «a.
According to the lemma stated at the beginning of the appendix it follows that = B(pf) )
o) which, by claim 3, implies |= pj O f(a). As a special case we have eo, M' |= pi O f(a).
By claim 1 and Modus Ponens we conclude that eq, M’ |= f() which, according to claim
2, implies ey, M | a.
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Appendix B

Proofs of derived inference rules and theses. PC denotes Propositional Calculus.

(PR)

(1) FauA...AapDB (Given)

(2) FlaaDd(aad(.ei(amDp)...)) (PC)

3) Fag,...,anm (Given)

(4 +p (2, 3, MP m times)
(DR.1)

(1) FaDp (Given)

(2) Foiadp) (R1)

(3) F®adep (A1, MP)
(SU)

It suffices to prove that if @ D B and 8 D « are theses then so are ®(a/y) D
®(B/~) and ®(8/v) D ®(«/v). This is proved by induction on the structure
of ® and is straightforward.

(T1)

All equalities follow easily from definition of dual modalities, i.e. definition 3.5.

(T2.a)

(1) F(aD>B)D(~8D ~a) (PC)

(2) Fldi(adB)Dli(~8D~a) (DR.1)

(3) Fldi(adB) D Wi~BD;~a) (Al.a, PR)

4) Fli(adp)d(liad]iB) (Tl.e, SU, PC)
(5) FlL@Bo>anB)DU:iBDLi(aApB) (Subst. in 4)
(6) Fad(BDanp) (PQ)

(1) Fliadli(BDanp) (DR.1)

8) FliaDd(lifDli(aAp)) (PC, PR, 5)
9) FlianliB)D li(anp) (PC, PR)

(T2.b) and (T2.c)

Shown by arguments similar to those in the proof of (T2.a).
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(1) Fadavp (PC)

(2) Fliadli(avp) (DR.1)

3) FlBoUh(avp) (Subst. in (2)
(4) Fldiavligoli(avp) (PC, PR, 2, 3)
(5) Flhi~avii~BDli(~aV~p) (Subst. in 4)
(6) F~dhi (vaV~B) D ~v(Us ~vaV i ~B) (PC, PR)

(1) Fli~(~aV~B)Dlian ;B (T1l.e, PC, SU)
8) Fli(@aAB)D liaAl:B (PC, SU)

(T3.b) and (T3.c)

Shown by arguments similar to those in the proof of (T3.a).
(T4.a)

(1) Fljanl; 8D (anp) (T2.a)

(2) FUiTianl; 8D i (TiaAB) (Subst. in 1)

(3) FrnAadl;lia (A3.a)

(4) FrnAaAl;BD L (Tianp) (PC, PR, 2, 3)
(T4.b)

Shown by arguments similar to those in the proof of (T4.a).

(1) FViaAL;8D HN;(aAp) (T2.c)

(2) FVi(A@)A DB D DN A B) (Subst. in 1)

3) FmAaDdVila (A5.b)

(4) FrmAaAD;BD N (NaAB) (PC, PR, 2, 3)
(T5.a)

(1) FrAadl;lia (A3.a)

(2) F~diliaDd~rAQ) (PC, PR)

(3) Fljfti~aDd~(riAa) (T1{, T1.h, PR, SU)

(4) F T A J,j 'ﬂ‘z ~O D)~V (PO, SU)

(5) FrmAliftiada (Subst. in 4)
(T5.b)

Shown by arguments similar to those in the proof of (T5.a).
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(T6)
(1)
(2)
(3)
(4)

an
(1)

(3)
(4)

FrnAaD Vil
F~Vilia D ~(1 A a)
FVili~a D ~(r A a)
FrAVida D a

FewsiaD liaVTaVAaVa

A ez aDmA(LiaVTaV AaVa)
FTiNew; aD Vil A(liaVTiaV AaVa)
I—Ti/\mﬁaDliaVTiaVa
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(A5.b)

(PC, PR)
(Tl.c, T1b, SU)
(PC, SU)

(A6.c)
(PC, PR)
(A5.a, PR)
(PC, PR)




Appendix C

The purpose of this appendix is to prove lemma 5.21 stating that live requirements can
be eliminated. The proof will fall into three parts according to the three types of live
requirements that exists. We will only show that live concurrent requirements can be
removed as the arguments needed in the other two cases more or less are the same.

Lemma Let CS = (A,X) with A = (E,<) be a strict finite chronicle structure. Let
(e1,8) be a live concurrent requirement in C'S. Then there exists a finite chronicle struc-

ture CS' = (A, X') with A’ = (E', <') such that:

(i) E' = EU{ey} for some ey ¢ E,

(ii) <’ restricted to E X E is <,

(iii) X’ restricted to F is X, and

(iv) (e1,B) is no longer a live requirement in C'S'.
Proof As (e1,) is a live concurrent requirement it follows that 8 = Aja. Assume that
e1 € E;. By axiom (A5.a) we have ¢ # j. By lemma 5.9 there exists an Q € MCS such
that type(Q) = 7, X(e1) = Q and @ € Q. Fix e; such that e; ¢ E and define for all

ke {l,...,n},
/ {EkU{ez} ifk=y
Ek:

E, otherwise

Set E' = ;- E;, and define

(i) lpre(es) = {e € E; | X(e) < Q},

(i) lpost(ez) = {e € B; | @ < X(e)},

(iii) pre(es) = {e € E | 3e' € lpre(ey) : e < €'}, and
(iv) post(e;) = {e € E | ' € Ipost(e,y) : ' < e}

Let now
<'=(<UR;UR,)",

where R; = pre(e;) x {e2} and Ry = {e;} X post(e;). Let finally

N 72 if e = e
Vec E': X (e) - { X(e), otherwise

If we are capable of proving that 'S’ = (A’, X') is a chronicle structure, in which e; co’ €2,
then obviously it is a chronicle structure in which (e;,) is no longer a live requirement.
As it turns out we cannot always prove that C'S’ is a chronicle structure. If 'S’ is not
a chronicle structure we prove that C'S’ can be changed by imposing further causality
between e; and events from E such that the resulting structure is a chronicle structure
in which (e;, ) is no longer a live requirement. The proof is divided into 11 claims, each
stated and proved below.
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Claim 1: pre(e;) N post(ez) = 0.

Proof Suppose pre(e;) N post(ey) # 0. Let e € pre(ey) N post(ey). By definition of
pre(es) we know that there exists ' € Ipre(e;) such that e < e/. As X is coherent we
have X(e) < Q. By definition of post(e;) we know that there exists e’ € Ipost(e;) such
that e” < e. Once again, by the fact that X is coherent, it follows that @ < X(e). By

the transitivity of < we now conclude that X(e) < X(e) which cannot be the case as X
is strict. |

Claim 2: Assume e,e’ € E’ such that (e,e’') € (<’ — <). Then e <’ e, and e, <' €',

Proof As e <' ¢’ we have by definition of <’ that there exists {zo,...,%,,} such that
To = €, T, = €' and (2h,2p41) € < U Ry UR, for each h € {0,...,m — 1}. By the fact
that (e,e’) € (<’ — <) it follows that there has to exist » € {0,...,m — 1} such that
(zhyTht1) € R1 U Ry and the result follows at once. =

Claim 3: Assume e € E' such that e # e; and e <’ e,. Then e € pre(es).

Proof As e <' e; we have by definition of <’ that there exists {xg,...,,,} such that
To = €, Ty, = €3 and (Tp, Zpy1) € < U Ry U Ry for each h € {0,...,m — 1}. By definition
we also know that m > 1. The rest follows by induction on m. We leave out the details.

||

Claim 4: Assume e € E' such that e # e, and e; <’ e. Then e € post(e,).

Proof More or less the same arguments as in the previous claim. We leave out the
details. |

Claim 5: The relation <’ is transitive and irreflexive.

Proof By definition <’ is transitive, hence we only have to show that <’ is irreflexive.
Suppose e € E’ such that e <’ e. We want to show that this assumption leads to
an inconsistency. We cannot have e < e because < is known to be irreflexive. Hence
(e,e) € (<" — <) must be the case which by claim 2 implies e <’ e, and e, <’ e. There
are two possibilities:

(i) Suppose e = e;. Then we have e; <’ e5. By definition of <’ it is easily seen that
either (e,e3) € Ry or (e3,€3) € Ry. Assume (ey,e5) € Ry. Then e, € pre(es) which
implies that there exists €' € Ipre(e,) such that e, < €'. As e’ # e, we conclude
from claim 4 that e’ € post(e,). This cannot be the case by claim 1. If (ez,€2) € Ry
the result follows by first using claim 3 and then claim 1.

(ii) Suppose e # e;. Then e <’ e, and e; <’ e which, by claim 3 and claim 4, implies
that e € pre(e,) and e € post(ey). This cannot be the case by claim 1.

Claim 6: E'=EjW...WE'.

Proof Follows immediately from the definition of E'. [

32



Claim 7: The two events e; and e, are concurrent, i.e. e; co’ ej.

Proof

(i) Suppose e, <’ e;. Then, as e; # e, it follows by claim 4 that e, € post(ey). As
e1 ¢ E; (remember that ¢ # j) we have the existence of ¢ € Ipost(e,) such that
e < e;. As X is coherent we conclude that X(e) < X(e;). Since X(e;) > Q and
type(Q) = type(X(e)) = j it follows by lemma 5.13 that X(e) < Q. Ase € Ipost(e,)
we have @ < X(e). By the transitivity of < we conclude that X(e) < X(e) which
is absurd as X is strict.

(i) Suppose e; <’ e5. Then, as e; # e,, we have according to claim 3 that e; € pre(e,).
By a proof similar to the previous case it is easily seen that there exists e € Ipre(es)
satisfying X(e) < X(e). Again, as X is strict, the result follows.

Claim 8: For each k € {1,...,n}: (E},<}) is totally ordered.

Proof Let k € {1,...,n}. We have to show that any two events from Ej will be
comparable, i.e. if e,e’ € E} then e <} €’ or & <} e. By definition of <’ we only have to
treat the case k = j.

It is easily observed that if E; C Ipre(e,) Ulpost(e;) then any two events from E} will be
comparable. Suppose therefore that e € F;. We analyse the possible relations between e
and e where e; is the event belonging to the live requirement.

(1) Suppose e < e;. Then, as X is coherent, we have X (e) < X(e;). Since X(e1) > Q
and type(Q) = type(X(e)) = j it follows by lemma 5.13 that X(e) < @, hence
e € lpre(e,).

(ii) Suppose e; < e. Then by arguments similar to those given in the previous case it
follows that @ < X(e), hence e € lpost(ey).

(iii) Suppose e co e;. As X is coherent we have X(e) b4 X(e;). Since X(e;) < Q and
type(Q) = type(X(e)) = j it follows by lemma 5.14 that X(e) < @, @ < X(e) or
Q = X(e) is the case. We cannot have Q = X(e), or else (e1,) would be no live
requirement. We therefore conclude that Q@ < X(e) or X(e) < @ is the case, thus
e € lpre(ey) U lpost(ey).

We finally remark that e; = e cannot be the case as e; € E;, e € E; and 7 # j. |

Before ending the lemma we will have to show that X' is coherent. This is provided by
the last three claims.

33



Claim 9: Ve,e' € E':if e <’ ¢/ then X'(e) < X'(¢').

Proof Suppose e,e’ € E’ such that e <’ ¢/. By the definition of <’ we have that there
exists {#g,...,%m} such that zo = e, z,, = ¢ and (Zhyht1) € <U Ry U R, for each
h € {0,...,m —1}. By definition we also know that m > 1. We proceed by induction on
m.

m =1 If (zo,21,) € R; U R, then it is easily seen by definition of R, and R, that
X'(zo) < X'(21). If (z9,21) € < then the result follows because X is coherent.
m >1 We have z; <’ 2, hence by induction hypothesis that X'(2;) < X'(zm). As

< is transitive we only have to show that X'(zo) < X'(z;) where (zo,z;) €
< U Ry U R,. But this is already proved in the case m = 1 above.
n

Claim 10: We would like to show that
Ve,e' € E' : if e co' €’ then X'(e) b1 X'(¢') (%)

As it turns out we cannot always prove (x). If (x) is not satisfied we change the structure
C'S’ by imposing further causality between e, and events from E such that the resulting
structure will satisfy (x).

Proof Clearly we only have to consider the case where either e = e, or e’ = ey. Assume
therefore that there exists e € Ej such that e, co’ e and such that X'(e,) < X'(e) is not
necessarily satisfied. The strategy is now to show that X'(e;) b X'(e) is the case or, if
that is not possible, to make sure that e, co’ e is no longer satisfied.

Now, if « € X'(e) and 8 € X'(e;) then «ny, a € X'(e3) and «w;; B € X'(e), where «wy,
(e~i; B) is the formula displayed on page 12. This postulate can easily be shown by
considering the events e, e; and e,, and the corresponding maximal consistent sets X'(e),
X'(e1) and X'(ep). By axiom (A6.c) and lemma 5.10 we conclude that (X'(e2),X'(e)) €
< U>UpaU =. We cannot have X'(e) = X'(e;) as e, co e implies k # j. (Remember
that 7; € X'(ez) and 7 € X'(e)). If X'(e;) b X'(e) is the case then there is nothing
to prove, hence assume that X'(e;) 4 X'(e). Then X'(es) < X'(e) or X'(e) < X'(es).
Assume without loss of generality that X'(e;) < X'(e) is the case. A first guess would be
to make a new structure C'S" = (4”,X") with A" = (E",<") just by taking X" as X
and A" as (E',(<' U {(ez,€)})"). This new structure would surely satisfy:

(i) A" is a frame?, and

(i) Ve',e" € E" 1 if ¢’ <" &" then X"(e') < X"(e").

2In general, if A = (177, <) is a frame and a,b € E such that a and b are concurrent then it is easily
seen that 4’ = (B, (2 U {(a, 5)}*) and A" = (E, (S U {(5, a)})*) also are frames. We only have to make
sure that the new causal order is anti-symmetric and this will be the case, because if the new causal order
is not anti-symmetric then this can only be the case if @ and b are in order in A which was assumed not
to be the case.
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Furthermore, we would no longer have trouble with e, and e as they are in order now.

But we cannot always add (e,,e) to the causality order because we have to take care of
events a,b € E' satisfying a co’ b and X'(a) >« X'(b). We are not allowed to add (e,,e€) to
the causality order if this implies that a and b become in order. Assume therefore that
there exists a,b € E' such that a co’ b and X’(a) a X'() and assume that adding (e,, e)
to the causality order will coerce a and b to be in order. Assume without loss of generality
that @ <’ ey and e <’ bis the case®. It is easily seen that if we instead added (e, e;) to the
causality order then a and b would still be out of order, or else a co’ b cannot be satisfied
from the beginning. We therefore seek to conclude that X'(e) < X'(e;) must be the case.

As a and b are different from e, we have by definition that X'(a) = X(a) and X'(b) =
X(b). Now, as X is coherent, we conclude that X'(a) > X'(b), and as C'S is a strict
chronicle structure this is the only relation among the four possibilities <, >, >4 and
= satisfied between X'(a) and X'(b). As @ <’ e; and e <’ b we conclude by claim 9
that X'(a) < X'(e;) and X'(e) < X'(b). Due to the transitivity of < we are therefore
constrainted to conclude that X’'(e;) < X'(e) cannot be the case. The only possibility
left is therefore X'(e) < X'(e2).

We can now construct a new structure 05" = (A", T") with A" = (E", <") just by taking
X" as X'and A" as (E',(<"U{(e,e2)})). This new structure satisfies:

(i) A” is a frame, and
(i) Ve/,e" € E" :if €' <" " then X"(€') < X"(e").

Furthermore, we would no longer have trouble with e and e, as they are in order now and
in such a way that ¢ and b is not coerced to be in order.

But have we completed the claim now? No! Once again we have to take into account
events c,d € E' satisfying ¢ co’ d and X'(c) > X'(d). In adding (e,e,) to the causality
relation we must be sure that c co’ d is still satisfied. This we cannot be sure of, and as
we cannot turn e and e; around again (i.e. adding (e,, €) to the causality relation) as this
would coerce a and b to be in order, we have to leave e and e, out of order and must
force X'(e) >« X'(ez) to be the case. Assume therefore that there exists ¢,d € E’ such
that ¢ co’ d and X'(¢) 1 X'(d). Assume also that adding (e, e;) to the causality relation
will make ¢ and d in order. Suppose without loss of generality that e, <’ ¢ and d <’ e.4
By an argument similar to the above where we considered the events a and b it is easily
seen that X(ey) < X(e) neither can be the case. We now conclude that the assumption
X'(e3) A X'(e) is false, as X'(e3) £ X'(e) and X'(e) £ X'(es) imply that X'(ey) sa X'(e)

must be satisfied.

To sum up: If we cannot order e and e, at all, because of events a, b, c and d, then we can

show that X'(e;) >« X’(e) must be satisfied. We can therefore leave the structure C'S’ as
it is.

The above mentioned strategy is supposed to be used for every e € E’ such that e; and e

It could be the case that a = ey, but we are only interested in assuring that events different from
ey stay concurrent if that was the case from the beginning. On the other hand it could very well be the
case that e = b, but this will only simplify the arguments, so we assume that e <’ b is satisfied.

*We assume that ¢ # e; and e # d.
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are in no causal order. The strategy will end as ('S’ is finite, and the final result will be
a structure obeying (%). This completes claim 10. []

We finally need to prove the following claim in order to establish that X’ is coherent.
Claim 11: Ve€ E': 7, € X'(e) iff e € E;.

Proof As X is a coherent chronicle structure it is only necessary to consider the case
e = ez. If e = e; then X'(e) = @ and the result follows at once from the fact that
type(Q) = j and e, € E;. [
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Appendix D

In this appendix we will prove some postulates which were stated in lemma 5.22 without
proofs.

Let f(a), where a € W, denote the result of having substituted p;.; for p; in . Let f
denote the extension of f to sets of formulas defined in the obvious way.

Lemma Let @ € MCS such that type(Q) = i and P = {po,p1,...}. Let finally
Ph = Po A Bi(~po) A Oi(~po). Then f(Q)U {p}} is consistent.

Proof As () is consistent it follows that f(Q) is consistent. Hence if f(Q) U {pi} is
inconsistent then this can only be the case if there exists f(a) € f(Q) such that f(a)Api
is inconsistent. We have

"t p)z‘,) oy ed

po O ~fla

F 7D ~f(a) (R2 as ~f(a) is free of py)
- (i A f(a) (PC)

In the above deduction (PC) is shorthand for Propositional Calculus. We conclude that
7i A f(e) is inconsistent which is absurd as both 7;, f(a) € f(Q) and F(Q) is consistent.
|

Lemma Let @, R € MCS such that type(Q) = i and type(R) = J. Let P = {po,p1,...}.
Finally let R* be a maximal consistent set of formulas satisfying f (R) C R*. Then

(i) If Q@ < R then f(Q)U{]; 8|8 € R*} is consistent.
(ii) If R < @ then £(Q)U{1; 8|8 € R*} is consistent.
(iii) If @ > R then f(Q)U {£2;8 | B € R} is consistent.

Proof We only prove (i) as the others follow by similar arguments. Suppose fla) € f(Q)
and 8 € R*. We only have to show that f(a) A l; B is consistent in having proved that
f(@QuU {l; 8 1B € R} is consistent. As f(a) € f(Q) we have o € Q and by the fact
that @ < R we conclude that 7; o € R. It follows that T; f(a) € R*. As B € R* we have
BAT: f(a) € R*. Astype(R) = j we conclude by thesis (T4.b) that 1; (f(a) A l;B8)€eRT,
hence the formula is consistent. By lemma 5.3 we conclude that f (a) A l; B is consistent.
|
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