ISSN 0105-8517

A Universal Relational Operator

Kim S. Larsen
Erik M. Schmidt
Michael I. Schwartzbach

DAIMI PB - 297
December 1989

COMPUTER SCIENCE DEPARTMENT

AARHUS UNIVERSITY

Ny Munkegade, Building 540 J
DK-8000 Aarhus C, Denmark T

=]

1

A Universal
Relational Operator
Kim S. Larsen!
Michael I. Schwartzbach?
Erik M. Schmidt?

Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Arhus C, Denmark

Abstract

We present a single relational operator which, in combination with a simple

core language for manipulating atoms and tuples, generalizes all standard
unary and binary operators in relational databases, while permitting a more
intuitive query style. The new operator, factor, is based on a unique fac-
torization of relations. We present an example language and demonstrate
how the usual operators appear as simple and intuitive instances of factor.
We further show that many new operators and combinations of old ones
can be expressed in concise terms using factor. The factor versions will
always be evaluated as efficiently as the originals and will sometimes even
lead to a speed-up.

1 Introduction

We present a new relational operator, factor, which is universal in the
sense that it can replace all the usual operators of relational algebra that
are described in e.g. [Mai83].

The usual operators appear as simple and intuitively appealing special
cases, and the factor operator is quite different in flavor from the ones

it replaces. It

is an n-ary operator based on a unique factorization of

'E-mail address:
2E-mail address:
3E-mail address:

kimskak@daimi.dk
mis@daimi.dk
emschmidt@daimi.dk

collections of relations. From this decomposition of the original relations
one can specify the resulting relation by means of a very simple core
language, allowing basic manipulations of atoms and tuples, together with
Cartesian product, which is the simplest possible “horizontal” relational
operator.

The factor operator is inspired by the group_by operator [Gra81], but
it is far more general and fundamental in its nature.

Apart from encompassing the usual relational operators, factor can also
express “the next 700 variations”, as well as combinations of existing ones
and powerful new operators. Many computations on relations seem to be
expressible in a more direct and intuitive fashion.

We propose to perform relational computations in three steps.

The first step is to decompose the relation arguments. The second step is
to perform simple computations on these smaller components. The third
and final step is to combine the individual results from step two.

The decomposition in step one belongs to a family of factorizations, as
described in section 2. The computation in step two is specified by a small
core language described in section 3. The combination in step three is
always the union of the results from step two.

In section 4 we describe the full syntax and semantics of the factor oper-
ator. In sections 5, 6, and 7 we demonstrate how all standard relational
operators, and many more, can be expressed in terms of factor.

In section 8 we observe that factor expressions can be evaluated effi-
ciently. In fact, the implementation of all the usual operators in terms
of factor will preserve their original complexities. One can even obtain
a speed-up in certain situations. Also, factor expressions are well-suited
for parallel evaluation.

2 Factorizations

A tuple is a finite partial function from attribute names to atoms. A
relation is a pair R = (0(R),7(R)) where o(R), the schema, is a finite
set of attribute names, and 7(R) is a finite set of tuples with common
domain o(R).

The factorization is performed on a collection of relations, relative to a
subset of their common attribute names. Operationally, the decompo-
sition components can be found as follows. All tuples of all relations
are projected onto the selected attribute names and duplicates are re-
moved. This yields a set of component tuples. For each tuple in this
set and for each relation argument, we determine a component relation,
which contains exactly those complementary tuples that combined with
the component tuple are contained in this relation argument.

Definition 2.1 Let Ry,..., R, be relations and {ai,...,a;} CNo(R;) a
set of attribute names. The factorization of the R;’s on the a;’s consists

of

e a sequence of component tuples ¢,...,¢,, with common domain
{ai, ..., a1}

e for each (4,j) € {1,...,m} x {1,...,n}, a component relation ©;;

with schema o(R;) — {ay,...,a;}
such that

1) the following n equations hold
Vit Ry=2{i} x O
=1

where {¢;} denotes the singleton relation whose only tuple is ¢;,
+ is interpreted as union, and x as Cartesian product of relations.
These n equations can be concisely expressed as the following ma-
trix equation

On Op - Oy

@y Oy -0 Oy

(CARCHRNNON) | = (R R Ra)

®ml G)m? @mn

2) all the ¢;’s are pairwise different, i.e. Vi,j: i # 7 = ¢; # ¢;

3) no row of the (0©;;) matrix has all “zeroes”, i.e. Vi 3j: 7(0,;) # 0

(O]

Proposition 2.2 The factorization always exists and is unique up to
reordering of the ¢; sequence.

Proof We can find {¢y,...,é,} as UR, | ay,...,a;, where | is projec-
tion. Now, ©;; is found by selecting from R; where ay,...,a; equals ¢;
and projecting this over o(R;) — {ay,...,a;} (this is the same as dividing
R; by {¢:}). Clearly, this satisfies the matrix equation. Also, since each
¢; belongs to UR; | ay,...,a; then it must belong to some R; | ay,...,a;
and, hence, this particular ©;; must be non-zero. This demonstrates ex-
istence. For uniqueness, we observe that for any factorization the matrix
equation implies UR; | ay,...,a; C {¢1,...,0,}. Since every row has
a non-zero element we get the other inclusion, too. As the ©;;’s are
determined uniquely from the ¢;’s, the factorization is unique up to a
reordering of the ¢;’s. O

Example: Let R; and R, be the two relations

A[B BIC|D

a | by by | ¢ | dy
ay | by and by | ¢ | do
as | bs by | c3| ds
ag | by bs | ca | ds

The factorization of Ry, Ry on B is

(4] [C]D]
] [C]D]
’“zl e | dy
(5] [B] [B] [B] [F] ok
(lblrlerlbiirlbe|,[b5l) [‘4]|CIDI :(R17R2)

(A [¢]D]
Lae] [es] ds]
(Al [c]D]

3 The Language

The set of expressions contains a minimal core language for manipulating
atoms and tuples

e = a atom expressions
| [a:el | [] tuple formations
| e e tuple perturbations
| e.a tuple inspections
| e\a tuple restrictions
| 01 relation constants
| {er, ... ,ex} relation formations
| b:e gates
| fe) homomorphisms

We also provide two operators on relations

| e x ey Cartesian products
| factor...on...do... factorization operators

The atom expressions are left unspecified but are intended to be entirely
standard; certainly, they will include the booleans.

A tuple formation denotes a partial function by its (singleton or empty)
graph associating attribute names with values. Tuple perturbation is a
binary operator on partial functions, where the left-hand function is up-
dated with the definitions of the right-hand function. A tuple inspection
merely applies a partial function to an argument. A tuple restriction
removes an argument from the domain of a partial function.

The relation constants denote the 0- and 1-element for Cartesian product,
ie. 0 = (0,0) and 1 = (0,{[1}). A relation formation constructs a
relation from a non-empty set of tuples with common domain.

In the gate expression b:e the expression b denotes a boolean and e de-
notes a relation. If b is true, then the result is e; otherwise, the result is

(o(e),0).
Finally, a homomorphism f is a function from relations to atoms such

that f(R; U R,) equals f(R;) @ f(R2), where @ is an associative and
commutative operator on the image of f. The set of homomorphisms

5

is left unspecified but can include such functions as is-empty, and, or,
min, and max.

4 The Factor Operator

The syntaz of the factor operator is

factor R\, R,,..., R,
on aj,as....,a;

do e

where n > 1, the R;’s are relations, & > 0, {ar,a0,...,a,} C No(R;)
is a set of attribute names, and e is an eztended expression denoting a
relation. An extended expression allows the following eztra constructs

e 1= tup | rel(j) factorization components
We allow the following variation: If one merely writes
factor R;,R,,...,R, do e

then the factorization is performed on No(R;), i.e. all the common at-
tributes.

The semantics of factor is the function taking Ry, R, ..., R, to the result
of the following computation. Step one: A factorization of Ry, R,..., R,
Ol ay, @y, ..., a; is determined. Assume that this results in m component
tuples. Step two: For each ¢; and (0;,0;,...,0;,) the expression e is
evaluated in an environment where tup = ¢; and for each 1 < j < n,
rel(j) = ©,;. Step three: The result is the union of these m values. If
m =0 then the result is, of course, the empty relation with the appropriate
schema, determined from e.

Notice that both the decomposition and the combination can be expressed
in terms of the two simplest relational operators, union and Cartesian
product. In between, one can modify the components.

As a trivial example, where no modification takes place, observe that R j
equals

factor Ry, Ry,..., R, on ay,ay,...,a; do {tup} x rel(y)

6

for any legal choice of a;’s.

Proposition 4.1 The factor operator is well-defined, i.e.

1) the schema of the value of e is the same for each environment
and can be statically determined (which is necessary to define the
schema of an empty result).

2) the result is independent of the ordering of the ¢,’s.
Proof

1) the schemas of ¢; and O;; are independent of i. Hence, the schema
of e is the same in all environments. By a simple induction one
can show that the domain of any tuple expression can be statically
determined, as can the schema of any relation expression.

2) the result is independent of the ordering of the ¢;’s since the fac-
torization is unique up to such reorderings (Prop. 2.2) and union is
associative and commutative.

O

A small amount of syntactic sugar will prove convenient. If an attribute
name a appears in an extended expression in place of an atomic value,
then it denotes tup.a. Also, we shall write rel rather than rel(1) when
factor takes only a single argument.

Example: If R, and R, are the two relations from section 2, then the
result of

factor R, R, on B do rel(1) x rel(2)

can be computed as

], [€15], ., [C1]
C C A
T ey A PV Y e AN oy o e Y ME Y iy

which equals

A0

ag | C1 dl

Qg | Co dz

as | cs | dj

5 Unary Operators

To begin with, we investigate the simpler case of the unary factor oper-
ator

factor Ron a;,...,a; do e

where all the a,’s are attribute names of R.

We give a translation of the standard unary relational operators

project Rona,,...,a; =
factor R on ay,...,a; do {tup}

select R where b =
factor R do b:{tup}

rename R by a; — ay, =
factor R do {tup\a,[ay:a:]}

We can also define the following two non-standard operators [Gra84,

Grag81]

extend R by a:=e =
factor R do {tupla:el}

group R by ay,...,a, creating a:=f() =
factor R on ay,...,a; do {tupla:f(reD)]}

Many variations of these basic operators are readily available. One ex-
ample is a reduce operator which removes the specified attributes

reduce R by ay,...,aq;, =
factor R on ay,...,a; do rel

8

Another example is an update operator which works like extend, except
that it assigns to an existing attribute

update R by a:=e =
factor R do {tupla:e]}

Notice that the translation is the same as that of extend. It is often
the case that factor expressions turn out to be more general than one
originally intended.

Many combinations of ordinary operators can conveniently be expressed
by a single factor expression. Consider as an example the following
expression where R is a relation with schema {a,b,c,d, z,y}

project
extend
select R where x>y
by z:=xz+y
over a,b,c,d,x, z

Using factor we can write
factor R do z>y: {tup[z: z+y]\y}

Two points are noteworthy in connection with this example. Firstly,
the factor expression does not need to know the incidental attributes
{a,b,c,d}. Secondly, the computation is clearly one that should be per-
formed on each tuple individually. This is evident in the factor expres-
sion, which in this situation basically says “for all tuples in R do ...”.
In the former expression one has to split this simple computation scheme
out into operations on three different relations. In conclusion, this factor
expression 1s not ouly shorter (and more efficient) but also considerably
easier to program.

6 Binary Operators

The usual binary operators, as well, appear as simple binary factor ex-
pressions. Cartesian product is, of course, built-in.

We can write the union operation as

9

union R, and R, =
factor Ry, R; do {tup}

which is really an extension. If the two relations have different schemas,
then it produces the union of the projections over the common attributes
names.

Intersection is straightforward. Notice that if R; and R, have the same
schema and rel(1) equals rel(2) then they both equal 1

intersect R; and R, =
factor R, R, do rel(1) =rel(2): {tup}

Another way to obtain the intersection is as a special case of the join
operator

join R, and R, =
factor Ry, R; do rel(1) x {tup} x rel(2)

This is a very intuitive presentation of join: The different parts of R,
and R; are stuck together using the available “glue” — the common tup’s.

The difference of two relations is

difference R; and R, =
factor R, R; do rel(2) = 0: {tup}

As before, this expression is very easy to understand: We take the tup’s
that do not belong to Rj.

We can play the game of variations for binary operators, too. A very
commonly emulated operator is combine, which joins two relations to-
gether while removing the “glue”. This is useful when a relation has been
split in two by the introduction of an extra key attribute in each, and we
want to recover the original relation

combine R; and R, =
factor I;, R; do rel(1) x rel(2)

Again, this expression follows directly from the definition of join and is
easily understood.

The symmetric difference of two relations can be found as follows

10

symdiff R, and R, =
factor Ry, R, do rel(1) # rel(2): {tup}

A variation on this example shows a binary operator that factorizes on
something beside all common attributes. Consider a relation in which the
attributes a, b, ¢ constitute a key. We have two different versions of what
is intended to be the same relation, and we want to get the key values
for which the information in the two relations disagree, i.e. we want to
check for inconsistencies in our database

check R; and R, =
factor R, R; on a,b,c do rel(1) # rel(2): {tup}

This is almost a literal translation of: If the information is inconsistent,
then include the key value. In comparison, using ordinary operators we
would end up with the far less transparent expression

project
difference
union R; and R,
and
intersect R; and R,
over a,b,c

Finally, we present an example of a 2-level factor. The divide operator
is defined as

RI/RQ = IllELX{D!D X R2 - Rl}

where o(R,) C o(R;). It is usually quite complicated to derive. We can
write is as

divide R and R, =
factor Ry, Ry do
factor rel(1) do
{tup} x Ry CR;: {tup}

which closely follows the definition. The two factors provide the o(R;) —

o(R;) tuples of R;. We then select those that combined with all of R, is
contained in R;. In comparison, a more standard derivation of divide is

11

difference

project R, over d;.ds,...,d,
and
project
difference
join
project R, over d;.d>,...,d;
and
R,
and
R,
over dy,d,,...,d;

This is not very intuitive; furthermore, one needs explicit knowledge of
o(Ry) — o(R,) = {dy,da,...,d}. In [Gra84] divide is derived from two
group_by’s, but it involves renamings and projections, and it gets in-
creasingly complex with the size of k.

7 General Operators

The binary operators union, intersect, and others immediately scale up
to n-ary operators, e.g.

union R; and R, and ... and R, =
factor Ry, R,,..., R, do {tup}

Apart from these handy generalizations one can write new operators that
are inherently more than binary. Consider as an example a novel safejoin
operator which takes as arguments Ry, Ry, R;, where o(R;) No(Rs) =
o(R3). The result is the subset of the join of Ry and R, for which the
projection onto the common attributes is contained in Rj3, i.e. only the
glue mentioned in Rj is “safe”. Using factor this looks like

safejoin R, and R, using R; =
factor Ry, R2, R3 do {tup} x rel(1) x rel(2) x rel(3)

Such operators can, of course, generally be written as more cumbersome
combinations of binary operators.

12

8 Efficiency

The factor operator can be implemented quite efficiently. By sorting
and merging one can compute the factorization of n relations each with
T tuples in time O(nT log(T)). The time for the entire factor operator
must furthermore include the time for computing the union of the ex-
tended expressions. For example, the binary join can be computed in
time O(T log(T') + J), where J is the size of the result, and project can
be computed in time O(T log(T)).

One can make an obvious improvement by observing that if the extended
expression e in a unary factorization on all attributes “factor R do ¢’
is injective, then no sorting is needed, and the operator can be imple-
mented in linear time. By injective we mean that the non-empty results
of the extended expression are pairwise disjoint. Ignoring the properties
of atom expressions, one can, using symbolic evaluation, statically deter-
mine when such a factor operator is injective; furthermore, the class of
injective expressions can be extended by including knowledge about the
different atom expressions, or about key attributes in the relations.

We observe that the expressions in select and in (legal) extend and
rename are injective and that, consequently, these operators will run
in time O(T"). We also note that any clever implementation “tricks” for
these operators, which make the running time sublinear, can be inherited
by the implementation of factor. Hence, the factor version of every
standard relational operator will have the same complexity as the original
one.

We can, in fact, quite often do better. As demonstrated earlier, many
combinations of standard operators can conveniently be expressed as a
single factor operator. In general, we can gain a constant factor in
these situations, since some temporary results are eliminated, and fewer
sortings and copyings are needed. We can avoid sorting altogether if the
combined query disguised an injectivity that is apparent in the single
factor expression.

With this knowledge the factor technology can serve as the foundation
for an interesting database implementation, where one needs only con-
sider a single operator.

Furthermore, factor can be implemented efficiently on various multi-

13

processor architectures. The very formulation of the factorization as a
vector/matrix product indicates the possibility for use of massive paral-
lelism in the implementation. The basic operators on any architecture
will be parallel sorting and merging combined with simultaneous compu-
tation on individual parts (the ¢;’s and ©,;’s). It seems that both vector
processors, hypercubes, and a properly designed network of transputers
should be able to support this sort of computation efficiently. Of course,
the inherent parallelism in the definition of factorizations can also be
exploited in a network of sequential machines supporting a distributed
database.

9 Conclusion and Future Work

The factor operator can conveniently express all standard relational op-
erators, and many more, without any loss of efficiency. Hence, one can
without cost reap the benefits of our proposal: Greater expressiveness, a
more intuitive query style, and hopes for increased efficiency.

In a concrete language proposal [LSSJ], we have combined factor with
fully recursive polymorphic higher-order functions, which yields a very
powerful tool. Implementation is currently being undertaken.

We are working on a logical characterization of factor to determine its
computational strength. We already know that factor is stronger than
the collection of usual relational operators, as the latter all yield linear*
functions and the former does not. On the other hand it not possible (we

conjecture) to calculate e.g. transitive closure with the use of factor.

We are interested in developing a calculus of factor expressions, which
will enable query optimizations. We are optimistic that this will be pos-
sible, since we only have a single operator, and the core language is quite
expressive. Certainly, we can easily compact combinations of translations
of standard unary operators into the appropriate single factor operator.

We also want to develop optimal algorithms for detecting injectivity under
various assumptions about the atom expressions.

*An n-ary function f on relations is linear if for each argument f(...;RL U Ryy...) =

Flo s By,) U f(oo Ray.).

14

References

[Gra81]

[Grag84]

[LSSJ]

[Mai83]

Peter M. D. Gray. The GROUP_BY Operation in Relational
Algebra. In S. M. Deen and P. Hammersley, editors, Databases,
pages 84-98. Pentech Press Limited, 1981. Proceedings of the 1st
British National Conference on Databases held at Jesus College,
Cambridge, 13-14 July.

Peter M. D. Gray. Logic, Algebra and Databases, volume 29 of
Ellis Horwood Series in Computers and their Applications. Ellis
Horwood Limited, 1984.

Kim S. Larsen, Erik M. Schmidt, Michael I. Schwartzbach, and
Erik Jacobsen. RAS - a database language with functions. In
preparation.

David Maier. The Theory of Relational Databases. Computer
Science Press, Inc., 1983.

