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Abstract

We define the class of elimination algorithms. These are algebraic algo-
rithms for evaluating multivariate polynomials, and include as a special case
Gaussian elimination for evaluating the determinant. We show how to find
the linear symmetries of a polynomial, defined appropriately, and use these
methods to find the linear symmetries of the permanent and determinant.
We show that in contrast to Gaussian elemination for the determinant,
there is no elimination algorithm for the permanent.

1 Introduction

Throughout this paper, when we refer to the permanent, we mean the
permanent of an n X n matrix.

There is considerable interest in the computational properties of the per-
manent. The permanent has long been known to be of great expressive
power in encoding combinatorial enumeration problems [Minc, 78]. An
efficient algorithm for evaluating permanents would thus be of substantial
interest.

Valiant’s result that evaluating a 0-1-permanent is #P complete, [Valiant,
79 (i)], formalises the expressive power of the permanent, showing it to be
sufficiently powerful to resolve any combinatorial enumeration problem in
a computationally efficient manner, provided the corresponding existence
problem is in NP. This is not a restrictive condition, and merely asserts
that the structures to be counted should not be hard to recognize. (For
definitions, see [Garey & Johnson, 79].)

However, this result may be a double-edged sword, since it suggests that
the permanent is difficult to evaluate. Indeed, if the well-known conjec-
ture P % NP is proven, then it will follow that there does not exist an
efficient algorithm to evaluate the permanent.

- However, progress towards negative results of much weaker kinds in com-
putational complexity theory has been almost negligible as of the time
of writing. And the basis of the conjecture P # NP is simply that since
no one has been able to invent an efficient algorithm for any of a wide
class of natural problems, the existence of such algorithms is held to be
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improbable. In this paper, we prove the evaluation of the permanent by
any of a wide class of algorithms to be impossible.

Early attempts to understand the computational properties of the perma-
nent mainly fall into two categories. The first was the invention of various
methods of evaluating the permanent, all requiring more than about 2"
arithmetic operations (many of these are given in [Minc, 78]). Of interest
in this relation is the result that if only addition and multiplication opera-
tions are used, then more than about 2" operations are necessary [Jerrum
& Snir, 82]. Furthermore, it can be shown that subtraction is the impor-
tant additional arithmetic operation, and that division is unimportant
([Jerrum & Snir, 82] and [Strassen, 73]).

The second category was various attempts to relate the computational
properties of the permanent to those of the much more tractable determi-
nant, usually giving negative results. This all began when in 1913 Pélya
showed that for n > 3, the permanent could not be obtained from the
n X n determinant by affixing minus signs to an arbitrary sub-set of the
entries. Further to this, in 1961 Marcus and Minc showed that there
exists no linear transformation on n x n matrices for n > 3 that converts
the determinant of each matrix into its permanent [Marcus & Minc, 61].

A related result has been proved in 1988 due to Cai; this shows that if
each entry of a [v/2n] x [v/2n] matrix is taken to be either a variable
x;; or a constant for 1 < ¢, j < n, then the determinant of the resulting
matrix is not equal to the permanent of the n X n matrix [z;;], [Cai, 88].

Such a transformation is called a projection of the determinant to the per-
manent, and if k(n) is the size of the smallest determinant that projects
to the n x n permanent, then k(n) is closely related to the size of the
smallest formula for the n x n permanent [Valiant, 79 (ii)].

When taken in this spirit the result of Cai that k(n) > [v/2n] is very
weak, especially in view of the result that the formula size of the perma-
nent is at least about n® [Kalorkoti, 82].

The results of this paper fall into the second category. We explore the
possibility of more general computational analogies between the perma-
nent and the determinant.



2 Elimination Algorithms

Let f € C[X] where X = (Xi,...,X,)" is a tuple of indeterminates.
Informally, an elimination algorithm for evaluating f works as follows:
Given a = (a1,...,a,)" € C", the values to be substituted for X, the
algorithm selects in some fashion a linear transformation 7' : C* — C”
that has two properties: First, that T'a is a tuple containing a number
of zero values that enables the evaluation of f(T'a) to proceed in some
simple manner. Second, that the use of 7' in general preserves f, i.e.
f(I'X) = f(X). We call such a transformation T, a linear symmetry of
f. Thus the evaluation of f(T'a) yields the desired result f(a).

Gaussian elimination for evaluating the determinant can be interpreted
as an elimination algorithm in this sense as follows: The linear sym-
metries of the determinant that are used are those that correspond to
multiplying the indeterminates arranged in a square matrix on the left
and right by matrices of determinant one. Given a particular matrix
whose determinant is to be computed, a linear transformation is selected
that when applied to these particular inputs, produces a new input with
many zeros (in fact, an upper triangular matrix) whose determinant may
easily be computed. The utility of introducing zeros by means of a linear
transformation may now readily be seen: a formula for the polynomial in
question may be much reduced in size, in this case to a single term.

Clearly if the set of linear symmetries of f is very restricted, then f cannot
have any elimination algorithms. Conversely, if f has a substantial set
of linear symmetries, it seems likely that these could be exploited for
computational purposes. Thus in the next section, we investigate linear
symmetries in general: their properties and how to find them.




3 Linear Symmetries

We generalize the previous section slightly to include more than one poly-
nomial. '

Let f= (fi,...,fs)" € (CIX])™ and let v = (%,...,%)t be a formal

differentiation operator. Let M, (C) be the set of all n x n matrices over
C.

Definition 1 The Linear Symmetries of f,

Ulo
Gg= {(—‘—0 w) | U€M(C),W e Mn(C)
Vx e C" f{(Ux)W = fi(x)}

Gy is therefore an affine closed set in ctm)?, Clearly, G¢ is a semi-
group under matrix multiplication. It is natural to inquire under what
conditions it is a group.

There are two kinds of redundancy that f could have that would prevent
G from being a group. The first is if f, regarded as a function, does not
vary in all directions in C". In this case a linear symmetry may safely
kill vectors in the “bad” directions, and thus be singular.

Definition 2 The Translational Symmetries of f,

Tr={acC"|VXeC" f(X+a)=fX)}
Proposition 1 Ty is a vector space.

Proof

Clearly 0 € Ty and a,b € Ty implies f((X +a) +b) = f(X + a) = £(X),
le.a+b € Tf. Thus it remains to show that Tf is closed under scalar
multiplication.




Suppose a € Ty. We show da € Ty for A € C as follows: choose a
non-singular matrix S € M,(C) satisfying a = Se(® where

e(n) _J1ifi=n
* 7] 0 otherwise

Define g(X) = f(SX) then ™ € Tg.

Define D = C[X},...,X,] then for 1 < i < m, g; € D[X,] so write g; as
gi(Xn). Now ¢;(0) = ¢i(1) = gi(2) = ... = g;(IN) for any N € N. Thus
gi(X,) — ¢i(0) has roots including N over D. However, D is an integral
domain, and so all » € D[X,]\{0} have only finitely many roots. Thus
9i(X5) = 6i(0) for 1 < i < m,i.e. g; € D (g; does not depend upon X, at
all). Thus le(™ € Tg for any A € C, since g is independent of X,.

vx  g(x+ de() = g(x) and g is f composed with S,

= vx f(S(x+ de™)) = f(Sx)
= VSx f(Sx+ Xa) = f(Sx)

= Vx f(x+ Xa) =f(x)

= la € Tf

Thus informally, if dim(T¥) > 0 then G may contain some singular ma-
trices.

The second kind of redundancy is that £ may be linearly dependent over
C. In this case a linear symmetry may also be singular.

Definition 3 The Linear Dependencies of f,

Dg={acC"|a -f=0}

D¢ is clearly a vector space.




Proposition 2 Gy is a group iff dim(Tf) = dim(Dg) = 0.

Proof

(«=)

It is sufficient to show that each element of G'f has an inverse as a
matrix, since it is obvious that such an inverse will then certainly

Ul o
0w

singular by contradiction. Thus there are two cases: either U or W
is singular. If U is singular then there exists an a with Ua = 0.
Thus, f(X) = f{(UX)W = f(U(X + a))W = f/(X + a). Thus,
dim(Tg) > 0, a contradiction.

If W is singular, then there exists a b with Wb = 0. Thus f(X)b =
f'(UX)Wb = 0. Thus dim(Dy) > 0, a contradiction.

be a member of Gg. Let ( ) be a member of Gy, assumed

If dim(T§) > 0, then there exists a # 0, such that f{X + a) = £(X).
Now choose a basis for C" where a is one of the base vectors. We
may now choose a matrix U satisfying Ua = 0 and also satisfying
Ub = b for any other base vector b in the basis. Now write any
vector X = Aa-+c where c is a linear combination of the other base
vectors, and therefore satisfies Uc = ¢. Then

f(UX) = f(U(Aa + c)) = f(c) = f(Aa + ¢) = f(X),

the last step following because a is a translational symmetry of f.

Thus, ( (O] IO )€ Gg and therefore Gy is not a group, since U is

singular.

Alternatively, if dim(Dg) > 0, then there exists b # 0 satisfying
f'b = 0. Now choose a basis for C™ including b and choose a matrix
W satisfying Wb = 0 and Wc = c for any other base vector. Thus,
for any vector y = Ab + a where a is a linear combination of the
other base vectors, we have f'Wy = £'W (Ab + a) = f'a = f'(Ab +
a) = f'y, the last step following because b is a linear dependency
of f.

I, 0 .
Thus f'W = f* and ( 0 )€ G and therefore Gygis not a group,

since W is singular. |




If dim(Dy) = dim(T¢) = 0 then we say that fis irredundant.

From a practical point of view D¢ can be obtained simply by solving
linear equations. Ty can also be found by solving linear equations by
using the following:

Proposition 3 Ty={aec C"|(a-vy)f=0}.

Proof
acTe=laecTy=fx+Xa)-f(x)=0
= limy, A
= (a-y)f=0

Conversely (a - v)f = 0 implies Vk € N* L(a.y)*f= 0. Thus

deg f 1 X
But this is just the (finite) Taylor expansion of f(x + a) — f(x). Thus
acTy |

Thus if fis irredundant then Gy is a Zariski-closed linear algebraic sub-
group of GL(n+m,C). As a consequence of this, Gg= G%U G%U ..U G’E-
is a non-intersecting union of irreducible affine closed sets (the compo-
nents of G'g) where k is finite and may be zero. All of the G’lf are smooth

(indeed are analytic manifolds), and G% contains the identity, and is a

normal subgroup of Gy, the Glf being cosets of G% in Gy. G% consists of

all elements of G'¢ connected by a path to the identity matrix within G,
see [Shafareyevi¢, 77] and [ Borel, 69]. Therefore Gy is generated by G%
and a finite number of additional matrices. We will show how to obtain
G% explicitly.

As is usual with Lie groups, this is obtained by applying the exponential
function to the vector space of “infinitesimal transformations” associated

with G% [Miller, 73].




Definition 4 The tangent space to the Gy identity is

Vo= {0 | T + AP +B) = £1(X) + 0()

This is precisely the external definition of tangent space used in algebraic
geometry or differential geometry (see e.g. [Mumford, 76]) i.e. perturba-
tion vectors of O(e) about I which give only O(e?) deviation from the
surface.

Clearly V¢ is a vector space, and since G% is smooth, dim(V}) = dim(G%).

Proposition 4 Let exp: M,;n(C) —» M,.n(C) be the exponential
map, (defined by power series that converges everywhere), and let angle
brackets denote closure under matrix multiplication (group multiplica-
tion). Then < exp(Vy) >= G§.

Proof
Routine. |

It follows that if we can find Vf, then we can find G% ; however, Vg can
be found by simple linear algebra using the following:

O i

Proposition 5 (——}%) € Vyiff (Ax) - vf+ B'f= 0.

Proof
The O(e) part of (£/((I +eA)x)(I +€eB) — £/(X))! is ((4x) - 7+ Bif)e. |

We conclude that to find the computationally useful linear symmetries of
f, we first find T and Dy by solving linear equations, and check thereby
that the linear symmetries form a group. We then find V¢ by solving
linear equations and apply the exponential map.




4 Applications to the permanent and the
determinant

4.1 Notation

The permanent and determinant are usually written as polynomial func-
tions of a matrix. Since the previous theory was developed to deal with
functions of a column vector, we must provide a means of so encoding
the permanent and determinant.

Let X be an n X n matrix with entries #;;. Let X.; denote the j’th column
of X. Define vec(X) = (X*4|X%,|...|X%,)" = x, i.e. X consists of the
columns of X stacked one on top of another in order. We now define
per(x) = per(X) and similarly for the determinant.

Finally we introduce the Kronecker product ®: If A and B are n x n
matrices then A® B is the n? xn? matrix consisting of the nxn blocks a;; B
arranged in the natural order, where the a;;s are the entries of the matrix

A. Under this regime, we have the usual identity vec(AX B) = (B!®A4)x.

4.2 Results

Theorem 1 Provided n > 2, the n X n permanent has

Ul o _ _
0 __ — _ -1
G, = {(—*‘0 =) U =484 W =det(AR),

A,A n xn non singular diagonal matrices }

and furthermore, dim(G?,,) = 2n — 1.

per

Theorem 2 The n x n determinant has

U] 0
Glu= (o) 1V = 40 B, W = aei(4B)",

A,B n x n non singular matrices}

and furthermore, dim(GY,,) = 2n? — 1.
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Note: These are simply the well-known symmetries of the permanent
and determinant (apart from those that arise from permuting the vari-
ables, some of which are not in G°). The interest of the theorems are that
these are the only symmetries in G°. Clearly the paucity of symmetries
of the permanent shows that it can have no elimination algorithms.

Proof of Theorems 1 and 2

We first note that both per(x) and det(x) are irredundant. This follows
because a single non-zero polynomial cannot be linearly dependent, thus
dim(Dype;) = dim(Dyet) = 0. Furthermore, per and det have no transla-
tional symmetries because by proposition 3 these are linear dependencies
among all the partial derivatives. The partial derivatives are merely all
the (n — 1) X (n — 1) sub-permanents and sub-determinants respectively.
These cannot be linearly dependent over C since no two of them have any
terms in common. Thus dim(T}.,;) = dim(Tyet) = 0. Thus by proposition
4, Gper and Ggyet are groups.

We now use proposition 7 to determine V., and Vier-

M

0
(0 m)evi)er

where M is n? x n? and mis 1 x 1 iff

n

n 0
> (X Miju wrg—

i,7=1 k,l=1 69%

per(x)) +m - per(x) =0 (%)

(The subscripts are doubled because the z;; that are the entries of x have
two subscripts.) An analogous condition goes for V.

The condition (x) implies a set of linear constraints that the M;; 1 and m
must satisfy: namely, that the coefficient of each monomial in the z;; in
the expansion of (x), must vanish. We now solve these linear equations
explicitly.

There are essentially three kinds of monomials in (x). The first kind are
those monomials that occur in the permanent itself. These originate from
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two sources: first, from the term m per(x) and second, from the various
expressions of the form M;ji5 xij5— 8 per( ). This is because the effect of

the operator xp;=— 6 - on a monomlal in the permanent is either to yield
zero if the monom1al does not include z;; or to “delete” x;; “replacing” it
with x;, since the monomials are all multilinear. Thus the only way that
a permanent monomial may be obtained is if (k,l) = (4,7), since each
such monomial contains exactly one entry in each row and column of X.

The linear constraints imposed originate therefore from the equation

m
2.(Miji; + —)zi; Xi; =0
ij n
where X;; = 52— per(x) and we use the identity per(x) = 15 z;;X;;.
Equating the coefficient of the generic monomial [J; Tis(;) to zero gives

m
> (Mio(iyio(sy + ;) =0

2

The general solution to these constraintsis M;;;; = a;+b; and m = — T;(a; + b;)
where a; and b; are 2n arbitrary parameters although only 2n — 1 are in-
dependent, since if ¢ is any constant (a; + ¢) and (b; — ¢) yield the same
values for M;;;; and m. A similar argument goes for the determinant.

The second kind of monomial occurs in the various expressions of the
form M, kla:kla per(x) where ¢ # k and j # l. These monomials have
the form of a permanent monomial where a variable x;; has been deleted
and a variable xj;, that is neither in the same row nor column of X as
x;j, has been inserted. Clearly, such a monomial arises from a unique
permanent monomial by the action of a unique xy;+%— 3 . Thus condition
(%) implies that all M;; with ¢ # k and j # [ must be zero. Note that
a similar argument goes for the determinant.

The third type of monomial occurs in the various expressions of the form
M :c,la v per(x) where j # [ and of the form M;;; cck]a per( ) where
t # k. The latter expressions are related to the former expressmns by
transposition of X, under which per and det are invariant, thus we will
investigate only the former. The monomials obtained by the action of
mila_zi; are of the form of a permanent monomial in which z;; has been
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deleted and a variable in the same row of X has been inserted, namely ;.
Such a monomial could have been obtained from precisely two distinct
permanent monomials as illustrated by the following diagrams.

X indicating the final monomial.
J \

X with its columns appropriately
permuted so that an arbitrary
permanent monomial lies on the
diagonal.

indicates a deleted variable
* indicates an inserted variable

X indicating a distinct perma-
nent monomial, that differs by j I
a single column transposition.
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Thus, in the case of the permanent we have the equations
Mija+ Myjm =0

for any ¢,7,1 and r where j # [, since the above holds for an arbitrary
monomial.

In the case of the determinant we have M;;; — M, ;. = 0 for any 1, 7,1
and r where j # [. The sign difference arises from the fact that the
two monomials in the diagram are of opposite parity and therefore have
opposite sign in the determinant. It is here that the major difference
between the permanent and the determinant becomes apparent.

The constraints for the determinant merely provide that given any j # I,
M;ji = M, for any 7 and r;i.e. M;;;3 = a;; where aj for j # l are n? —n
arbitrary parameters. (It is natural in this case to take the n arbitrary
parameters a; from the analyses of the first kind of monomial to be a;;.

We also have M;;; = by, from the analogous “transposed” constraints,
and we take b;; to be b;.)

Thus the general solution for the determinant involves 2n? arbitrary pa-
rameters (although only 2n%—1 are independent) and is M;; 1 = dirajr + 651bs,
and m = — ¥;(a; + by).

The situation for the permanent is very different. Instead of all the
M;; 1 for a given j # [ being equal, they are all negations of each other.
Clearly, if there are more than two of them, then this implies they are
all identically zero. Thus for n > 2 the general solution for the per-
manent is M;;;; = a; + b; and all other M;;j are identically zero; i.e.
Mijn = 6abj(a; + b;) and m = —Yi(a; + b;). We have now found Vper
and Vj., and they are of dimensions 2n — 1 and 2n2 — 1 respectively.

Now, by proposition 6, we merely have to apply the exponential map to
obtain Gger and GY.;. For the determinant we have M =T @ A+ B® I
where I is the n X n identity matrix and A and B are n X n ma-
trices of arbitrary parameters. We also have m = —Tr(4) — Tr(B).
Thus exp(M) = exp(A) ® exp(B) which is the Kronecker product of
two arbitrary non-singular matrices, since exp is onto GL(n,C), and
exp(m) = det(exp(A) exp(B))~!. Thus since C ® D (vec(X)) = D!XC,
we have theorem 2. Theorem 1 follows analogously except that only the
diagonals of the arbitrary matrices are non-zero. |

13



5 A Miscellany of Further Results

Having found G° for the permanent and the determinant, a number of
other observations are now easy to prove.

The next theorem is a formalization of the now intuitively obvious fact
that since GJ., and GY,, are not isomorphic, then the permanent cannot
be obtained from the determinant by the substitution of non-singular

linear forms. This fact was first proved in [Marcus & Minc, 61].

Definition 5 Similarity of f and g: f is similar to g (f = g) iff there

S0

exist non-singular matrices S, T' (i.e. det( 0T ) # 0) such that

f1(SX)T = g*(X).

Proposition 6 The relation = is an equivalence relation on (C[X])™,
and f = g (for irredundant f, g) implies G¢ & Gg (isomorphism as groups
and affine closed sets). In fact, G¢ and Gg are conjugate subgroups of
GL(n+m,C) and V¢ = Vg (conjugate Lie algebras).

Proof
Routine. |

This provides a simple criterion for similarity of polynomials of non-trivial
symmetry.

Theorem 3 [Marcus & Minc, 61]

There is no linear transformation S such that det(Sx) = per(x), for
n > 2.

Proof
Such an § cannot be singular, since that would imply that per(x) had a
non-zero translational symmetry, which by proposition 3 is false.
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However, the existence of a non-singular S satisfying det(Sx) = per(x)
implies det = per and thus, by proposition 6, G5, = Gger. This is
impossible for n > 2 by theorems 1 and 2, since the groups have different

dimensions. |

Another useful property possessed by the determinant is the existence of
a bilinear product of matrices (just ordinary matrix multiplication) that
preserves the determinant, as expressed by the identity

det(AB) = det(A) - det(B). However, the permanent has inadequate
symmetry to support such a product.

Theorem 4 For n > 2, there is no bilinear function
¥ : M,(C)* — M,(C)

satisfying per(¥ (A4, B)) = per(A) - per(B) for all A,B € M,(C).

Proof

We assume, in contradiction, that there is such a bilinear function. We de-
fine a matrix Uy, parametrized by A as follows: Uy vec(X) = vec(¥(4, X)).
Clearly, Uy, is linear in A and furthermore, per(Usx) = per(4) - per(x),
and thus if per(4) # 0 then ( [{)A { per(?él)‘l ) € Gper- Therefore Uy is
non-singular for all A with per(A) # 0. We now show that U, as a func-
tion of A is injective. Assume Uy = Uy then ¥(4,X) = ¥(4', X) and
since ¥ is bilinear this implies ¥(A4 — 4", X) = 0.

By a precisely similar argument to that used to establish that Uy is
nonsingular when per(A4) # 0, it follows that by choosing X = B where
per(B) # 0, that ¥(4 — A’ B) = 0 implies A — A’ = 0.

Since A may range over an n? dimensional space, it follows that U4 must
do likewise. If A is sufficiently close to the identity, then per(4) # 0, and
Us| 0

0 | per(4)!

this implies that dim(Gpe) > n? since ( ) is in Gper.

This is in direct contradiction to Theorem 1, for n > 2. ||
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6 Conclusion

We have shown that the continuous linear symmetries of the permanent
and determinant are exactly and only those that have been known his-
torically. The permanent is barren of interesting symmetries and has
therefore been shown to lack a wide variety of properties that are pos-
sessed by the determinant. In particular, the permanent is not computed
by any kind of elimination algorithm.
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