ISSN 0105-8517

Static Correctness of
Hierarchical Procedures

Michael I. Schwartzbach

DAIMI PB - 295
November 1989

COMPUTER SCIENCE DEPARTMENT B
AARHUS UNIVERSITY

Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark

— 1]
T
:
HiE
]

Static Correctness
of

Hierarchical Procedures

Michael I. Schwartzbach!

Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Arhus C, Denmark

Draft of November 3, 1989

Abstract

A system of hierarchical, imperative, fully recursive types allows program
fragments written for small types to be reused for all larger types. To exploit
this property to enable type-safe hierarchical procedures, it is necessary to
impose a static requirement on procedure calls. We introduce an example
language and prove the existence of a sound requirement which preserves
static correctness while allowing hierarchical procedures. This requirement
is further shown to be optimal, in the sense that it imposes as few restrictions
as possible. This establishes the theoretical basis for a very powerful and
general type hierarchy with static type checking, which enables 1st order
polymorphism and (multiple) inheritance in a language with assignments.

1 Introduction

In [4] we presented a system of fully recursive, hierarchical types for an
imperative language. The hierarchical aspect of the type system means
that we have a partial order on types, such that program fragments writ-
ten for small types may be applied to all larger types. This can form the
basis for a method of reusing software that combines simple parametric
polymorphism with elements of class inheritance. Static type checking is
still possible.

1E-mail address: mis@daimi.dk

The idea is to allow hierarchical procedure calls, where the types of the
actual parameters are larger than those of the formal parameters. The
claim is that if a program is statically correct, then this mechanism will
preserve correctness. This is only true if the procedure call avoids some
blatant inconsistencies by maintaining a homogeneous choice of larger
actual types. We must introduce a static requirement, which is a rule
that determines the legality of procedure calls.

In this paper we describe an example language, give a precise definition of
static correctness, and prove for a particular choice of static requirement,
ALL, that correctness is preserved. We further prove that ALL is optimal,
in the sense that it allows as many hierarchical calls as can possibly
make sense. The results generalize from the modest example language to
include all conventional imperative language features.

2 The Types

The type system allows dynamic, recursive types, but it is still intended to
be employed by a standard imperative language, where variables contain-
ing structured values are composed of a similar structure of subvariables.

Types are defined by means of a set of type equations
Type N; = 7;

where the NV;’s are names and the 7;’s are type expressions, which are
defined as follows

7 ::= Int | Bool | simple types
N; | type names
*T | lists
(ni:7i,...,ng 1 7) partial products, k > 0, n; # n;

Here the n;’s are names. Notice that type definitions may involve arbi-
trary recursion.

The *-operator corresponds to ordinary finite lists. The partial product is
a generalization of sums and products; its values are partial functions from
the tag names to values of the corresponding types, in much the same

way that values of ordinary products may be regarded as total functions?.

The partiality of the product will prove essential to the correctness of
the hierarchy. Furthermore, partial products yield a pragmatically ad-
vantageous notation for specifying recursive types, in particular when
combined with the notion of structural invariants. Details are presented

in [4].

The values of types may be taken to be the C-least solutions to the cor-
responding equations on sets induced by the above interpretation of the
type constructors. Other assignments of values to types are possible; for
example, one may include infinite (lazy) values. The variety of different
value assignments is investigated in [5].

2.1 Type Equivalence

Several type expressions may be taken to denote the same type. These can
be identified by an equivalence relation =2, which is defined as the identity
of normal forms. To each type expression T' we associate a unique normal
form nf(T'), which is a possibly-infinite labeled tree. Informally, the tree
i1s obtained by repeatedly unfolding the type expression. Formally, we
use the fact that the set of labeled trees form a complete partial order
under the partial ordering where t; C ¢, iff ¢; can be obtained from ¢,
by replacing any number of subtrees with the singleton tree Q. In this
setting, normal forms can be defined as limits of chains of approximations.
The singleton tree 2 is smaller than all other trees and corresponds to
the normal form of the type defined by

Type N =N

We shall write € to denote any such type expression.

Proposition 2.1: The equivalence is decidable.
Proof: Normal forms are clearly regular, i.e. the have only a finite num-

ber of different subtrees. Hence, their equality is decidable, as stated in
[2]. O

>Thus, a partial product is essentially the union of all the ordinary products whose names
are among those specified.

2.2 Type Ordering

The hierarchical ordering is a refinement of C. We want to include or-
derings between partial product types of the following kind

(ni) (mj)
| < |
T S;

iff {n;} C {m;} and (foralli,j : n;=m; = T; < S;). This possibility
must extend to infinite types as well. If <, is this inductive (finite)
refinement of C, then the full ordering is defined as

S<T & VS'CS, |S]<0: §=T

Thus, products with fewer components are smaller than products with
more components.

Facts 2.2:

e () is the smallest type.
o The type constructors are monotonic and continuous.

o If T'= F(T) is a type equation then

Q<L FQ)<F*(Q)<--- < F(Q) < --.

is a chain with limit 7'
o If 77 < T, then all values of type T are also values of type T5.
o Greatest lower bounds M always exist.
e Least upper bounds U may or may not exist.

o The ordering, M’s and ’s are all computable.

The least upper bounds of < correspond to the multiple inheritance as-
pect of data values: Two types can be joined by the (recursive) unification
of their components. In fact, we obtain a generalization of the ordinary
multiple inheritance, since we have recursive (infinite) types and the poly-
morphic type 2.

The greatest lower bounds correspond to the general specialization of data
values: The maximal common subtype of two types can be determined.

4

3 An Example Language

The results we present will be valid in any standard imperative language
which employs our type system and exploits its ramifications. In order
to provide a rigorous framework for stating and proving these results, we
shall introduce a modest example language. Hopefully, it will be apparent
that all major results will carry over to richer languages without signif-
icant modifications. The language is presented by means of its syntax
and its informal semantics.

3.1 Syntax

The principal syntactic categories are: statements (S), variables (o), ex-
pressions (¢), declarations (D), types (7), and programs (P). In the fol-
lowing grammar the symbols IV, P, n;, z range over arbitrary names, and
k is any non-negative number.

S = o:=¢ |
o:-n; |
gi+(n;:p) |
P(g1,....d1) |
if ¢ then S end |
while ¢ do S end |
STRHIRP

o = x|o.n;|old]

¢ = 0] ¢+l | o-1|
o |
¢1=¢2\
[¢13'~-,¢k] ‘
lol |
(ny:dy,...onp:dp) |
has(o,n;)

D ::= Type N =1 |
Proc P(pxy:1y,...,px:7) S end P |

Var z:71

p ::= var | val
7 = Int | Bool |
N |
*7 |
(ny:Try. .y np:iTy)
P ::= DlDszS

3.2 Informal Semantics

Most of the language is quite standard: simple expressions, variables, as-
signments, comparisons, control structures and procedures with variable-
or value parameters. There are static scope rules, but global variables
may not be accessed from within procedures. As shown in section 7.1
this is a necessary restriction; however, it does not seriously limit the
generality of the language, since global variables can be explicitly passed
as variable parameters.

The partial product acts as a partial function where o:-n; removes n;
from the domain of o, o:+(n;:) updates o with the value ¢ on n;, and
has(¢,n;) decides whether n; is in the domain of ¢. Arbitrary partial
product constants can be denoted by (ni:éy,...,n.:d,). A subvariable
of a partial product may be selected by o . n; (provided it is in the domain
of 7). A list constant is denoted by [¢;,...,#,], and the subvariable with
index ¢ is selected by o [¢] (provided o has length greater than ®). The
expression |@| denotes the length of the list .

4 Motivating The Hierarchy

This section will provide an intuitive motivation for the proposed type
hierarchy, and it will point out the various difficulties that we must over-
come.

The prime motivation is the observation that many procedure calls seem
to work fine if the types of actual parameters are larger than those of

6

the formal parameters. In the following examples we compare pairs of
procedures, where we increase the sizes of the formal parameters. In all
cases we observe that the procedure body does not have to be changed

Proc P(var x,y:Q,val z: Q) Proc P(var x,y:Int,val z:Int)

X:=7; X:=7%7;
yi=17 yi=7
end P end P

Proc Q(var x:*Q,val y: Q) Proc Q(var x:*Bool,val y:Bool)

if Ix| = 0 then if |x| = 0 then
x:=[y,y,y] x:=Ly,y,y]
end end
end Q end Q
Proc R(var x:(a:9,b:Bool)) Proc R(var x:(a:Int,b:Bool,c:()))
x.b:=has(x,a) x.b:=has(x,a)
end R end R

This opens up for a very direct version of code reuse, where the left-hand
procedure can emulate the right-hand one by enlarging the types of its
formal parameters during a so-called hierarchical procedure call. Then
(1 works as a type parameter and inheritance is enabled by the partial
product aspect of the type ordering.

We claim that our type system is the right one for allowing hierarchi-
cal procedure calls, as other approaches have various shortcomings. One
method could be to rely on coercions and inclusions of values [3], such
that Ty < T if Val(T}) C Val(T3). In our system this monotonicity is a
necessary but not sufficient condition. Certainly, we have Int C Real, but
if Int procedures can be reused for Reals then we face the awkward task
of explaining e.g. what the 3.1415’th element of a list is. The technique
of retracts, which yield best approximations, is not always the answer.
In e.g. a generic search tree, it would be most unfortunate if one could
only recover approximations to the inserted elements. The system of [7]
is based on records and projections between these and fails to have the
above mentioned monotonicity property. This causes various inconsis-
tencies, since the hierarchical mechanism allows values of small types to
be assigned to variables of larger types. The system of [1] avoids such

7

problem by excluding records with “updatable fields” from the hierarchy.

Common to all such systems, including ours, is that just allowing actual
parameters to have larger types than formal parameters is too liberal an
attitude — a fact that is not always realized. We must have a homogeneous
choice of larger types, as the following example shows. The procedure

Proc P(var x: Q,valy: Q)
X:i=y
end P

will not be correct if the actual type of x is Int and the actual type of y is
Bool. We must limit the permitted procedure calls to avoid such blatant
inconsistencies. Also, it is not clear that more subtle problems cannot
occur with this mechanism; for example, the behavior of recursive types
or nested levels of (recursive) hierarchical calls must also be considered.
In the following sections we shall provide the necessary framework for
supplying a formal proof for the validity of these ideas. This will establish
a firm basis for exploiting this useful mechanism without any risk of
inconsistencies or anomalies.

5 Static Correctness

In a programming language static correctness is a decidable syntactic
property of program texts. When all programs are guaranteed to be
statically correct, then one can verify certain invariant properties of the
execution model. These invariants are crucial for reasoning about pro-
gram correctness. They are also very useful for developing efficient imple-
mentations and performing compile-time optimizations. Typically, static
correctness implies such basic properties as: variables of type T' can only
contain values of type T, operations are only performed on arguments of
the proper types, etc.

In this section we shall define static correctness of our programs. To
facilitate this we need a number of auxiliary concepts.

5.1 Environments

Correctness will be defined relative to an environment, which is a finite
map from (variable) names to types.

Definition 5.1: If o is a variable and £ is an environment, then £ | ¢
denotes a type defined as follows

o £l =E&(x) if z € dom(&)
o Elolpl =T if &lo =T
o Elo.n;, =T, fElo=(ny:Ty,...,np:Ty)

We write o € £ if £ |0 denotes a type according to the above schema.

Definition 5.2: If £ and &' are environments, then

£ <& iff dom(€) = dom(E') A Va: E(x) < E'(x)

5.2 Extended Types

We have some polymorphic constants in the language; for example, []
denotes the empty list of any type, and the constant (b:87) can have
any type which is a partial product with at least a b-component of type
Int.

It will prove technically convenient to make this polymorphism explicit
by defining an extension of our type system.

Notation 5.3: We introduce the abbreviation (a; : A;) instead of the
more explicit (a; : Ay,...,ag : A). The value of k is implicit and is not
assumed to be the same in e.g. (a; : 4;) and (b; : B;).

Definition 5.4: The z-types are extensions of the types defined as follows

X =7 (any type)
* X |
Al
H(’I’thXl,...,'nk Xk)

Types can be elements of x-types. Any type of the form 7' is an element
of A, and the elements of II(n, : X;) are all partial products with at least

9

the components (n; : T;), where T; is an element of X;.

Definition 5.5: The relation X; X X, holds iff X; and X, has at least
one element in common.

Proposition 5.6: X is the smallest symmetric relation which satisfies

T\XTy if Ty =T,

ANXA

AXxX

* X XX, iff XXX,

(ng : Ty)XWII(m; 0 Y5) iff {m;} C {n;} A (Vi,j: ny=m; = T;XY;)
(n; : X;)XI(m; : Y;) iff (Vi,j : ni=m; = X;XY;)

Proof: Induction in the largest x-type depth. O

Definition 5.7: If X; X X, then X; ® X, denotes the unique x-type
whose elements are exactly the common elements of X; and X,. Clearly,

® is associative and commutative (when defined).

Proposition 5.8: Whenever its arguments are related by X, then ® can
be computed as follows

o T RTy,=T,1f T =T, are types
e ARA=A
o A®xX=xX
o +x X ®+Xo=+(X; ® Xy)
o (n;,:T;)®II(m; :Y;)=(n,
3 H(n, : X))@ I(m; :]):H(Zk) where {z;}={n;} U {m;} and
X; if zp=n; & {m;}
Jy = XMX)}; if =N, =M
Y; if zp=m; & {n;}

Proof: Induction in the largest x-type depth. O

Proposition 5.9: If X; XX, then (X; ® Xo) XY & X;XY A XyXY
Proof: = is immediate. For < we use induction in the largest x-type

depth in .X-i.

10

If both X, are types then X; = X, = X; ® X, and we are done.
If e.g. X1=A then X; ® X,=X, and we are done.

If X;=x*Z; then we have two cases: 1) if Y = A then we are done;
2) if Y =xZ then we use the induction hypothesis.

If Xy=(n;,:T;) and Xy = I(m; : Z;) then X; ® X, = X; and we
are done.
If Xi=1II(n;:Y;) and Xy = II(m; : Z;) then the result follows by

induction on the common components. O

Proposition 5.10: The relation S <X determines if there is an element

of the x-type X which is larger than the type S. It is the smallest relation
which satisfies

SaT,if Tisatypeand S <X T

QaX

xS ax X ff S« X

xS <A

(TI,Z' : Sz) <1H(mj : X]) iff (\7/2,] P ny=my = S; <1X]')

Proof: Induction in the structure of X. O

Proposition 5.11: S< X, Xyo & S<X; A §aX;,

Proof: = is immediate. For < we proceed by induction in the length
of the largest x-type depth in X.

If both X; are types, then S <« X=X, =X, ® X,.
If e.g. Xi=A then X; ® Xy=X,.

If X;=+xY, then S =«T and T <Y, so by induction hypothesis
T<]Y1®Y:2 SO *T<1*(Y1®Y2):X1®X2

If Xi=(n;:T;) and Xo=II(m; : Y;) then X; ® X, = X].
If Xy=I(n;:Y;) and X = II(m; : Z;) then the result follows by

induction on the common components. O

Proposition 5.12: All of: X, ® and < are computable.

Proof: Immediate from decidability of ~ and <. O

11

5.3 Defining Correctness

To specify the correctness conditions we need to talk about the types of
expressions. These are, as previously stated, not unique, but we can as-
sign a unique x-type E[¢] to each expression ¢ relative to an environment
&. The elements of £[¢p] are exactly the types of .

Definition 5.13: If £ is an environment and ¢ is an expression, then
E[#] is defined inductively as follows

E[(n;:)] = U(n; : E]@])
E[has(d,n;)] = Bool

o £[0] = &Jp+1] = E[¢p-1] = Int

o Efo]=¢€lo

o &[¢1 = ¢2] = Bool

i 5[[[9251:,¢k]ﬂ:*(®z5[{¢l]]),1fk >0
o L[II]=A :

o £[1o1] = Int

We shall only use E[¢] in situations where it will in fact be defined.

Definition 5.14: We present a predicate CORRECT(E,S) which says that
the statement S is statically correct with respect to the environment &.
The predicate is described as a list of conditions on phrases: variables,
expressions and statements. These conditions must be true for all such

phrases in the derivation of S.

Phrase: Condition:
1) o o€
2) o] E[d] X Int
3) o:=¢ Elo]xe]e]
4) o-n; (n; : Q) < &o]
5) o:+(n;:d) (ni: Q)< &fe] A EJo.n]XE[S]
6) o+1, ¢-1 E[o] ™ Int
7) ¢1 = &2 E[1]HE[¢.]
8) (P15l Vi, j: E[p:]ME[o)]
9) ¢l «Q < &[]
10) has(¢,n;) (n; : Q) <« &[P]

11) if pthen Send £[¢] X Bool
12) while ¢ do S end &[] X Bool
13) P(py,...,0) JA: E[p] M A(z;) A REQ(F, A)

12

For the procedure call we used a few abbreviations. The procedure looks

like

Proc P(pxi:7i,...,p xp:Tk)
S
end P

Now, F is the formal environment mapping x; to 7;, whereas A is the ac-
tual environment which maps z; to an appropriate actual type compatible
with ¢;.

Finally, REQ is the static requirement, which is in fact the main topic of
this paper. It is a predicate on the formal and actual environments, which
determines the permitted degree of hierarchical procedure calls. To get
an ordinary language we can use the requirement

EQUAL(F,A)=F = A

which insists that the formal and actual parameter types must be equiv-
alent.

The entire program is statically correct when all statements are correct
relative to their environments. The environment for the main program
consists of the global variables, and the environment for a procedure
body is its formal parameters; thus, global variables are not accessible
from within procedures.

Also, we must include various static conditions which are independent of
the environment, such as a systematic use of names and bindings, and
the fact that actual variable parameters must be variables.

5.4 Dynamic Aspects

If we use the requirement EQUAL then the definition of static correctness
should be uncontroversial. Examples of invariants are: values of type T'
can only reside in variables of type T, list operations are only performed
on lists, and operations involving a product component n; are only al-
lowed if the type in fact contains such a component. The polymorphic
constants are allowed to remain undetermined as long as it can be assured
that they can be assigned a sensible type.

13

6 Hierarchical Correctness

By relaxing the static requirement we allow some procedure calls where
the actual types are larger than the formal types. The semantics of a
hierarchical call is to substitute the actual types for the formal types,
recompile the procedure and perform a normal procedure call.’?

This raises some concerns about the static correctness. We may have
ensured that the body of the procedure was correct with respect to the
formal environment, but now it will be executed in a different actual
environment. Thus, the requirement must possess a special quality.

Definition 6.1: A static requirement REQ is sound if

o VS, F,A: CORRECT(F,S) A REQ(F,A) = CORRECT(A,S)
o Condition 13) in definition 5.14 is decidable

Thus, correctness must be preserved by a sound requirement, and the
static correctness conditions must remain decidable.

Proposition 6.2: The requirement EQUAL is sound.

Proof: If 7 = A then clearly correctness is preserved. Condition 13) is
decidable, since we have only one possible A for which we must check that
E[#:i] M A(z;), which is the same as £[¢;] X ;. Hence, the types of the
actual parameters are required to match those of the formal parameters,

which is what we would expect in this normal situation. O

Soundness has very important consequences for the dynamic aspects of
static correctness. If we verify static correctness for all parts of a pro-
gram, then we expect certain invariants to hold during execution. With
hierarchical calls this property is no longer immediate, but if the static
requirement is sound, then the execution invariants will still hold. This
can be established essentially by induction in the length of the dynamic
chain of procedure calls: If we have length 0 then no hierarchical calls
have been performed and we are safe. For longer chains we can perform
the induction step by appealing to the facts that the actual parameters
satisfy the static requirement and that the soundness condition holds.

3An implementation would, of course, employ a uniform data representation that allows it
to reuse code without further ado.

14

6.1 An Optimal Sound Requirement

We shall prove the existence of a sound requirement which is optimal
in the sense that it is minimally restrictive and, hence, allows as many
hierarchical calls as possible.

Definition 6.3: ALL is a static requirement defined by

ALL(F,A)=F AN (Vo,0': Flo=F|lod = Alo=A]0")

Theorem 6.4: ALL is sound.

To prove this main result we must show that all the static correctness
conditions are preserved and that condition 13) is decidable.

Lemmas 6.5 through 6.7 show preservation of the basic conditions. We
assume ALL(F,A).

Lemma 6.5: If c € F thenoc € Aand Flo<A]|o.
Proof: Induction in 0. Assume o € F. If ¢ is a name then we are done

since J < A. Now, assume the result holds for ¢. Look at o.n;. Since
o.n; € Fthen Flo=(n;:T;) and Flo.n;=T,. Butas Flo<A|o
then A|o=(m; : §;) where {n;} C {m;} and n;=m; = T;<S;. Hence,
o.n; € Aand Flo.n;=T,<S;=Aloc.m;=A|c.n;. For o[¢] we have
that 7 |o=+T and F |o[¢] =T. Since F o <A | o then A| o ==xS
where T'<S. Hence, F o[l =T <S=A|c[d]. O

Lemma 6.6: If 7] X F[¢s] then Afd] X Ap].
Proof: Induction in largest depth of an x-type in F[¢;]. Assume F|[¢p;] X

Floa]:

o If Fl¢;] both are types, then we have three cases: 1) if both ¢;’s
are variables, then we are done because of soundness; 2) if neither
is a variable, then they both have the same simple type in any
environment; 3) if only one is a variable, then the other has a simple
type, e.g. F[#¢1]=Int. By lemma 6.5 F[¢;] < AJé1], so A[¢1] = Int,

and we are done.
o If Flp1]=F[p:] =A then ¢p1=¢=1[1, so A[p;]=A[ps] =A.

o If Flp1] = A and F[oy] = *X then ¢y = [4y,...,9;] and X =
®(F[¥:]). Hence, A[¢1]=A and A[p,] =Y where Y =A%)

15

If Floi] = *X and Flos] = *Y then ¢y = [¥y,...,9¥] and ¢, =
[(0y,...,0:], where X = @, (F[¢i]), ¥ = ®,(F[¢;]) and X X Y.
Using proposition 5.9, F[;] X F[6,], so by induction hypothesis
Al]) A[;], so ®:(Ali]) W ®;(A[6;]) and we are done.

If Fl¢1] = (n; : T;) and Flpy] = O(m; : Y;) then {m;} C {n;}
and n; = mj = T; X X;. Here ¢1 = 0 and ¢, = (m; : 3;), so
Flo.n,;] W F[+;]. By induction hypothesis Ao .n;] X A[v,], and
we can reverse the argument. Notice that by lemma 6.5 A[¢p;] will
have all the necessary {n;}-components.

If Flg1] =1(n; : X;) and F[¢] =1(m; : Y;) then we proceed by

induction on the common components. O

Lemma 6.7: If S a F[¢] then S < A[¢].

Proof: Induction in ¢. Assume S < F[¢]:

If F[¢] is Int or Bool then F[¢]=A[¢] and we are done.

If =0 then F[¢] is a type and by lemma 6.5 F[¢] < A[¢]. Since
< 1s < on types the result follows by transitivity.

If ¢=1[1 then Flop]=A[p]=A.

If ¢=1[¢1,...,¢r] then F[o] = *(®;F[¢;]). Hence, S =T where
T <« ®;(F[¢:]), so (using proposition 5.11) T' < F[¢;]. By induction
hypothesis T' < A[¢,], so (using lemma 6.6 and proposition 5.11)
T < (@ Al¢:]) and S=+T ax(®,A[¢:]) = A[#].

If = (m;j:¢;) then F]¢]=1(m; : F[¢,]). Hence, S=(n;: S;) and
n;=m; implies S; X F[¢;]. By induction hypothesis S; < A[,] so
S=(n,: §) 3 (m; - Algy]) = Alg]. O

Lemmas 6.9 and 6.11 will establish the decidability of condition 13).

Notation 6.8: If X is an x-type then a type address in X is a sequence

v € {n;,*}* which may specify a path from the root to a subtree. The
branch from *X to X is selected by #, and the branch from (n; : X;)
or II(n; : X;) to X; is selected by n;. We use v € X to indicate that v
specifies a subtree of X, which we will call X |~.

Lemma 6.9: Let F' < A be types. Then Vo,5: Fla=F | = A]

a=A | is a decidable condition.

16

Proof: Any type T is a regular tree with only finitely many different
subtrees. Hence, we can construct a deterministic, finite automaton My
on type addresses with one state for each different subtype, such that
on input v € T' the automaton My will reach the state that corresponds
to the subtree T' | yv. Every state accepts. Since F < A we have that
L(Mp) C L(M,). Each language splits into equivalence classes, one for
each state, such that equivalent addresses reach the same (acceptance)
state. Let L(Myp)=UF; and £L(M4)=UF;. The condition translates to
Vi dy : F; C Aj, which is clearly decidable since each class is a regular
language. O

Example 6.10: The type T defined by the equations

T = xR
R=(a:Int,b: S)
S=(c:«T,d: S)

has 5 different subtypes, viz. {T, R,Int, S,+*T'}. The corresponding au-
tomaton has 5 (accept) states and the following transitions

*

O ~O——0)
* b
O O
O——0©,

Lemma 6.11: Condition 13) is decidable.

Proof: We first observe that without loss of generality we need only
look at the case with a single parameter, since the full complexity of the
problem returns if the parameter type is a product. Hence, we talk about
the formal type 7 and the actual x-type £[4].

To demonstrate decidability we present an algorithm that computes an
appropriate A or determines that none exists.

Our first test is whether 7 <&[¢]. If not, then no A exists; otherwise, we
proceed.

17

We call a type address in 7 short if it indicates a non-type (an x-type)
in £[¢] and long if it indicates a type. We begin by computing the finite
set of short addresses. We shall test the condition in three stages.

Stage 1 (short/long): For each short o we determine if there is a long
B such that 7 |a=7 | 8. This can be done by constructing the automaton
mentioned in the proof of lemma 6.9 and checking if the equivalence class
containing « has a sufficiently long (3. If this is the case, then we need
to have &E[p] | a X E[@P] | 3. If not, then no A exists; otherwise, we
proceed. We can safely replace £[¢] | o with E[@] | 3, since this is the
only element which can possibly work (this changes the address o from
short to long, and in stage 2 will shall test if this element in fact does
work). We continue this stage until all short/long combinations have
been eliminated.

Stage 2 (long/long): Collect all maximal subtypes in 7 that have long
addresses and collect the corresponding subtypes in £[¢]. Using lemma
6.9 we can determine if the condition holds for all long/long combinations.
If not, then no A exists; otherwise, we proceed.

Stage 3 (short/short): We are left with the finitely many short/short
combinations. We verify for each such «,3 that if 7 | o = 7 | 8 then
E[P] Ll aX&[P] | B. If not, then no A exists; otherwise, an A does exist,
since we for each set of pairwise X x-types can find a common element.
Due to proposition 5.11 this common element can be chosen to be larger
than the formal type. O

Example 6.12: Consider the following procedure heading

Proc P(val z;:7, val xy: 7, val z5:73)

where
n=m=x(a:Q), =0

&

We call with the actual parameters

¢ = [(c:[1)]
¢y = [(a:[1),Ca:[[11),(b:7)]
Po = [[6=71]

The x-types of the parameters, and our first proposal for actual types,

18

are

A(zy) = E[d1] = #I(c : A)

A(zy) = E[da] = x((a : A) @ H(a : *xA) @ II(b : Int)) = «I(a : *A, b : Int)
A(zs) = E[¢p3] = * * Bool
We can verify that 7, a&[¢;]. In stage 1 we find the single short/long pair
xry * a,x3 and obtain
A(zy) = *I(c: A)
A(zy) = *II(a : x * Bool, b : Int)
A(x3) = * * Bool

!

In stage 2 we find no long/long conflicts and, thus, confirms the substi-
tution performed in stage 1. In stage 3 we detect the short/short pairs
xy, T2 and xk, xox for which we must select common elements. We end
up with the actual types

A(z;) = *(a : x % Bool,b : Int, c : Q)
A(xy) = *(a : * * Bool,b : Int,c :)
A(x3) = % x Bool

that are clearly satisfactory. In place of *2 we could have chosen any list
type; however, it seems appropriate to select the smallest actual types
possible.

Lemmas 6.13 through 6.16 will show preservation of condition 13).

Lemma 6.13: If £[¢] is a type and v € £[¢] then there is an expression
¢ |y such that if £ < &' then E'fp | y]=E"[4]] 7.

Proof: Induction in ¢.

o If the type £[¢] is simple, then v is empty and ¢ | v =¢.
o If ¢ is a variable, then we can choose ¢ | v = ¢.7, where 7 is a

translation of ¥ to subvariable selections.

o If o=1[¢1,...,¢;] then at least one £[¢;] is a type; otherwise, E[¢]
would not be a type. We must have v = 7', so we can inductively

define ¢ |y=¢; 7"

19

Since any other choice for ¢ would result in an x-type, we have exhausted
all cases. O

Lemma 6.14: If v € £[¢] then there is an expression ¢ |y such that if
£ < & then E'[plv]=E"T] L.

Proof: We shall prove the more general result that for ®;£[¢;] we can
find an expression 6 such that (®;£'[¢;]) | y=E'[6]. Induction in largest
x-type depth in ®;E[¢;].

o If ®,E[#;] is a type, then at least one £[¢;] is a type. Hence, we
can use lemma 6.13 and define §=E[¢,] | 7.

o If ®,E[dh:;]=A then v is empty and §=[] will do.
o If @,E[¢p;] =*X then X =®,E[Y;], where the ¢,’s are all the list

elements in the ¢;’s. We must have v = ¥/, so we can use the 6

inductively defined for ®;E[v;] and 7.

o If ®,&[p:] = (ny, : Xi) then v = m.y' where m € {n4} is some
component. Let the 1); be the subexpressions for all m-components.
The we can use the 6 inductively defined for ®;E[¢;] and +'. O

Lemma 6.15: If £[¢] | a X E[¢] | B and ALL(E,E") then E'[¢] | a W
E'fe] 18

Proof: Using lemma 6.14 we get E[¢p | a] X E[¢ | 5]. Using lemma 6.7
we conclude that &'[¢p | a] X E'[¢ | B]. Using lemma 6.14 again we get

Elollaxe]lp. O

Lemma 6.16: If condition 13) holds for £ and ALL(E, ') then condition
13) also holds for &'.

Proof: Looking at the proof of lemma 6.11 we can see that every time a
test succeeds with £, and we are allowed to proceed in the algorithm, then
the same test will also succeed with &£'. The test 7 < &'[¢] will succeed
due to lemma 6.7. The remaining tests will succeed due to lemma 6.15.
Hence, if the algorithm can produce an A that works for &£, then it can
also produce one that works for £'. O

At long last we can summarize the proof of the soundness theorem.

20

Proof of theorem 6.4: Preservation of correctness can be argued for

each individual condition. Condition 1) is covered by lemma 6.5. Con-
ditions 2)-12) are covered by lemmas 6.6 and 6.7. Condition 13) follows
from lemma 6.16. Finally, decidability of condition 13) is proved in lemma
6.11. O

Notice, that ALL will be sound for any extension of the language which
still allows the static correctness conditions to be expressed in terms of
X and <. The author believes that this covers most imaginable cases.

We conclude this section by proving the optimality of ALL.

Lemma 6.17: If S A T then there is a constant expression ¢ such that
for all £ we have SXE[@] but not TXE[H].

Proof: If S A T then, by definition, there is a finite A < S such that
A A T. We construct an appropriate ¢ by induction in the structure of

A; obviously, we can ignore the case 4 = ().

1) If A is Int then ¢ is 0.
2) If A is Bool then ¢ is 0=0.

3) If A=xA, then we have two cases:

3.1) if T is not a list then ¢ is [].

3.2) if T =«T) then A; A T}; we can inductively find a ¢; and
define o= [¢;].

4) If A=(n;: A;) then we have three cases:

4.1) if T is not a product then ¢ = ().

4.2) if T=(m; : Tj) and {n;} C {m;} then there is some n, =mg
such that A, A T3. We find recursively a ¢g and define
p=1{(mg:¢g).

4.3) it T=(m; : Tj) and ny € {m;} then we have four cases:
4.3.1) if A, is Int then ¢= (ny:0).

4.3.2) if A, is Bool then ¢= (n,:0=0).
4.3.3) if A, is a list then ¢=(n,:[1).
4.3.4) if A, is a product then ¢=(n,:).

21

This completes the construction. O

Theorem 6.18: If REQ is sound then REQ = ALL.

Proof: Let us assume REQ(F, A). If ALL(F, A) is false then there is some
0,0’ such that F |o=F | o' but Ao # A] o' or there is some x; such
that F(z;) 2 A(z;). In the former case CORRECT(F,o:=0') holds but
CORRECT(A,0:=0") does not. In the latter case lemma 6.17 gives us a
¢ such that F(z;)XF[¢] but ~A(z;) X .A[p]. Now, CORRECT(F,z;:=¢)
holds but CORRECT(A, z;:=¢) does not. In either case REQ is shown to
be unsound. O

Soundness and optimality of ALL means that we have found the most
flexible hierarchy that can be permitted.

7 Local Variables

The example language is less than typical in one important respect: it
lacks local variables. In this section we generalize the results to include
this possibility.

We extend the syntax of our language with the production
S ::= local z:7 S end

The semantics of the local-statement is to execute S in a locally ex-
tended environment where x has type 7. We can nest local-statements
in arbitrary levels.

The static correctness of this construct is defined as follows:
CORRECT(E,local z:7 S end) = CORRECT(E[x « 7],9)

which is hardly controversial. What happens to hierarchical calls? We
do not get any suggestion for the type of the local variable, since it does
not correspond to an actual parameter. If the situation is still to work,
then we must strengthen the properties of sound requirements.

Definition 7.1: A sound requirement REQ must also satisfy

REQ(F, A) = Vrda : REQ(F[z 1], Alx —a])

22

In this situation, we can always assign a type to the local variable that
will make sense in the hierarchical situation. We can, in fact, pretend
that the local variable was a parameter whose actual type was a. Hence,
the discussion of the dynamic aspects of static correctness carries through
without modifications.

Theorem 7.2: ALL is still sound and optimal.
Proof: Assume ALL(F,A). We shall construct an « that always works;

as we shall see, this o will be an appropriate mixture of formal and actual
types.

The type 7 has finitely many different subtypes 7, m,..., 7, where 7 =
71. The 7;’s can be uniquely defined through a set of type equations of
the form

T, = fi(TlaT'Z)- --)Tk)

Now, the type a« = «vq is defined by the equations

filag,an,...,0p) otherwise

{Ala fFlo=m
a; =

This is well-defined since, because ALL holds, F |oc = F | ¢’ = 7; implies
Aloc=Alo'.

From monotonicity of the f;’s and F |0 < A | o we see that 7, < «;.
From this we conclude Flz « 7] < Alz « «a|. Next, we must show

Vo,0 . (Flzer1]lo=Flz—7]lo") = (Alz—a]lo=Alz—a]ld)
We have two new cases:

1) if two subtypes of T are equal, then by definition the corresponding
subtypes of «a are equal.

2) if Flo =7, then A| o = «;, and we are done.

We conclude that ALL{F[z « 7], A[z + «]) holds, so ALL is still sound.
Optimality 1s immediate, since we have reduced the set of sound require-
ments. U

We can, of course, extend the language further by changing the local-
statement to

23

S ::= local P end

which will in no way influence the validity of the results.

7.1 Global Variables

On a more negative note, we can eliminate the possibility of allowing
global variables to be accessible from within procedures.

Proposition 7.3: If global variables belong to the formal environments
of procedure bodies and REQ is sound, then REQ = EQUAL.
Proof: Assume that 7,=F(z;)# A(z;). Then the situation

var y:T;

Proc PC...,z;:75,...)
Yy:=x;

end P

will not remain statically correct when we substitute A for F. O

The problem is that, unlike the situation with local variables, the types
of global variables are fized in all actual environments.

We do not view this as a major drawback of the hierarchy, but rather as
an observation of one more deficiency of this variable mechanism.

8 Weaker Requirements

An idea to allow even more hierarchical procedure calls might suggest
itself. If we permit the static requirement to consider the body of the
procedure, then more actual parameters can be shown to preserve cor-
rectness; for example, consider the following procedures

Proc P(var x,y: (a:Int))

X:=X;
y=y
end P

24

Proc Q(var z: %)
7:=7

end Q

For procedure P we require that the actual types of x and y are equal,
but really they can never conflict. For procedure (Q we require that the
actual type of z is a list, but really any type will do.

We shall argue against yielding to such demands by weakening the static
requirement. In doing so, we would have to abandon an important ab-
straction principle, as the interface to a procedure would no longer be
reflected solely by its formal parameters. Imagine, now, the development
of a large software system. Some day, the body of an obscure procedure
is modified slightly, in a manner that disallows a few hierarchical calls.
This change is propagated throughout, and in a nightmarish scenario no
part of the system would remain correct. So much for abstraction and
modularity!

The logical next step on this perilous road would lead us to redefine
static correctness, such that only code that is actually executed need to
be correct. Though undecidable, we could apply various conservative
estimates, but the result would be even more precarious than the above
mentioned.

In many cases, the problem can be remedied by writing better programs.
Clearly, procedure P above should be split in two, and the formal parame-
ter in procedure Q should have type Q. In [4] we suggest the introduction
of an infinite family of named Q-like types that will allow more than one
“type variable” in procedures. This, too, will resolve many situations.

9 Conclusions and Future Work

The results in this paper establish the theoretical basis for a very powerful
and general type hierarchy with static type checking. Naturally, we hope
that this can develop into a complete programming language. Much work
is needed to develop efficient data representations and to tune the type
checking algorithms.

Independently of such advances, we expect this work to shed some light

25

on static type checking in object oriented languages — a fairly elusive

concept, so far. Some applications of class hierarchies are inconsistent
with the idea that classes are types, but to a large extent this hierarchical
mechanism can be viewed as a restriction of the present one, in which
case a greatly simplified version of the proposed type checking discipline
can be employed. Work is currently being undertaken to investigate these

ideas [6].

10
1]

References

Cardelli, Luca “Amber.” Proceedings of the Treizieme FEcole de
Printemps d’Informatique Theorique, May 1985.

Courcelle, Bruno “Fundamental Properties of Infinite Trees” in
Theoretical Computer Science Vol 25 No 1, North-Holland 1983.

Reynolds, J.C. “Three approaches to type structure.”, In Mathe-
matical Foundations of Software Development, LNCS 185, Springer-
Verlag, 1985. ’

Schmidt, Erik M. & Schwartzbach, Michael I. “An Impera-
tive Type Hierarchy with Partial Products” in Proceedings of Math-
ematical Foundations of Computer Science 1989, LNCS Vol 379,
Springer-Verlag, 1989.

Schwartzbach, Michael I. “Infinite Values in Hierarchical Im-
perative Types” DAIMI PB-293, Department of Computer Science,
Aarhus University 1989.

Schwartzbach, Michael 1. & Palsberg, Jens “A New Under-

standing of Classes as Types”, In preparation.

Wirth, Niklaus “Type Extensions.”, In Transactions on Program-
ming Languages and Systems, Vol.10, No.2, 1988.

26

