ISSN 0105-8517

Reusability and Tailorability
in the Mjglner BETA System

Claus Ngrgaard
Elmer Sandvad

DAIMI PB - 300
January 1990

COMPUTER SCIENCE DEPARTMENT ] h—ﬁ U
AARHUS UNIVERSITY ]

Ny Munkegade, Building 540 ] T I
DK-8000 Aarhus C, Denmark !




Reusability and Tailorability
in the Mjglner BETA System *

Claus Ngrgaard
Mjglner Informatics ApS, Science Park,
Gustav Wieds vej 10, DK-8000 Aarhus C, Denmark
Phone: +45 86 20 20 00 — Email: cn@mjolner.dk

Elmer Sandvad
Computer Science Department, Aarhus University,
Ny Munkegade 116, DK-8000 Aarhus C, Denmark
Phone: +45 86 12 71 88 — Email: essandvad@daimi.dk

Abstract

Reusability and tailorability in software development are discussed in
general and a set of techniques supporting these concepts are described.
An important concept that can give a high degree of reusability as well
as tailorability is generality. Object-oriented languages give good support
for expressing generality. The techniques discussed in this paper have been
developed during the construction of the Mjglner BETA System. Some of
them are of general (language independent) character but a great part of
the flexibility in the system is due to the BETA programming language.
An exception handling technique is presented as a special kind of tailoring.

A general communication model supporting integration and tailorability of
software components is presented.

Keywords:
Reusability, Tailorability, Generality, Object-Oriented, Programming Environments

*Presented at TOOLS ’89, Technology of Object-Oriented Languages and Systems, Paris,
November 13-15, 1989



1 Introduction

In software development there is currently a lot of interest in reusability.
One of the reasons for this interest is the wish to reduce the total software
life-cycle cost. When using traditional programming languages like Pascal
and C, programmers often have to reinvent the wheel many times. In
many applications there is a need for general components like linked lists,
hash tables, sort functions etc., but in the actual use there is typically
need for small modifications to adapt the components to a specific usage.
Because traditional programming languages do not allow the programmer
to express such modifications, it is often necessary to start from scratch
when a general component is going to be reused.

Object-oriented programming languages give better support for reuse of
software. Reusability is often seen used as a heavy argument for choosing
an object-oriented language.

In this paper reusability and the related concept: tailorability are dis-
cussed. In a given context a software component is considered reusable if
it can be used without duplicating or modifying its source code. One im-
portant concept that provides a high degree of reuse is generality. Object-
oriented programming languages give good support for generality.

A software system is tailorable if the user is allowed to modify the system
in order to adapt the system to specific needs. Like in reusability, gener-
ality can increase the degree of tailorability. In tailorability the emphasis
is on specializing a general component to specific needs.

Reusability and tailorability are two different but strongly connected con-
cepts. Tailoring is often connected to reuse because a component that
has been used in one context seldomly fits into another context with-
out modifications. On the other hand it is hard to imagine tailorability
without reuse, because the very idea of tailoring is to adapt an existing
system to specific needs. Both concepts are however justified, because
the main emphasis can be on either reuse or tailoring. Examples of situ-
ations where the main emphasis is on reuse are using a queue, list, stack
or hash table. Examples of situations where the main emphasis is on tai-

loring are adding facilities to a text editor, like syntax check or support
for hypertext.

In this paper our experiences with reusability and tailorability are pre-

2



sented. The experiences are from the development of an object-oriented
programming environment, the Mjglner BETA System. A set of tech-
niques that support reuse and tailoring are presented. Some of them

are general and can be supported by most object-oriented programming
languages. One example is a communication model that supports inte-
gration and tailorability of software components. Other techniques would
not have been possible if another language than BETA had been used.
BETA gives good support for expressing generality. Actions (procedures,
methods) and substance (type, class) can be specialized in a uniform and
flexible way.

The Mjglner BETA System ! is an object-oriented programming envi-
ronment, primarily aimed at supporting development of large production
programs written in BETA [2]. The environment contains a set of gram-
mar based tools including a metaprogramming system [9], an integrated
text and structure editor and a fragment system.

BETA is an object-oriented programming language in the Simula 67
tradition [13] with respect to block structure, static name binding and
compile-time type checking. This is in contrast to Smalltalk [14], that
has a flat set of definitions (classes), dynamic name binding and run-time
type checking. The techniques described in this paper are based on 3
years experience with programming in BETA.

The structure of the paper is as follows: first the concepts reusability
and tailorability are discussed in general, then the basic techniques sup-
porting these concepts are described and illustrated by examples from
the Mjglner BETA System. The techniques are specialization of actions,
values and substance. Then exception handling is discussed and finally a
communication model is presented, that supports integration as well as
tailorability in the Mjglner BETA System.

!The Mjglner BETA system [12] is one of several results of the Mjglner project [11] that
was a joint Nordic venture developing object-oriented programming environments. The Mjglner
project was partly funded by a grant from the Nordic Fund for Technology and Industrial
Development. In this paper only the Danish subproject: the Mjglner BETA system will be
described.

Part of the Danish subproject has also been supported by a grant from the Danish Natural
Science Research Council, FTU Grant No. 5.17.5.1.25.




2 Reusability

When discussing reusability in this paper the emphasis will be on reuse
in software construction, i.e. reuse of program parts as opposed to reuse
of ready-made programs like UNIX tools.

In a given context a software component is reusable if it can be used
without duplicating or modifying its source code.

The motivation for this definition is:

e If the source code is copied, the programmer of course does not
have to reinvent existing components, but a maintenance problem
arises when errors are fixed or new functionality is added (in the
original as well as in the copy). In addition the size of the system
is not decreased.

o Like duplication, modification of a reused component would also
create maintenance problems, especially for the other uses of the
original component. This does not imply that a reusable software
component is restricted to be one-purpose. But if the component is
adapted to a specific application it must be done without modifying
the original component.

Adapting an existing component to a specific application is covered by
the concept tailorability.

Reusability is a relative concept. A large group of software components
is reusable according to the definition above. But the degree of reuse
can be very different. The more contexts a software component can be
used in, the higher the degree of reuse. One important concept that can
provide a high degree of reuse is generality. The question is: how does
the programming language support generality. A software component is
general if the establishment of some of its qualities is deferred. Such qual-
ities are called deferred qualities. Deferred qualities must be established
before the component is used. Different specializations of the general
component may establish deferred qualities differently.

An example of a software component that can be more or less reusable
is the list data structure. A low degree of reusability is provided in an
implementation that has a fixed maximal size and a fixed element type.

4




A high degree of reusability is provided in an implementation that has
no restrictions on the size of a list and no advance requirements on the
element type. In a general list the deferred qualities could be the maximal
number of elements (if not a dynamic list), the element type and some of
the operations on the list.

Inheritance is widely recognized as supporting generality and most object-
oriented programming languages support inheritance in one way or an-
other. The difference between the individual languages with respect to
inheritance lies in what type of qualities that can be deferred and how
the qualities are established.

In Smalltalk inheritance is supported by classification hierarchies and de-
ferred qualities are expressed by methods that are bound dynamicly at
run-time. In BETA inheritance is supported by classification hierarchies
too. In addition inheritance for procedures is allowed. Deferred qual-
ities can be expressed by virtual procedures as well as virtual classes.
The virtual class concept is discussed in [10]. Establishment of deferred
qualities in BETA (binding of virtual procedures or classes) is done at
compile-time.

3 Tailorability

A software system is tailorable if the user is allowed to modify the system
in order to adapt the system to specific needs. Tailoring can be done by
specializing the behavior of the system or by adding functionality to it.

This definition is inspired by [16]. They define tailorability to be a sub-
concept of adaptability. A system can be adaptable in four ways: it can be
flexible, parameterized, integratable or tailorable. In this paper we focus
on tailorability. An example of parameterization is setting switches that
choose between a range of different alternative behaviors. This primitive
kind of adaptability is not discussed in this paper.

If the user is a non-programmer tailorability is restricted to specializing
behavior and even in this case the user has limited possibilities, like com-
bining commands in a macro-like language (e.g. spread sheet systems
or database systems). When discussing tailorability in this paper the
emphasis will be on tailoring by programming.



Like reusability, tailorability is a relative concept. A high degree of tai-
lorability is provided if the amount of effort required to specialize behavior
or add functionality is relatively small. As in reusability, generality can
increase the degree of tailorability. In reusability the main emphasis is on
setting up the general structure and isolating and deferring the qualities
that might vary in the different specializations. In tailorability the main
emphasis is on specializing behavior by establishing the deferred quali-
ties or on adding functionality (qualities). Specializing behavior can be
classified in: 1) specializing value (constants) 2) specializing actions (pro-
cedures, methods) and 3) specializing substance (types, classes). These
different kinds of specialization are discussed in section 4.

One way of supporting tailorability is to provide the whole system to the
user including the source code. But this naive solution is impractical of
several reasons: 1) security concerns: the "author” of the system does not
want the user to destroy anything 2) copyright concerns 3) maintenance
concerns and 4) the user is only interested in functionality, the whole
system can be hard to understand and even harder (impossible) to modify.

Another way of supporting tailorability is to provide a well-defined pro-
gramming interface to the system. The part that the user has added to
an existing system is called its eztension. A programming interface can
give a clear separation of the existing component and its extension. The
user can use the system without modifying it. A programming interface
can thus support reusability too. In order to fully support tailorability
the interface must be a two-way interface. It might be necessary to al-
low the users of the component to be notified when certain events occur.
This information must be transferred to the extension in some way, but
at the time the component is created the users of it may not be known.
One example is extending a structure editor with an incremental static
semantic checker. When a part of the program is modified the checker
must be told about the changes. It is thus impossible to reuse the syntax
directed editor, if it is not capable of reporting these changes.

In the Smalltalk system this kind of communication is supported by send-
ing an update message from an object to its dependents. In Lisp systems
[7] [4] so-called hooks are used to let the user influence the program ex-
ecution. A hook is simply a user-modifiable Lisp function that is called
every time a certain point in the execution is encountered. In Mjglner
BETA System the virtual procedure is used for communication from an

6



object to its extensions. The communication model presented in section
6 uses the virtual concept heavily.

4 The basic Techniques

This section illustrates the basic techniques of BETA that supports reuse
and tailoring. For a detailed description of BETA see [2] or [3].

Before we start, it is neccessary to give a brief introduction to the lan-
guage. A BETA program execution is a collection of objects. An object
is statically or dynamically created as an instance of a so-called pattern.
The pattern is an abstraction mechanism that unifies type, function, pro-
cedure and class.

Due to the pattern concept, the size of the language is relatively small. At
the same time however it implies that type, function, procedure and class

definitions have the same syntax, which might confuse unexperienced
users of BETA.

In the hope that more readers will understand this paper, we will use
the modified syntax of BETA also used in [10]. Using this syntax there
is syntactical difference between declaration of patterns used as proce-
dures, and patterns used as classes. “Real” BETA can be obtained by a
syntactical replacement (removal) of keywords.

An example of a pattern used as a class is

CC: class C (# Decli; Decl2; ...; Decln #)

This declares a class CC with the super-class C, and with the declaration
of local attributes Decll ... Decln.

The form of a pattern used as a procedure is

PP: proc P
(# Decli; Decl2; ...; Decln
enter In
do Imperatives
exit Out
#)



Here the name of the procedure is PP with super-procedure P and the
local attributes Decll ... Decln. The enter-part In describes the input-

parameters, Imperatives describes the actions to be performed, and out
describes the output parameters.

Attributes can be (local, statically created) objects, object references (to
local or non-local objects) or patterns. Object references corresponds
to instance variables in Smalltalk. Allowing local patterns implies that
classes and procedures can contain local classes and procedures.

4.1 Specializing Actions

Generality of a software component was defined as deferring the estab-
lishment of some of its qualities. This section illustrates how virtual
procedures can be used to defer and establish a certain kind of qualities,
namely actions.

Fig. 1 shows a classification hierarchy that is taken from the the window
package ? of the Mjglner BETA System.

TitleTool 4§ a window that is used as a title bar. It has a local object
(title) which is a static instance of class text. A windowTool 45 a window
that has a local object (titleBar) which is an instance of class titleTool.
ScrollTool ¢S a window that is used as a scroll bar. A scrollWindowTool 1§
a windowTool that has two local objects (horizontalBar and verticalBar),
which are instances of class scrollTool.

The keywords @| denote that titleBar, horizontalBar and verticalBar are

statically created as co-routines, i.e. they have their own execution
thread.

In the description above the use of the verbs is and has (in italic) were
used very carefully. The verb is really means ’is a specialization (subclass)
of’ or ’specializes’ and the verb has really means ’has as local ob ject’ or
‘aggregates’. The classification and aggregation hierarchy is illustrated
graphically in Fig. 4. Subclassing is illustrated by means of vertical con-
catenation of rectangles. Aggregation is illustrated by means of nesting
of rectangles.

2This is one of the cooperative results of the Mjglner project. The specification of window

package has been carried out by the Norwegian subproject [5]. An implementation exists in
Simula and BETA.




window: class (# ... #);
titleTool: class window
(# title: @ text;
refresh: extended proc
(# do "draw this title"; INNER #);

#);
windowTool: class window
(# titleBar: @| titleTool;
refresh: extended proc
(# do ... titleBar.refresh; INNER #);

#);
scrollTool: class window
(# refresh: extended proc
(# do "draw this scrollbar"; INNER #);

?

#);
scrollWindowTool: class windowTool
(# horizontalBar,
verticalBar: @| scrollTool;
refresh: extended proc
(#
do ...
horizontalBar.refresh;
verticalBar.refresh;
INNER
#);

#)

Figure 1: Part of the Window Package




window: class
(# position: @ point;
move: proc
(# delta: @ point
enter delta
do (delta.x + position.x,
delta.y + position.y)
-> (position.x, position.y);
refresh;
#);
refresh: virtual proc
(# do "draw this frame'"; INNER #);
keyPressed: virtual proc
(# ch: @ char enter ch do INNER #);
buttonPressed: virtual proc
(# do INNER #);

#);...

Figure 2: The Window Class

Some operations that can be performed on windows are general and can
be described in the same way for all window objects. An example of this
could be move, that simply updates a position attribute. Move is defined
as a normal procedure (See Fig. 2). Other operations are specific to the
actual specialization of a window. An example of this is refresh. If a
window is uncovered it must be refreshed. But how a window is redrawn
depends on the actual specialization (titlebar, scrollbar, textwindow )
Describing refresh as a virtual procedure defers the description, of how
to refresh, to the actual specialization of window. Other examples are the
interactions with a window like pressing a key or clicking with the mouse
in a window.

The keyword virtual denotes a definition of a virtual pattern. In the
example above the procedure-pattern refresh is defined as a virtual pro-
cedure, meaning that the specification of some of the actions are deferred
until later. The INNER keyword is known from Simula, it means that
control is given to bindings of the virtual procedure (if any) in specializa-
tions of window. The virtual procedure was invented in Simula. In Simula
a binding of a virtual procedure overwrites an earlier binding. In BETA a
virtual procedure can be further bound in all specializations (subclasses)

10



of window. This capability makes it possible to express the propagation of
events to specializations in a nice way. The BETA implementation of the
window package utilizes this possibility heavily.

An important characteristic is the way control is flowing between the
refresh procedures at the different levels of specializations. In BETA the
control is flowing from the definition of the virtual procedure downwards
to the actual specialization level. The INNER construct directs the control
flow to the next subclass that has a further binding. In Smalltalk the
control begins in the actual specialization. If control is wanted to go
upwards to superclasses, this must be specified explicitly at each level.
The keyword extended denotes a further binding of a virtual pattern.

11



(# myWindow: @| scrollWindowTool
do ...

myWindow.refresh;

#)

Figure 3: Activating the Refresh Chain

Consider the simplified example of how the window system might activate
the refresh event in Fig. 3. MyWindow is a statically created co-routine. The
refresh procedure of myWindow is called and the following scenario takes
places during execution (See Fig. 5. The graphical notation of Fig. 4 has
been extended by showing one of the procedures in all classes, namely
the refresh procedure. A coarse hatching indicates a virtual procedure
definition and fine hatching indicates a virtual binding. No hatching
indicates a normal procedure.):

1. according to the class scrollWindowTool, refresh is a binding of a vir-
tual procedure defined in the superclass chain: scrollWindowTool ->
windowTool -> window. Refresh is defined in window. All this is deter-
mined at compile-time

2. in refresh of class window the window frame is drawn and because of
INNER, control is transferred to refresh of windowTool. (Arrow 1)

3. In refresh of windowTool the refresh procedure of titlebar is called.
(Arrow 2) This procedure is executed following the principles de-
scribed in this scenario. On return, INNER transfers control to refresh
of scrollWindowTool. (AI‘IOW 4)

4. scrollWindowTool calls the refresh procedures of its scrollbars. (Ar-
rows 5 and 7) On return INNER causes no transfer because we are
"back” in the class where we started.

12




Wwindow indow
A et
\ V4 1
windowTool ) Tool R
titlebar titlebar
Wwindow ) window
2\
(rafrbdr,
55
fitleTool B fitleTool
4
EcrollWindowTool 3 gcrollWindowToo! B
horizontalbar horizontalbar
window ) 5\, [window
e BSH,
G0k
\
(SCrOHTOOI ) Cro”Too|
7
verticalbar verticalbar
window ) ,‘
8
>scroHTooI — xscrollTool
. y
J (- J

Figure 4: The Classification and Figure 5: Control Flow when calling
Aggregation Hierarchy of Windows ‘’refresh’

13



Summarizing this section, the window package is an example of a high
degree of reuse. Tools (in this example windows) are constructed in a
classification hierarchy with local objects and deferred qualities, setting
up a generality frame that provides reusability. At each level of special-
ization some deferred qualities are established without hindering further
specification, and thereby supporting tailorability at each level.

The example illustrates the implementation of the window package but
at the same time it is the framework (programming interface) that is
offered to the user. Not only the implementors of the environment but
also users can reuse the tools in the classification hierarchy in the same
way as described in this section. An example is creating an instance of
some specialization of a window. If the user is interested in knowing
when a key on the keyboard is pressed and what the key is, she just has
to make a further binding of the keyPressed procedure.

Using virtual procedures in the manner described in this section is not
unique to the window package. The technique is used again and again in
the Mjglner BETA System in order to make components more reusable
and the communication model (described in section 6) of the Mjglner
BETA System is based on the ability to communicate from a class to a
subclass by calling a virtual procedure.

4.2 Specializing Values

A very simple way of utilizing virtual procedures is the way values (con-
stants) can be specialized. Consider the problem of implementing a stack
in an array in a traditional language. Usually you have beforehand to
determine the maximal number of elements in the stack, as you have
to dimension the array. In BETA you can defer the establishing of the
value of the maximal number of elements until the stack is created. This
could be done like in Fig. 6, and when used, a stack could be created
like in Fig. 7. cardstack is created as an instance of a subclass of stack
where the value of maxNumber0fElements at instantiation time is computed
to 52. MaxNumberOfElements is default computed to 10, if the procedure is
not bound. (In “real BETA” this example does not look that clumsy,
because there are fewer keywords).

14



stack: class
(# element: ...;

maxNumberOfElements: virtual proc
(* returns the value of max, default is 10 %)
(# max: Q@ integer
do 10 -> max;

INNER

exit max
#);

stackImplementation:

[maxNumberOfElements] ~element;
(* declaration of an array with maxNumberOfElements,

where the element type is a reference to an element
*)
top:
push:

#)

Figure 6: A General Stack

cardStack: @ class stack
(# maxNumberOfElements: extended proc
(# do 52 -> max #)
#)

Figure 7: A Stack of Cards

15



4.3 Specializing Substance

Virtual procedures were used to make specializations of actions and val-
ues. Virtual classes can be used to make specializations of another aspect
of behavior, namely substance. As far as we know, the virtual class con-
cept has not been seen in any other language. Virtual classes give good
support for reuse, because it is possible to express very general data
structures. Virtual classes may be seen as an alternative to generic types
found in Ada [1] and Eiffel [17]. Fig. 8 illustrates how a general list can
be expressed in BETA. List is a class with some attributes: the type of
the elements, a pointer to the first and last element in the list and two
operations: insert and scan.

Element is defined as a virtual class. It is defined to be “at least” an
object, which means that an actual element must be an instance of class
object or a subclass of it. Object is a superpattern of all patterns in BETA.
Defining the element type as a virtual object means that the list can be
bound to contain objects of any type.

ListElement is a private pattern used to link the elements together. It is
an example of using a pattern as a type. Next, elm, first and last are
object references.

Insert and scan are patterns used as procedures. Insert has an input pa-
rameter which is of type element. The insert operation creates an instance
of the 1istElement, assigns the input parameter to the elm attribute, which
is a reference to an element, and connects the listElement to the list by
means of the next attribute.

The scan operation is shown in full detail because it illustrates how it-
erators can be specified in BETA. It also demonstrates inheritance for
procedures. In the actual use of the 1ist class it will be shown how this
scan operation can be tailored to a specific purpose. Scan traverses the
list from the start element first. Loop is a label that is used to express
control flow. When an element has been processed the if-imperative is
repeated, by means of restart loop. If the expression evaluates to false
the loop terminates. The INNER construct is very important in the scan
operation. Every time a new element is encountered INNER is called. This
means that control is directed to a possible subpattern of scan. This is a
very powerful way of combining actions.

16



list: class
(# element: virtual class object;
listElement: class
(# next: ~ listElement;
elm: ~ element
#);
first,last: ~ listElement;

insert: proc
(# e: "~ element
enter e[]
do ...
#);

scan: proc
(# thisElm: ~ element;
listElm: ~ listElement;
do first[]->1listElm[]

loop:
(if (listElm[] <> none)
//true then
listElm.elm[] -> thisElm[];
INNER;

listElm.next[]->1istEIm[];
restart loop
if)
#)
#)

Figure 8: A General List

17



Fig. 9 illustrates how the list can be tailored to a specific use. The
editorList is used in the system to contain all editor instances, that are
currently active in the system. Each editor instance has a window, menus
and a program fragment as the most characteristic attributes.

The editorList is created as a static instance of a subclass of 1ist. The
subclass is defined immediately after the 1ist identifier. In this subclass
of 1ist the element type is specialized. The virtual class element is bound,
to be an editor object. Any element inserted in the editorList must be
qualified as an editor. This means that it must be an object of class editor
(or a subclass of editor). Due to the qualification as an editor the find
operation can access the attributes of thisEim knowing that they exist. In
this case the frag attribute. If the editor class contains no such attribute
the error is caught at compile-time.

In BETA, patterns can be defined in-line in the code. The imperative
search: proc scan (# ... #) In find is at the same time the definition of
a specialization of scan, and a call of it. The input parameter of £ind is a
reference to a program fragment frag represented as an abstract syntax
tree (AST), and the output parameter is a reference to an editor instance.
If the program fragment is not used in an active editor, the reference will
be none. Search is a label that is used to stop the scanning if the right
editor is found. Note that thisElm is inherited from scan. Every time
an element is encountered, that does not match, control is automatically
directed back to the superpattern scan. If the right element is found, the
construct leave search makes it possible to stop the scanning.

Summarizing this section, the 1ist example illustrates an important char-
acteristic of BETA: the elegant way to reuse and tailor substance using
the same techniques as in tailoring actions. In this example the deferred
quality is substance, or at least the description of substance (class). An-
other interesting characteristic is inheritance also for actions.

18




editor: class

~

(# win: | window;

expandMenu: @ | class menu (# ..

frag: ~ fragment;

expand: proc (# ... #);

cut: proc (# ... #);
copy: proc (# ... #);
paste: proc (# ... #);

#);

editorList: @ class list
(# element: extended class editor;
find: proc
(# frag: - fragment;
ed: " editor;
enter fragl]
do search: proc scan
(#
do (if thisElm.fragl[]
//fragl] then
thisElm[] -> ed[];
leave search
if)
#)
exit ed[]
#)
#)

Figure 9: A List of Editors

19

. #);




caughtError: proc

(#
do INNER;
"dump the call stack
and stop the program"
#);

deleteFile: proc
(# noSuchFile: virtual proc caughtError;

Y

Figure 10: Defining an Exception

5 Exception Handling

Exception handling can be considered as a special way to do tailoring.
When using a library of routines, it is unsatisfactory to let the actual
routine determine what shall happen if an error occurs. Some systems just
stops execution of the program and others throw an non-understandable
prompt box on top the screen, requiring the user to do something. A
better solution would be to let the user of a routine determine how the
error should be treated. Virtual procedures are very suitable for that
purpose too.

The following example is taken from the BETA UNIX Ensemble, which is
an interface from BETA to UNIX facilities like files, directories, processes
and pipes. See Fig. 10. The patterns caughtError and deleteFile are both
used as procedures. CaughtError defines the default actions to be taken
if an error occurs. The INNER construct directs control to subpatterns of
caughtError, if any. If caughtError is not specialized it will just dump the
call stack and stop the program execution. If caughtError is specialized
the subpatterns can specify how the error shall be treated, and it is
possible to prevent stopping the program execution, by not returning to
caughtError. This can be done similar to the way the scan operation is
terminated when the right element is found.

The procedure deleteFile has a virtual procedure: noSuchFile, that is
called by deleteFile if it is asked to delete a file which does not exists.
NoSuchFile 1s specified as a virtual caughtError. The binding of it (and
thereby specialization of caughtError) is done by the user of deleteFile, as

20



do ...
delete:
’editor.bet’ -> proc deleteFile
(#
noSuchFile: extended proc
(#
do "File does not exist"->
errorMessage; leave delete
#)
#)

Figure 11: Handling an Exception

shown in Fig. 11. If the file ’editor.bet’ does not exist, deleteFile calls
noSuchFile and a prompt-box with the error message “File does not exist”

is shown to the user. Afterwards the program-execution continues at the
...’s after the deleteFile call.

In summary: This example illustrates tailoring of actions by specializing
local actions. The procedure deleteFile is generalized by deferring the
action that shall be taken (nosuchFile) if the file does not exists. The
user of deleteFile can establish the action and/or let the default action
(caughtError) take place. Another example of the uniform treatment of
classes and procedures in BETA, justifying the unification of these con-
cepts.

21



6 The Communication Model

The way deferred qualities like actions are established in BETA by bind-
ing virtual procedures can also be considered as a communication from
a class to its specializations. Tailoring of a general class is made possi-
ble because its specializations are notified when some important events
occur. In the window package example the event that a window must be
refreshed or that a key has been pressed might be important to the users
of the window.

A communication model has been developed in the Mjglner project that
is based on this basic technique 3.

The basic idea of the communication model, is for each major compo-
nent (class) in the environment, to identify a set of important events
that might interest other components (objects). Each important event is
implemented as a virtual procedure. Whenever one of these important
events occur the corresponding virtual procedure is called. Dependent
components (objects) can catch this notification in a further binding of
the virtual procedure. A precondition for this technique is that all de-
pendent components are subclasses of the component. It is however not
practically possible to handle all possible dependencies by such subclass-
ing. Instead a so-called communicating subclass of each major component
is added. This communicating subclass catches the notifications and dis-
tributes them to the dependent objects. In this way the knowledge of
dependent objects is isolated to the communicating subclass.

The communication model is illustrated graphically in Fig. 12. Fig.
13 shows the skeleton of aggregating two software components to one,
using the communication model in BETA. The usage of virtual classes
in component12 makes it possible later on to create specializations of the
composed component, where the usage of more software components are
added. Fig. 14 shows an example. The component component123 is the
result of adding component3 to component1?2.

There can thus be more than one level of communicating subclasses.

In Smalltalk there is also a mechanism for expressing dependencies be-
tween objects in order to coordinate activities. In the Object instance

%In [15] the model is described and the use of it in the Mjglner SIMULA System [6] is
illustrated.

22



componenti component2

J
T

\,
communicating
subclass of componenti

communicating
subclass of component2

Figure 12: The Communication Model

protocol the message changed is provided. Each object is supposed to
maintain a collection of dependent objects. If the object sends the changed
message to itself, all dependents of the object will receive the message
update. One parameter is allowed.

The Smalltalk approach has two drawbacks: 1) Besides the single param-
eter there is no distinction between the different kinds of changes that
may occur to an object. 2) All dependent objects receive the update
message even if they are not affected by the specific change.

In Mjglner the diversity of changes that can occur in an object is ad-
dressed by a set of virtual procedures and there is no restrictions on the
number of parameters. The second problem does not occur because the
communicating subclass functions as a "message exchange”. It has the
necessary knowledge of other objects and can distribute the notifications
only to the relevant objects.

One example of using this communication model in Mjglner is the editor.
Part of the internal structure of the editor has been build using this
model, and the editor has been tailored to a range of different applications
including an incremental static semantic checker, a transformation tool,
a document structuring tool and a hypertext tool. These tools have been
constructed by adding subclasses to the editor class. The notifications
sent by the editor to other components in the system are also caught in
the extensions to the editor.

Part of the editorModel looks like in Fig. 15. AST means abstract syntax
tree. The notification procedure nodeReplaced is called by the editorModel

23



componentl: class

# ...
notificationl: virtual proc
(# ... #);
#);
component2: class
# ...
notificationA: virtual proc
(# ... #);
#);

component12 : class
(# c1: @ commSubclassOfComponentd;
c2: @ commSubclassOfComponent2;
commSubclassO0fComponenti: virtual class componenti
(# notificationi: extended proc

(#

do "call operations in c2";
INNER

#);

#)
commSubclass0fComponent2: virtual class component2
(# notificationA: extended proc

(#

do "call operations in ci";
INNER

#);

#)
#)

Figure 13: A Communication Skeleton

24



component3: class

# ...
notificationX: virtual proc (# ... #);
#);
component123: class componenti2
(#

c3: @ commSubclass0fComponent3;
commSubclass0fComponent3: virtual class component3
(# notificationX: extended proc

(#

do "call operations in cl+c2";
INNER

#);

#);
commSubclassOfComponentl: extended class componenti
(# notificationl: extended proc

(#

do "additionally call operations in c3";
INNER

#);

#);...

#)

Figure 14: Further Extensions

editorModel: class
(#

nodeReplaced: virtual proc
(# newNode, oldNode: ~ AST
enter (newNode[], oldNode[])
do INNER
#)

#)....

Figure 15: The Editor Model

25



editor : class
(# EM: @ commEditorModel;
PP: @ commPrettyprinter;
Ul: @ commUserInterface;

commEditorModel:
virtual class editorModel
(# nodeReplaced: extended proc
(#
do (newNode[], oldNode[]) -> PP.update;
newNode[] -> UI.updateMenus;
INNER
#)
#);
commPrettyprinter: virtual class prettyprinter
(# ... #);
commUserInterface: virtual class userInterface
(# ... #);

.

Figure 16: The Editor Configuration

every time a node is changed in the program-fragment edited.

The editor itself is an aggregation of the three software components:
the editorModel, the prettyprinter and the userInterface (See Fig. '16).
When a subtree of the abstract syntax tree of the editorModel has been

changed, the prettyprinter must update the screen and the user interface
component must update the relevant menus.

The integration of the editor with the incremental semantic checker is
done by adding a subclass to the editor (See Fig. 17). It is our experience
from the development of the Mjglner BETA System, that this scheme
for composing software components gives a very flexible configuration
structure. It is very easy to integrate different tools and to integrate a

new tool into a set of existing tools without having to change the existing
tools.

26



incrementalCheckerEditor: class editor
(# IC: @ commIncrementalChecker;
editorModel: extended class
(# nodeReplaced: extended proc
(#
do '"tell the IC to reanalyze the abstract
syntax tree according to newNode"

#)#) ;
commIncrementalChecker: virtual class incrementalChecker
(# ... #);

#)

Figure 17: Extending With Semantic Analysis

7 Conclusion

The concepts reusability and tailorability in software development have
been discussed. Generality can give a high degree of reusability and
tailorability. In reusability the main emphasis is on setting up the general
structure and isolating and deferring the qualities that might vary in
the different specializations. In tailorability the main emphasis is on
specializing behavior by establishing the deferred qualities or on adding
functionality (qualities).

Object-oriented programming languages are especially good at support-
ing generality, and thereby supporting reusability and tailorability. BETA
gives good support for expressing a general structure with deferred qual-
ities. Virtual procedures are used to to express deferred actions and
deferred values; and virtual classes are used to defer the description of
substance. In this way tailoring is done in a uniform and flexible way.
Beside the virtual concept another important precondition for the tech-
niques described in this paper is that the language has block structure.
Some of the examples in section 4 and 5 utilizes that it is possible to pre-
fix a procedure with a procedure found at another block level (scan and
deleteFile), and the communication model would be very clumsy without
the possibility of having classes within classes.

Acknowledgement

The authors wish to thank the colleagues in the Mjglner pro ject.

27



References

[1]

2]

[10]

Ada Reference Manual: Proposed Standard Document. United
States Department of Defense, July 1980.

B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, K. Nygaard: The
BETA Programming Language. In: B.D. Shriver, P. Wegner (eds.):

Research Directions in Object Oriented Programming, MIT Press,
1987.

B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, K. Nygaard: Ob-
ject Oriented Programming in the BETA Programming Language.
In: BETA Tutorial OOPSLA’89, New Orleans, 1989.

R.M. Stallman: EMACS: The extensible, customizable, self-
documenting display editor. In: D.R. Barstow, H.E. Shrobe,

E. Sandewall (eds) "Interactive Programming Environments”,
McGraw-Hill,1984.

T. Hauge, I. Nordgard, T. Rgd, G. Reeder: Gungne Functional Spec-
ification. Project Mjglner Working Note N-EB-4.2, January 1988.

G. Hedin, B. Magnusson: The Mjglner Environment: Direct Inter-
action with Abstractions. In: S. Gjessing, K. Nygaard (eds.) Pro-
ceedings of ECOOP 88, Oslo, Springer-Verlag, August 1988.

W. Teitelman and L. Masinter: The Interlisp programming en-
vironment. Computer 14(4), April 1981. Also in: D.R. Barstow,
H.E. Shrobe, E. Sandewall (eds) ”Interactive Programming Envi-
ronments”, McGraw-Hill,1984.

O.L. Madsen: Block structure in Object-oriented Programming Lan-
guages. In: B.D. Shriver, P. Wegner (eds.): Research Directions in
Object Oriented Programming, MIT Press, 1987.

O.L. Madsen, C. Ngrgaard: An Object-Oriented Metaprogramming
System. In: Proceedings of Hawaii International Conference on Sys-
tem Sciences - 21, January 1988.

O.L. Madsen, B.M. Pedersen: Virtual Classes - a new dimension in
object oriented programming. In: Proceedings of OOPSLA 89, New
Orleans, October 1989.

28



[11] H.P. Dahle, M. Lgfgren, O.L. Madsen, B. Magnusson (eds): The

Mjglner Project, In: Proceedings of EUROSOFT ’87, London, June
1987.

[12] J.L. Knudsen, O.L. Madsen, C. Ngrgaard, L.B. Petersen, E. Sand-
vad: An Overview of the Mjglner BETA System. Mjglner Informatics
ApS, Science Park Aarhus, November 1989.

[13] O.J. Dahl, B.Myrhaug, K. Nygaard: SIMULA 67 Common Base
Language, Norwegian Computing Center, Oslo, 1984.

[14] A. Goldberg. D. Robson: Smalltalk 80: The Language and its Im-
plementation. Addison Wesley 1983.

[15] S. Minér: A Model for Flexible Communication Between Objects.
In: Proceedings of the Simula Conference, September 1988.

[16] R.H. Trigg, T.P. Moran, F.G.Halasz: Adaptability and Tailorabil-
ity in NoteCards. In: Proceedings of INTERACT ’87, Stuttgart,
Septemper 1987.

[17] B. Meyer: Object-Oriented Software Construction. Prentice Hall,
1988.

29




