ISSN 0105-8517

Substitution Polymorphism for
Object-Oriented Programming

Jens Palsberg
Michael I. Schwartzbach

DAIMI PB - 305
February 1990

COMPUTER SCIENCE DEPARTMENT | |—[—|~[|
AARHUS UNIVERSITY -

Ny Munkegade, Building 540 % i
DK-8000 Aarhus C, Denmark -]: !

Substitution Polymorphism for
Object-Oriented Programming

Jens Palsherg * Michael I. Schwartzbach f

Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract

We introduce substitution polymorphism as a new basis for typed object-
oriented languages. While avoiding subtypes and polymorphic types, this
mechanism enables optimal static type-checking of generic classes and poly-
morphic functions. The novel idea is to view a class as having a family of
implicit subclasses, each of which is obtained through a substitution of
types. This allows instantiation of a generic class to be merely subclass-
ing and resolves the problems in the EIFFEL type system reported by Cook.

All subclasses, including the implicit ones, can reuse the code implementing
their superclass.

1 Introduction

This paper proposes a new and surprisingly simple basis for typed object-
oriented languages, called substitution polymorphism.

With this mechanism, together with inheritance, we obtain a type sys-
tem without subtyping, type variables or second-order entities. Even so,
it enables static type-checking while generalizing parameterized classes,
allowing a functional programming style with polymorphic functions, and
solving the problems in the the EIFFEL type system that were reported by
Cook [5]. It also separates the issues of polymorphism and heterogeneous
data structures.

Inheritance and substitution polymorphism complement each other as
subclassing mechanisms, see figure 1. Inheritance allows the construction

*Internet address: palsberg@daimi.dk
Hnternet address: mis@daimi.dk

of subclasses by adding variables and procedures, and replacing procedure
bodies. Substitution polymorphism allows the selection of subclasses by
replacing types of variables and parameters. Those subclasses obtained
by inheritance we call ezplicit, and those obtained by substitution we call
implicit.

add variables and procedures

l—v replace procedure bodies

inheritance Explicit subclass
Class

substitution ~ Implicit subclass

l— replace types

Figure 1: Inheritance and substitution.

In substitution polymorphism, a class yields a single type, identified
by its name, and an object has only the type denoted by its class.

The construction of a subclass, using either inheritance or substitu-
tion, enjoys the following three properties.

e Stability. Equal types remain equal.

¢ Monotonicity. The type (i.e., class name) of a variable or param-
eter will only be substituted by subclass names.

¢ Reusability. The code compiled from the superclass can be reused.

In the following section we outline a core language without polymor-
phism. In section 3 we discuss polymorphism in object-oriented pro-
gramming in general and clarify the differences between substitution,
parametric, and inclusion polymorphism. In section 4 we develop a no-
tation for the implicit subclasses. In section 5 we show how to program
with substitution polymorphism and explain its relation to inheritance,
genericity, declaration by association, and virtual classes, and note that
it solves the problems in the EIFFEL type system that were reported

2

by Cook [5]. In section 6 we show that polymorphic procedures declared
outside classes can be provided as a shorthand, allowing a functional pro-
gramming style. In section 7 we discuss the separation of polymorphism
and heterogeneous data structures, and show that assignments involving
different types are only needed when programming the latter. In section
8 we give the complete type-checking rules and state a soundness and
optimality result.

Throughout, we use examples which are reformulations of some taken
from Meyer’s paper on genericity versus inheritance [16], Sandberg’s pa-
per on parameterized and descriptive classes [21], and Cook’s paper on
problems in the EIFFEL type system [5].

2 The Core Language

To avoid purely syntactic issues, we use a core language with PascaL-like
syntax and informal semantics, inspired by SiMuLA [9], C++ [26], and
E1rFEL [17]. The major aspects, except polymorphism, are as follows.

Objects group together variables and procedures, and are instances
of classes. Classes are explicitly organized in a subclass hierarchy where
a subclass inherits its superclass and may add variables and procedures,
and reimplement procedure bodies. The built-in classes are object (the
root of the subclass hierarchy), boolean, integer, and array. The last
three cannot be inherited. Variables and parameters must be declared
together with a type, which is a class name. In assignments and parameter
passings, types must be equal. Recursive occurrences of the superclass
name are in a subclass implicitly substituted by the name of the subclass.
In procedures returning a result (functions), the variable Result is an
implicitly declared local variable of the procedure’s result type; its final
value becomes the result of a call. When a variable is declared, an instance
of the variable’s class is notionally created. In an implementation, heap
space is only allocated when dynamically needed, i.e., the first time the
instance receives a message. This technique ensures that variables are
never nil; we also avoid a new (create) statement. Finally, class synonyms
are introduced using the transparent let name = class-name.

Let us now examine three approaches to introducing polymorphism
into this core language.

3 Polymorphism

Object-oriented programming strives to obtain reusable software com-
ponents. A key technique for doing this is to use languages which al-
low polymorphism. SMALLTALK’s objects and methods, for example, are
polymorphic because an object of a subclass can appear wherever an
object of one of its superclasses is required. Flexibility is achieved by de-
ferring to run-time all checks of whether objects understand the messages
sent to them (instance variables are not declared with a type) [11].

Explicit type information makes programs easier to understand and
allows a compiler to catch type errors and generate optimized code. Our
core language, for example, can be statically type-checked but does not
allow polymorphism because types must be equal in assignments and
parameter passings.

In typed languages, parametric and inclusion polymorphism are the
two major approaches to “universal” polymorphism, i.e., where proce-
dures may be applied to arguments of an infinite number of types [4].
These techniques have been the basis of most attempts to introduce type
polymorphism into object-oriented languages—hardly surprising in view
of their acknowledged success in other applications.

The first approach is parametric polymorphism where procedures and
classes have type parameters which may be instantiated to specific argu-
ment types [18]. Together with parameterized classes, Sandberg intro-
duces descriptive classes as an alternative to subclassing [21]. Descrip-
tive classes are used to avoid passing procedure parameters. Ohori and
Buneman combine parameterized classes and inheritance with static type
inference, though disallowing reimplementation of inherited procedures
[19]. Language designs with both parameterized classes and inheritance
include E1rrFEL [17], TRELLIS/OWL [22], and DEMETER [14]. In all cases,
a parameterized class yields a polymorphic type, i.e., a second-order en-
tity which may be instantiated to specific types.

The other approach is inclusion polymorphism where objects may
have more than one type [3]. In object-oriented languages, type systems
are typically chosen such that a type may be a subtype of (conform to)
other types. Objects are then viewed as having both the declared type
and its supertypes. In our core language we use classes as types. It
has been argued that classes and types should be distinct notions since
classes describe implementation and types describe specification [25, 2].

4

In particular, it has been shown that if we use classes as types then a
subclass need not yield a subtype [6]. Suggestions for fixing this by giving
additional or alternative conformance rules have been given by Horn [1 2]
(the notion of enhancement) and Cook [5] (in connection with the EIFFEL
type system), but unfortunately the rules seem to be too complicated to
fall into the mainstream of type systems. A type system of explicit object

interfaces, independent of classes, has been proposed by Canning, Cook,
~ Hill, and Olthoff [2]. Object interfaces can be parameterized and conform
to others.

A significant drawback of parametric polymorphism is that polymor-
phic type instantiation does not correspond to subclassing. This makes
it awkward to, for example, declare a class ring, then specializing it to
a class matrix, and finally specializing matrix to a class booleanmatrix.
A significant drawback of inclusion polymorphism based on subtyping is
that the recursive types normally used in object-oriented programming
have very few useful subtypes, due to the problematic contravariance of
function types; for several demonstrations of how this hampers program-
ming we refer to [8]. For example, one can not always obtain a subtype
of a recursive record type by adding a field.

Recently, Walter Hill’s group at HP Labs introduced the notion of F-
bounded polymorphism [8, 2, 6]. It is a generalization of bounded quan-
tification in which the bound type variable may occur within the bound.
It characterizes types with similar recursive structure—types that need
not be in subtype relation at all. The approach provides an improved typ-
ing of polymorphic procedures, compared to traditional bounded quan-
tification [4], but still suffers the drawback of parametric polymorphism
that polymorphic type instantiation does not correspond to subclassing.

Substitution polymorphism provides a new approach that has none of
these drawbacks. With this technique, a class yields a single type, and an
object has only the type denoted by its class. But every class also yields a
family of implicit subclasses, all of which are obtained by substitutions. It
is now possible to emulate the instantiation of a parametrized subclass by
the selection of an appropriate implicit subclass. This allows a gradual
specialization as well as a post-hoc parametrization of classes, both of
which are very supportive of real-life software developments.

A summary of the differences between parametric, inclusion, and sub-
stitution polymorphism is provided in figure 2.

Parametric Inclusion Substitution

polymorphism polymorphism polymorphism
An object has a single type type + supertypes single type
A class yields a | polymorphic type single type single type +

family of subclasses

Figure 2: Three approaches to polymorphism.

4 Substitution Polymorphism

An explicitly constructed subclass inherits its superclass and may add
variables and procedures, and reimplement procedure bodies. The effect
can be explained in terms of the behavior of an (imagined) interpreter
[11, 7]. If a procedure p in an object x is called then the interpreter must
find the appropriate code to execute. This is done by finding the declared
type of x and, starting in the corresponding class, searching towards object
for an implementation of p.

When constructing such a subclass, one may not alter the types of
variables or parameters. Such modifications are, however, realized by the
implicit subclasses. They encompass all possible versions of the original
class where types (i.e., class names) have been substituted by subclass
names in a way such that equal types remain equal. By the way, notice
that also inheritance lets equal types remain equal because all occurrences
of the superclass name are substituted by the subclass name.

The effect of an implicit subclass can also be explained in terms of
the interpreter’s behavior. The search for p will no longer start in the
class corresponding to the declared type of x but rather in the class cor-
responding to its substituted type.

The names of the implicit subclasses are not known to the program-
mer. In general, every class will have infinitely many implicit subclasses.
It may be useful to think of their names as, say, combinations of the orig-
inal class name and serial numbers. To enable the programmer to make
use of these implicit subclasses, we shall develop a convenient notation for

6

selecting the desired ones. The details of this development are presented
in [20].

Definition 1 A class name A is said to occur in a class C if

1) it appears as the type of a variable or parameter; or
2) it occurs in a class corresponding to one of these types.

Notice that the definition is recursive.l

Proposition 1 Assume that the class name A occurs in the class C, and
that B is a subclass of A. Then there exist implicit subclasses of C in
which all occurrences of A have been substituted by B. Among these,
there is a least specialized one from which all the others can be obtained
through further specializations.

Of course, many other substitutions may have been necessary to maintain
equality of types in these implicit subclasses.

Definition 2 If B is a subclass of A then C[A «— B] denotes the least
specialized implicit subclass of C in which all occurrences of A have been
substituted by B. If A does not occur in C then it denotes C itself.

As we shall see, this notation is easy to use.

Proposition 2 There is an algorithm that, given A, B, and C, computes
the substituted types in C[A « B].

Thus, a compiler can select the appropriate implementation when trans-
lating procedure calls.

Proposition 3 All implicit subclasses of C can be expressed as
C[A; « By]...[A, « B,], for some A; and B,.

Hence, we can base our language on the above notation without limiting
ourselves.

Proposition 4 For any two notations of the above form, there is an
algorithm to decide if the two implicit subclasses they denote are in a
subclass relation to each other.

This ensures that we need never concern ourselves with any concrete
names of the implicit subclasses.

class C1 inherits object
var x,y: object
end
let C2 = Cl[object « integer]

Figure 3: Basic substitution polymorphism.

class D1 inherits object
var c: C1
proc p(arg: object)
begin c.x:=arg end
end
let D2 = D1[C1 « C2]

Figure 4: Derived substitutions.

For a simple example, see figure 3. C2 is a name for the implicit
subclass of C1 where x and y have type integer. Clearly, one would obtain
an implicit subclass with any class name in place of integer.

As mentioned, seemingly simple substitutions may lead to other de-
rived substitutions that are required to maintain equality of types. For
example, see figure 4. The declaration of D2 is legal because C2 is a
subclass of C1. If types are to remain equal in the assignment then object
must be substituted by integer. The notation D1[object « integer| denotes
the same implicit subclass of D1 as does D1[C1 « C2] and, accordingly,
they yield the same type.

In the following sections we show how to use substitution polymor-
phism when programming.

5 Programming with Substitutions

In this section we show how substitutions help to solve a number of
standard problems from the literature.

Consider for example the stack classes in figure 5. In stack, the ele-
ment type is object, and likewise the formal parameter of push and the
result of top are of type object. The assignments in stack are therefore
legal. Class booleanstack and integerstack are two implicit subclasses of

!The propositions in this section can all be formalized in terms of the occurrence tree of a
class, defined in analogous manner.

class stack inherits object
var space: array of object
var index: integer
proc empty returns boolean
begin Result:=(index=0) end
proc push(x: object)
begin index:=index+1; space[index]:=x end
proc top returns object
begin Result:=space[index] end
proc pop
begin index:=index-1 end
proc initialize
begin index:=0 end
end
let booleanstack = stack[object « boolean]
let integerstack = stack[object « integer]

Figure 5: Stack classes.

stack. For example, booleanstack is the class obtained from stack by
substituting all occurrences of object by boolean, leaving all assignments
legal. Thus, stack acts like a parameterized class but is just a class, not
a second-order entity. This enables gradual instantiations of “parameter-
ized classes”, as demonstrated in the following examples.

Consider next the ring classes in figure 6. Again, ring acts like a
parameterized class, but it is more complicated than stack because it
yields a recursive class (ring appears in the definition), and because the
definitions of the procedures are deferred. The class booleanring is then
defined as a subclass of one of class ring’s implicit subclasses. This il-
lustrates how substitution polymorphism coexists with and complements
inheritance. In the implicit subclass of ring all occurrences of object are
substituted by boolean, and in class booleanring the inherited procedures
are implemented appropriately. Note that the implicit substitution of
ring by booleanring means that we do not need the association type like
Current as found in EIFFEL [16, 17].

Consider finally the matrix classes in figure 7. Again, the class matrix
is defined as a subclass of one of class ring’s implicit subclasses, whose
procedures it implements appropriately. Note that we, as opposed to

class ring inherits object
var value: object
proc plus(other: ring)
proc times(other: ring)

proc zero
proc unity
end
class booleanring inherits ring[object «+ boolean]
proc plus
begin value:=(value or other.value) end
proc times
begin value:=(value and other.value) end
proc zero
begin value:=false end
proc unity
begin value:=true end
end

Figure 6: Ring classes.

EIFFEL, do not need a dummy variable of type ring serving as an an-
chor for some association types [16, 17]. Class booleanmatrix is identified
as the implicit subclass of matrix with occurrences of ring substituted
by booleanring, and consistently all occurrences of object substituted by
boolean. Class matrixmatrix is analogous.

At this point, it may be worthwhile to review what the implicit sub-
class of ring denoted by ring[object « array of array of ring] looks like. For
purposes of illustration we will assume that the name of this subclass is
known, and is in fact ring000127. It will then have a definition as found
in figure 8.

The BETA language offers virtual classes as an alternative to generic
types [15, 13]. Virtual class attributes may be substituted by descendants
in subclasses, thus simulating substitution polymorphism. The explicit
naming of virtual classes, however, allows inconsistent substitutions, e.g.,
in the same subclass some object’s may be substituted by integer while
others get substituted by boolean and still others do not get substituted
at all. As seen in figure 7, a “high-level” substitution may imply other,
derived substitutions. Using virtual classes, the programmer must de-

10

class matrix inherits ring[object « array of array of
ring]
proc plus
var i,j: integer
begin
for i:=1 to arraysize do
for j:=1 to arraysize do
valuefi,j].plus(other.valueli,j])

end
end
let booleanmatrix = matrix[ring «— booleanring]
let matrixmatrix = matrix[ring « matrix]

Figure 7: Matrix classes.

class ring000127 inherits object
var value: array of array of ring
proc plus(other: ring000127)
proc times(other: ring000127)
proc zero
proc unity

end

Figure 8: A look behind the curtains.

termine all of these substitutions and specify them individually. Both
virtual and parameterized classes require a prior knowledge of which com-
ponents of a class may be eligible for later specialization. Substitution
polymorphism allows for the post hoc parametrization, or virtualization,
of a class.

Two aspects of substitution polymorphism are very compatible with
the real-life process of software development. Firstly, every type occurring
in a class can be viewed as a parameter for a bounded parametric class,
and the programmer can through substitutions decrease these bounds dy-
namically. This provides a method for refining old generic classes to new
generic ones which may be further specialized by subsequent subclass-
ing. This is illustrated by the above development of rings and matrices.
Secondly, the ability to view every type as a potential parameter should

11

be very helpful. Not everything can be predicted in advance, and it is
very awkward to go back and restructure an existing class hierarchy to
introduce generic classes. The ability to perform arbitrary substitutions,
rather than predicted instantiations, greatly increases the programmer’s
room for maneuvering. The simple rule of thumb to never use a more
specialized class than is necessary will ensure the maximal possibilities
for later, perhaps unforeseen, code reuse.

Substitution polymorphism solves the problems in the EIFFEL type
system that were reported by Cook [5]. Using substitution, attributes
cannot be redeclared in isolation in subclasses, there are no asymmetries
as with declaration by association, and generic class instantiation has
an equivalent formulation which yields a subclass. Our solution to the
problem connected with contravariance of function types and assignment
is presented in the section on heterogeneous data structures.

Substitution polymorphism not only allows classes to be polymorphic,
it also provides polymorphic procedures which we consider next.

6 Polymorphic Procedures

Polymorphic procedures declared outside classes can be provided through
substitution on-the-fly. This unifies to a large extent object-oriented and
functional programming, although procedures cannot be returned as re-
sults. Our approach differs from that of Goguen and Meseguer [10] by
dealing with imperative features, such as assignment, but not relational
(logic) programming language features. '

Consider, for example, the swap procedure in figure 9.

proc swap(inout x,y: object)
var t: object
begin t:=x; x:=y; y:=t end

Figure 9: Swap procedure.

When swap is called with two objects of the same type, the compiler
will infer that it would have been possible to write the program in the
following way:

1) Place the procedure in an auxiliary class with no other procedures
or variables.

12

class order inherits object
var value: object
proc equal(other: order) returns boolean
proc less(other: order) returns boolean

end
class integerorder inherits order[object « integer]
proc equal
begin Result:=(value=other.value) end
proc less
begin Result:=(value<other.value) end
end

proc minimum(x,y: order) returns order
begin if x.less(y) then Result:=x else Result:=y end

Figure 10: Order classes and a minimum procedure.

2) Identify an implicit subclass of the auxiliary class where object is
substituted by the type of the actual parameters.

3) Create an object of the subclass.

4) Perform a normal call to the object’s procedure.

This inference is algorithmically decidable. Note that, in general, each
parameter suggests a substitution. The compiler checks that they do not
conflict, combines them, and performs the combination. Thus, such poly-
morphic procedures can be called without sending a message to an object.
Actual parameters can be instances of subclasses of the formal parameter
types, but if two formal parameter types are equal then the correspond-
ing two actual parameter types must equal as well. This parallels the
developments in [23, 24].

Consider next the order classes and the minimum procedure in fig-
ure 10. Instances of order may be compared for equality and inequality,
though in an asymmetrical way, as is usual in object-oriented program-
ming. The minimum procedure is declared outside class order, is symmet-
rical, and takes two arguments of the same type provided the arguments
are instances of a class which is a subclass of order. This gives an effect
similar to bounded parametric polymorphism [4].

13

class list inherits object
var empty: boolean
var head: object
var tail: list
end
proc cons(x: object; y: list) returns list
begin
Result.empty:=false;
Result.head:=x;

Result.tail:=y
end
let orderlist = list[object «— order]
proc insert(x: order; y: orderlist) returns orderlist
begin

if y.empty or x.less(y.head)
then Result:=cons(x,y)
else Result:=cons(y.head,insert(x,y.tail))
end
proc sort(x: orderlist) returns orderlist
begin
if x.empty
then Result:=x
else Result:=insert(x.head,sort(x.tail))
end
let integerorderlist = orderlistjorder «— integerorder]

Figure 11: List classes and a sort procedure.

As a final example, consider the list classes and the (insertion) sort
procedure in figure 11. We have obtained the functional programming
style by declaring procedures outside classes. The sort procedure takes
an argument whose class is a subclass of orderlist. It gives back a list of
the same type with the components of the argument sorted in ascending
order.

These examples demonstrate the wide range of applications that are
possible using substitution polymorphism while enabling static type-check-
ing. We have shown that polymorphism can be obtained without resort-
ing to assignments between unequal types. Programming heterogeneous

14

data structures, however, demand a further extension of the core lan-
guage, considered in the following section.

7 Heterogeneous Data Structures

It turned out that assignments between unequal types were never needed
to achieve polymorphism or to construct generic classes. However, such
assignments are clearly required to build heterogeneous data structures.
This suggests that polymorphism and heterogenity are independent is-
sues.

To obtain a general-purpose language, we now introduce “heteroge-
neous” variables, i.e., variables which may hold not only instances of
the declared class but also those of its subclasses. They are declared
as var name:< type. Such variables are needed for the programming
of databases, for example, where instances of different classes are stored
together. While allowing more programs, such variables disables compile-
time type-checking. Run-time type-checking under similar circumstances
were first used in SIMULA implementations, and later adopted in imple-
mentations of C4++ and BETA.

class list inherits object
var empty: boolean
var head:< object
var tail: list

end

Figure 12: A heterogeneous list class.

The list class in figure 12 is heterogeneous, since it contains a hetero-
geneous variable. All subclasses of list are again heterogeneous. When
a class is heterogenecous then all variables of the corresponding type are
automatically heterogeneous themselves. All polymorphic procedures de-
clared outside classes can, however, be reused. Thus, the sort procedure
does not have to be altered in any way.

Let us reexamine (a reformulation of) one of the EIFFEL programs
that Cook provided in his paper on problems in the EIFFEL type system
[5], see figure 13. Class parent specifies a procedure base and a procedure
get which takes an argument of type parent and calls the base procedure
of this argument. Class son is a subclass of parent and specifies in addition

15

class parent inherits object
proc base
proc get(arg: parent)
begin arg.base end
end
class son inherits parent
proc extra
proc get
begin arg.extra end
end
var p: parent
var s: son
begin p:=s; p.get(p) end

Figure 13: Cook’s example.

a procedure extra. It also reimplements procedure get to call instead the
extra procedure of its argument (which in class son is of type son).

Cook notes that in EIFFEL it is (erroneously) statically legal to declare
a variable of type parent, assign a son object to it (because in EIFFEL son
conforms to parent), and then use the parent variable as if it referred to a
parent object, for example by calling the referred object’s get procedure
with an argument of type parent. This will lead to a run-time error
because when the get procedure in the son object is executed, it will try
to access the extra procedure of its argument which does not exist.

Cook observes that the problem in the type system stems from con-
sidering that son conforms to parent; the restriction of the argument type
of procedure get in class son violates the contravariance of function types.

In our view, the parent variable should be declared as heterogeneous in
order to allow the assignment of a son object to it. This declaration also
signals a warning that run-time checks may be necessary. When calling
the referred object’s get procedure, the compiler will know that the object
need not be of type parent, and thus insert a run-time type-check of the
argument (which will fail in this case).

Run-time type-check may also be needed when assigning a heteroge-
neous expression, for example when retrieving information from a database.
In the following section we give the complete type-check rules and state
a soundness and optimality result.

16

8 Optimal Type-checking

The traditional purpose of type-checking in object-oriented languages is
to ensure that all messages to objects will be understood [1]. In the
homogeneous subset of our language this can be entirely determined at
compile-time. We propose the following static checks.

¢ Early checks. We verify for all message passings x.p(...) that
a procedure p is implemented in the class corresponding to the
declared type of the object x, or a superclass.

o Equality checks. We further verify for all assignments and pa-
rameter passings that the two declared types (left-hand /right-hand,
formal/actual) are equal.

Proposition 5 Early checks and equality checks are sound and optimal,
Le., they are necessary and sufficient to ensure that all messages will be
understood.
Proof sketch. Clearly, these checks are necessary. In their absence, it is
quite easy to construct counter-example programs where some messages
will not be understood. If the checks are satisfied then the explicitly writ-
ten code is correct. We need to ensure that this correctness is preserved
in all subclasses.

We recall two properties of the constructions of both implicit and
explicit subclasses.

¢ Monotonicity. The type (i.e., class name) of a variable or param-
eter will only be substituted by subclass names.

e Stability. Equal types remain equal.

This enables us to perform an inductive arguments that subclasses are
also correct. Assume that the superclass satisfies the checks. Then mono-
tonicity guarantees that the early checks are satisfied in the subclass, and
stability guarantees that the equality checks are satisfied in the subclass.
Hence, the subclass will be correct, too. O

This settles the issue of type-checking in the homogeneous sublan-
guage. Actually, most parts of a program need only use homogeneous
variables [1]. If heterogeneous variables are introduced then compile-
time checks are no longer sufficient. One solution to this predicament is

17

to switch entirely to run-time checks of individual messages, in the style
of SMALLTALK. It is, however, a vast improvement to direct the attention
towards assignments, which allows the mixture of compile- and run-time
checking that is used in SIMULA, C+4+4, and BETA. It turns out that in
many cases, run-time checks can be entirely dispensed with.

First of all, the usual early checks are performed. Only the equality
checks need to be revised. For this analysis, we can identify assignments
and parameter passings. We now have four cases, as both the left- and
right-hand object can be homogeneous or heterogeneous. Let stat(x) be
the statically declared class of an object x and dyn(x) its dynamic class.
If x is homogeneous then stat(x) = dyn(x), whereas if x is heterogeneous
then stat(x) > dyn(x). Here, > indicates the ordering between super-
classes and subclasses. We consider the assignment L:=R.

1) L and R are both homogeneous: (The case we handled above.)
At compile-time we verify that the relation stat(L) = stat(R) holds.

2) L is heterogeneous, R is homogeneous: At compile-time we
verify that the relation stat(L) > stat(R) holds.

3) L is homogeneous, R is heterogeneous: At compile-time we
verify that the relation stat(L) < stat(R) holds. At run-time we
verify that the relation stat(L) = dyn(R) holds.

4) L and R are both heterogeneous: If, at compile-time, stat(L)
> stat(R) then no run-time checks are necessary. If, at compile-
time, stat(L) < stat(R) then we verify at run-time that the relation
stat(L) > dyn(R) holds.

9 Conclusion

We have presented a new approach to polymorphism in object-oriented
languages. It has none of the drawbacks of parametric and inclusion
polymorphism and offers many pragmatic advantages, such as static type-
checking, gradual instantiation, and polymorphic procedures.

We recommend that typed object-oriented languages, such as EIFFEL,
adopt substitution polymorphism in place of for example generic classes
and declaration by association. This would simplify language design and
avold the problems reported by Cook.

18

Acknowledgements. The authors thank Peter Mosses, Ole Lehrmann

Madsen, and Jgrgen Lindskov Knudsen for helpful comments on a draft
of the paper.

References

[1]

2]

[11]

[12]

Alan H. Borning and Daniel H. H. Ingalls. A type declaration and inference system
for Smalltalk. In Ninth Symposium on Principles of Programming Languages, pages

133-141. ACM Press, January 1982.

Peter S. Canning, William R. Cook, Walter L. Hill, and Walter G. Olthoff. Inter-
faces for strongly-typed object-oriented programming. In Proc. OOPSLA 89, Fourth

Annual Conference on Object-Oriented Programming Systems, Languages and Ap-
plications. ACM, 1989.

L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen, and
Gordon Plotkin, editors, Semantics of Data Types, pages 51-68. Springer-Verlag
(LNCS 173), 1984.

L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17(4), December 1985.

William Cook. A proposal for making Eiffel type-safe. In Proc. ECOOP’89, Euro-
pean Conference on Object-Oriented Programming, 1989.

William Cook, Walter Hill, and Peter Canning. Inheritance is not subtyping. In Sew-

enteenth Symposium on Principles of Programming Languages. ACM Press, January
1990.

William Cook and Jens Palsberg. A denotational semantics of inheritance and its
correctness. In Proc. OOPSLA’89, Fourth Annual Conference on Object-Oriented
Programming Systems, Languages and Applications. ACM, 1989.

William R. Cook, Walter L. Hill, and Peter S. Canning. F-bounded polymorphism
for object-oriented programming. In Proc. Conference on Functional Programming
Languages and Compuler Architecture, 1989.

O. J. Dahl, B. Myhrhaug, and K. Nygaard. Simula 67 common base language.
Technical report, Norwegian Computing Center, Oslo, Norway, 1968.

Joseph A. Goguen and José Meseguer. Unifying functional, object-oriented and
relational programming with logical semantics. In B. Shriver and P. Wegner, editors,
Research Directions in Object-Oriented Programming. MIT Press, 1987.

A. Goldberg and D. Robson. Smalltalk-80—The Language and its Implementation.
Addison-Wesley, 1983.

Chris Horn. Conformance, genericity, inheritance, and enhancement. In Proc.
ECOOP’87, European Conference on Object-Oriented Programming. Springer-Verlag
(LNCS 276), 1987.

19

[13]

[14]

[15]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. B. Kristensen, O. L. Madsen, B. Mgller-Pedersen, and K. Nygaard. The BETA
programming language. In B. Shriver and P. Wegner, editors, Research Directions
in Object-Oriented Programming, pages 7-48. MIT Press, 1987.

Karl J. Lieberherr and Arthur J. Riel. Contributions to teaching object-oriented de-
sign and programming. In Proc. OOPSLA’89, Fourth Annual Conference on Object-
Oriented Programming Systems, Languages and Applications. ACM, 1989,

Ole L. Madsen and Birger Mgller-Pedersen. Virtual classes: A powerful mechanism
in object-oriented programming. In Proc. OOPSLA’89, Fourth Annual Conference
on Object-Oriented Programming Systems, Languages and Applications. ACM, 1989.

Bertrand Meyer. Genericity versus inheritance. In Proc. OOPSLA’86, Object-
Oriented Programming Systems, Languages and Applications. Sigplan Notices,
21(11), November 1986.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood
Cliffs, NJ, 1988.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17, 1978.

Atsushi Ohori and Peter Buneman. Static type inference for parametric classes.
In Proc. OOPSLA’S89, Fourth Annual Conference on Object-Oriented Programming
Systems, Languages and Applications. ACM, 1989.

Jens Palsberg and Michael I. Schwartzbach. Substitution polymorphism and its
semantics. Computer Science Department, Aarhus University. In preparation.

David Sandberg. An alternative to subclassing. In Proc. OOPSLA’86, Object-
Oriented Programming Systems, Languages and Applications. Sigplan Notices,

21(11), November 1986.

Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An
introduction to Trellis/Owl. In Proc. OOPSLA’86, Object-Oriented Programming
Systems, Languages and Applications. Sigplan Notices, 21(11), November 1986.

Erikk M. Schmidt and Michael I. Schwartzbach. An imperative type hierarchy with
partial products. In Proc. of Mathematical Foundations of Computer Science 1989.

Springer-Verlag (LNCS 379), 1989.

Michael 1. Schwartzbach. Static correctness of hierarchical procedures. In Proc. In-
ternational Colloquium on Automata, Languages, and Programming 1990. Springer-

Verlag (LNCS'), 1990.

A. Snyder. Inheritance and the development of encapsulated software components.
In B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Pro-
gramming. MIT Press, 1987.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

20

