ISSN 0105-8517

Object-Oriented Development
— Integrating Analysis, Design and
Implementation

Elmer Sandvad

DAIMI PB - 302

April 1990
COMPUTER SCIENCE DEPARTMENT — l I'] ']“l :l]—_ﬂ
AARHUS UNIVERSITY ] fj
Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark J(j] ‘ ﬁ+ —lr




Object-Oriented Development
- Integrating Analysis, Design and
Implementation

Elmer Sandvad
Computer Science Department, Aarhus University,
Ny Munkegade 116, DK-8000 Aarhus C, Denmark
Phone: +45 86 12 71 88 — Email: essandvad@daimi.dk




Abstract

Object-orientation is discussed in relation to the traditional division of
system development activities: analysis, design and implementation.
Object-orientation integrates analysis, design and implementation. This
statement is illustrated by introducing an object-oriented graphical nota-
tion for analysis as well as design and by showing how this notation can
be mapped into the object-oriented programming language BETA. This
mapping can be antomated. It is shown how the programming environ-
ment: the Mjglner BETA System can support integration of the object-
oriented notation and BETA, and thereby providing an object-oriented
CASE tool, that, at least partially, closes the CASE gap between design
and implementation.

Keywords: Object-Orientation, Analysis, Design, Code Generation, Reverse Engineer-
ing, Traceability, Programming Environments, CASE
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Chapter 1

Introduction

The report has mainly two purposes. The one is to examine the rela-
tionship between the object-oriented programming perspective and the
system development activities: analysis, design and implementation. The
second is to examine the possibilities for automated support in analysis,
design and implementation. Not only support for creation and modifica-
tion of documents, but also for the transitions between analysis, design
and implementation. The conclusions are that the object-oriented pro-
gramming perspective can integrate analysis, design and implementation
and if all three models are object-oriented, then there can be a high degree
of automated support.

Object-Oriented Programming

Object-oriented programming can reduce the total software life-cycle cost,
because object-oriented programs are easier to write, understand, main-
tain and reuse [Booch 86] [Meyer 87]. When defining object-oriented pro-
gramming the focus is often on programming language concepts. From a
programming technical point of view important programming language
concepts are often considered to be data abstraction, information hiding,
inheritance and may be concurrency. From this point of view an object-
oriented program execution is considered as a collection of interacting
objects, that are instances of classes (abstract datatypes), and objects
may have their own execution thread. The classes may be organized in
inheritance hierarchies. This is in contrast to procedural programming
languages, where a program execution can be characterized as a (partially
ordered) sequence of procedure calls manipulating data structures.



There is however more to object-oriented programming than program-
ming language concepts. From a modelling point of view, the power of
object-oriented programming can be ascribed to the ability to model re-
ality in a natural way [Booch 86] [Madsen 88b]. A program execution is
regarded as a physical model simulating the behavior of either a real or
imaginary part of the world. Phenomena and concepts in the real world
are directly reflected in the physical model.

But how does the object-oriented perspective fit into the context of sys-
tem development? Is it possible merely to substitute the currently used
programming language with an object-oriented programming language,
without influencing the methods used for analysis and design? Of course
you can program ”conventionally” in most object-oriented programming
languages. But several software engineers [Booch 86] [Meyer 87] have
pointed out, that to create optimal object-oriented implementations, a
system-development perspective must be used, that is based on the same
abstractions as used in the programming.

Structured Analysis and Structured Design

What about the well-known methods Structured Analysis and Structured

Design (SA/SD) [DeMarco 78] [Yourdon]? What are the abstractions of
SA/SD?

The Structured Analysis and Structured Design methods have been widely
used for many years, and the popularity has increased after the provision
of CASE tools, that support creation and modification of SA/SD dia-
grams. One of the reasons for the success of SA/SD is, that the methods
are based on a set of graphical notations, that are easier to understand
than textual alternatives. Another reason is the lack of modelling capa-
bility of the programming languages used. In industry system developers
are often forced to use primitive programming languages like Fortran and
COBOL. This is either because these languages are the only available lan-
guages on the computer used, or because new systems must build upon
or be compatible with a huge amount of existing code.

The dataflow diagram of SA, has turned out to be suitable to model at
least some aspects of reality, namely the flow of information through a set
of processes. A process is considered as a functional transformation from
a set of inputs to a set of outputs. The structure chart of SD is used as
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an intermediate description between the data flow diagrams and the pro-
gramming language. A structure chart is a functional decomposition of
the data flow diagrams into modules that constitute the major functions
in the overall process. These modules are in turn implemented as subpro-
grams or procedures that manipulate common data structures. SA/SD
can be characterized as a functional development method [Jackson 83]

[Booch 86].

Apparently the abstractions of SA/SD are incompatible with the ab-
stractions of object-oriented programming. Functional development is
based on the concept of a function whereas object-oriented development
is based on the concept of an object. But integration of object-orientation
with Structured Analysis and Structured Design has been the subject of
a substantial research effort the last few years [Booch 86] [Seidewitz 87]
[Bailin 89] [Wasserman 89] [Ward 89]. It is in fact possible to use the
well-known SA/SD techniques in an object-oriented manner as demon-
strated by Bailin, Ward and Wasserman. But there is not much left

of the original underlying concepts of SA/SD: data flow and functional
development.

One of the "fathers” of SA/SD: Edward Yourdon has together with Peter
Coad gone a step further. Instead of introducing object-orientation into

SA/SD, they have given up SA/SD and proposed a method for object-
oriented analysis [Coad 89].

The contribution of this report is to propose an object-oriented graphical
notation for analysis as well as design. The notation is called Object-

Oriented Analysis and Design Diagrams (OOAADD but the shorter term
OAD is used) 1.

1.1 Object-Oriented Methods

[Booch 86] [Bailin 89] [Ward 89] give some techniques for finding the ob-
jects. In [Coad 89] a comprehensive method is described for identifying

! A note on terminology: analysis, design and implementation are well-established terms in the
SA/SD and CASE communities. In [Andersen 86] the product-oriented functions in the system
development process are called analysis, design and realization, where analysis is addressing the
existing system (whether automated or not) whereas design and realization are addressing the
future edp-based system. In that terminology traditional analysis and design are covered by
the design function. In this report the terms analysis and design are used in their traditional
meaning,



classes ? with attributes and services, assembly and inheritance struc-
tures, object connections and message connections.

The OAD notation is a description tool, not a technique (not to mention a
methodology), but the object-oriented perspective as described in chapter
2 is the underlying philosophy.

Analysis, Design and Implementation

[Coad 89] is focusing on analysis. [Booch 86], [Seidewitz 87] and [Wasserman 89]
are focusing on design and implementation. [Ward 89] is focusing on
analysis and design. [Bailin 89] is focusing on analysis, design and imple-
mentation.

In order to ease the transformation from the analysis model to the design
model and in turn to the implementation model, object-orientation must
be introduced in all three models [Coad 89]. -

The purpose of the OAD notation is to demonstrate the integration
of analysis, design and implementation. Using this notation, the same
model is used at all (three) levels: the model starts informally in analy-
sis, is gradually extended and precisized in design and then automatically
transformed to program templates.

Objects and /or Concepts

One important characteristic of the OAD notation is the emphasis on
expressing objects, object hierarchies, object interaction and sequencing
between objects (object diagrams), as well as concepts and concept hi-
erarchies (pattern diagrams), and finally the connection between ob jects
and concepts. Other notations tend primarily to focus on either the
objects [Booch 86] [Seidewitz 87] [Bailin 89] [Ward 89] or the concepts
[Wasserman 89] [Coad 89]. [Pun 89] is an example of a design method
with graphical notations that can be used to express ob Jject relationships
(object interaction diagrams) as well as concept relationships (class struc-
ture charts)

A confusing detail about this method is that classes are called ob jects (objects are then
called instances).



Generalization/Specialization

[Booch 86] [Seidewitz 87] [Bailin 89] have developed their methods with
a particular programming language in mind, namely Ada. But is Ada
object-oriented? No, but as Booch remarks: ”languages such as Ada may
be applied in an object-oriented fashion”. Ada program executions can
indeed be considered as a collection of interacting objects, i.e. instances
of abstract datatypes (generic packages or types provided by packages),
and concurrency is provided by means of tasks. What Ada lacks in or-
der to be a full-fledged object-oriented language is the ability to express
classification hierarchies (generalization/specialization). Generic pack-
ages and derived types can however be used to express a limited form of
specialization, but only in two levels.

The fact that Ada is the "target” language, has influenced these methods

and none of these approaches consider the generalization/specialization
aspect of SA/SD diagrams.

Wasserman et al. give an example of the simple kind of specialization that
can be provided by generic packages, i.e. parameterization by constants
and types.

Ward shows how simple specialization, i.e. inheritance of attributes from
a superclass and addition of attributes in the subclass, can be integrated
with the data flow diagram of Real-time Structured Analysis and Struc-
tured Design ° .

Coad & Yourdon support simple and qualified specialization to some de-
gree, and the possibility to override attributes of a superclass. The latter
facility does not conform with the view on generalization/specialization
in this report.

In [Belsnes 87] a proposal is given for making SDL * object-oriented. The
proposed language (OSDL) introduces not only simple specialization but
also qualified specialization (virtual procedures and virtual transitions).

In the OAD notation simple as well as qualified specialization can be
expressed in object diagrams as well as pattern diagrams.

®Real-time Structured Analysis and Structured Design (RT SA/SD) [Ward 85] [Ward 86] is
an extension of the original SA/SD method, that is aimed at supporting the development of
real-time systems.

*SDL is a CCITT standard [SDL] [Rockstrém 85], that is especially addressing specification
of telecommunication systems. It has a textual as well as a graphical presentation.
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1.2 Automated Support

Object-oriented development is amenable to automated support [Booch 86]
and one consequence of introducing object-oriented concepts into analy-

sis and design is the possibility to generate programming code from the

design documents. [Booch 86] [Seidewitz 87] [Bailin 89] [Wasserman 89)]

propose and/or support mappings from the object-oriented structures of

design documents to programming languages.

Concerning automated support the contribution of this report is to show
how the OAD notation can be supported and especially the integration
of OAD and BETA. It is shown how the notation directly can be mapped
into the object-oriented programming language BETA 5. Because the
notation is directly mappable into an object-oriented programming lan-
guage, the CASE gap [1], between analysis/design and implementation
can be closed.

Not only the mapping of OADs into BETA can be automated but also
mappings from BETA to OADs. OADs can be regarded as an alternative
graphical abstract presentation of a BETA program. This means that
OADs and the corresponding BETA program can share the same internal
representation. The Mjglner BETA System [Knudsen 89| is a grammar-
based programming environment and the internal program representation
is abstract syntax trees. By letting the diagram editor and the textual
editor manipulate common abstract syntax trees, modifications in the
analysis and design diagrams can immediately be reflected in the program
and vice versa.

The advantages of the grammar basis are many. Consistency can be
maintained between analysis and design documents and programs. Code
generation as well as and reverse engineering ¢ can be provided by tex-
tual and graphical presentation of the common internal representation,
respectively.

The CASE gap can however not be fully closed. OADs can be used
to express the overall structure of a system, i.e. the aggregation and
classification hierarchies of objects, and the sequencing and interaction
between objects. The action sequences of the individual objects are not

*BETA [BETA 87] is an object-oriented programming language in the Simula [Simula67]
tradition.

®This term is often used for automatic generation of design documents from program code.
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expressed in the notation. Such details must be added manually in the
generated program templates.

The preliminary notation could however be extended, for example in
the direction of Real-time Structured Analysis and Design, that at least
partly makes it possible to specify action sequences by adding control
aspects to the traditional data flow diagrams. Other directions could be
to specify the action sequences of objects like the process diagrams of
OSDL, the structure diagrams and structured text in Jackson or Petri
nets. In [Berthelsen 86] a graphical syntax for BETA is proposed, where
every construct in the BETA programming language has a graphical pre-
sentation. This proposal could be used at the lower levels of abstraction.
It is however my opinion, that graphical descriptions are most applicable
(practical) at higher levels of abstraction. The purpose of the OAD nota-
tion is to introduce a graphical notation that can be used for modelling,
not to provide a graphical syntax for a programming language.

1.3 This Report

The structure of the report is as follows. Chapter 2 gives a definition of
object-oriented programming. Chapter 3 discusses how object-oriented
development can integrate analysis, design and implementation. Chap-
ter 4 presents the notation: Object-Oriented Analysis and Design Dia-
grams (OADs). Chapter 5 describes how abstraction, especially general-
ization /specialization, is supported in OADs. Chapter 6 shows how OADs
can be mapped into BETA program templates. Chapter 7 discusses how
OADs can be created and modified by means of a syntax-directed graph-
ical editor, and how the mapping between OADs and BETA program
templates can be automated. Appendix A presents some of the exist-
ing methods and notations for introducing object-orientation into anal-
ysis and design. Appendix B contains the BETA program parts that
correspond to the diagrams in chapter 3. Appendix C shows how the
transformation schema of Real-time SA/SD can be mapped into BETA.



Chapter 2

Object-Oriented Programming

This chapter elaborates on the definition of object-oriented programming
given in the introduction. It represents the modelling view point on
object-oriented programming in contrast to the the programming techni-
cal view point. For a more detailed discussion see [Madsen 88b].

The real world consists of phenomena and concepts.

Phenomena are characterized by having substance, measurable properties
and some transformations that may alter the substance. An example is a
person, that certainly has substance, a measurable property is the persons
weight, and a transformation on the substance can be eating or jogging,
which in turn may alter the measurable properties of the person. In a
programming language, substance is modelled by means of variables or
objects. Procedures (actions) are often used to examine the measurable
properties or to alter the substance.

Concepts are created by abstraction, focusing on similar properties of phe-
nomena and disregarding differences. Three well-known sub-functions of
abstraction have been identified: classification, aggregation and general-
ization.

Classification is used to define which phenomena are covered by the con-
cept. The reverse sub-function is exemplification. An example is again
the concept of a person, that is a description of the properties of phenom-
ena, that characterize a person. These properties can be a phenomena
that walks on two legs, talks, destroys the ozone layer etc. An exempli-
fication of the concept person is a specific person. In an object-oriented
programming language the class and the procedure (or in BETA the pat-
tern ! ), are used to model classification of phenomena. The class models

! The pattern concept in BETA unifies abstraction mechanisms like type, procedure, function
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substance and the procedure models actions. Exemplification is simply
an object, i.e. an instance of a class or an activation of a procedure.

Aggregation is used to express that concepts can be defined by using
other concepts. An example is the concept of a car, that can be formed
by using concepts like wheel, engine and seat. The reverse sub-function
is called decomposition. Most programming language support aggrega-
tion by means of record, classes, procedures etc. A class has attributes,
e.g. local objects, references to other objects, procedures or even local
classes. Aggregation must be supported in an arbitrary number of levels
in an object-oriented language, because the real world does not have any
restrictions on the number of aggregation levels.

Generalization is used to organize concepts in classification hierarchies
2. A concept can be regarded as a generalization of a set of concepts.
An example is the classification of vehicles. A car is a generalization
of bus, van and truck. A vehicle is a generalization of car and motor
cycle. The reverse sub-function is specialization: a motor cycle is a spe-
cialization of vehicle. Generalization is perhaps that sub-function, which
most clearly divides object-oriented languages from non-object-oriented
languages. In an object-oriented language generalization/specialization
is typically supported by super/sub-classing, respectively. Generalization
must be supported in an arbitrary number of levels in an object-oriented
language, because the real world does not have any restrictions on the
number of generalization levels.

An object-oriented language must be able to model phenomena and con-
cepts, as described above. A program execution in an object-oriented
programming language is considered as a physical model, simulating the
behavior of either a real or an imaginary part of the world.

In an object-oriented program, phenomena are modelled as objects and

concepts are typically modelled as classes and procedures (or in BETA
patterns).

and class
2The terms inheritance hierarchies or just class hierarchies are also often used.
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The following quotation from [Madsen 88b] defines a physical model:

”A physical model consists of objects, each object characterized by at-
tributes and a sequence of actions. Objects organize the substance aspect
of phenomena, and transformations on substance are reflected by objects
executing actions. Objects may have part-objects. An attribute may be a
reference to a part object or a separate object. Some attributes represent
measurable properties of the object. The state of the object at a given mo-
ment is expressed by its substance, its measurable properties and the action
going on then. The state of the whole model is the states of the objects in
the model.

Actions in the physical model are performed by objects. The action
sequence of an object may be executed concurrently with other action se-
quences, alternating (that is at most one at a time) with other action se-
quences, or as part of the action sequence of another object.”

A procedure is an example of a partial action sequence. The action
sequence of a procedure is executed as part of the ”calling” objects action
sequence.

Sequencing between phenomena is modelled by concurrent or alternating
objects.

Interaction or communication between phenomena is modelled by objects
performing actions on other objects.

2.1 Language Support for Specialization

As mentioned in the introduction, special attention is given, in this re-
port, to the support for generalization/specialization in object-oriented
analysis and design languages; especially the graphical syntax for ex-
pressing generalization/specialization. The reason is, partly because it is
a necessary part of modelling the real world, and partly because of the
low priority these abstraction functions have had in many object-oriented
method proposals.
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Specialization can be categorized in

o simple specialization (also known as inheritance or subclassing)

— a subclass inherits the attributes of the superclass and extends
the superclass by adding attributes (Simula, BETA, Smalltalk)

— a subprocedure inherits the attributes of the superprocedure
and extends the superprocedure by adding attributes (includ-
ing action, i.e. the body of the subprocedure can extend the
body of the superprocedure) (BETA)

o qualified specialization (virtual procedures and virtual classes are
used for this purpose)

— a subclass overwrites or extends some of the attributes of
the superclass; the attributes can be classes as well as pro-
cedures. (virtual procedure, overwriting: Simula, Smalltalk;
virtual procedure, extending: BETA; virtual class, extending:

BETA)

— a subprocedure overwrites or extends some of the attributes
of the superprocedure; the attributes can be classes as well
as procedures. (virtual procedure, extending: BETA; virtual
class, extending: BETA)

All methods in Smalltalk correspond to virtual procedures in Simula, be-
cause they overwrite methods with the same name in superclasses (control
can however be directed to superclasses). One of the unique qualities of
BETA is the ability to specialize not only classes but also procedures. In-
heritance is also provided for procedures. Another unique quality is the
virtual class concept. Virtual procedures and classes are not overwritten
when bound, but extended. Virtual procedures and virtual classes are
discussed in [Kristensen 87] and [Madsen 89], respectively.
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Chapter 3

Integrating Analysis, Design and
Implementation

This chapter discusses how the object-oriented programming perspective
can integrate analysis, design and implementation. It is not an attempt
to neglect the well-recognized and important division of these systems
development activities. It is on the other hand an attempt to strengthen
the interaction between analysis and design and the interaction between
design and implementation.

Analysis is concerned with creating a model of a part of reality. This
model is expressed in terms of application domain phenomena and con-
cepts and can therefore be used as a communication medium between the
users and the designers.

Design is concerned with transforming the analysis model into a model
expressed in terms of phenomena and concepts that are closer to the
computer. There is not a strict division between analysis and design;
there is on the other hand a natural interaction between these activities,
but at some time in the development process the main emphasis is moved
from analysis to design.

Implementation is the final transformation of the design model into an
executable program followed by testing. A similar interaction exists be-
tween design and implementation.
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3.1 Traditional Analysis, Design and Im-
plementation

One major problem in traditional (i.e. non-object-oriented) analysis, de-
sign and implementation is the amount of work needed when going from
one model to another. This is especially the case in the transformation
of the analysis model into the design model. The problem is that the
two models have two logically different representations. One example is
Structured Analysis (SA) and Structured Design (SD).

In SA the data flow diagram (together with textual descriptions like the
data dictionary, event lists and minispecs) form the analysis model. The
dataflow diagram models the flow of information through a network of
processes (bubbles). A process is considered as a functional transforma-
tion from a set of inputs to a set of outputs.

In SD the dataflow diagrams are transformed into structure charts. A
structure chart is a hierarchy of modules together with a description of
parameters. These modules are in turn implemented as subprograms or
procedures that manipulate common data structures.

The transformation from data flow diagrams to structure charts is a hard
job because the two models have different representations. The transfor-
mation from design to implementation is much easier because procedural
languages support hierarchies of procedures very well.

The same problem is present in the methods that only introduce object-
orientation into design and implementation only [Booch 86] [Seidewitz 87]
[Wasserman 89]. In order to ease the transformation from the analysis
model] to the design model and in turn to the implementation model,
object-orientation must be introduced in all three models [Coad 89).

3.2 Object-Oriented Analysis, Design and
Implementation

Object-oriented development means object-orientation in analysis, as well
as design, as well as implementation.

Why object-oriented analysis? Because analysis and object-oriented pro-
gramming have the same purpose: to model phenomena and concepts in a
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part of reality. As described in the previous chapter the essence of object-
oriented programming is to make a physical model of a part of the real
world. A model where relevant phenomena from the real world are rep-
resented as objects, and where all relevant relationships and interactions
between phenomena are reflected. Concepts are typically modelled by
means of procedures and classes and all three (six) abstraction functions
are supported.

Object-oriented development integrates analysis, design and implemen-
tation because the same representation can be used in all three activities.
In the transformation from the analysis model to the design model and
from the design model to implementation it is not necessary to change
the representation. It is the same model that gradually is extended from
a model in terms of application domain phenomena and concepts to a
model that includes implementation domain phenomena and concepts.
The final model is executable.

The design activity adds details to (precisizes) the analysis model. New
objects and concepts are added. Objects and concepts that are directed
against the implementation. It should be possible at any time to extract
the analysis model from the design model. The analysis model can be
considered as an abstract presentation of the design model, where all the
technical details are suppressed. In the same way the design model and
in turn the analysis model can be considered as an abstract presentation
of the implementation model. These interesting relationships are very
important when the discussion comes to automated support for systems
development (CASE), as will be shown later.

Because the analysis model is expressed in terms of application domain
phenomena and concepts, that are familiar to the user, the analysis model
should be reflected in the user interface. In other words the object-
oriented model should not only be considered as an internal ”working
model”, the problem specific part of it should (at least partly) be visible
in the user interface. One good example is the flight reservation system
used later in this report. In this application it is natural to present
a picture of the flight containing the seats, emergency exit, wings etc.
Reservation is then made by selecting free seats from the picture. Special
customer wishes can easily be satisfied by looking at the picture. The
customer might for example want a seat near the emergency exit and
not too close to the wings. Object-oriented user interfaces with direct
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manipulation have proven to be especially suitable for human computer
interaction [Smalltalk].

A word on programming: programming is not only an implementation
activity. Programming takes place at all (three) levels. Programming is to
make choices. In object-oriented programming it is to find the phenomena
and concepts that we wish to model, and create corresponding objects,
procedures and classes. Object-oriented development integrates analysis,
design and implementation, but it does not remove the creative element
that exists at each level.

3.3 The Notation

An important characteristic of many systems development methodolo-
gies is that the notations for expressing analysis and design models are
graphical to a great extent. This is especially important in the analysis
model, that is used as a communication medium between the users and
the developers. It is a well-known phrase that ”a picture can tell more
than a thousand words”, but there exist also situations where few words
can tell more than thousand pictures. This is the underlying belief of the
proposed notation: graphical descriptions are very suitable at higher lev-
els of abstraction, but when it comes to details, these are more effectively
expressed textually.

The notation is claimed to be object-oriented, i.e. it supports the object-
oriented perspective. It can be used to model phenomena and concepts
from a part of reality. The interactions and sequencing between phe-
nomena can be expressed. Abstraction is supported. Phenomena can be
classified into concepts and concepts can be organized in aggregation and
classification hierarchies.

The notation is a description tool. The focus is on the description rather
on the process of creating the description. There are no predescribed tech-
niques (not to mention a methodology), but the object-oriented perspec-
tive as described in chapter 2 is the underlying philosophy. In addition
this description of analysis, design and implementation is not concerned
with the (although important) manual working routines of the edp-based
system.

The creation of the analysis and design models involves:
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¢ Identification of phenomena with substance, measurable properties
and transformations on substance

e Identification of the aggregation hierarchies of objects
o Identification of interaction between objects

o Identification of sequencing between objects

o Identification of concepts that classify phenomena

e The concepts may be organized in classification and aggregation
hierarchies

In the next section the notation is illustrated on the flight reservation
system. In the chapters 4 and 5 the notation will be presented in details.

3.4 An Example

The flight reservation example is taken from [BETA 90]. The example
and the diagrams will not be explained in detail. The intention of this sec-
tion is to give an impression of the graphical notation. The corresponding
BETA program parts are shown in appendix B.

Fig. 3.1 is an attempt to show that an OAD description can start in-
formally, without many details. The upper diagram is called an object
diagram and the lower diagram is called a pattern diagram. The object
diagram shows that the flight reservation system conmsists of 4 objects,
that are interacting in some way. The pattern diagram shows for each
object the corresponding concept (pattern (class or procedure)). The
pattern corresponding to the entire system object is shown on the left. It
has 4 attributes, that also are patterns. Each of these patterns are shown
in details in the square on the right. The entries of a pattern symbol can
be part objects, object references to separate objects (either part objects
or other external objects), procedure patterns or class patterns. There is
currently no distinction in the graphics between part objects and object
references, class patterns and procedure patterns.

Fig. 3.2 and Fig. 3.3 show a more detailed version of the system. New
objects have been added to the object diagram and the objects have been
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divided into active and passive objects. aFlight, aTravelAgent and aCus-
tomer are concurrent (active) objects and ReservationTable, TimeTable
and PriceTable are passive (data) objects. The interaction between the
objects have been further specified.

The pattern diagram is similarly extended. In OAD it is possible to
express singular objects as opposed to pattern-defined objects. Singular
objects are directly defined without a pattern. The object descriptors of
singular objects are also presented by means of pattern symbols in the
pattern diagram. In Fig. 3.2 and Fig 3.3 it can be seen that aFlight,
aTravelAgent and aCustomer are pattern-defined objects and Reserva-
tionTable, TimeTable and PriceTable are singular objects.

Object references are indicated by means of arrows from the attribute
line to a pattern. This pattern is called the qualification of the reference.
Objects referenced (at run time) must be instances of that pattern (or
subpatterns of it). The part objects and the object references can be
described in further details if wanted (this is done in appendix B).

Fig. 3.4 shows the FlightType pattern in more details. Fig. 3.5 shows

22



Reservation 1

Date

Customer

Agent

FlightReservation ] TrainReservation
ReservedFlight ReservedTrain
ReservedSeat ReservedCarriage

Figure 3.5: More Details, Specialization

that FlightReservation is a part of a classification hierarchy. FlightReser-
vation and TrainReservation are subclasses of Reservation. PrintReser-
vation is a virtual procedure pattern defined in Reservation and further
extended in the subclasses. Class patterns can also be virtual. Agent
for example could have been a virtual class pattern, that is defined in
Reservation and further extended in the subclasses.

3.5 An Object-Oriented CASE Tool

Automated support for system development or computer aided software
engineering (CASE) can be especially powerful in object-oriented devel-
opment. The reason is the integration of the analysis model, the design

model and the implementation model through the object-oriented repre-
sentation.

A typical CASE tool provides diagram editors for the analysis model
and the design model and program skeletons can be generated from the
design model. Many CASE tools exist for different variants of SA and
SD. The dataflow diagrams and the structure charts are integrated by
means of the data dictionary, that is used as the basis for consistency
and completeness check.
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Object-oriented development is integrated by means of the object-oriented
model. Because the analysis model, the design model and the imple-
mentation model have the same logical representation, consistency and
completeness check should be more or less redundant. This is the case
if the software representations of the three models actually are shared.
The three models can then be considered as different presentations of the
same underlying representation. In the proposal of this report the soft-
ware representation of all three models are abstract syntax trees. The
models are created and modified by means of a syntax-directed editor
with a graphical and a textual interface. The graphical interface is used
to create and modify the analysis and design model and the textual in-
terface is used to create and modify BETA programs. Because of the
integration of the models it is possible to generate program templates
from the design model. On the other hand the design model and even
the analysis model can be extracted from the program. The different
models are considered as graphical or textual prettyprinting of the same
underlying abstract syntax tree (AST). This is illustrated in Fig. 3.6.

Reverse Engineering

A lot of focus has been on reverse engineering. Reverse engineering is

defined in [Chikofsky 90] as:

"Reverse engineering is the process of analyzing a subject system to

¢ identify the system’s components and their interrelationships and

e create representations of the system in another form or at a higher
level of abstraction.

Reverse engineering generally involves extracting design artifacts and build-
ing or synthesizing abstractions that are less implementation-dependent.

In spanning the life-cycle stages, reverse engineering covers a broad range
starting from the existing implementation, recapturing or recreating the de-

sign, and deciphering the requirements actually implemented by the subject
system.”

Some CASE tools support reverse engineering to some extent. Design
models are generated from the programs but because of the different
representations of the analysis and design there is no hope for extracting
the analysis model.
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In object-oriented development it is not only possible partially to auto-
mate the transition from design to implementation but also to automate
the transition from implementation to design and even to the analysis
model. It might be difficult completely to distinguish between the anal-
ysis and design model, but a high level graphical presentation of the
program should reflect the basic structure of the analysis model.

The proposed CASE tool has no support for the creation of user interfaces
or databases.

In chapter 7 the object-oriented CASE tool will be further described.
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Chapter 4

Object-Oriented Analysis and
Design Diagrams

A preliminary notation is proposed for expressing object-oriented analysis
and design diagrams (OADs). The purpose of the notation is to make it
easier to create an object-oriented model, that in turn can be mapped into
an object-oriented program. The choice of geometric symbols, shadowing
etc. 1s more or less arbitrary; the important thing is, that the notation
can be used to express the necessary aspects in object-oriented modelling.

The notation is addressing phenomena as well as concepts. One impor-
tant characteristic of the notation is the emphasis on expressing objects,
object interaction and sequencing between objects, as well as concepts
and concept hierarchies, and finally the connection between objects and
concepts. Objects and object relationships are expressed in object di-
agrams. Concepts and concepts relationships are expressed in pattern
diagrams.

The notation distinguishes between the different kinds of action sequences
that may be executed. It is possible explicitly to express different kinds
of objects: concurrent objects, alternation objects, procedure objects and
passive objects.

)

The sub-functions of abstraction, including generalization and specializa-
tion, can be expressed in the notation. Abstraction in OADs is presented
in chapter 5.
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Figure 4.1: The OAD Notation

4.1 The Notation

Concurrent objects are objects, that have their own execution thread.
Alternation objects are objects, that are executed by concurrent objects
one at a time (they are alternating). Procedure objects are objects, that
are executed as part of an objects action sequence. Passive objects are
like instances of abstract datatypes, they are just providing access to
(operations on) a data structure .

The symbols of the notation are shown in Fig 4.1.

All objects are shown as rectangles with rounded corners. This symbol
has been chosen instead of the traditional circle, simply because there
can be more text in a rectangle relatively to the area.

Concurrent objects are shown as rectangles with rounded corners and a
pair of double-vertical lines symbolizing parallelism.

Alternation objects are shown as rectangles with rounded corners and a
pair of single-vertical lines.

Passive objects are shown as rectangles with rounded corners and a pair
of horizontal lines symbolizing a store. The difference between a passive

!Concurrent objects, alternation objects, procedure objects and passive ob jects correspond
to system objects, component objects, item objects and data objects in BETA respectively.
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object and a store (in SA data flow diagrams) is, that the passive ob-
ject includes the operations that manipulate the store. A passive object
corresponds to an instance of an abstract data type with no independent
action sequence (except may be for initialization).

Procedure objects are only shown indirectly in the object diagrams. In-
teractions between objects, as defined below, corresponds to procedure
calls i.e. creation or activation of procedure objects.

Interactions are shown as arrows. Interactions can be used like flows of SA
and real-time SA/SD. An interaction can be considered as a transport
medium for data, but it can also be considered as a transaction or a
signal. An interaction can be bi-directional. The direction(s) of an arrow
can reflect data flow, control flow or whatever the designer wishes to
model. Interactions are mapped to procedure calls.

Interactions must be labelled. Corresponding to the labels, procedures
must be provided by one of the connected objects. If an interaction
is drawn between two concurrent objects, execution of the procedure is
synchronized like the rendezvous in Ada. If no concurrency is involved,
the interaction corresponds to a normal procedure call.

Patterns are shown as rectangles with a title. The entries of the rectangle
express attributes of the pattern. A pattern is either a class or a proce-
dure. Attributes may be part objects, object references, class patterns
or procedure patterns. The purpose of introducing the pattern symbol
in the object-oriented analysis and design diagram is to be able to model
concepts. This will be further discussed in chapter 5.

4.2 An Example

To illustrate the OAD object diagram the flight reservation example will
be used again. Fig. 4.2 shows the top level OAD object diagram. The
system models a flight reservation system containing flights, a reservation
table, a time table, a price table, travel agents and customers. Each of
these phenomena is represented by an object in the model. It might
not be surprising that the tables are modelled as objects. But to model
the flight as an object that is requested for making reservations, might
be unusual to some people. This is a consequence of making a physical
model. Concerning flight reservation, a flight is considered as an object
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Figure 4.3: Travel Agent, Alternating Objects

with a number of seats, each of which can be reserved. The travel agent
objects makes reservations by interacting with the flight objects.

The flights, travel agents and customer are modelled as concurrent ob-
jects. This is not an implementation decision. In the real world customers
and travel agents are indeed independent phenomena that have their own
lives. Flights may not be considered as living phenomena, but it this ap-
plication it makes good sense to model flights as active objects, because
several travel agents can interact with the same flight.

The tables are modelled as passive ob jects, that contain some data struc-

tures and a set of operations, e.g. ReservationTable with operations like
UpdateEntry and GetInfo.

‘At the next level of detail we will explicitly model that the travel agent
has several jobs to do. The primary job of the travel agent is to serve
customers, but whenever there are no customers to serve, the travel agent
must do invoicing and tour planning. Whenever a customer arrives or
phones, the travel agent must shift to servicing the customer. The Travel
Agent is decomposed as shown in the object diagram of Fig. 4.3.
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To model the three alternating activities, that a travel agent has to do,
three alternation objects have been introduced: CustomerService, Invoic-
ing and TourPlanning. These objects can not be concurrent. The travel
agent can only do one thing at a time, but she or he can have several
ongoing activities, that she or he alternates between.

The different tables are used by the three alternating objects. The ac-

cess to these objects must of course be synchronized, this will be further
discussed later.

The connection to the outer objects are shown as small circles containing
the name of the outer objects. Outer objects are the objects in the

diagram, that contains the object, which this diagram is a decomposition
of.

This example will later be mapped to BETA.

4.3 Traditional Structured Analysis

In the DFD of Structured Analysis, transformations model processes or
functions, that according to inputs produce some outputs. Inputs and
outputs are represented as data flows. Stores model storage of data,
typically as files.

In OAD object diagrams the focus is on objects as defined in chapter 2.
OADs are intended to express the physical model, at least at higher levels
of abstraction. Therefore the emphasis is on explicit identification of the
different kinds of objects, that model phenomena: concurrent objects,
alternating objects, procedure objects and passive data objects. Mod-
elling of concepts in OADs is presented in chapter 5. Like the flows in
SA the interactions in OADs can be considered as inputs to and outputs
from objects, but the data is ”carried” by procedure objects. The very
procedure call can be considered as an input (like a signal), or parame-
ters can be used to ”carry” data. Therefore an interaction can easily be
bi-directional. |
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4.4 Real-time Structured Analysis

The application area of Structured Analysis is development of administra-
tive systems where processing of files is a substantial part of the system.
In real-time applications like processor control systems SA has appeared
to be inadequate. Real-time Structured Analysis and Structured Design
(RT SA/SD) [Ward 85] [Ward 86] is an extension of the original SA /SD
method, that is aimed at supporting the development of real-time Sys-
tems. RT SA/SD extends the original method to deal with concurrency,
synchronization, and other control issues. One addition is a version of
the entity-relationship diagram (ERD), another is the use of stimulus-
response analysis. The ERD is used to describe the application domain.
The stimulus-response analysis is reflected in an extended version of the
dataflow diagram called the transformation schema (TS). The TS has
additional symbols to represent real-time aspects. Data flows are cate-
gorized into continuous and discrete lows. Event flows (interrupt-type
messages with no variable content) are added. In addition to the data
transformation (process), a control transformation (process) is used to
turn other transformations on and off by means of enabling and disabling
event flows. Control transformations are further specified by means of
state transition diagrams (STDs). Terminators (also known in traditional
SA) represent a phenomena in the real world that provides information
to the system, or receives some information from the system. A typical
terminator represents either continuous data like a monitor of e.g. tem-
perature or speed (this is typically provided by a hardware component),
or discrete data like the dialogue between a person and an administrative
system (user interface).

In OAD object diagrams there is no special symbol for control objects
i.e. processes that are controlling other processes, because there is no
principal difference between a controlling process and a "working” pro-
cess. In real-time SA/SD control transformations are further specified by
means of a state transition diagram (STD). STDs can be provided for
concurrent objects in general.

In the OAD notation there is no distinction between value and non-
value bearing interactions (data flows and signals respectively), as well
as no distinction between discrete and continuous flows. Such specialized
interactions may be added to the notation, but the intention behind this
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notation, has been to keep it general and direct mappable to the basic
constructs of BETA. In this way the graphical notation can be used as a
graphical presentation of BETA (at least at higher levels of abstractions).
Continuous flows and asynchronous signals can easily be expressed in
BETA (this is further discussed in chapter 6).

There is no special terminator symbol, since a terminator ob ject can be

expressed by one of the 4 object types, typically a concurrent object or
a passive object.
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Chapter 5

Abstraction in OADs

As discussed in chapter 2 an object-oriented language must be able to
model not only phenomena in the real world but also concepts. Phe-
nomena in the real world are often classified into concepts by means
of abstraction. Concepts may be organized into classification hierarchies,
and concepts can be aggregated from other concepts. If the notation, as a
description language, is supposed to be object-oriented, it must support
the three subfunctions of abstraction (and their reverse subfunctions).
Pattern diagrams are used to express concepts and concept relationships,
but abstraction is also expressed in object diagrams.

5.1 Classification

A concept is modelled by means of an OAD pattern. A pattern can either
be used as a class or a procedure. The OAD pattern is presented as a
rectangle with a title and a number of attributes (lines) Attributes may
be part objects, object references, class patterns or procedure patterns.
See Fig. 5.1. The upper diagram is an object diagram and the lower
diagram is a pattern diagram. In the example X, anX, anotherX, aY, Z,
V, doSomething, doAnotherThing are attributes of A. Object references
are indicated by means of arrows from the attribute line to a pattern. This
pattern is called the qualification of the reference. Objects referenced (at
run time) must be instances of that pattern (or subpatterns of it).

In the object diagram the substance and some dynamic aspects of the
pattern A is shown. The substance is simply the part objects of the
pattern. The dynamic aspects are the sequencing between objects and
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the interaction between objects. Exemplification is done differently for
class patterns and procedure patterns !. Class patterns are instantiated
as concurrent, alternation or passive objects. Procedure patterns are
instantiated as interactions (procedure calls).

Concurrent, alternation or passive objects are created by incorporating
an object symbol in an object diagram. When instantiating the class
pattern, the type of object (concurrent, alternation or passive) is decided
by choosing the corresponding object symbol. An arbitrary number of
objects can (of course) be instantiated from the class pattern. Objects
may be instantiated directly from a object descriptor (singular object) or
by referring to a class name (class-defined object). In the latter case the
name of the object and the name of the class are written (in the attribute
symbol) separated by ’’, just as in textual programming languages. If
more than one object of a given class is needed, the objects must be class-
defined. The object descriptors of singular objects are also presented by
means of pattern symbols in the pattern diagram. See Fig. 5.1. The
objects Z and V are singular concurrent objects, anX and anotherX are
class-defined passive objects. Class X is local to class A, but class Y is
defined at an outer level or in a superclass. The V object is not interacting
with any other object, at least not at this stage in the analysis/design
model.

An interaction is created by choosing a source object and a destination
object. The distinction between source and destination is only a matter
of specifying the direction of the arrow, but the arrow can also be bi-
directional. An attribute in the corresponding class pattern of one of the
two objects must be selected or created. This attribute will then be the
procedure pattern that is instantiated in the interaction. See Fig. 5.1.
The doA interaction between anX and Z has been created by selecting
the doA attribute (in the X pattern that corresponds to the anX object)
and connecting it to the Z object. In this case anX is the source object
and Z is the destination object.

In the preliminary notation there is no graphical distinction between the
different kind of attributes in a pattern: part objects, object references,
class patterns or procedure patterns. The intention is to avoid overloading
the diagrams with different graphical symbols. Such distinctions might

'In fact the distinction between class patterns and procedure patterns is determined by the
object kind created from the pattern.
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however be added.

5.2 Aggregation

OAD patterns/objects can be nested in an arbitrary number of levels.
In the last section we have already seen how aggregation is expressed in
pattern diagrams. In the lower diagram of Fig. 5.1 the pattern symbol
for A on the left shows that A is composed of a number of attributes.
The square area on the right is a further decomposition of some of the
attributes, namely the pattern attributes.

The aggregation hierarchy of objects is reflected in a corresponding hi-
erarchy of object diagrams. The correspondence between the aggregated
object and the decomposition diagram is illustrated in Fig. 5.2. The
lower diagram shows the decomposition of the A object in the upper
diagram.

The connection to outer objects are shown as small circles containing the
name of the outer objects. Outer objects are the objects in the diagram,
that contains the object, which this diagram is a decomposition of. In the
example B, C and D are outer objects of the lower diagram. An example
is given in chapter 4.

Notice that concurrent, alternation and passive objects can be aggregated
in this way. Aggregation of interactions is shown in the pattern diagrams.

5.3 Simple Specialization

It is relatively easy to express a general concept, but it is more difficult
to make specializations without repeating the general concepts. Simple
specialization (i.e. inheritance) is often used to aggregate attributes from
the superclass together with added attributes in the subclass. Fig. 5.3
shows simple specialization.

Class AA is a simple specialization of class A, or in other terms AA is a
subclass of A. This means, that everything in class A is visible to class
AA, and the subclass can refer to any attribute in A.
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Figure 5.2: Aggregation/Decomposition
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Object Diagrams

Objects in AA can for example be connected to objects in A by inter-
actions, as shown in the figure. This is done by redrawing the relevant
objects of A in AA. To indicate that they are inherited, they are drawn
as object symbols with a double border.

Notice that concurrent, alternation and passive can be specialized in this
way. This adds 3 symbol variants to the OAD language. Specialization
of procedure objects/patterns is shown in the pattern diagram.

Pattern Diagrams

The pattern diagram shows the classification hierarchy of patterns as a
corresponding tree of pattern symbols. The pattern symbols are con-
nected by means of undirected lines. In the example class A has only one
subclass. It is shown that subclass AA extends A with the attributes V
and W.

5.4 Qualified Specialization

Qualified specialization was defined as overwriting or extending some of
the inherited attributes in the subclass. Those attributes that can be
overwritten or extended are called virtual attributes. In Smalltalk for
example all methods are virtual procedures.

In OAD virtual attributes must be indicated in the superclass (virtual
definition). This is done by shadowing the object and its corresponding
pattern symbol. In the subclasses the overwriting or extension of the at-
tribute must also be indicated (further binding). In the object diagram it
is done by a combination of the virtual ?shadowing” and the inheritance
”double bordering”. In the pattern diagram it is done by means of shad-
owing the virtual definition attribute (in the superpattern) as well as the
further binding attribute (in the subpattern). An example of qualified
specialization is shown in Fig. 5.4. In this example aZ is an object de-
fined by the virtual pattern Z in class A. In the subclass AA, Z is further
bound, which means that the aZ object of A now is extended.
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Notice that concurrent, alternating and passive objects can be specialized
in this way. This adds 6 symbol variants to the OAD language.

A call of a virtual or further bound procedure is indicated by a dashed
arrow in the object diagram and as a shadowed attribute in the pattern
diagram.

5.5 An Example

To illustrate specialization in the OAD notation, the Ward example
[Ward 89] (See appendix A) is used. It is part of a system that con-
trols filling and emptying a tank of liquid. Valves are used to fill or
empty the tank. In the example a general valve is described. This valve
is specialized into an inlet valve and an outlet valve. The inlet valve func-
tions like the general valve, but the outlet valve must, in addition to the
general properties of a valve, check, whether the valve status is manual
or automatic. If the status is manual, the system may not operate on the
valve, and the outlet valve must send a valve failure signal to the tank
control transformation. Wards solution to this problem is using simple

specialization. This section illustrates simple and qualified specialization
in the OAD notation.

Simple Specialization

Fig. 5.5 shows how simple specialization can be expressed in the OAD
notation.

The object diagram shows that Class Valve contains two concurrent ob-
jects and one passive object. Open Valve is a concurrent ob ject that when
enabled sends a signal to the physical Valve telling to it to open. The
same signal is sent to the Monitor valve object that checks the actual
on/off status of the physical valve according to some data (Operating
time). If there is a mismatch between the desired and the actual on/off
status a Valve failure signal is sent. This general valve is specified with-
out a control object, that enables or disables the Open Valve object. The
specification of valve control is deferred to subclasses of Valve. Class
Inlet Valve has a Control Inlet Valve object and class Outlet Valve has
a Control Outlet Valve object. In addition Outlet Valve has an object
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that signals the status of the auto/manual switch in the system. This
additional signal is considered in the control logic of the Control Out-
let Valve object. The output from the control objects must be send to
Open Valve. To specify this, the Open Valve object of the superclass is
repeated in the subclasses. The double border of the Open Valve object
indicates, that it is inherited from a superclass.

The corresponding pattern diagram also shows the simple specialization
of the Valve Class into Outlet Valve and Inlet Valve, but here the focus
is only on the attributes.

The Ward Solution

This solution is different than Wards solution. Ward specifies inheritance
by allowing diagrams of subclasses to contain their superclass as an ob-
ject. To describe that the attributes of Valve are inherited in Outlet
Valve and Inlet valve, the Valve symbol is repeated in the subclasses.
This solution can be characterized as a kind of ”downward aggregation”.
Valve is presented as an aggregate of attributes, but it is not possible to
see the contents of an aggregate, except for the in-going and out-going
interactions. It is therefore not possible to add an interaction to an inter-
nal object of the superclass, for example to call a procedure in a passive
object of the superclass. This suggests, that the solution of Ward does
not cover all cases of simple specialization.

Qualified Specialization

In the Ward example the Valve was defined as an abstract superclass,
i.e. a class that only is used as a superclass. There will never be created
objects of this class, because the control logic is missing. Another solution
is to specify the Valve as a complete class including the control object.
In this way a Valve object can be created directly from the Valve class,
or from subclasses of Valve. See Fig. 5.6.

Two operations are added to the Valve class: Open and Close, as in-
teractions to the Control object. The Control object must be able to
function together with general Valves, and together with the more spe-
cialized Outlet Valve. This means that it must be modified in the Outlet
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Valve subclass. The modification might be a totally new specification of
the control logic or just an extension of it.

Control Valve (the shadowed object) in class Valve is an instance of the
virtual class Control Valve Class (the shadowed attribute in the pattern
diagram). In the subclass (Outlet Valve) the definition of Control Valve
is extended or overwritten. This is indicated by the shadowed and double
bordered object as well as the shadowed attribute in the pattern diagram.
What it really means, is that the Open and Close procedures are extended
or overwritten, i.e. Open and Close are also virtual. This is indicated by
dashed arrows. The Control Valve object of class Valve is also presented
in the subclass (the shadowed and double bordered object) because it is
referred to. Notice that the Control Valve in Outlet Valve is extended
with the Auto/manual procedure object and the Valve Failure interaction.

Because the Valve Class is self-contained with control logic, the Inlet
Valve object can be directly created as an instance of that class.

The corresponding pattern diagram also shows the simple specialization
of the Valve Class into Outlet Valve, as well as the qualified specialization
of the Control Valve Class and the procedures Open and Close. But again
here the focus is only on the attributes.

Specialization of State Transition Diagrams

In the original example Control Inlet Valve and Control Outlet Valve
were control transformations, i.e. they had state transition diagrams
(STDs) associated with them. The control objects in the OAD examples
can also have STDs associated. There is no problem in having a virtual
STD. What it really means, is that some of the state transitions are
virtual, i.e. the actions taken, when signals arrive, are specified generally
(according to the given state and other conditions like values of variables
and continuous input flows). These specifications can then be extended
or overwritten in specializations of the STD.

The OSDL proposal [Belsnes 87] introduces among other things virtual
procedures and virtual transitions in SDL process diagrams, that are
a kind of state transition diagrams. The difference between SDL dia-
grams and the STDs of real-time SA/SD is basically, that SDL STDs are
non-cyclic (provided by duplication of states). This makes it easier to
introduce a graphical notation for simple and qualified specialization.
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Chapter 6

Mapping from OADs to BETA

The intention behind the OAD notation was partly to contribute to
the work on integrating object-orientation with analysis and design, and
partly to introduce a notation that is directly mappable to BETA.

The preliminary notation however only expresses the overall structures
of the physical model. The notation can be used to express aggregation
hierarchies of concurrent, alternation and passive objects. Interaction be-
tween objects is expressed by procedure objects, that can be used as data
flows between objects, operations performed on another object or signals
from one object to another. There are no means for expressing the ac-
tion sequence of an individual object !. Consequently, the corresponding
BETA programs can only be templates of the higher abstraction levels.
The action sequence for each object must be filled out manually, in order
to be able to execute the physical model.

Aggregation hierarchies and classification hierarchies in the OAD nota-
tion are directly mappable to corresponding hierarchies in BETA. This
is of course not surprising, because the OAD notation is based on the
definition of object-oriented programming in chapter 2. This definition
constitutes the basic principles underlying the design of BETA. The ter-
minology used in this report is however different than the BETA termi-
nology 2. Moreover the syntax of BETA, that normally is difficult to
grasp for ignorants of the language, has been slightly modified to reflect
the concepts of OAD. It has been done by adding and changing keywords

1A state transition diagram or another graphical formalism, might however be associated
with a control object, as discussed in the introduction.

?Concurrent objects, alternation objects, procedure objects and passive objects correspond
to system objects, component objects, item objects and data objects in BETA respectively.
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FlightReservationSystem: @ concurrent
(#

FlightType: <<... ObjectDescriptor ...>>;
anSK451Flight: @ concurrent TimeTable.SK451.Flight;
TravelAgent: <<... ObjectDescriptor ...>>;
aTravelAgent: @ concurrent TravelAgent;
Customer: <<... ObjectDescriptor ...>>;
aCustomer: @ concurrent Customer;

ReservationTable: @ passive <<... ObjectDescriptor ...>>;
TimeTable: @ passive <<... ObjectDescriptor ...>>;
PriceTable: @ passive <<... ObjectDescriptor ...>>

do (|| anSK451Flight || aTravelAgent || aCustomer ||)
#)

Figure 6.1: Flight Reservation, Concurrent Objects
3

The mapping of aggregation hierarchies is illustrated by means of the
flight reservation example of chapter 4, and the mapping of classification
hierarchies is illustrated by means of the Valve example of chapter 5.

6.1 Aggregation Hierarchies

The aggregation hierarchies of OADs are easily mapped into correspond-
ing hierarchies in BETA.

Fig. 6.1 shows the BETA program fragment that corresponds to the top-
level OAD object diagram of the flight reservation example (Fig. 4.2).
FlightReservation is a concurrent object that contains three concurrent
objects and three passive objects. The keywords: concurrent and passive
should not be confused with a superclass specification. The imperative

do (I| anSK451Flight || aTravelAgent || aCustomer ||)

is called a concurrent imperative, and is used to specify that the three
objects are executed concurrently. The construct <<... 0ObjectDescriptor

3The keywords: concurrent and alternation are used instead of ||’ and °|’ respectively.
The keywords: virtual and extended are used instead of <’ and ’::<’ respectively. The
keywords passive, procedure and class are removed when transforming to real BETA.
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TravelAgent:
(#
Identification: @ passive <<... ObjectDescriptor ...>>;

CustomerService: @ alternation <<... ObjectDescriptor ...>>;
Invoicing: @ alternation <<... ObjectDescriptor ...>>;
TourPlanning: @ alternation <<... ObjectDescriptor ...>>

do (| CustomerService | Invoicing | TourPlanning |)
#)

Figure 6.2: Travel Agent, Alternating Objects

...>> 1s not part of the BETA syntax, it is rather part of the pro-
gramming environment for BETA. It is called a contraction, and it is
used to suppress details. The dots indicate the suppressed details and
ObjectDescriptor is the syntactic category of the contracted construct. The
program fragment is presented in this way in the editor of the Mjglner
BETA System. This is further discussed in chapter 7.

Looking into the next level of abstraction the program fragment cor-
responding to the TravelAgent object diagram in Fig. 4.3 is shown in

Fig. 6.2. TravelAgent is a pattern that contains one passive and three
alternating objects. The imperative

do (| CustomerService | Invoicing | TourPlanning |)

is called an alternation imperative, and is used to specify that the two
objects are executed alternatingly.

As indicated the BETA program templates are deduced from the object
diagrams as well as the pattern diagrams. The more details that are
specified in the pattern diagrams the more detailed program templates
can of course be generated. A non-detailed BETA program template for
the passive object TimeTable is shown in Fig. 6.3. The attribute kind of
GetInfo (procedure pattern) is derived from the object diagram in Fig.
4.2 (The GetInfo arrow between TimeTable and TravelAgent).

The constructs <<attributeDecl>> % and <<ObjectDescriptor>> are not
part of the BETA syntax. They are placeholders (nonterminals) used in
the syntax-directed editor of the Mjglner BETA System.

This is a slight modification of the BETA grammar, but it is only for demonstration purpose.
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TimeTable: @ passive
(#
SK451: <<AttributeDecl>>;
SK273: <<AttributeDecl>>;
Initialize: <<AttributeDecl>>;
GetInfo: @ procedure <<ObjectDescriptor>>

do <<Imperative>>
#)

Figure 6.3: TimeTable, Program Template

TimeTable: @ passive
(#
SK451: @ passive FlightType;
SK273: @ passive FlightType;
Initialize: @ procedure <<ObjectDescriptor>>;
GetInfo: @ procedure <<ObjectDescriptor>>

do <<Imperative>>
#)

Figure 6.4: TimeTable, More Details

A more detailed BETA program template for the passive object TimeTable
could be as shown in Fig. 6.4. In the current notation there is no spec-
ification of parameters. Not even the direction of the flows can be used
to determine the direction of parameters.

6.2 Interaction between Objects

Concerning interaction between objects, the basic principle when map-
ping OADs to BETA is to associate a BETA procedure pattern with
an OAD interaction (procedure call). The template for the alternation
object CustomerService is shown in Fig. 6.5. The action part of Custom-
erService contains an infinite loop and four communication imperatives.
The order of the imperatives is arbitrary, it should just be considered as
a list of communications that may take place from the CustomerService
object. Further details must of course be specified.
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CustomerService: @ alternation
(# <<Attributes>>
do cycle
(#
do anSK451Flight >? Reserve;
anSK451Flight >? Cancel;
anSK451Flight >?7 Occupied;
anSK451Flight >? DisplayReservations;
#);
#);

Figure 6.5: Customer Service, Synchronized Communication

As mentioned when defining the notation in chapter 4, the procedure
object that corresponds to an interaction between two concurrent objects
is executed synchronized, like the Ada rendezvous. The imperative

anSK451Flight >? Reserve

is a communication request. It specifies that the CustomerService object
is requesting to execute the Reserve procedure object of anSK451Flight.
The corresponding communication accept in Flight, is shown in Fig. 6.6.

The imperative

<? Reserve

is a communication accept. The with-imperative is used to specify those
concurrent objects, that communication requests will be accepted from.
The nonterminal <<SomeProcess>> is indicating that the process that
might request a communication is not specified yet.

Notice that the request-imperatives and the corresponding procedure pat-
terns are specified in the alternation object CustomerService, that is local
to the concurrent object TravelAgent. CustomerService could also have
been a concurrent object. In BETA a concurrent object can communicate
with internal concurrent objects of another concurrent object.

In further details the interaction Reserve could look like in Fig. 6.7 and
the corresponding communication request could look like:

(6, False, Business) -> anSK451Flight >? Reserve -> theResult
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Flight:

(# Seats: [NoOfSeats] @ Seat;
Seat: <<0ObjectDescriptor>>
ActualDepartureTime,
ActualArrivalTime: @ TimeOfDay;
ActualFlyingTime: @ TimePeriod;

DepartureDelay: @ procedure

(# <<Enter>> with <<SomeProcess>> <<ActionPart>> <<Exit>> #);
Reserve: @ procedure

(# <<Enter>> with TravelAgent <<ActionPart>> <<Exit>> #);
Cancel: @ procedure

(# <<Enter>> with TravelAgent <<ActionPart>> <<Exit>> #);
Occupied: @ procedure

(# <<Enter>> with TravelAgent <<ActionPart>> <<Exit>> #);
DisplayReservations: @ procedure

(# <<Enter>> with TravelAgent <<ActiomPart>> <<Exit>> #);

do cycle
(#
do <7 Reserve;
<? Cancel;
<? Occupied;
<? DisplayReservations;
ReservationTable.UpdateEntry;
#)
#)

Figure 6.6: Flight, Synchronized Communication
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Flight:

(# ...
Reserve: procedure
(#
enter (NoOfSeats, Smoking, SomeClass)
with TravelAgent
do ...
exit Result
#);
do cycle
(#
do ...
<? Reserve;
#)
#)

Figure 6.7: Reserve, Further Details

Notice that a synchronized procedure pattern can be fully parameterized.
Synchronization takes place when parameters are transferred between the
sender and the receiver.

The interaction with the passive object ReservationTable is indicated
by means of a procedure call, that corresponds to the interaction. As
mentioned the sequence and the parameters can not be deduced from the

OAD.

The definition of the attributes Seats, ActualDepartureTime, ActualAr-
rivalTime, and ActualFlyingTime are derived from the more detailed
pattern diagram in Fig. B.2.

Mutual Exclusion

In general mutual exclusion is provided in BETA by the aggregation
hierarchy. An internal concurrent object may execute procedure objects
belonging to an enclosing concurrent object. Such procedure ob jects are
executed one at a time.
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6.3 Classification Hierarchies

The classification hierarchies in OADs are easily mapped into correspond-
ing classification hierarchies in BETA. As described in chapter 2, BETA
provides simple specialization as well as qualified specialization for pro-
cedures as well as classes.

There is still no specification of action sequences of individual objects.
The sequences of imperatives should just be considerated as lists of com-
munications that must be put in the right context.

Fig. 6.8, 6.9 and 6.10 show the mapping of class Valve, class Outlet
Valve and class Inlet Valve (respectively) from Fig. 5.5. The nontermi-
nal SomeProcess indicates, that the receiver of the communication request
cannot be deduced from the class diagrams. If the class is used in a di-
agram (an object is instantiated from it), the receiver will probably be
specified.

Fig. 6.11 and 6.12 show the mapping of class Valve and class Outlet
Valve (resp.) from Fig. 5.6. In class Valve, ControlValve is a concurrent
object, that is an instance of the virtual class ControlValveClass. Class
Valve has two virtual procedures Open and Close. In the subclass Qutlet-
Valve, a new ControlValve object is not instantiated, but the definition of
class ControlValve is extended. The Open and Close procedures are also
extended. The keyword extended is used, because qualified specialization
in BETA is considered as an extension of a more general concept as op-
posed to a redefinition (like in most other object-oriented programming
languages). It is however also possible to program a redefinition.

The details of the ControlValve class is not shown, but in the actual
implementation this class may also introduce two virtual procedures Open
and Close, that are defined in the virtual definition of the ControlValve
Class and further bound in the further binding of the ControlValve. In
BETA it is very typical to several simultaneous layers of virtuals.

An interesting problem is how to handle interaction between the action
parts of the super- and subclass. The INNER construct directs control
to a possible subclass, but how do the two loops work together? In some
cases the ”inner” action part could be a single (possibly empty) sequence
of actions, that are part of the ”outer” cycle. In other cases a totally new
cycle of actions is required. More generally the problem is how to handle
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Valve: class
(#
ValveData: @ passive
(# OperatingTime: @ procedure <<ObjectDescriptor>>
do <<Imperative>>
#);
OpenValve: @ concurrent
(# Enable: @ procedure <<ObjectDescriptor>>;
Disable: @ procedure <<ObjectDescriptor>>
do cycle
(#
do <7 Enable
<? Disable
MonitorValve >? ValveDesiredOnOffStatus;
<<SomeProcess>> >? ValveDesiredOnOffStatus;
#);
#);
MonitorValve: @ concurrent
(# ValveDesiredOnOffStatus: @ procedure
(# <<Enter>> with OpenValve <<ActionPart>> <<Exit>> #);
do cycle
(#
do <7 ValveDesiredOnOffStatus;
<<SomeProcess>> >7 ValveActualOn0ffStatus;
<<SomeProcess>> >? ValveFailure;
ValveData.OperatingTime;
#);
#);
do <<Imperative>>
#)

Figure 6.8: Class Valve
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OutletValve: class Valve
(#
ControlOutletValve: @ concurrent <<ObjectDescriptor>>;
MonitorAutoManualStatus: @ concurrent
(# AutoManual: @ procedure
(# <<Enter>> with ControlOutletValve <<ActionPart>> <<Exit>> #);
do cycle
(#
do <<SomeProcess>> >? OutletValveActualAutoManualStatus;
<? AutoManual;
#);
#);
Open: @ procedure <<ObjectDescriptor>>;
Close: @ procedure <<ObjectDescriptor>>;
do cycle
(#
do <7 Open;
<? Close;
MonitorAutoManualStatus >? AutoManual;
OpenValve>? Enable;
OpenValve>? Disable;
<<SomeProcess>> >? ValveFailure;
#);
#)

Figure 6.9: Subclass OutletValve

InletValve: class Valve
(#
ControlInletValve: @ concurrent <<ObjectDescriptor>>;
Open: @ procedure <<ObjectDescriptor>>;
Close: @ procedure <<ObjectDescriptor>>
do cycle
(#
do <? Open;
<? Close;
OpenValve>? Enable;
OpenValve>? Disable;
#);
#)

Figure 6.10: Subclass InletValve
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inheritance together with concurrent interacting objects.

6.4 Specifying Action Sequences

The specifications in the Jackson System Development method [Jackson 83]
are in principle executable because the action sequence of each process is
specified by means of a structure diagram and structure text. The struc-
ture diagram is a graphical representation of control flow, it expresses
sequence, selection and repetition. Structure text is a textual version of
the structure diagram extended with constructs for inputs and outputs
to and from the process.

In Real-time SA/SD the transformation schema is (at least partly) ex-
ecutable, because the control transformations are specified by means of
state transition diagrams. Data transformations are however not spec-
ified graphically. Transformation schemas can be executed in a ’'Petri
net’-like manner, by means of placement of tokens [Ward 86].

State transition diagrams could also be associated with concurrent objects
in OADs. In appendix C it is illustrated how a transformation schema
with one control transformation and two data transformations can be
mapped into BETA. The same principles can be used for other object-
oriented notations that include some kind of state transition diagrams.

6.5 Mapping Other Notations to BETA

Mapping Real-time SA/SD to BETA

Besides the state transition diagram Real-time SA /SD extends traditional

SA with asynchronous signals and continuous flows. These constructs can
also be modelled in BETA.

Modelling asynchronous signals by means of synchronized communication
can be done by making a special concurrent object, a signal handler. The
signal handler is always ready to accept a communication request, and
it queues the signals until the receivers are interested in them. The
predefined signals (trigger, enable, disable, suspend and resume) can also
be modelled by prefixing each concurrent object with a superclass that
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Valve: class
(#
ValveData: @ passive
(# OperatingTime: @ procedure <<ObjectDescriptor>>
do <<Imperative>>
#);
UpenValve: @ concurrent
(# Enable: @ procedure <<ObjectDescriptor>>;
Disable: @ procedure <<ObjectDescriptor>>;
do cycle
(#
do <7 Enable;
<? Disable;
MonitorValve >? ValveDesiredOnOffStatus;
<<SomeProcess>> >? ValveDesiredOnOffStatus;
#);
#);
MonitorValve: @ concurrent
(# ValveDesiredOnOffStatus: @ procedure
(# <<Enter>> with OpenValve <<ActionPart>> <<Exit>> #);
do cycle
(#
do <? ValveDesiredOnOffStatus;
<<SomeProcess>> >? ValveActualOnOffStatus;
<<SomeProcess>> >? ValveFailure;
ValveData.OperatingTime;
#);
#) ;
ControlValveClass: virtual <<ObjectDescriptor>>;
ControlValve: @ concurrent ControlValveClass;
Open: virtual procedure <<ObjectDescriptor>>;
Close: virtual procedure <<ObjectDescriptor>>;
do cycle
(#
do <7 Open;
<? Close;
OpenValve>? Enable;
OpenValve>? Disable;
#);
#)

Figure 6.11: Class Valve
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OutletValve: class Valve
(#
MonitorAutoManualStatus: @ concurrent
(# AutoManual: @ procedure
(# <<Enter>> with ControlValve <<ActionPart>> <<Exit>> #);
do cycle
(#
do <? OutletValveActualAutoManualStatus;
ControlValve >7 AutoManual;
#);
#);
ControlValveClass: extended <<ObjectDescriptor>>;
Open: extended procedure <<ObjectDescriptor>>;

Close: extended procedure <<ObjectDescriptor>>;
do cycle

(#

do <7 Open;
<? Close;
OpenValve>? Enable;
OpenValve>? Disable;
MonitorAutoManualStatus >? AutoManual;
<<SomeProcess>> >? ValveFailure;
INNER

#);

#)

Figure 6.12: Subclass OutletValve
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provides these operations. A kernel-like object can then be used to control
the concurrent objects.

Continuous data flows can be modelled by allocating a concurrent ob-

ject that periodically updates a variable, that is accessed by a procedure
object.

Mapping OSDL Process Diagrams to BETA

In OSDL [Belsnes 87], as well as SDL, each process is specified by means
of a graphical, as well as textual, state transition diagram. OSDL process
diagrams can be mapped to BETA following the same principles as de-
scribed in appendix C. The virtual procedure and virtual transitions of
OSDL are easily supported by BETA. The virtual transition is modelled
by the virtual procedure of BETA.
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Chapter 7

Automated Support

Computer support in software development has been a research area for
a long period of time. In the beginning the primary focus was on pro-
viding tools for what traditionally is called programming. Integrated
and language-oriented programming environments that support creation,
modification and debugging of programs have emerged. Lately there has
also been a lot of effort in supporting other activities than traditional
programming in systems development. Tools have been developed that
support creation and modification of graphical analysis and design de-
scriptions. This has introduced the popular term CASE (Computer Aided
Software Engineering). Apparently this term covers computer support for
all kind of system development activities.

The previous chapter has hopefully shown, that object-orientation as a
bridge between analysis, design and implementation is not a castle in the
air. This chapter will show how the mappings between OADs and BETA
program fragments can be supported by the programming environment

of BETA: the Mjglner BETA System.

The Mjglner BETA System ! is a programming environment for object-
oriented programming. The environment consists of an implementation
of BETA and a set of grammar based tools, that can be generated for
any language with a context free grammar. These tools are: an inte-
grated text and structure editor [Borup 88|, a metaprogramming system
[Madsen 88a] and a fragment system. In addition the environment con-
tains a user interface toolkit (build on top of the X Window System and
the Macintosh Toolbox) and a UNIX ensemble that gives access to the

!The Mjglner BETA system [Knudsen 89] is one of several results of the Nordic Mjglner
project [Dahle 87).
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UNIX system.

The editor, the metaprogramming system and of course the compiler
are heavily used in the integration of OADs and BETA programs. The
metaprogramming system makes it possible to manipulate programs as
data. A programming interface to abstract syntax trees (ASTs) can be
generated from a context free grammar of any language. The editor and

the compiler are built on top of the metaprogramming system, because
they both manipulate ASTs.

In [Sandvad 88] it is shown how the syntax-directed textual editor can
be extended also to provide syntax-directed graphical editing, i.e. cre-
ation and modification of graphical diagrams according to a context free
grammar of the graphical language. The design is especially useful for
graphical languages that have a high degree of text associated with them.
This is the case with OSDL, that has been used as an example language in
that proposal. The grammar basis ensures that the graphical diagrams
always are syntactically correct. Error prevention is very useful if the
graphical language is complex or it has a high degree of text associated
with it. This is not the case with the OAD language. A grammar basis
can however provide a lot of support in integrating OADs with BETA
program fragments. The grammar basis can give:

e syntax-directed editing of OADs and BETA programs

¢ automatical creation of BETA programs from OADs (code genera-
tion)

¢ automatical creation of OADs from BETA programs (reverse engi-
neering)

e traceability and maintenance of conmsistency between OADs and
BETA programs

e traceability to other kind of descriptions e.g. documentation

e abstract presentation of BETA programs according to the abstrac-
tion levels in the corresponding OADs

e integration with the BETA compiler

o execution of the BETA program after completion of programming
details like the action sequences of objects
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7.1 The User Interface

The user interface to the syntax-directed textual editor will not be pre-
sented here. It is presented in [Borup 88].

The graphical editor follows the principles presented in [Sandvad 88].
The OAD symbols are presented in a palette, from where the user can
drag them into the diagrams: either the object diagrams or the pattern
diagrams. When creating, modifying and browsing the diagrams, the
user typically alternates between manipulating the object diagram and
the pattern diagram.

The syntax-directed editing techniques imply that the OADs are ma-
nipulated according to their logical structure, as opposed to the plain
"collection” of graphical symbols. Another consequence is that whole
subtrees of the abstraction hierarchies typically are manipulated in one
operation. E.g. when cutting an object symbol out of an object diagram,
the whole underlying decomposition of that object (if any) is also cut out.
Although ”standard” structural cut, copy and paste operations on OADs
will do the work, some specialized operations might be required to ease
the work. E.g. operations for moving collections of objects or patterns
up and down in the abstraction hierarchies.

Editing of interactions typically involves the object diagram as well as
the corresponding pattern diagram. If the interaction symbol is selected,
the mouse must be dragged from the source object to the destination
object. If the destination object is in another diagram for example in
an outer diagram or in a superclass, the outer symbol or inherited sym-
bol (resp.) is automatically duplicated in the diagram that contains the
source object. The distinction between source and destination is only a
matter of specifying the direction of the arrow, but the arrow can also
be bidirectional. An attribute in the corresponding class pattern of one
of the two objects must be selected or created. This attribute will then
be the procedure pattern that is instantiated in the interaction. The cre-
ation of an interaction thus involves determination of ownership of the
corresponding procedure, but this might be relaxed upon in the early
informal stages of analysis.

The syntax-directed textual editor is used to enter and modify the al-
though sparse text.
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If an object is selected, its definition can be specified in another diagram
or the user can decide to switch to the syntax-directed BETA editor to
fill out the details of an object.

Navigation is provided in several ways. The abstraction hierarchies in
the OADs can be browsed. Semantic links can be followed, for example
if an outer object symbol or an inhereted object is selected, links to the
outer diagram or the superclass diagram (resp.) can be followed. Links
can be followed to the corresponding constructs in the associated BETA
program, and vice versa. Finally links can be created and followed to
supplementary descriptions or documentation in general. In traditional
SA and real-time SA/SD, textual descriptions are often associated with
nodes in the DFDs, for example mini-specs, process descriptions, pseu-
docode, pre and post conditions etc.

7.2 OADs as Graphical Presentation of BETA
Programs

The basis for automating the mapping from OADs to BETA is to extend
the BETA editor with a graphical prettyprinter, that presents the higher
abstraction levels of BETA programs as OADs. The idea is that the un-
derlying abstract syntax tree (BETA AST) can be manipulated through a
textual as well as a graphical interface. The textual interface is the usual
integrated text and stucture editor, that manipulates BETA programs at
all abstraction levels. The graphical interface is a diagram editor that
works corresponding to the underlying BETA grammar, but only at the
higher levels of abstraction, namely those levels that have an OAD pre-
sentation. A more detailed description of how to support syntax-directed
graphical editing in general is given in [Sandvad 88]. The basic idea of
the two interfaces to the BETA AST is illustrated in Fig. 7.1.

Editing in one editor may of course affect the other editor because both
presentations have the same internal representation. Due to the different
nature of the two languages there is not symmetry in the amount of work
that the editors impose on each other. There will be many creations and
modifications in the text editor, that will not affect the graphical editor,
because they are at a detailed level. Conversely, practically every creation
and modification in the graphical editor will affect the text editor, because
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A: @ concurrent
#
B : @ concurrent
(# x: @ procedure
#
#)

#);
C : @ concurrent
(# y: @ procedure

#
#);
z2: @ procedure
{#
#);

#);

D : @ concurrent
#...

#)

do( B {CH DI
#

BETA AST

Figure 7.1: Integrated Editing of OADs and BETA Fragments
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the OADs express the overall structures of the model.

The textual prettyprinter is (of course) based on the BETA grammar.
For each production in the grammar it is specified how to present it on
textual form. The graphical prettyprinter is however more complicated.
The graphical presentation is not merely a mapping from the (context
free) structures of the AST to corresponding graphical elements. The
interactions (procedure calls) reflect (static) semantic information. It
must therefore be possible to perform semantic analysis on the ASTs, in
order to do the graphical prettyprinting. This is provided by the AST
interface of the metaprogramming system. It is possible to operate on
ASTs at three levels: the tree level that considers ASTs as simple trees
with sons and siblings etc; the context free level that operate on ASTs
in terms of the language specific constructs and finally the semantic level
that makes it possible to create and maintain semantic information in
the ASTs. The BETA compiler is an example of a tool, that operates
through the semantic level of the AST interface to BETA ASTs. When
using the semantic level of the AST interface, it is for example possible
to deduce whether creation of a construct in one of the editors imply
creation of a similar construct in the other editor.

7.3 Document Generation

The framework sketched in the previous section deals with simultaneous
creation and modification of OADs in the graphical editor and BETA
program fragments in the text editor. But it is also possible to generate
documents in a more batch-oriented manner.

The user may then decide only to use the OAD editor to generate some
preliminary sketches of a system. When these diagrams are acceptable
the user may decide to generate BETA program templates from them.

Conversely, if existing BETA programs, that have not been created to-
gether with OADs, are going to be maintained or documented, it must be
possible to generate OADs from them. This is often called reverse engi-
neering. Another typical situation might be, that the analysis and design
documents have been "turned off” for a period of time while concentrat-
ing on implementing the system. When the system has reached a stable
state, the analysis and design documents must be updated according to
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the system.

Both cases can be supported. It is just a matter of ”turning on or off” the
textual presentation or the graphical presentation. Textual prettyprint-
ing of the whole BETA AST is no problem, but the generation of the
graphical diagrams may not satisfy the aestetic sense of the user. The
user must be able to adjust the layout.

7.4 Traceability

The ability to maintain consistency between analysis and design docu-
ments and programs is very valuable. The documentation of a system
can easily become obsolete because the system evolves over time. Current

CASE tools lack this ability.

The integration of OADs and BETA programs by being two alternative
presentations of the same underlying abstract syntax tree also supports
navigation. If an object is selected in the OAD editor for example, the
user can follow the link to the corresponding object in a BETA program
fragment, and a text editor may be opened on this fragment (if not al-
ready opened).

In general, several kinds of links are provided between documents in the
programming environment. An experimental version of the environment,
the hyperobject system [Sandvad 89], has been developed in order to ex-
tend and generalize the hypertext capabilities in the environment. The
hyperobject system is intended to support links between any combina-
tion of text and structure. Programs as well as documentation may be
represented as text or as ASTs, i.e. the syntax-directed textual editor
can be used not only on programs but also on documentation. This pro-
vides links between and within program fragments; between and within
documentation fragments; and between program fragments and docu-
mentation fragments. Because graphical notations can be created and
modified structurally by extending the syntax-directed editor, the gen-
eral linking capability is also provided between graphical descriptions and
between textual and graphical descriptions.

This can be used in the integrated OAD and BETA environment to sup-
port documentation and navigation in the different kinds of related doc-
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uments. The variety of relationships between BETA programs, OAD and
other kind of documentation may be supported.

7.5 Abstract Presentation

In the examples used when illustrating the mappings between OADs and
BETA programs, abstract presentation was used. Abstract presentation
has turned out to be a very useful facility in the syntax-directed textual
editor. It is used to create an overview of large program fragments, and
to browse through programs by detailing selected abstractions. It is also
used to provide parts of technical documentation, because snapshots of
a program at different abstractions levels together with comments are a
good supplement to the documentation.

In the integration between OADs and BETA, abstract presentation can
be used to visualize the correspondance between the abstraction levels
in the OADs (the diagrams) and the abstraction levels of the BETA

programs.

7.6 Integration with the BETA Compiler

In the Mjglner BETA System the editor and the BETA compiler are
integrated in two ways. The editor and the BETA compiler work on
the same AST, and the compiler can be activated from the editor. The
editor ensures that a BETA program is correct according to the context
free grammar. The static semantic checks are performed by the compiler.
If there are semantic errors, the compiler inserts information in the ASTs.
This information is provided to the user by the editor. If there are no
semantic errors, code is generated from the AST and the program can be
activated from the editor.

Due to the integration of the editor and the compiler, OADs can be
executed/simulated. When an OAD hierarchy has been created together
with the corresponding BETA templates, the BETA editor is used to fill
out necessary details like the action sequences of the objects. Then the
BETA program is compiled and executed.

This framework can be used to support the experimental (prototyping)
style. The programmer can decide only to fill out some of the details of
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the objects, inorder to examine the behavior of the overall system before
supplying more details. The result of executing the experimental version

of the program may be that the overall model should be modified in the
OADs.

7.7 Status

The integration of OADs and BETA as described above is at the design
stage. But it has been illustrated how the implementation can be done,
by reusing and extending the Mjglner BETA System.
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Chapter 8

Conclusion

The message of this report is that object-orientation integrates the tra-
ditional activities analysis, design and implementation. The purpose of
analysis as well as object-oriented programming is to build a model of part
of the real world in terms of phenomena and concepts in the application
area. The difference between the two models is that the object-oriented
program can be executed, which makes it possible to simulate that part
of the world that we wish to model. A valuable quality of most analy-
sis models is however, that they are partly graphical. In this report the
valuable qualities of both models are combined.

Object-oriented development integrates analysis, design and implemen-
tation because the same representation can be used in all three activities.
In the transformation from the analysis model to the design model and
from the design model to implementation it is not necessary to change
the representation, but there may of course exist several versions of the
models. However it is the same logical model that gradually is extended
from a model in terms of application domain phenomena and concepts to
a model that includes implementation domain phenomena and concepts.
The design and implementation activities may of course affect the anal-
ysis model. There is no clear distinction between analysis and design.
Analysis starts informally and the analysis model is gradually precisized.
At some time in the development the primary focus moves from analysis
to design. Instead of explicitly defining the border between analysis and
design, the border can be characterized by the degree of formalization.

A preliminary notation for object-oriented analysis and design diagrams
has been proposed, in order to illustrate the integration. An object-
oriented CASE tool that supports OADs has been proposed. It has
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been shown, how OADs easily can be mapped into BETA programs and
how this mapping (and its inverse!) can be supported by the computer.
Another reason for introducing the notation has been to improve the
specification of abstraction in analysis and design diagrams, especially
generalization and specialization.

The experimental (prototyping) style is to some extent supported by gen-
erating program templates from design diagrams. These program tem-
plates can gradually be detailed to a complete program, but the overall
behavior of the program can be observed at an early stage. The OADs
may be supplemented by user interface support. E.g. the objects might
have windows, menus and dialog boxes associated with them. The menus
containing the available operations on the objects. Conversely, user in-
terface prototyping can be used as a basis for the creation of the OADs.

The integration of programs, analysis and design diagrams and other
kind of documentation in this proposal, makes it possible to maintain
consistency between documentation and programs. This is an important
quality, because maintenance is a major problem in system development
projects. Analysis and design documents are used as a starting point for
implementation. When the implementation has reached a stable state, it
is very likely, that the documentation has become obsolete and must be
updated. The same problem arises when the programs are maintained.
Because OADs are considered as a high-level graphical presentation of
BETA programs, this part of the documentation is always consistent
with the programs (reverse engineering). Other relationships between
documentation and programs are supported by hypertext-like links.

The OAD notation is a description tool, not a technique (not to mention a
methodology), but the object-oriented perspective as described in chapter

2 is the underlying philosophy. The creation of the analysis and design
models involves:
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o Identification of phenomena with substance, measurable properties
and transformations on substance

e Identification of the aggregation hierarchies of objects
¢ Identification of interaction between objects

¢ Identification of sequencing between objects

o Identification of concepts that classify phenomena

e The concepts may be organized in classification and aggregation
hierarchies

The graphical notation can help in expressing the physical model, but a
specific order can not be prescribed. The developer may start by drawing
OADs or by writing BETA programs, or both notations may be used
simultaneously or alternatingly.

In the future development of the OAD notation two topics will be fur-
ther explored: specification of action sequences of individual objects and
specification of dynamically created objects.
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Appendix A

Object-Orientation in Analysis and
Design

This appendix gives a brief survey of some proposals for introducing
object-orientation into analysis and design. All the chosen proposals ex-
cept [Coad 89] have some relation to Structured Analysis (SA) and/or
Structured Design (SD). The focus is on how the the different methods
support object-orientation in the graphical notations, i.e how the nota-
tions support:

e modelling of phenomena (objects)
e interaction between phenomena

e sequencing between phenomena (concurrency)

modelling of concepts and abstraction

— classification of phenomena into concepts
— aggregation hierarchies of phenomena and concepts

— generalization hierarchies

A.1 Booch

Object-Oriented Development (OOD) [Booch 86] is a partial life-cycle
software development method, that focuses on design and implementa-
tion. The relationship to analysis is however emphasized: "It is necessary
to couple object-oriented development with appropriate requirements and
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analysis methods in order to help create our model of reality”. Jacksons
Structured Development [Jackson 83] is mentioned as being "a promising
match”. The most important difference between OOD and functional de-
velopment methods like SA/SD, is that the decomposition of a system is
based on the concept of an object, rather than the concept of a function.
The major steps of OOD is:

—

. identify the objects and their attributes
identify the operations suffered by and required of each ob ject
establish the visibility of each object in relation to other objects

establish the interface of an object

AR

implement each object

Step 3 and 4 result in graphical diagrams that are called object diagrams.
See Fig. A.1 (Booch Fig. 6, 7, 9 and 10).

An object diagram is a directed graph, where each node constitutes an
object and each edge indicates the dependencies between objects. Spe-
cial graphical symbols exist that indicate the type of an object: task,
package, generic package, subprogram or generic subprogram. Step 5 is
then a straight forward transformation of the object diagrams and the
descriptions from step 1 and 2 into Ada program templates.

OOD models phenomena by regarding objects as instances of abstract
datatypes. Concerning modelling of concepts OOD is weaker.

Classification of objects in types (classes) is supported.

Aggregation is not expressed in more than one level, objects/classes do
not have local objects/classes. The only graphical structuring mechanism
is the subsystem, that is used to group objects into layers; where each layer
denotes a collection of objects having restricted visibility to other layers.

Generalization is supported in a very limited way by means of generic
packages, parameterized by constants and types. There are only two
levels in the classification hierarchy. Booch discusses inheritance and
how it can be supported in Ada, but he suggests: ”that inheritance is
an important, but not necessary, concept. On a continuum of ‘object-
orientedness’, development without inheritance still constitutes object-
oriented development”.

79




Subprogram

Subsystem

Fig. 6. Names, objects, and classes. . - . . :
Fig. 7. Symbols for object-oriented design.

Alr Locatfon
Temp Sensor
Sensors Sensors

Sensor Dats
Boss

Sensor Data
Base

Message Radio
Radl Switch Trans-
Recelv mitter

S 9 Host at sed iects .
Fig. 9. Host at sea buoy objects. Fig. 10. Host at sca buoy objects.
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Action sequences can be concurrent. The mapping to concurrent objects
and communication between concurrent objects is not discussed. The
object diagrams express only the dependencies between the objects, there
1s no specification of control.

A.2 Wasserman

Object-oriented Structured Design (OOSD) is an architectural design
method [Wasserman 89]. OOSD provides a language independent ar-
chitectural design notation, that is based on the structure chart of SD.
The nodes of the OOSD structure chart are however more detailed, and
constitute objects (classes) instead of functions. They are similar to the
object diagrams of OOD [Booch 86|, but are substantially more elabo-
rated. See Fig. A.2 (Wasserman Fig. 19 and 20).

A graphical editor is being developed as the newest member of a family of
graphical editors (Software through Pictures [Wasserman 87], that sup-
ports creation of OOSD-charts, checking of design rules and code genera-
tion. The editor can be configured for particular programming languages,
by associating language-specific templates with the editor.

Classification is supported. Aggregation is supported.

Generalization: Simple specialization in several levels is mentioned, but
only generic packages are shown in the example. However generic tasks

are also supported in the notation, despite the fact that these are not
supported in Ada.

Action sequences can be concurrent. OOSD supports the definition and
use of asynchronous processes, similar to Ada tasks. The notation is
however designed to support traditional fork/join communication and
message passing, as well as the Ada rendezvous. Ada designers are sug-
gested to extend the notation with symbols for communication between
concurrent objects. Buhr’s notation for showing guarded entry calls and
sequencing of entry calls is recommended.
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A.3 Seidewitz and Stark

General Object-oriented Software Development Methodology (GOOD)
[Seidewitz 87], is based on the work of Booch. The product of GOOD
is an object-oriented design, i.e. a version of Booch’ object diagram to-
gether with object descriptions specifying detailed ’provides’ and ’uses’
information. See Fig. A.3 (Seidewitz Fig. 12 and 13).

The object-oriented design can then be transformed into Ada program
templates as demonstrated by Booch. Like OOD, GOOD is focusing
on design and implementation. The contribution of Seidewitz and Stark
is a method called abstraction analysis, for making a transition from a
structured specification (SA) to an object-oriented design.

Phenomena are modelled as objects that are regarded as abstract data
types.

Classification seems not to be supported.
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Aggregation is supported in the object diagrams, much like aggregation in
DFDs, but it is unclear whether the decomposition of objects can be done
on more than two levels. It seems like the lower levels of decomposition
is used for describing the operations of the decomposed object.

Generalization is not supported.

Action sequences can be concurrent and “rendezvous” is mentioned as
the communication mechanism between concurrent objects, but is not
discussed further. Because of the uncertainty about object aggregation
on more than two levels, it is unclear whether concurrent objects can be
nested. The object diagrams express only the dependencies between the
objects, there is no specification of control.

A.4 Bailin

Bailin describes a method for analyzing requirements for object-oriented
software (OOS) [Bailin 89]. The starting point of OOS is a textual state-
ment of requirements or ideally a database of discrete, traceable require-
ments for a system. OOS is inspired by the notation of Structured Anal-
ysis (SA), but the data flow diagrams (DFDs) are constructed by means
of object-oriented decomposition as opposed to functional decomposi-
tion. An object-oriented specification, the product of OOS, is a hierarchy
of entity data flow diagrams (EDFDs) and a set of entity relationship
diagrams (ERDs). ERDs serve as the context for the specification, they
provide a comprehensive view of the problem domain. EDFDs are like
conventional DFDs but the nodes fall into two categories: entities and
functions. Bailin uses the term entity instead of object. A process in
SA may be a valid entity, but the emphasis is not on transformation of
inputs to outputs, but on the underlying content. Content is regarded as:

o the data structures that define the entity
e the underlying state of a process as it evolves in time

e that aspect of a process that is persistent across repeated execution
cycles

A function is purely a transformation of inputs to outputs. It has no
underlying state that it remembers across successive invocations. Every
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function must occur in the context of an entity, i.e. it must be performed
by or act on the entity. Entities are divided into active and passive
entities. Active entities are processes (they have their own execution
thread) or "important” abstract datatypes (ADTs). Passive entities are
”less important” ADTs that are represented as data flows or data stores.

The specification method (OOS) consists of seven steps:

. identify key problem-domain entities
. distinguish between active and passive entities

. establish data flow between active entities

. check for new entities

1
2
3
4. decompose entities (or functions) into sub-entities and/or functions.
5
6. group functions under new entities

7

. assign new entities to appropriate domains

Steps 4 through 7 should be iterated until the desired level of detail is
reached.

Some tools have been developed, that support OOS. A rule checker checks
consistency between the ERDs and the EDFDs. A design generator tool
reads a hierarchy of EDFDs and outputs a hierarchy of objects diagrams
as defined by Seidewitz and Stark. Active entities are mapped into ordi-
nary objects, that corresponds to Ada packages. Only the highest-level
functions are converted to procedure objects, that corresponds to Ada
tasks and procedures. The object diagrams are in turn transformed to
Ada program templates following the same principles as in [Seidewitz 87].

OOS models phenomena more detailed as seen in the previous methods.
Objects can be active or passive, and functions can also be represented as
nodes in the EDFDs. The latter is of course not a development in relation
to traditional SA, but the nodes of the object diagrams as described by
Booch and Seidewitz were only objects. See Fig. A.4 (Bailin Fig. 4 and
5).

Classification is not supported.

Aggregation is supported in an arbitrary number of levels. Entities can
be decomposed into sub-entities or functions. Functions can however only
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be decomposed into sub-functions. The graphical notation for aggrega-
tion/decomposition is the same as in conventional DFDs. The important
development in OOS is aggregation of objects, not only functions. This
means that objects can contain part objects and the operations (func-
tions) on the object, and functions can be expressed by subfunctions.

Generalization is not considered at all.

Action sequences can be concurrent. Active entities are considered as con-
current objects and functions can also have their own execution thread.
The support for aggregation means also, that it is possible to express hi-
erarchies of concurrent objects, but the type of communication between
such objects is not discussed. The EDFDs and the object diagrams ex-
press only the dependencies between the objects, there is no specification
of control. Bailin mentions however integration of EDFD and state ma-
chines as a subject for further experiments. Ward and Mellor have done
this integration, as will be described in chapter A.5.

A.5 Ward

Real-time Structured Analysis and Structured Design (RT SA/SD) [Ward 85]
[Ward 86] is an extension of the original SA/SD method, that is aimed
at supporting the development of real-time systems. RT SA/SD extends
the original method to deal with concurrency, synchronization, and other
control issues. One addition is a version of the entity-relationship dia-
gram (ERD), another is the use of stimulus-response analysis. The ERD
is used to describe the application domain. The stimulus-response anal-
ysis is reflected in an extended version of the dataflow diagram called the
transformation schema (TS). The TS has additional symbols to represent
real-time aspects. Data flows are categorized into continuous and discrete
flows. Event flows (interrupt-type messages with no variable content) are
added. In addition to the data transformation (process), a control trans-
formation (process) is used to turn other transformations on and off by
means of enabling and disabling event flows. Control transformations are
further specified by means of state transition diagrams (STDs).

The transformations (processes) are identified, not by functional decom-
position, but by stimulus-response partitioning. Stimuli arise in the ap-
plication and require a response from the system. For each stimulus the
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system may require transformations to recognize the stimulus and trans-
formations to carry out the response.

RT SD is carried out not by transforming the SA model into a hierarchy of
structure charts (like in traditional SD), but by reorganizing the highest-
level transformations from the RT SA into a new top-down model using
the same notation and representing the level of target hardware/software
environment. RT SD model organization is strongly influenced by con-
currency requirements. Only on the lowest levels of the top-down model,
where the transformations represent single tasks in single processors, will

the internal structure of these transformations be described by structure
charts.

Ward has described how to integrate object-orientation with Structured
Analysis and Design (OO RT SA/SD) [Ward 89]. He emphasizes two ma-
jor themes in object-oriented design: ”the closely related ideas of object,
class and abstract datatype and the idea of inheritance”.

As mentioned, the transformations in the TS are identified not by func-
tion decomposition but by stimulus-response partitioning. This approach
however has the same tendency as conventional SA to create a large num-
ber of processes (one for each function). See Fig. A.5 (Ward Fig. 5).

The heuristic for making the TS object-oriented is then to let object-
identification take precedence over potential concurrency. Fig. A.6 (Ward
Fig. 6 and 7) show partion of Ward Fig. 5 based on concurrency-partition
and object-partition, respectively.

The RT SA is reinterpreted in the following way:

e the entity-relationship analysis is used to identify both identity and
the data content of the application domains abstract datatypes

o the stimulus-response analysis is used to identify the operations
(transformations) by which the data types need to be accessed

e object identification is used as a heuristic for grouping lower level
transformations (operations) and stores (data content) into higher
level transformations (objects)

Classification is supported. An abstract data type is represented as a
disembodied transformation with its inputs and outputs; it is not instan-
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tiated if it is not incorporated in a model. A single object is represented
as a transformation in the context of a model.

Aggregation is supported in an arbitrary number of levels; the usual

graphical aggregation/decomposition techniques of DFDs is used on ob-
jects.

Generalization is supported. Inheritance, i.e. simple specialization, is ex-
pressed in the diagrams by allowing different schemas (subclasses) to con-
tain the same transformation (superclass). This requires some relaxation
of the normal conventions for T'Ss (enforced by hierarchical numbering of
schemas and transformations), for example that distinct transformations
must be represented at a lower level by distinct schemas. The ERD pro-
vides guidelines for this partitioning because it may express supertype
and subtypes.

Wards example of expressing inheritance is shown in Fig. A.7 (Ward Fig.
8 and 9).

In the example a general valve is described (Ward Fig. 9). This valve
is specialized into an inlet valve and an outlet valve (Ward Fig. 8).
The valves are used to fill or empty a tank of liquid. The inlet valve
functions like the general valve, but the outlet valve must, in addition to
the general properties of a valve, check, whether the valve status is manual
or automatic. If the status is manual, the system may not operate on the
valve, and the outlet valve must send a valve failure signal to the tank
control transformation.

The solution that Ward has chosen, is to describe the valve without con-
trol transformation. The specification of valve control is deferred to sub-
classes of Valve. ’Inlet valve’ has a ’Control inlet valve’ control transfor-
mation and ’Outlet valve’ has a ’Control outlet valve’ control transfor-
mation. In addition ’Outlet valve’ has a data transformation that signals
the status of the auto/manual switch in the system. This additional sig-
nal is considered in the control logic of the ’Control outlet valve’ control
transformation.

To describe that "Valve’ is inherited in Outlet valve’ and ’Inlet valve’ its
symbolis repeated in the subclasses. This solution can be characterized as
a kind of "downward aggregation”. Valve is presented as an aggregate of
the attributes in Ward Fig. 9, but it is not possible to see the contents of
an aggregate, except for the in-going and out-going flows. It is therefore
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not possible to add a flow to an internal object of the superclass, for
example to call a procedure in a passive object of the superclass. This
suggests, that the solution of Ward does not cover all cases of simple
specialization.

Action sequences can be concurrent. The control of and communication
between objects is made very explicit in the graphical notation. The ad-
dition of control transformations, signals and state transition diagrams
makes it possible to execute the transformation schema. In [Ward 86]
it is described how a transformation schema can be executed/simulated.
The execution model is based loosely on the execution of a Petri net
[Peterson 77]. Execution of the schema is visualized in terms of the
placement of tokens. Execution of a notation similar to that of real-
time SA/SD has been implemented on a commercially available CASE
product [Harel 87].

A.6 Coad and Yourdon

Object-Oriented Analysis (OOA) [Coad 89] is first of all an analysis
method, but it is not supposed to stand alone. One goal has been to
avoid the traditional "representation shift” when moving from analysis
to design. ”Design should consist solely of expanding the requirements
model to account for the complexities introduced in selecting a particular
implementation.” ... ”It’s a matter of using the same underlying repre-
sentation in analysis and design. This concept is the the foundation of

the OOA approach.” [Coad 89].
OOA counsists of five major steps:

1. Identifying Objects
Identifying Structures
Defining Subjects

Defining Attributes (and Instance Connections)

Ot W N

Defining Services (and Message Connections)

The model is presented and reviewed in five major layers:
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1. Subject layer
Object layer
Structure layer

Attribute layer

Ok e

. Service layer

Subject layer. A Subject is a mechanism for controlling how much of the
model that a reader considers at one time.

Object layer. An Object is an abstraction of data and exclusive process-
ing of data. Despite the name ’Object’ this term is used for modelling
concepts. Phenomena are modelled as ’instances of Objects’. In other
words, what is "normally” called classes is in OOA called Objects, and
what is "normally” called objects is in OOA called instances of Ob jects.
In OOA the primary focus is on concepts (classes) as opposed to phenom-
ena (objects). The OOA terms will be used in the following (Starting with
capital letters).

The Structure layer is used to represent complexities in two ways: Clas-
sification Structure is used to express generalization/specialization and
Assembly Structure is used to express aggregation/decomposition.

Attribute Layer. An Attribute is a data element used to describe an in-
stance of an Object or Classification Structure. Attributes are shown on
the diagram. See Fig. A.8 (Coad Fig. 1.9). Instance Connections rep-
resent a mapping of an instance of an Object or Classification Structure
with other instance(s). They are shown with a solid line, with mark-
ings indicating multiplicity and participation constraints. Instance con-
nections are used to express relationships similar to those described in
Entity-Relationship Diagrams.

The Service layer is used to express the processing that can be performed
by the Objects. A Service is the processing to be performed upon receipt
of a message. Services are listed in the bottom of the Ob Ject and Struc-
ture symbols. See Fig. A.9 (Coad Fig. 1.10). Services are categorized
into three fundamental services: 'Occur’ (add, change, delete, test and
connect an occurrence), 'Calculate’ and 'Monitor’. The 'Occur’ Services
are not shown in the diagrams, they are specificed once, as an implicit
Service for all Objects and Classification Structure. A ’Calculate’ Service
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calculates results for an instance, or on behalf of another instance. The
'Monitor’ Service performs on-going monitoring of an external system,
device or user.

Message Connections are used to express the sending of a message from
one Object to another, to get some processing done on their behalf. They
are shown with dashed arrows, pointing from the sender of the message
to the receiver of the message.

As mentioned the primary focus of OOA is on concepts as opposed to
phenomena. The Instance Connections are however used to express rela-
tionships between phenomena.

Abstraction is supported at a high degree.

Aggregation is supported by means of Assembly Structures, but the nest-
ing of Objects is not shown by a corresponding nesting in the diagrams.
The aggregation hierarchies of Objects are shown by means of intercon-
necting arrows in the same diagram. One of the possible further develop-
ments of OOA is mentioned to be to allow Attributes to be Objects them-
selves. This would support aggregation in a more general way. Another

future topic is adding and distinguishing between Objects and Collections
of Objects.

Generalization is supported by means of Classification Structures. Simple
specialization is supported by putting common Attributes and Services
higher in the structure and showing specialization below. Qualified spe-
cialization is supported for Services; a Service specified at a higher level
in the structure can be extended below. Finally it is possible to over-
ride (cancel) attributes. The ”x” notation used in Fig. A.8 (Coad Fig.
1.9) indicates that an inherited attribute does not supply to a particular
specialization. This kind of attribute cancellation has been chosen as an
alternative to multiple inheritance. It does not conform with the view on
generalization/specialization in this report. A specialized concept is here
considered to be an extension of a more general concept.

Interaction between Objects is indicated by Message Connections. Con-
currency is not considered in the OOA model. This is postponed to the
object-oriented design (OOD) model. In OOD the OOA model is ex-
panded according to the hardware and software architecture. A separate
task diagram can show the tasks, priority, multiple instantiations, plus
communication and coordination (via rendez-vous, or with more tradi-
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tional mailboxes, semaphores and interrupts). The OOD model itself can
be annotated with task names.
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Appendix B

The Flight Reservation System in
BETA

This appendix contains the BETA program pieces that correspond to the
example in chapter 3. Fig. B.1 and Fig. B.2 show the object diagram
and the pattern diagram that are mapped to BETA.
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Figure B.1: Flight Reservation, Object Diagram
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Figure B.2: Flight Reservation, Pattern Diagram
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FlightReservationSystem: @ concurrent

(#

FlightType: <<... ObjectDescriptor ...>>;
TravelAgent: <<... ObjectDescriptor ...>>;
Customer: <<... ObjectDescriptor ...>>;

anSK451Flight: @ concurrent TimeTable.SK451 .Flight;
aTravelAgent: @ concurrent TravelAgent;
aCustomer: @ concurrent Customer;

ReservationTable: Q passive <<... ObjectDescriptor ...>>;
TimeTable: @ passive <<... ObjectDescriptor ...>>;
PriceTable: @ passive <<... ObjectDescriptor ...>>

do (|| anSK451Flight || aTravelAgent || aCustomer ||)

#)

Figure B.3: Flight Reservation
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FlightReservationSystem: @ concurrent
(# FlightType:
(# Source, Destination: ~ City;

DepartureTime,
ArrivalTime: Q@ passive TimeOfDay;
FlyingTime: @ passive TimePeriod;
Flight: <<... ObjectDescriptor ...>>;
DisplayTimeTableEntry: @ procedure <<... ObjectDescriptor ...>>

#);
TravelAgent:

(# Identification: @ passive <<... ObjectDescriptor ...>>;
CustomerService: @ alternation <<... ObjectDescriptor ...>>;
Invoicing: Q@ alternation <<... ObjectDescriptor ...>>;
TourPlanning: @ alternation <<... ObjectDescriptor ...>>

do (| CustomerService | Invoicing | TourPlanning |)

#);

Customer:

(# Name,
Company,
Address,

Phone: @ passive Text;
AccountNo: @ passive Integer;
do <<... Imperatives ...>>
#);
anSK451Flight: @ concurrent TimeTable.SK451.Flight;
aTravelAgent: @ concurrent Travellgent;
aCustomer: @ concurrent Customer;
ReservationTable: @ passive
(# SK451Flights: [365] -~ TimeTable.SK451.Flight;
SK273Flights: [365] - TimeTable.SK451.Flight;

GetInfo: @ procedure <<... ObjectDescriptor ...>>
do <<... Imperatives ...>>
#);
TimeTable: @ passive
(# SK451: @ passive FlightType;
SK273: @ passive FlightType;

Initialize: @ procedure <<... ObjectDescriptor ...>>;
GetInfo: @ procedure <<... ObjectDescriptor ...>>
do <<... Imperatives ...>>
#);
PriceTable: @ passive <<... ObjectDescriptor ...>>
do (|| anSK451Flight || aTravelAgent || aCustomer ||)
#)
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Flight:
(# Seat:

(# FlightReservation: <<... ObjectDescriptor ...>>;
Reserved: " FlightReservation;
Class @ passive ClassType;
Smooking: @ passive Boolean;

Reserve: Q@ procedure <<... ObjectDescriptor ...>>;
Cancel: @ procedure <<... ObjectDescriptor ...>>;
isReserved: @ procedure <<... ObjectDescriptor ...>>

#);
Seats: [NoOfSeats] @ Seat;
ActualDepartureTime,
ActualArrivalTime: @ TimeOfDay;
ActualFlyingTime: @ TimePeriod;

DepartureDelay: @ procedure <<... ObjectDescriptor ...>>;

Reserve: @ procedure <<... ObjectDescriptor ...>>;
Cancel: @ procedure <<... ObjectDescriptor ...>>;
Occupied: @ procedure <<... ObjectDescriptor ...>>;
DisplayReservations: @ procedure <<... ObjectDescriptor ...
do cycle
(#
do ...; <? Reserve;
.; <7 Cancel;

#)

.; <7 Occupied;

.3 <? DisplayReservations;

.3 ReservationTable.UpdateEntry; R
#)

Figure B.5: Flight
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Reservation:

(# Date: @ passive DateType;
theCustomer: ~ Customer;
theAgent: ~ TravelAgent;
Smooking: @ passive Boolean;

PrintReservation: virtual procedure <<... ObjectDescriptor ...>>
#);
FlightReservation: Reservation
(# ReservedFlight: ~ Flight;
ReservedSeat: ~ Seat;

PrintReservation: extended procedure <<... ObjectDescriptor ...>>
#);
TrainReservation: Reservation
(# ReservedTrain: ~ Train;
ReservedCarriage: " Carriage;
ReservedSeat: ~ Seat;

PrintReservation: extended procedure <X<... ObjectDescriptor ...>>
#)

Figure B.6: Reservation, Simple and Qualified Specialization
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Appendix C

Mapping Transformation Schemas
to BETA

The transformation schema of Real-time SA/SD can also be mapped
into BETA. In chapter 6 it has been shown, how the OAD notation is
mapped into BETA. In order to model the transformation schemas some
specialized constructs must be used in order to express state transition
diagrams and the predefined signals. Fig. C.1 shows a transformation
schema. The associated state transition diagram is shown in Fig. C.2.
The example is taken from [Bruyn 87].

Fig. C.3 shows the mapping to BETA at the top level. Transformations
in the transformation schema are concurrent objects that respond to a
set of predefined signals: trigger, enable, disable, suspend and resume.
These signals are defined in class Transformation, that is used as a su-
perclass for all transformations. The handling of transformations is done
in the TransformationSystem. Class Transformation is illustrated in Fig.
C.4. The construct with some Transformation means that communication
requests will be accepted from concurrent objects, that are qualified by
Transformation, i.e. all transformations will accept these predefined sig-
nals from all transformations.

The next level of detail is shown in Fig. C.5. The basic idea is to model
each state in the transition diagram as an alternation object. This makes
good sense, because the state transition diagram is always in exactly
one state. The basic alternation objects (components) in BETA are so-
called semi-coroutines, because there is an asymmetry between the calling
coroutine and the coroutine being called. The calling coroutine explicitly
names the coroutine to be called, whereas the called coroutine returns
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Figure C.1: A Transformation Schema in Real-time SA /SD, but in the
OAD Notation
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Figure C.2: A State Transition Diagram in Real-time SA /SD
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TransformationSchema: @ concurrent TransformationSystem
(#

ControlAandB: @ concurrent Transformation
<<... ObjectDescriptor ...>>;

TransformationA: @ concurrent Transformation
<<... ObjectDescriptor ...>>;

TransformationB: @ concurrent Transformation
<<... ObjectDescriptor ...>>

do (]| ControlAandB || TransformationA || TransformationB 1)
#)

Figure C.3: Real-time Transformation Schema

Transformation: class

(# Trigger: @ procedure (# with some Transformation do #);
Enable: @ procedure (# with some Transformation do #);
Disable: @ procedure (# with some Transformation do #);
Suspend: @ procedure (# with some Transformation do #);
Resume: @ procedure (# with some Transformation do #)

<<... ActionPart ...>>

#)

Figure C.4: Class Transformation

ControlAandB: @ concurrent Transformation

(#
STD: @ alternation SymmetricCoroutineSystem
(#
Statel: @ alternation SymmetricCoroutine
<<... ObjectDescriptor ...>>;
State2: @ alternation SymmetricCoroutine
<<... ObjectDescriptor ...>>;
State3: @ alternation SymmetricCoroutine
<<... ObjectDescriptor ...>>
do Statel[] -> Run (* activate Statel *)
#)
do STD
#)

Figure C.5: State Transition Diagram
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to the caller by executing suspend. There is another kind of coroutine
called symmetric coroutines. A symmetric coroutine explicitly calls the
coroutine to take over. In the modelling of a state transition diagram in
BETA we need symmetric coroutines, because a state transition among
other things explicitly defines the next state. Symmetric coroutines can
easily simulated in BETA. The SymmetricCoroutineSystem as described
in [BETA 87] and [BETA 90] is used. Each alternation class is prefixed

with a SymmetricCoroutine superclass, that among other things provides
the resume operation as shown in Fig. C.6.
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ControlAandB: @ concurrent Transformation
(#
STD: @ alternation SymmetricCoroutineSystem
(#
Statel: @ alternation SymmetricCoroutine
(# Signall: @ procedure (# with some Transformation do #)
do cycle
(#
do <7 Signalil;
TransformationA >? Enable;
State2.Resume
#) #);
State2: @ alternation SymmetricCoroutine
(# Signal2: @ procedure (# with some Transformation do #)
do cycle
(#
do <7 Signal2;
(if (varl = valuel)
//true then
TransformationA >? Disable;
TransformationB >7? Trigger;
<<ProcessIdentification>> >? Signal3;
State3.Resume
if) #) #);
State3: @ alternation SymmetricCoroutine
<<... ObjectDescriptor ...>>
do Statel[] -> Run
#)
do STD
#)

Figure C.6: Signals and Transitions
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