A Compositional Proof System

on a Category

of Labelled Transition Systems*

Glynn Winskel

DAIMI PB - 294
November 1989

ISSN 0105-8517

COMPUTER SCIENCE DEPARTMENT
AARHUS UNIVERSITY
Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark

I

.

[

|

*) To be published in “Information and Computation”.

A COMPOSITIONAL PROOF SYSTEM ON
A CATEGORY OF LABELLED TRANSITION SYSTEMS

Glynn Winskel
Computer Science Department,
Aarhus University,

Ny Munkegade,

8000 Aarhus C,

Denmark
Abstract

This paper presents an attempt to cast labelled transition systems, and
other models of parallel computation, in a category-theoretic framework. One
alm is to use category theory to provide abstract characterisations of construc-
tions like parallel composition valid throughout a range of different models and
to provide formal means for translating between different models. Another
aim is to exploit the framework of categorical logic to systematise specifi-
cation languages and the derivation of proof systems for parallel processes.
After presenting a category of labelled trausition systems, its categorical con-
structions are used to establish a compositional proof system. A category of
properties of transition systems indexed by the category of labelled transition
systems is used in forming the proof system.

Introduction

I think there has been a fair degree of success in understanding and relat-
ing different models of concurrency by placing them in a category-theoretic
framework. By viewing each class of models (transition systems form one
such class of models) as a category, got by providing it with a suitable notion
of morphism, the relationship between models can often be expressed as an
adjunction between categories. Because of the way the right adjoints preserve
limits and left adjoints colimits, this leads to a smooth translation between
semantics in terms of one model and semantics in terms of another. The
morphisms make sense intuitively and represent a “partial simulation” of one
process in another. (See e.g. [W3] for a survey.)

It is clear that the nature of the events determines the nature of parallel
compositions; for instance, in Milner’s CCS [Mil, Mil1] we only want synchro-
nisations between events which are complementary in the sense that one is an
a and the other an @ event. The labelling of events to specify their nature has

1

never been incorporated convincingly into the category-theoretic set-up just
described, though there have been at least two attempts [W1] and [LP]. With-
out extending morphisms in the models to account for labels operations like
restriction, relabelling and various parallel compositions are not truly categor-
ical, which obstructs the category-theoretic account of parallel computation.
This restricts the use that can be made of techniques from category theory.
I have in mind categorical logic especially, which, at the very least, provides
guidelines for the construction of models and proof systems. A recent success,
exploiting ideas from categorical logic, is the work of Abramsky on a logic of
domains [Ab].

This paper presents a way to understand constructions on parallel pro-
cesses in the terms of indexed category theory. In particular it uses an indexed
category of processes to explain the important operations of restriction and re-
labelling categorically, and through these give a category-theoretic acconnt of
parallel compositions. Building on this work, a further application of indexed
category theory is presented; a category of properties indexed by processes
is used to describe a logic to reason about parallel processes in a structured
way.

At present, we do not have the general notion of a categorical model for
parallel processes. Although the results here often hold for a range of dif-
ferent models we must work with a typical model as an example. Besides,
given our incomplete understanding of the different ways of handling par-
allelism, this concreteness is all for the better. For the main model I have
chosen labelled transition systems, though synchronisation trees play a role,
and the treatment of other models is referred to briefly.t A definition of
morphism on labelled transition systems is given. Its categorical properties
are described in the language of indexed category theory, the idea being that
a transition system is indexed by its set of labels. This indexed category
yields familiar constructions suitable for interpreting a language of parallel
processes. Analogous results hold for an indexed category of synchronisation
trees. The indexed categories, labelled transition systems and synchronisa-
tion trees, are related by an adjunction which respects the indexing. This
provides a smooth translation between the two models and instant proofs
that semantics is respected in passing from one model to the other. Supplied
with a definition of morphism between transition systems and a language of
terms for labelled transition systems based on categorical combinators, we

T See [W6] for a similar presentation with Petri nets as the model.

2

investigate how modal assertions are preserved and reflected by morphisms,
and finally present a compositional proof system whose form is guided by a
category of properties of transition systems.

The work uses a particular representation of partial functions, the details
and notation for which are found in Appendix I.

1. A category of labelled transition systems.

Labelled transition systems are a frequently used model of parallel pro-
cesses. They consist of a set of states, with an initial state, together with
transitions between states which are labelled to specify the kind of events
they represent.

1.1 Definition. A labelled transition system is a structure
(S,i, L, Tran)

where
S 1s a set of states with initial state i,
L is a set of labels, always assumed to not contain a distin-
guished symbol x,
Tran C S x L x S is the transition relation.

This definition narrows attention to labelled transition systems, which
are extensional in that they cannot have two distinct transitions with the
same label and the same pre and post states.

1.2 Notation. Let (5,7, L, Tran) be a labelled transition system. We write
s o5
to indicate that (s,«,s’) € Tran, and
/

S — S

when da. s —%— s’. A state s is said to be reachable when

This notation lends itself to the familiar graphical notation for labelled tran-
sition systems. For example,

[X793

represents a labelled transition system which at the initial state ¢ can perform
either an « or a 3 transition to enter the state s at which it can repeatedly
perform a v transition or a transition to enter state w.

When ¢ is a transition of the form ¢ = (s, @, s') we sometimes use the notation
t for the prestate s and ¢ for the poststate s'.

It is technically convenient to introduce idle transitions, associated with
any state.

1.3 Definition. Let T = (5,4, L, Tran) be a labelled transition system. An
idle transition of T consists of (s,*,s) for s € S. Define

Tran, = TranU {(s,*,s) | s € S}.

Idle transitions play a role in the definition of morphism between labelled
transition systems.

1.4 Definition. Let

T() = (SO,'Z:(),LO, Tmn{)) and
T1 = (Shil,Ll, Tmnl)

be labelled transition systems. A morphism f : Ty — T} is a pair f = (o, \)
where

g Sg — Sl

A: Ly —, Ly are such that o(ig) = 7; and

(s,00,5") € Trang = (0(s), Ma),o(s")) € Tran,.

In particular, say a morphism (o,) of transition systems is label preserving
when A is the identity function on a set of labels.

4

With the introduction of a idle transitions, morphisms on labelled tran-
sition systems can be described as preserving transitions and the initial state.
Observe that morphisms between labelled transition system can be char-
acterised in a way which does not involve idle transitions. According to
this characterisation a morphism between two labelled transition systems
Ty = (So,%0, Lo, Trang) and T} = (Sy,i1, L1, Trany) consists of (o,), where
g:5 — S and A : Ly —, Ly, which satisfy

o(io) =1y
(s,a,8") € Trany & A(«) defined = (o (s), Ma),o(
(5,0, 8") € Trang & A(a) undefined = o(s) = o(s’

s")) € Trany, and

).

As this characterisation makes clear, the intention behind the definition of
morphism is that the effect of a transition with label « in T} leads to inaction
in Ty precisely when A(a) is undefined. In our definition of morphism, idle
transitions represent this inaction, a device which avoids the fuss of consider-
ing whether or not A(a) is defined. It is to be stressed that an idle transition

(s,%,s) represents inaction, and is to be distinguished from the action ex-
pressed by a transition (s, a,s’) for a label a.

Morphisms preserve initial states and transitions and so clearly preserve
reachable states:

1.5 Proposition. Let (0,)): Ty — Ty be a morphism of labelled transition
systems. Then if s is a reachable state of Ty then o(s) is a reachable state of

1.

Labelled transition systems with morphisms as defined form a category
which will be central to our study:

1.6 Proposition. Labelled transition systems with morphisms form a
category in which the composition of two morphisms f = (o,)) : Ty — T
and g = (o',\):Th - Tyisgof=(c"oo,N o)) : Ty — T, and the identity
morphism for a transition system T has the form (1g5,11) where 1g is the
identity function on states and 1y, is the identity function on the labelling set
L of T.

(Here composition on the left of a pair is that of total functions while that on
the right is of partial functions.)

1.7 Definition. Denote by T the category of labelled transition systems
given by the last proposition.

2. Labelled transition systems as an indexed category.

Restriction and relabelling are important operations on processes. For
example, in Milner’s CCS, labels are used to distinguish between input and
output to channels, connected to processes at ports, and internal events. The
effect of hiding all but a specified set of ports of a process, so that communi-
cation can no longer take place at the hidden ports, is to restrict the original
behaviour of the process to transitions which do not occur at the hidden ports.
Given a labelled transition system and a subset of its labelling set, the op-
eration of restriction removes all transitions whose labels are not in that set.
In CCS, one can make copies of a process by renaming its port names. This
is associated with the operation of relabelling the transitions in the labelled
transition system representing its behaviour.

Restriction and relabelling are constructions which depend on labelling
sets and functions between them. Seeing them as categorical constructions
involves dealing explicitly with functions on labelling sets and borrowing a
couple of fundamental ideas from indexed category theory. An indexed cate-
gory is, naturally enough, a collection of categories indexed functorially by a
base category. There is an alternative presentation of the same idea proposed
originally by Grothendieck, and argued for forcibly by Bénabou in [Ben]. For
them the central concept is that of a fibration, of which the category T of
labelled transition systems is an example.

2.1 Definition. Let p: X — B be a functor.

A morphism f: X — X’ in X is said to be cartesian with respect to p if
for any g : X’/ — X’ in X and morphism o : p(X") — p(X) in B for which
p(f) oo = p(g) there is a unique morphism h : X" — X such that p(h) = o
and foh=g.

A cartesian morphism f : X — X’ in X is said to be a cartesian lifting of the
morphism p(f) in B with respect to X'.

Say p : X — B is a fibration if every morphism o : B — B’ in B has a
cartesian lifting with respect to any X’ such that p(X’) = B’.

A morphism f: X — X' in X is said to be vertical if p(f) = 1,x).

Often pis called the projection, B the base category, and each full subcat-
egory p~!(B) of X, which is sent to the subcategory consisting of the identity
morphism on an object B of B, the fibre over B.

There is a projection functor p : T — Set,, to sets with partial functions,
which sends a morphism of labelled transition systems (o, \) : T' — T" between

6

labelled transition systems 7" over L and T” over L’ to the partial function
At L —, L' The projection p : T — Set, determines a fibration. Let us
represent what this means in a diagram. Suppose A : L —, L’ is a partial
function and that T" is a labelled transition system with p(T") = L', i.e. with
labelling set L’. We require a labelled transition system T and a cartesian
morphism f : T' — T such that p(f) = A. Assuming ' : 7" — T is a
morphism such that p(f') = X : L” —, Land X' : L —, L' with Ao\’ = X,
this means there is a unique morphism f” : T — T such that p(f") = N

and fo f'' = f §
T ¢
Py

T L5 717

L”'\?\'g
%L A " Ll

The following definition gives the explicit construction of the cartesian lifting,
with the labelled transition system 7" being given by the operation A*(T").

2.2 Definition. Let A : L —, L'. Let T" = (5,7, L/, Tran’) be a labelled
transition system. Define *(T") = (S, 4, L, Tran) where

Tran = {(s,a,t) | (s,\a),t) € Tran, }.

2.3 Proposition.

Let A : L —, L' be a partial function on label sets. Let T' = (S,i, L', Tran)
be a labelled transition system. Using the notation of the definition above,
A (T") = (8,4, L, Tran) is a labelled transition system. The pair (1g,)) is a
cartesian morphism X*(T") — T’ with respect to the projection p : T — Set,.
Proof.

Let A : L —, L’ be a partial function between sets of labels. Let 77 =
(S,i, L', Tran’) be a labelled transition system. Let *(T") = (S,4, L, Tran)
and f = (15,A) as defined above. Certainly A*(7") is a labelled transition
system and f : A*(T”) — T is a morphism of labelled transition systems. We
require that f is cartesian.

To this end, suppose
N/ -, L' and N : L' -, L

7

with Ao A = A and that f' : T' — T" is a morphism of labelled transition
systems such that p(f') = A\'. We require the existence of a unique morphism
f/ 1" — X*(T") such that p(f”) = X' and fof” = f'. However f’ must have
the form f' = (¢, \’) for a function o’ : §" — S”. If i” is the initial state of
T" then o'(¢’) = ¢, the initial state of A*(7"). Consider (s, a,t), a transition
of T”. Then as f’ in a morphism we see (¢'(s),N(a),0'(t)) € Tran., so
(0'(s),AoX'(a),0’(t)) € Tran,. But this implies (¢'(s), \"(a), o' (t)) € Tran,.
This ensures that (o/, \”) is the unique morphism f” : T"" — A*(T") such that
p(f”)=X"and fo f’" = f'. Hence f is cartesian. J

As a corollary we obtain:
2.4 Theorem. The projection p: T — Set, determines a fibration.

The construction of a cartesian lifting becomes simpler and familiar for
special cases of A. If A is an inclusion A : L C L’ and T has labelling set L/,
then A*(7"”) is just the restriction of 7" to transitions with labels in L.

2.5 Definition. LetT = (5,7, L', Tran') be a labelled transition system. Let
L C L’. Define the restriction T[L to be the transition system (5,1, L, Tran)
with

Tran = {(s,a,t) € Tran' | a € L}.

2.6 Proposition. Let T' = (5,7, L', Tran') be a labelled transition system.
Let L C L' and j: L — L' the subset morphism. Then T[L is a transition
system and (1g,j) : T[L — T is cartesian with respect to the projection p
from labelled transition system to their sets of labels.

Let A: L —, L' and T’ be a labelled transition system with labelling set
L', If Ais 1-1 and total then A*(7") is simply a relabelling of the transitions
of T". Such constructions are well-known from work on CCS and CSP. More
novel are the constructions when X is really partial, or sends two distinct
labels to the same label. If A is undefined on a label «, then the transitions
of *(T”) include all transitions of the form (s, «, s) where s is a state. These
loops at any state introduce an “a-stutter” into the transitions of A*(T"). If A
takes several distinct labels {«; | j € J} to a common label v, any transition
(s,7,s'), with label v, in T" is replaced in A*(T") by copies, (s, a;,s’), one for
each 7 € J. These cases are illustrated by the following examples. While not
directly associated with familiar programming constructs like restriction and
relabelling, cartesian morphisms like those in the example will play a role in
deriving parallel compositions from the fibre product (see 3.3).

8

2.7 Example. Let \g: {«,3} —., {7} be the partial function so \y(3) = 7
and Ag(«) is undefined. Let T be the transition system:

A
v]

®
Then A;(7') is the transition system

which can “stutter” on «, in that every state can repeatedly perform an o
transition.

Let A : {a, 3} —. {7} be total so that \;(a) = A;(3) = 7. This time A\ (T
is the transition system .
a(78

®

We return to consider the fibration p: T — Set.. Each fibre p~!(L) is a
subcategory of labelled transition systems over a set of labels L whose labelling
functions project to the identity function on L. In our proof that p does indeed
determine a fibration, a particular choice of cartesian liftings was given; for
AL —, L' and T € p~(L’) the morphism ¢(A, T') = (1s,A) : *(T") — T7,
based on the particular construction A*(7") and involving the states S’ of T",
was shown to be cartesian. In general, such a function ¢ making a choice of
cartesian lifting for a fibration is called a cleavage. The fibration ensures that
two cleavages are the same to within vertical isomorphism; if ¢(\,7") and
¢ (A, T") are two choices for the cartesian lifting of A\ with respect to T’ then
there is a unique vertical isomorphism 6 such that ¢/(\,7") = ¢(\,T") 0 6. A
cleavage for a fibration specifies a functor between fibres, a general argument
which we carry out for the fibration p of labelled transition systems. Define
the functor A* : p~!'(L') — p~ (L) for each partial function X\ : L —, L’ as
follows:

Let f':T; — T{ be a morphism in the fibre p~!(L/). The cleavage specifies
cartesian morphisms

c(A,Ty) : X (Ty) — Ty and (A, Ty) : \Y(T}) — T}.

9

As the morphism ¢(\,T]) is cartesian, the composition f'c(\,T}) factors as
c(A,T7)f for some unique f : *(T,) — A*(T}), such that p(f) = 1,. We
extend A* to act on morphisms like f' by taking A*(f') = f. It can be
checked that we obtain a functor in this way.

The precise functor is specified by the cleavage for p. However even without
this extra data, the functor is determined to within natural isomorphism by
the fact that p is a fibration. It is simple to give a direct characterisation of
the functor A*.

2.8 Proposition. Let A\ : L —, L' be a partial function between sets of
labels L, L'. Let f' = (¢',11/) : Ty — T{ be a morphism in the fibre p~'(L').
Then

A(f) = (o' 1)

We have seen how restriction arises as a special case of the operation
A* when A is an inclusion. A general relabelling construction is got from an
instance of a dual notion, that of a cofibration. At least when A : L —, L/
is total, there is an obvious functor A\ : p™*(L) — p~!(L') which takes a
labelled transition system 7' to A\i(7"), the same underlying transition system
but relabelled according to A. There is a morphism (15,\) : T — \(T). In
fact such a morphism satisfies a concept dual to that of being a cartesian
lifting, and taking advantage of the fact that such relabelling functions can
also be defined when A is partial, we obtain a cofibration as now defined.
This time the cofibration provides us with the functor A\, : p~*(L) — p~'(L/)
between fibres.

2.9 Definition. Let p : X — B be a functor. It is a cofibration if
p°? : X — B°? is a fibration. A morphism f : X — X’ in X is said to be
cocartesian with respect to p if f°P is cartesian in the fibration; the morphism
[is a cocartesian lifting of p(f).

Again it is helpful to explain with the help of a diagram. Suppose A :
L —, L' is a partial function and that T' is a labelled transition system
with p(T') = L. We require a labelled transition system 7" and a cocartesian
morphism f : T' — T’ such that p(f) = A\. Assuming f' : T — T" is a
morphism such that p(f') =X : L —, L” and N : I/ —, L"” with Ao\ =\,
this means there is a unique morphism f” : T — T" such that p(f") = \”

10

and f"o f = f:

f‘ TI/
L T

?\; »‘rL!l
L A L,/?‘u

Here is the construction of the cocartesian lifting for labelled transition sys-
tems:

2.10 Definition. Let A : L —, L’ be a partial function on label sets. Let
T = (S,i, L, Tran) be a labelled transition system. For s,t € S define

s~y tiff 38 € L.(s,5,t) € Tran & \(3) undefined .

Let ~ be the eqivalence relation generated by ~;. Define \(T') = (S’,4', L', Tran')
where

S" = {{s}~ | s € S}, the equivalence classes of S, with

i = {i}~, and

Tran' = {({s}~, Ma), {t}~) | (5,0,t) € Tran & A («) defined }.

2.11 Example. Let A : {a,8} —, {a} be the partial function such that
AMa) = a and \(B) is undefined. Let T be the labelled transition system

)
a ('> 3
©
The two states are equivalent under the relation above with respect to our
choice of A, so that A/(T") is the labelled transition system:

(o

Letting g be the associated quotient map on states, there is a morphism

(¢, A) : a(jﬁ o @@
®

11

which is, in fact, cocartesian with respect to the projection p : T — Set, (see
Proposition 2.12, below). Notice how, because of the partiality of \, we are
forced to identify states when forming Ai(T") so that there is a morphism from
T to M(T) which projects to A under p.

For the general construction, when \ : L — L’ may be partial, we
are forced to identify states in order to obtain a morphism which is a co-
cartesian lifting. However when A is total, for a labelled transition system
T = (S,i, L, Tran), the construction simplifies to give M(T) = (S,4, L, Tran')
where

(s,8,t) € ' & Ja. B=XNa) & (s,a,t) € Tran.

(I have taken the liberty of identifying a state s with its equivalence class
under the identity relation.)

This relabelling construction is the kind one expects and sees in transition-
system semantics of languages like CCS and CSP.

2.12 Proposition. Let A : L —, L' be a partial function on label sets.
Let T = (S,i,L, Tran) be a labelled transition system. Using the notation of
the definition above, \\(T') = (S’,¢', L, Tran') is a labelled transition system.
Taking q : § — S’ to be the map taking any state s to its equivalence
class {s}~, (¢,\) : T — M(T) is cocartesian with respect to the projection
p: T — Set,.

Proof. Let A : L —, L' be a partial function between sets of labels and
T = (8,4, L, Tran) a labelled transition system. Let A\(T') = (S’,4’, L', Tran’)
and f = (¢, \) as defined above. In order to show it is cocartesian let

N 2L -, L'"and N : L' —, L"
be partial functions such that
Nod=)\,

and f” : T — T" be a morphism of labelled transition systems such that
p(f") = \". We require the existence of a unique morphism f’ : \(T) — T”
such that p(f') =X and f'o f = f.

The morphism f” must have the form (o, \”’). Because X' o A = X, for
any label a if A\(«) is undefined so is \’(«). As (o,)\”) is a morphism this
entails that

s~ t=0(s)=o(t)

12

for all states s,t of T'. Hence o factors as
/
oc=0 0gq

for a unique o’ : 8" — §”. Take f' = (¢, \’). Now, provided f’ is a morphism
M(T) — T", it is the unique one such that f'f = f”. However ¢'(i') =
0'q(i) = o(i) = ¢". Any transition of \(T) has the form (g(s), A(c),q(t))
where (s,a,t) is a transition of T and A(«a) is defined. We then see

(0'q(s), N M), 0'q(t)) = (o(s), X" (a), o (t))

which is a transition of T" because f” = (o, \”) is a morphism. Hence f’ is
a morphism. It follows that f is cocartesian, as required. J

As a corollary we obtain:
2.13 Theorem. The projection p: T — Set, determines a cofibration.

As we have seen, the fibration p with an explicit choice of cartesian lift-
ings yields a functor A* : p~*(L') — p~!(L) for any X : L —, L’. Recall that
in general such an explicit choice is given by a cleavage for the fibration. Sim-
ilarly, the cofibration yields a functor making use of the explicit cocartesian
liftings d(T,) = (¢,) : T — A\ (T) given in 2.12. In general, a function like
d providing a choice of cocartesian liftings will be called a cocleavage of the
associated cofibration. For any A : L —, L, the cofibration p and its cocleav-
age d determine a functor \; : p~'(L) — p~1(L’) which acts on morphisms as
follows:

There are cocartesian morphisms
d(To,/\> : To — /\!(Tg) and d(Tl,/\) : Tl — /\v(Tl)

As d(Tp, M) is cocartesian, any morphism f : Ty — Ty in p~ (L) determines

a unique morphism f' : A(Tp) — M(Ty) in p~1(L’) such that d(T;,\) o f =
f"0d(Ty, A). This morphism f’ we take as the value of A;(f).

The construction above is quite general and shows how to construct functors
between fibres from a cocleavage of an arbitrary cofibration.

It follows from the next result, that the two functors A1 and A* between
fibres, arising from a morphism A in Set,, are adjoint to each other. The result
is established in general, for an arbitrary functor which is simultaneously a
fibration and a cofibration.

13

2.14 Lemma. Suppose p: X — B is a fibration and a cofibration. Let
A: A — B be a morphism in B. Functors A : p~'(A) — p~'(B) determined
by a cocleavage for p and X* : p~'(B) — p~1(A) determined by a cleavage for
p form an adjunction between fibres in which)\, is left adjoint to *.

Proof. Assume p: X — B forms a fibration and cofibration. Let A : A — B
be a morphism in the base category B.

Let X € p~'(A4) and Y € p~}(B). Write r : *(Y) — Y for the cartesian
lifting of A with respect to Y given by the cleavage for the fibration. Write
[: X — \(X) for the cocartesian lifting of A with respect to X given by the
cocleavage for the cofibration.

Given a vertical morphism f : A(X) — Y, the fact that r is cartesian
entails the existence of a unique vertical morphism ¢(f) : X — A*(Y) such
that

ro¢(f)=fol.

The additional fact that [is cocartesian ensures ¢ is a bijection from mor-
phisms A/(X) — Y in p~*(B) to morphisms X — A*(V) in p~1(A).

To show A is left adjoint to A* we require that the bijection ¢ satisfies
the following naturality conditions [Mac. P.79]:

() plho f) = N (K)od(f), (i) (F o M(h)) = &(f) o .

forall f: \(X)—->Y,k:Y >Y inp "(B)and h: X' — X in p~}(4).
In showing (i), let ' : A*(Y”’) — Y be the cartesian lifting of A given by
the cleavage. From the definition of the functor * we see

roX*(k) =kor.
From the definition of ¢, we see
rog(f) = fol.

Hence

o (XN (k)op(f)) =korod(f)=kofol.

Furthermore, A*(k) o ¢(f) is vertical because both A*(k) and ¢(f) are. But
@(k o f) is defined to be the unique vertical morphism such that

rrogplkof)=kofol.

14

Hence ¢(ko f) = A (k) o &(f), so fulfilling (i).
The argument for (ii) is analogous. Let I’ : X’ — X\/(X’) denote the

cocartesian lifting of A given by the cocleavage. From the definition of \ as
a functor, we get

M(h)ol' =1loh

From the definition of ¢, we have

rog(f)=fol

Combining these facts we obtain

ro(d(f)oh)=foloh={(foN(h))ol

Clearly ¢(f) o h is vertical. The definition of ¢ characterising &(f o Ai(h)) as
the unique vertical morphism ¢ such that r o g = (f o \(h)) o I’ implies the
naturality condition (ii).

We conclude that A is left adjoint to A*.

The operations on labelled transition systems associated with A and A*
are at least familiar for special kinds of function A\. More curious from the
viewpoint of parallel computation is the fact that when X is total there is a
right adjoint to A* defined as follows:

2.15 Definition. Let A : L —, I’ be total between labelling sets. Let T =
(5,7, L, Tran) be a labelled transition system. Define \,(T) = (S,4, L', Tran')
where

(5,8,t) € Tran' & Va. 8= MNa) = (s,a,t) € Tran.

We sum up the relation between the various functors A, *, A, in:

2.16 Theorem. For A: L —, L/, the functors \y and * form an adjunction
from p~'(L) to p~'(L’), with \, the left and * the right adjoint. The functor
A" has a right adjoint iff X is total; if \ is total \, is right adjoint to *.

Proof. The fact that A is left adjoint to A* follows as a special case of
lemma 2.14. It is easy to show A* cannot have a right adjoint when X is truly
partial; then A* does not preserve initial objects as it would were this so.
Suppose A : I —, L' is undefined on label o. Then the transition systems
nil, = ({i},4,L,0) and nily = ({i},7,L',0) are initial objects in the fibres
p~H(L) and p~*(L’'). Certainly nil; has no transitions. However *(nily)

15

contains at least the one, the transition (7, «,7). To see why A, is right adjoint
to A* when A is total, let T € p~1(L) and 7" € p~!(L'), and observe that

(0,11) : A*(T") — T is a morphism < (0,15/) : T" — A\ (T) is a morphism.

The correspondence between morphisms A*(7”) — T and T" — A, (T') checks
out to a natural isomorphism, making A* left adjoint to A,. 1

Thus the functors A* and A are in a pleasing relation with each other.
The construction of the right adjoint A, in the case when X is total is curious
in the context of transition systems, but I can see no direct use for it.}

3. Constructions on labelled transition systems.

The category of labelled transition systems is rich in categorical construc-
tions which furnish the basic combinators for languages of parallel processes. I
shall not always give proofs of the universal properties; this is because they are
straightforward and full proofs of analogous results for unlabelled transition
systems appear in [W2].

3.1 Simple constructions: The nil transition system
nil = ({i},4,0,0),

the transition system consisting of a single initial state b, is initial and terminal
in the category of labelled transition systems.

For a set L of labels,
nily, = ({i},1,L,0)

is initial in the fibre p~'(L) and in its subcategory of safe transition systems.
Note nil = nily.
For a set of labels L, the labelled transition system

nUHL — ({i}aivL: {(i7a> 2’) l a € L})’

T A property one might expect of the pair of adjoints A\, and * is the
Beck-Chevalley property. We remark that the Beck-Chevalley property is
satisfied for all pullback squares in the base category of p, though the fact
that the Beck-Chevalley property holds depends crucially on the fact that
labelled transition systems are extensional, i.e. for a label « there is at most
one « transition between any pair of states.

16

consisting of looping « transitions at the initial state for each label «, is
terminal in the fibre p~'(L). Note nil = nully.

3.2The product of labelled transition systems: The product in the category
of labelled transition systems is central to representing on transition systems
the parallel compositions of processes of languages, which like CCS, CSP and
Occam, communicate by events of synchronisation.
3.2.1 Definition. Assume labelled transition systems Ty = (.Sy, 79, Lo, Trang)
and Ty = (S4,1i1, L1, Trany). Their product Ty x T} is (S, 1, L, Tran) where

S = 8y x Sy, with i = (ig,41), and projections py : Sy X S —

So, p1 1 So X S1 — 5

L:Lg K x Ll—‘-“—
{(c?*) € Lo} U{(x,8) | B€ Li}U{(a,B) | @ € Ly, B €
Ll)

with projections mg, 7, and
(s,a, ") € Tran, <
(po(s),mo(ax), po(s')) € Trang, & (p1(s), mi(e), pi(s")) €
Tranl*.
Define I1y = (pp, mo) and I} = (py, 7).

Intuitively, transitions with labels of the form («,3) represent synchro-
nisations between two processes set in parallel, while those labelled («, *) or
(%,0) involve only one process, performing transitions unsynchronised with
the other. Clearly, this is far too generous a parallel composition to be useful
as it stands, allowing as it does all possible synchronisations and absences
of synchronisations between two processes. However, as we shall discuss in
section 3.4, familiar and useful parallel compositions can be obtained from
the product operation by further applications of restriction (to remove un-
wanted synchronisations and perhaps disallow their absences) and relabelling
(to rename the results of synchronisations).

3.2.2 Proposition. Let Ty and T} be labelled transition systems. The
construction Ty x T7 above, is a product in the category T, with projections
Iy = (po,mo), II1 = (p1,71). A state s is reachable in Ty x T iff po(s) is
reachable in Ty and py(s) is reachable in T .

Although we have only considered binary products, all products exist in
the category of labelled transition systems.

3.3The fibre product of transition systems: In particular it is worth paying

17

attention to the product in a fibre. It is closely related to the kind of con-
struction one sees on transition systems to model parallel compositions like
those in path expressions and in “theoretical CSP” where synchronisations
occur between actions of the same nature, as specified by the labelling (see
|[CH], [HBR], [LC]). General products and arbitrary parallel compositions can
be defined in terms of it with the help of cartesian liftings.

3.3.1 Definition. Let Ty = (Sy, 4y, L, Trang) and T} = (S1,71, L, Tran,) be
labelled transition systems over a common set of labels L.

Their fibred product is Ty x Ty = (S, ¢, L, Tran) where:

Its states have the form S = Sy x S; the cartesian product of Sy and S; with
projections pg : So x S; — Sy and p; 1 Sy x S; — S1. Take i = (ip,i;) as the
initial state of the product. Its set of transitions Tran is got by taking

(s,a,t) € Tran < (po(s),, po(t)) € Trang & (p1(s),a, pi(t)) € Tran,.

3.3.2 Proposition. Let Ty and T; be labelled transition systems with the
same labelled set L. Their fibre product Ty x T, is a product in the fibre
p~Y(L) with projections (pg,11),(p1,1r) using the same notation as in the
definition above.

The product of labelled transition systems over different labelling sets Lg
and Ly can be derived from the product in the fibre over a product of labels
using the functors A\j and A} obtained from the projections Ao : Ly X, L —
Lo and A} : Ly X, Ly —, Ly from the product of labelling sets. This follows
from a general fact. Say a category has I-products, for a set I, if it has all
products of size I.

3.3.3 Lemma. Assume a p : X — B is a fibration. Assume the base
category B and the fibres p~*(B), for B in B, have I-products. Assume
functors * : p~Y(B’) — p~Y(B), for A\ : B — B’ in B, determined by a
cleavage for p, preserve products. Then the category X has I-products given
in the following way:

Let X; € p7'(B;) fori € I. Let B,\; : B — B; for i € I, be a product in
B. Let ¢; : Ai(X;) — X, be the cartesian liftings of \; given by the cleavage.
Let X, q; where i € I, be a product of the objects Af(X;), where i € I, in the
fibre p~'(B). Then X, ¢; 0 q; fori € I, is a product in X.

Proof. Under the assumptions stated, we prove that X with projections ¢;0q;,
for = € I, is a product.

18

Suppose X' € p~1(B’) and f; : X — X, are morphisms in X for all
¢ € I. Projecting to the base category we obtain a family of morphisms
p(fi): B'— B;,fori € I,in B. As B, \; where 7 € I, is a product in B there
is a unique A : B’ — B such that

p(fi) =XioA

forall 2 € I.

Associated with A* are the cartesian liftings
di - NAHXG) = AN(XG) foriel

and

d: \(X)—- X

specified by the cleavage of the fibration. For all ¢ € I, the definition of how
A* acts on morphisms gives

d; 0 A*(q;) = g; od. (1)

For each 7 € I the composition ¢;od; : *A;(X;) — X of cartesian morphisms
is itself cartesian. Hence for each i the morphism f; factors as

c;od;ofl = f; (2)

for a unique vertical morphism f! : X’ — A*A7(X;). But, by assumption,

M (X) with projections A*(g;), for 7 € I, is a product in p~!(B’). Thus there
is a unique morphism f’ : X' — A*(X) in p~'(B’) such that

A(gi)o f' = f; (3)
for all # € I. Hence we obtain a morphism f =do f': X’ — X for which

cioggof=cioqolf by definition
=c;od; o N (g;) o f by (1)
=c;od;o f] by (3)
=fi by (2)

forall: € 1.

19

Indeed morphisms g : X’ — X are uniquely determined by the property
that
c;io0qog=7f forall €1 (4)

Assume g satisfies property (4). As d is cartesian, g factors as

g=dog (5)
for a vertical ¢’ : X’ — A*(X). Now, for each i € I,

ciod; 0o (A (g;)og)=ciogodog by (1)
—ciogog by (3)
-

But recall (2) which says: for each ¢

c;od;o fl = f; (2)

for a unique vertical morphism f] : X’ — A*A¥(X;). Hence *(g;) o g’ = f!
for all i € I. The fact that A*(X),A*(¢;) for i € I, is a product in p~1(B’)
ensures ¢’ = f’ and so that g = f.

We conclude that X, with projections ¢; o ¢; for i € I, is a product in X.
This case is typical and shows that X has products generally. J

In particular we see how to obtain products from fibre products:

3.3.4 Proposition. Let Ty and Ty be labelled transition systems with sets
of labels Ly, L; respectively. Let Ly x, Li,\g,A; be the product of their
labelling sets. There is an isomorphism

Tg X Tl = /\S(Tg) X LoxX«Ly /\T(Tl)

Proof. Because each A* is a right adjoint it preserves products. The proposi-
tion now follows from lemma 3.3.3. J

So, not only is the construction Ty x T} a product but, for general reasons, it
coincides with the fibre product of the transition systems A\;(Tp) and \j(T}),
brought into a common fibre via cartesian liftings of the projections Ay, A\; on
labelling sets. We illustrate this on an example.

3.3.5 Example.
Let T and 77 be the following labelled transition systems

20

T() CYT Tl ,67
O]

®

where Ty has {a} and T) has {3} as labelling set. The product of these
labelling sets is

{a} < {B} = {(a,%), (2, B), (%, B) }

with projections Ay onto the first coordinate and A; onto the second. Thus
Mo, %) = Ao(ar, 3) = a and Ag(*,3) = *. The transition system A\;(T}) has
the form

containing a (x,)-stutter, introduced through the undefinedness of A\g on
(%,). Similarly \i(7}) has the form

this time with a (%, «)-stutter. Because of the existence of the stutters, for
the fibre product A§(To) X{ayx.gsy AMf(T1) we get, as is to be expected from
3.3.4, the product:

21

L]

(+,8) /AN (o, %)
I\

. a,

S

(
|
(a, %) @

)
(*,8)

3.4 Parallel compositions: In the present framework, we do not obtain arbi-
trary parallel compositions as single universal constructions. Instead, they
come about as a result of first taking a product of Ty and T, with la-
belling sets Ly, Ly respectively, to give a transition system T, x 7; with
labelling set Ly x. Ly, then restricting by taking ¢*(Tp x T}) for an inclusion
118 — Ly x, Ly, followed by a relabelling ri(i*(Ty x T})) with respect to a
total » : S —. L. In this way, using a combination of product, restriction and
relabelling we can represent all conceivable parallel compositions which occur
by synchronisation.

In earlier papers such as [W1,2], it has been shown how parallel compo-
sitions based on synchronisation can be viewed, in a uniform way, as arising
from synchronisation algebras. A synchronisation algebra on a set L of labels
(not containing the distinct elements *,0) consists of a binary, commutative,
associative operation ® on L U {x,0} such that

ae0=0and (g ey =% & g = ay = %)
for all v, cvg, vq € LU{*,0}. The role of 0 is to specify those synchronisations
which are not allowed whereas the composition e specifies a relabelling. For a
synchronisation algebra on labels L, let A\g, A\; : Lx,L —, L be the projections
on its product in Set,. The parallel composition of two transition systems

Ty, T, labelled over L, can be obtained as ri*(To x T7) where ¢ : D — L x, L

is the inclusion of
D={a€&Lx,L|X(a)eX(a)#0}
determined by the 0O-element, and » : D — L is the relabelling, given by
r(a) = Ap(a) @ Ay (a)

22

for a € D.

The fact that parallel compositions factor into a composition of product,
restriction and relabelling suggests that reasoning about parallel composi-
tions should be factored into three stages, a point of view we adopt later in
presenting a compositional proof system.

3.5 The coproduct of labelled transition systems: The category of labelled
transition systems has coproducts:

3.5.1 Definition. Let Ty = (Sy, 9, Lo, Trang) and Ty = (Sy,41, L1, Trany)
be labelled transition systems. Their sum Ty + T is (5,4, L, Tran) where

S = (So x{i1})U({io} x S1) with ¢ = (49,71), and injections

’i’fL(), inl

L = Ly + L; with injections jg, J1

t € Tran <3(s,a,s") € Trang. t = (ing(s), jo(a),ing(s’)) or
(s, a0, 8") € Trany. t = (iny(s), j1(a),in(s)).

3.5.2 Proposition. Let Ty and T} be labelled transition systems. Their
sum Ty + Ty, with injections (ing, Jo), (in1, j1), Is a coproduct in the category
of labelled transition systems.

A state s is reachable in a sum iff there is so reachable in Ty with s = ing(so)
or there is s, reachable in Ty with s = in1(s1).

Each fibre p~!(L) has coproducts for a labelling set L. In form they are
very similar to sums of labelled transition systems in general—they differ only
in the labelling part.

3.5.3 Definition. The fibre sum of labelled transition systems

Let Ty = (So,%0, L, Trang) and Ty = (Si,%1, L, Tran;) be labelled safe
transition systems over the same labelling set L. Their fibre sum Ty +; T =
(S,i, L, Tran) (note it is over the same labelling set) where:
S = (So x {i1}) U({io} x S1) with ¢ = (49,71), and injections ing,iny, and

t € Tran <3(s,a,s") € Trang. t = (ing(s), a,ing(s’)) or

(s, e, s") € Trany. t = (iny(s),a,in(s)).

23

Fibre sums give coproducts in the fibres for the subcategory of labelled
transition systems. This time using the cocartesian liftings of injections on
labelling sets we can derive the sum in the category of labelled transition
systems in general from the fibre sum-—the proof is dual to that provided
earlier for products in 3.3.3, 3.3.4.

3.5.4 Proposition. Let T and T} be labelled transition systems over L.
The labelled transition system Ty + 1Ty with injections (1o, 1r) and (11,1r), as
defined above, is a coproduct in the subcategory of labelled transition systems
over L.

Let Ty and T be labelled transition systems over Ly and L, respectively. Let
Lo + Ly have injections j;, : Ly — Lo+ Ly, for k = 0,1. Then

To+T1 = joTo +(ro+r,) Jui1h-

Only coproducts of two labelled transition systems have been considered.
All coproducts exist in fibres and in the category of all labelled transition
systems. Thus there are indexed sums of labelled transition systems of the
kind used in CCS. As is pointed out in [W2] the sum construction on transition
systems is of the form required for CCS when the transition systems are
“nonrestarting”, i.e. have no transitions back to the initial state.

The categorical constructions form a basis for languages of parallel pro-
cesses with constructs like parallel compositions and nondeterministic sums.
The cartesian and cocartesian liftings give rise to restriction and relabelling
operations as special cases, but the more general constructions, arising for
morphisms in the base category which are truly partial, might also be use-
ful constructions to introduce into a programming language. For instance)
might be a convenient looping construction—the idea is illustrated in example
2.11—though identifying two states by such a looping construction depends
on first having a transition between them, and it is not clear how best to do
this.

This raises an omission from our collection of constructions; we have not
yet mentioned an operation which introduces new transitions from scratch.
Traditionally, in languages like CCS, CSP and Occam this is done with some
form of prefixing operation, the effect of which is to produce a new process
which behaves like a given process once a specified, initial action has taken
place. While there is no difficulty in defining a prefixing operation, even

24

so it is functorial, it is not clear what its categorical status should be (and
surely in a more complete presentation of categorical models for parallelism
it will have a more prominent role than it does presently). Prefixing, formally
defined here, will play a role later in section 6.

3.6 Definition. Let T' = (S,4, L, Tran) be a labelled transition system. Let
« be a label (not). Define the prefix oT = (S’,i', L', Tran') where

§'={{s} | s e S}U{0},

i =10,

L' = LU{a},

Tran' = Tran U {(0, o, {i})}.

4. Synchronisation trees.

In his foundational work on CCS [Mil], Milner introduced synchronisa-
tion trees as a model of parallel processes and explained the meaning of the
language of CCS in terms of operations on them. In this section we briefly ex-
amine the category of synchronisation trees and its relation to that of labelled
transition systems. This illustrates the method by which many other mod-
els are related, and the role category theoretic ideas play in formulating and
proving facts which relate semantics in one model to semantics in another.

A synchronisation tree is a tree together with labels on its arcs. Formally,
we define synchronisation trees to be special kinds of labelled transition sys-
tems, those for which the transition relation is acyclic and can only branch
away from the root.

4.1 Definition. A synchronisation tree is a transition system (8,1, L, Tran)
where

(1) every state is reachable,

(i) the relation —7 is irreflexive, and

(ili) s —s & 8" »s5=5 =5s".

Regarded in this way, we obtain synchronisation trees as a full subcat-
egory of labelled transition systems, with a projection functor to the the
category of labelling sets with partial functions.

4.2 Definition. Write S for the full subcategory of synchronisation trees in
T.

25

In fact, the inclusion functor S «— T has a right adjoint ¢/ : T — S which
has the effect of unfolding a labelled transition system to a synchronisation
tree.

4.3 Definition. Let T be a labelled transition system(S, ¢, L, Tran). Define
U(T) to be (S',4', L, Tran') where:

The set S’ consists of all finite, possibly empty, sequences

of transitions (¢y,- -+, t;,ti41, "+, tn_1) such that ¢;* = *t, 4,
whenever 1 < ¢ < n. The element ¢/ = (), the empty se-
quence.

The set Tran’ conmsists of all triples (u,a,v) where u,v € §’
and v = u((s,,s’)), obtained by appending an « transition
to u.

Define ¢ : S’ — S by taking ¢(()) = ¢ and ¢((¢1,--,t,)) = t,°.

4.4 Theorem. Let T be a labelled transition system, with labelling set L.
Then U(T') is a synchronisation tree, also with labelling set L, and, with the
definition above, (¢,11) : U(T) — T is a morphism. Moreover U(T),(¢,1r)
is cofree over T with respect to the inclusion functor S — T, i.e. for any
morphism f : V. — T, with V a synchronisation tree, there is a unique

morphism g : V — U(T) such that f = (¢,11)g:

T5(¢’1L) Z/{(T)

v

Proof. Let T be a labelled transition system, with labelling set L. It is
easily seen that U(T') is a labelled transition system with labelling set L and
(¢,1p) : U(T) — T is a morphism. To show the cofreeness property, let
f=1(0,A): V — T be a morphism from a synchronisation tree V. We require
the existence of a unique morphism ¢ : V. — U(T) such that f = (,11)g.
The morphism g must necessarily have the form g = (o1,). The map o; is
defined by induction on the distance from the root of states of V, as follows:

On the initial state iy of V, we take o1(iy) = (). For any state v’ for which
(v,a,v") is a transition of V we take o1 (v') = o(v) if A(a) = % and otherwise,
in the case where A(«) is defined, take o1 (v') = o(v)((c(v), Ma),o(v')).

26

It follows by induction on the distance of states v from the root that
o(v) = ¢oy(v), and that (oy,A) is the unique morphism such that f =
(¢,11)g. (For a very similar, but more detailed, argument see [W2].) &

It follows that the operation U extends to a functor which is right adjoint
to the inclusion functor from S to T and that the morphisms (¢,1) : U(T) —
T are the counits of this adjunction (see [Mac| Theorem 2, p.81). This makes
S a coreflective subcategory of T, which implies the intuitively obvious fact
that a synchronisation tree 7' is isomorphic to its unfolding U(T') (see [Mac]
p.88).

Write ¢ : S — Set, for the functor obtained as the restriction of the
projection functor p: T — Set,. We may reasonably ask whether or not this
projection determines a fibration and a cofibration. Fortunately there is no
need to go through the rigmarole of constructing the cartesian and cocartesian
liftings directly. Cartesian liftings are preserved by the unfolding functor by
the following general lemma. So cartesian liftings for synchronisation trees can
be produced from cartesian liftings between transition systems ensuring that g
is a fibration. The dual of the lemma helps show ¢ is a cofibration. Referring to
the conditions of the lemma, notice that the counits of the adjunction between
synchronisation trees and labelled transition systems project to identities and
so are certainly vertical.

4.5 Lemma. Suppose p : X — B and q : Y — B and that functors
L:X —Y and R:Y — X form an adjunction with L left adjoint to R in
such a way that qL = p and pR = q and each counit ey : LR(Y) — Y is
vertical for Y € Y, t.e. q(ey) = 1lyy). Then the right adjoint R preserves
cartesian morphisms.

Proof. Suppose f : Y — Y’ is cartesian and ¢(f) = A : B — B’. We need
that R(f) : R(Y) — R(Y") is cartesian over p(R(f)) = \. Let ¢’ : X — R(Y”)
be such that p(¢') = X : B” — B and X = Xo X’ for A : B” — B. We are

required to show
39" X > R(Y). p(g") = X" & ¢ = (R(f)) o g". ().

Let
€:LR(Y)—Y and € : LR(Y') - Y’

be counits of the adjunction. Consider the morphism € o(L(¢')) : L(X) — Y.
We have

q(e' o (L(g"))) = q(€') 0 q(L(g')) = g o p(g') = X.

27

As f:Y — Y’ is cartesian there is a unique k : L(X) — Y with ¢(k) = N’
and

fok=¢o(L(d)).

Now by the cofreeness of € : LR(Y) — Y, there is a unique ¢" : X — R(Y)
such that
eo(L(g")) = k.

Also
p(9") = qL(g") = 1p 0 (¢L(g")) = q(e o (L(g"))) = q(k) = \"".

From the naturality of the adjunction we have

€ o (LR(f)) = foe.
Using this fact we obtain

eo L((R(f)) 0 g") =€ o (LR(f)) o (L(g"))
=foeo(L(g"))

But ¢ : LR(Y)' — Y is cofree, so by the accompanying uniqueness property
we get

g' = (B(f))og".
Thus we have fulfilled the existence part of the requirement ().

To show uniqueness, assume also that

g : X > RY)&plg) =N & ¢ = (R(f)) og1.

Then
€ o(L(g')) =€¢ o L{R(f)oq1)
=¢ o (LR(f))o (L(g1))
=foeo(L(g1)) by naturality of the adjunction.
Recall

€ o(L(g')) = fok=foeo(L(g"))

28

Thus
foleo(L{g))) = fol(eo(L(g")))

But f is cartesian so € o (L(gy)) = €0 (L(g")). Finally by the cofreeness of €
we obtain g; = ¢”, as required for the uniqueness part of (x). 1§

The property that the counits are vertical could be replaced equivalently
by one saying the units are vertical, or by one saying that the adjunction cuts
down to adjunctions between fibres over common objects in the base category.

As a corollary, we obtain:

4.6 Corollary. The functorq: S — Set, forms a fibration and a cofibration.
Proof.

Let A : L — L' be a morphism in the base category Set,. Let S be a
synchronisation tree with labelling set L'. From the fact that p: T — Set,
forms a fibration there is a cartesian morphism f : 7' — S such that p(f) = .
By lemma 4.5, U(f) : U(T) — U(S) is cartesian with respect to ¢ : S — Set,.
But the counit € : U(S) 2 S of the coreflection is vertical, providing a cartesian
morphism eoU(f) : U(T) — S for which g(eold(f)) =). Hence ¢ : S — Set,

forms a fibration.

Again, let A : L — L’ be a morphism in the base category Set,. First,
observe that if S is a synchronisation tree then so is A/(S). By the dual
of lemma 4.5, the inclusion functor S < T preserves cocartesian morphisms
when they exist. It follows that when S is a synchronisation tree with labelling
set L and A : L —,. L/, the cocartesian lifting S — \(S) with respect to
p : T — Set, is also cocartesian with respect to ¢ : T — Set,. Hence
q: T — Set, is a cofibration. §

In fact, the proof supplies a cleavage and a cocleavage for q. These determine
the functors UN* : ¢~ (L') — ¢ (L) and \; : g7 (L) — ¢ 1(L') between
fibres for a morphism A : L —, L' in the base category—as observed in the
proof above Ay restricts to a functor between synchronisation trees. By lemma
2.14, A is left adjoint to U/ A*. Asis to be expected, when the morphism A is
an inclusion A* amounts to the usual restriction operation on synchronisation
trees and when total)\ is the usual relabelling.

Note that lemma 4.5 does not state that the left adjoint I preserves
cartesian morphisms. Nor does it entail that the right adjoint R preserves
cocartesian morphisms, and these are not true in general. For instance, they
do not hold for the coreflection between synchronisation trees and and labelled
transition systems, as shown in the examples below. On the other hand, i,

29

the unfolding operation, does preserve cocartesian liftings of total functions
(although simple to prove directly in this special case, I do not know a general
argument which would give the analogous result for the adjunctions relating
other models too).

4.7 Example.
Let A : {a,3} —. {7} be total such that A\(a) = A(3) = 7. The morphism

o - i
®

is cartesian with respect to the projection p : T — Set, for transition systems.
- Contrast this with the following cartesian morphism with respect to ¢: S —
Set, for synchronisation trees, obtained by unfolding it:

;\@/Zs =k

The latter is clearly not cartesian with respect to p : T — Set, of transi-
tion systems, showing that cartesian morphisms are not preserved by the left
adjoint, inclusion functor from synchronisation trees to labelled transition
systems.

Now, let A : {a,8} —. {a} be such that A(«) = a and A(B) is undefined.

The morphism

o)

®

is cocartesian with respect to the projection p : T — Set, and so also with
respect to g : S — Set,. With respect to p, the morphism

a(;)ﬁ — @ ®

30

is cocartesian. However, its image under the unfolding operation ¢/ is
°* o
SN TA Y
a'\/,@ — aeae -
©

which cannot be cocartesian with respect to ¢, given the earlier form of the
cocartesian lifting of A\ with respect to the same object.

Like labelled transition systems, synchronisation trees have been used to
give semantics to languages like CCS and CSP (see e.g. [Mil], [Brl]). Non-
deterministic sums of processes are modelled by the operation of joining syn-
chronisation trees at their roots, a coproduct of synchronisation trees and a
special case of the coproduct of transition systems. We use X;c1S; for the
sum of synchronisation trees indexed by ¢ € I. For the semantics of paral-
lel composition, use is generally made of Milner’s “expansion theorem” (see
[Mil]). In our context, the expansion of parallel composition as a nondeter-
ministic sum appears as a characterisation of the product of synchronisation
trees. The product of two synchronisation trees S and 7' of the form

S = Z;ozl:Si and T = Z;ﬁjTj.
1 J

is given by

S x T = 2%*)52- x T + Z; (s, 3;)8; x Ty + 2*,i@j)s x Tj.
7 elyed : J

(See [W2,5] for a very similar result, with proof.)

The fact that the category of synchronisation trees has products and that they
are preserved by the unfolding operation U/ is a consequence of the general
fact that right adjoints preserve limits.

This indicates how the coreflection between synchronisation trees and
labelled transition systems and the fact that they form fibrations and cofi-
brations help in formulating and proving the relationship between different
models. For labelled transition systems and synchronisation trees general facts
like the existence of an adjunction or the preservation of cartesian morphisms

31

by functors can be brought to bear on proofs showing, for instance, how se-
mantics is preserved in passing from one model to another. Such techniques
are available only by virtue of placing models for parallelism in a categorical
setting. Although we are far from a complete understanding of models for
parallel processes, it is fortunate that the category theoretic view of parallel
processes, illustrated here for labelled transition systems and synchronisation
trees, works for a variety of models.

We could hardly expect the categories of labelled transition systems
and synchronisation trees, their properties and their relationship, to be more
straightforward. When it comes to other models of parallel computation the
situation can be less ideal. For example, although there is a coreflection from
a category of labelled event structures to a category of safe Petri nets, nei-
ther category forms a fibration with the definitions of these structures as they
are usually given. Still enough cartesian and cocartesian maps do exist in
these other categories to model restriction and relabelling. When they exist,
cartesian liftings will be preserved by the right adjoints in the adjunctions
between models. This is a consequence of lemma 4.5. In fact, all the adjunc-
tions established in [W5] generalise to labelled structures in such a way as to
satisfy the property required by lemma 4.5. On the other hand, because we
do not obtain fibrations from all of these categories, there are not necessarily
analogues of theorem 3.3.4, showing how the product can be obtained from
the product in the fibre.f

5. The preservation and reflection of properties by morphisms.

We now begin a new line, that of putting a logic on the category of
labelled transition systems. We start by examining a simple modal logic to
express properties of labelled transition systems.

Assume T' = (S,1, L, Tran) is a labelled transition system. We associate
with it a language of modal assertions. It has atomic assertions corresponding

T Not too much emphasis should be placed on the fact that models like
labelled safe Petri nets and labelled event structures do not form fibrations;
even they can be made into fibrations by breaking with tradition and changing
their definitions slightly. By permitting more objects in the categories, by,
for example, allowing safe nets to have independent events with no pre or
post conditions, one obtains fibrations; the role of an a-stutter in transition
systems is played by a-labelled independent events in nets. See [W6] for a
discussion.

32

to true and false, an assertion true just at the initial state, as well as other
basic assertions whose interpretation we leave open. More complicated asser-
tions are formed by using propositional connectives, two modal operators and
recursively defined assertions, using a least fixed point operator, which make
use of assertion variables assumed to form a set Var. As assertions for 7' we
take

¢ u=basic| I [t || Pg Ay | oV |—d]| (a)p]| ¢la)

X | pX.p

where basic ranges over atomic assertions, a is a label in L or %, and X is an
assertion variable from Var. There are the usual notions of free and bound
occurrence of a variable, and, as usual, we impose a restriction on occurrences
within the scope of X in assertions uX.¢; they should be under an even
number of negation signs. We write ¢ : T to indicate ¢ is an assertion of 7.
We shall interpret the logic classically and so can define implication ¢¢ — &,
and logical equivalence ¢y < ¢ in the well-known ways. We use [a¢ instead
of ~(a)=¢ and ¢[a] instead of =(—¢(a)), and as remarked in [Ko] could define a
greatest fixed point operator ».X.¢ by taking it to stand for ~uX.—¢[-X/X].
Again, as remarked in [Ko|, we observe that any assertion ¢ in which all
free occurrences of X occur under an even number of negations, is logically
equivalent to an assertion built up using the additional [a] modalities and
considering as additional atoms negations of atomic assertions and perhaps
—Y for free variables Y distinct from X, but with no further use of negation.

As we shall see, an assertion ¢ : T is satisfied by a subset of reachable
states. Such subsets we call properties, and we write P(T') for the powerset
P({s | sis reachable in T'}). The assertion I is only satisfied by the initial
state. An assertion (a)¢ is satisfied by the reachable states from which a can
occur and in so doing lead to a state satisfying ¢. An assertion ¢(a) is satisfied
by those states which can be reached from a reachable state satisfying ¢ via
a similar transition. With such a modality and the help of recursion we can
write down pX.J V X(«), an assertion which is satisfied by precisely those
states of a transition system which are reachable purely by occurrences of «
transitions.

With respect to an environment ¢ : Var — P(T') for assertion variables,

33

we require:

[0 = {io}, [t]0 = {s | s is reachable in T}, [ff]9 = 0,
[¢0 A &:1]9 =[]0 N 1],

[¢0 V &:1]0 =[]0 U []9,

[-¢]V = {s | s is reachable in T' & s ¢ [¢]0},
[a)o]d={s|3s'. s 2= s"inT & s € [¢p]¥},
@) ={s|3s". s 2-sinT & s € [p]v},
[X]9 = 9(X)

[1X.¢]0 = the smallest S such that S = [¢]9[S/X]

This leaves the meaning of basic assertions unspecified. Because of the syntac-
tic restriction on ¢ used in recursion, S +— [¢]¥[S/X] is a monotonic operation
on P(T') with respect to inclusion, and so it has a least fixed point by Tarski’s
theorem.

When ¢ is a closed assertion the denotation [¢]v is independent of the
environment 9, and we shall generally write its denotation as just [¢].

A closed assertion ¢ of a transition system 7' is valid, written T' |= ¢ iff
[6] = {s | s is reachable in T'}, and so ¢ being valid means ¢ is invariantly
true throughout the reachable states of T'. For future reference we present an
(incomplete) proof system for transition system assertions, based directly on
that in [Ko]. The proof rules will be sound in the sense that if ¢ is provable,
- ¢, for ¢ . T then T &= ¢. Later, we shall incorporate the rules within
a proof system based around a term language for transition systems with
syntax-directed proof rules. As rules we include those for propositional logic,
rules for “forwards” modalities

F{a)f — £, F((a)pV (a)¥) < (a)(oV P),
= {a)o A la] — (a) (e A),
F{x)¢ & ¢,
similar rules for the “backwards” modalities, and these rules for recursive

assertions
1, -/ X] =
F ql)[,UX-Cb/‘X} pX.o, FuX.p—

(See Appendix II for one way to extend this to a full logic.)

We examine assertions on transition systems from an indexed category
viewpoint. A morphism f = (0,A) : T — T" between labelled transition

34

systems determines a function Pf : P(T') — P(T) given by Pf(V) =
{s | s is reachable in T' & o(s) € V} for V € P(T"). In this sense each tran-
sition system indexes a partial-order category of relevant properties, where
the order is inclusion. We can convert the indexing P into a fibration using a
construction due to Grothendieck.

In general, this recasts a functor F': B’ — Cat, indexing categories, as
a fibration p : X — B in which the indexed categories reappear as fibres. The
objects of X are pairs U : B where B € B and U € F(B). Its morphisms from
U:BtoU : B are pairs (v, f) where f : B— B’ in Band v: U — F(U')
in F(B). Two morphisms (v,f) : (U : B) — (U’ : B') and (v, f') : (U’ :
B') — (U" : B") compose to give (((Ff)(v'))ov), f' o f). This makes X into
a category with identity morphisms (1y,1p) on U : B in X. The projection
functor p : X — B is defined so a morphism (v, f) : (U : B) — (U' : B') in
X goes to f : B — B’ in B. The functor p can be checked to be a fibration;
a cartesian lifting of f : B — B’ in B with respect to U’ € F(B) is the
morphism (1, f). Such a fibration p is called the Grothendieck fibration
of F.

In particular we can construct the Grothendieck fibration v : Prop — T
of the functor P. The objects of Prop are pairs U : T which associate
a property U € PT with a labelled transition system 7. Morphisms (U :
T) — (U" : T") are in 1-1 correspondence with morphisms f : T — T" of
labelled transition systems such that U C (PF)(U’). Such morphisms have
an intuitive significance, associated with the preservation of properties along
morphisms. Assume the component of f between states is the function o. If
U C (Pf)(U’) then whenever s satisfies a property U in T then o(s) satisfies
the property U’ in TV. We write U ~L> U’ to signify this. Another meaningful
relation arises slightly differently. If we order properties by reverse inclusion
we obtain a functor like P but taking a labelled transition system T to (PT)°P.
When we come to construct its Grothendieck fibration the vertical morphisms
have changed direction so we can describe it as v°? : Prop'’? — T. In more
detail, the objects of Prop”“? are still pairs U : T of a labelled transition
system and a property, but now the morphisms (U : T) — (U’ : T") in
Prop'? correspond to morphisms f : T — T’ between labelled transition
systems such that (Pf)(U’) C U. To see their intuitive significance, notice
that if (Pf)(U’) C U then whenever o(s) satisfies the property U’ then s
satisfies the property U. This relation is associated with the reflection of
properties, and we write it as U --< U’. For example, taking f to be a
projection from a product, we can sometimes use these elementary ideas to

35

show that a property holding of a component of a parallel composition entails
a corresponding property holds of the composition, or vice versa.
Let U and U’ be properties of transition systems 7" and T” and let f :

T — T'. As defined, the consideration of whether or not a relation U7 —{=> U’
or U -f-< U’ holds is determined by the existence or nonexistence of an
inclusion (thought of as entailment) in P(7T'). Because of the existence of
adjoints to Pf, the truth of the relations is determined in P(T"). Regarded
as a functor on the partial-order categories of properties, Pf has a right and
left adjoint V¢, 37 : P(T) — P(T") respectively, given hy

Vi(U) = {s' is reachable in T | V5. o(s) = s’ = s € U}

d¢(U) = {5’ is reachable in T | 3s. o(s) = s’ & s € U},
for any U € P(T'). The adjoints take the form of generalised quantifiers (see
[Poi]|) which explains the notation. The adjunctions mean

PHU') CU & U C VY, (U),
UCPHU) = 3,(U) C U,

for al U € P(T),U’" € P(T"). As we have seen the relations involved in these
equivalence have an intuitive significance. The relations Pf(U’) C U and
U’ C Vy(U) are both equivalent to U ~£-< U’. The relations U C Pf(U’)
and 3,(U) C U’ are both equivalent to U > U’.

Making use of the syntax of assertions we can investigate the preservation
and reflection of assertions across morphisms f = (o,A) : T — T" in general.
Let ¢ : T and ¢ : T". We use ¢ ~L-< 1) to mean [¢] << [¢] (reflection), and
¢ ~L> 1 to mean [¢] > [1] (preservation). We see:

I{>71

b0 > hy & b1 L by = do Ao L g Aty
b0 L by & b Lo by = o Vg Ly V
¢ > = (a)p L> (Ma))y

b >4 = $la) -L> Y (Na))

¢ L> ¢ & g L<

do <o & & < by = o Ao L< g Aty
do L-< py & & L-< P = Bo V by L-< 1y V by
¢ L-< 4 = [a]p < [Ma)]y

¢ -L-< o = gla] < Y[Na)]

36

In an informal sense, it appears that assertions expressing liveness properties
are those which are preserved along morphisms (with some renaming), and
that safety assertions are reflected.

Given a morphism f : T — T’ of labelled transition systems the opera-
tions 3¢,V s, P f allow us to pass back-and-forth between properties of T' and
T'. The compositional proof system of the next section will make use of prop-
erties built-up using 35 and P f for particular morphisms f associated with
our constructions on labelled transition systems. As an illustration we show
how we can transfer properties between products and coproducts of transi-
tion systems and their components. The category Prop of transition system
properties has products and coproducts which motivate some extensions to
our syntax of modal assertions. Let Uy : Ty and Uy : T} be properties of la-
belled safe transition systems Tg and 7. Their product in Prop is a property
of Ty x Ty, which we write as Uy x Uy : Ty x Ty, where

Uy x Uy = (PHo)(Up) N (PILy)(Uy),

so s € Uy x Uy iff po(s) € Uy and pi(s) € Uy; the projections are Uy X
U, 1+>T,, based on projections Iy : Ty x Ty — Ty, for & = 0,1, from
the product of labelled transition systems. Their coproduct is a property

Uy + U, : Ty + 1T, where
UO + Ul - Elno(UO) U EiInl(le)

satisfied by states s of Ty + T iff 1o(s) € Uy or ¢1(s) € U;. Extending the
syntax for properties to support such products and coproducts of properties is
the key to our compositional method of reasoning about parallel compositions
and sums of transition systems.

6. A compositional proof system.

We introduce a language of finite labelled safe transition systems. In
presenting the language we assume finite sets of labels, the precise syntax
of which we leave open, though it should support a notation for coproducts
(disjoint unions) and products in the category of sets with partial functions.
With one exception, the constructions in the language have already arisen as
categorical constructions, and, for example, there are terms to +¢; and £y x ¢4
standing for the sum and product of labelled transition systems. As we have
seen such constructions have events which are labelled by elements of the sets

37

Ly + Ly and Ly x, Ly where Ly and Lq label the events of the component
transition systems. There is a term nil denoting a transition system with a
single initial state (it is the initial object in our category of transition systems).
Restrictions are denoted by terms of the form ¢[A where A is a subset of
the labels L of the transition system T denoted by ¢; then ¢[A denotes the
transition system ¢*(7T') where i : A — L. If t denotes a transition system T
over labels L and = : L —, L' is total, then ¢(Z) denotes the transition system
Z((T). Prefixing denoted by terms ot describes a transition system which at
first can only perform an « event and then behave as the transition system
described by t. The remaining construct, taking the shape t/«, ¢, introduces
loops, in a way to be explained shortly. It is clear that each term is associated
with a set of labels inherited from the labelled transition system it denotes.

This we call the sort of the term.

A labelled-transition-system term ¢ has a form given by the grammar:
to=mnil | at | to+ty | to Xty | H{A | HE) | (¢, b),

where « is a label, A is a subset of labels of the sort of t, and in #(Z), the =
stands for a total function from sort(¢) to a set of labels. We shall discuss the
form of assertions to describe properties soon. For the moment it suffices to
say that ¢ in t/a, ¢ denotes a property of the transition system denoted by ¢.
Each transition system term is associated with a sort, the labelling set of its
transition system:

ni)

sort{ty

(0, sort(at) = {a} Usort(t),

(to + t1) = sort(to) + sort(t1),
sort(tg X t) = sort(to) X« sort(t1),
sort(t[A) = sort(t) \ A, sort(¢(Z)) = Esort(¢),
sort(t/a, J) = sort(t) U {a}.

It remains to explain the looping construction, represented by a term
such as t/a, ¢, which from the transition system denoted by ¢ uses a label
«a and a property denoted by ¢ of t to adjoin loops. The term denotes a
transition system which is that of ¢ but with additional transitions labelled «
which loop back from any state which satisfies ¢. Its meaning is explained by
the following construction on transition systems.

38

6.1 Definition. Let T'= (5,4, L, Tran) be a labelled transition system. Let
U : T be a property of T'. Let o be a label. The labelled transition system
T/a, U is defined to be that transition system (S,4, L, Tran') where

Tran' = TranU {(u,a,i) | u € U}.

In other words, the transition system 7'/« U is obtained from a transition
system T" by extending T' by a new « transitions from states in U to the initial
state.

It is now straightforward to define [t], the labelled safe transition system
denoted by a transition system term ¢, taking, for instance, [to] x [t;] as the
denotation of ty x ;. The denotation of ¢/, ¢ is that transition system ob-
tained by introducing a loop from the reachable states specified by ¢. Realise
that for the moment we have not stated the precise form such syntax for ¢
can take. We omit the remainder of the otherwise obvious definition of the
meaning of terms.

Bach transition-system term possesses a rich language of assertions which
determine properties. We use ¢ : t to indicate that ¢ is an assertion about the
transition system denoted by ¢. And, of course, strictly speaking, the syntax
of transition system terms and their assertions is given by mutual recursion,
a term t/a, ¢ being allowed if ¢ : £. Each transition system-term has certain
basic assertions determined by the way it is built up. More complicated
assertions are formed by using propositional connectives, two modal operators
and recursively defined assertions, using a least fixed point operator, in the
way we have seen earlier. Typically, a term ¢ is associated with assertions

¢u=tbasic | I |t || do A1 | DoV | 9| (a)p]la) |X [uX.¢

where basic are the basic assertions of ¢, a is a label in sort(t) or *, and X is an
assertion variable from Var. As before, we impose a condition on occurrences
within the scope of pX in assertions puX.¢ and shall use abreviations for
implication and logical equivalence and the [a]-modalities.

As before, an assertion ¢ : t is satisfied by a subset of reachable states,
its extension, and we could, for a more complete development, define the
denotation [¢ : t]i} of assertions ¢ of a transition system term ¢, with respect
to an environment 9, assigning properties to assertion variables. When ¢ is a

39

closed assertion the denotation [¢ : t]¢} is independent of any environment 9,
and we shall write its denotation as just [¢ : ¢].

It remains to define the basic assertions of each transition system term.
The idea is to import into a constructed transition system properties of its
immediate subcomponents via the morphisms associated with the transition
system construction. As syntax for the basic assertions we adapt the transi-
tion system constructors themselves, an idea which has been useful in several

places e.g. [HO], [W], [Br], [Ab], [ML], [GS]. To avoid complications with

variables and environments we shall assume basic assertions are closed.
There are none for nil—its only atomic assertions are I, t# and ff,

Recalling 3.6 for the definition of prefixing, a¢ : ot if ¢ : ¢t and ¢ is closed,
with

[ad: at] = {{s} | s € [¢:¢]},

which consists of those states of [t] which satisfy ¢, but now regarded as states

of [at].
ho + @1 i to +tyif ¢ : tg and ¢y : t; and P and ¢; are closed, with

[Do + &1 : to + t1] = Trng[do = to] U Trn, [@1 : to],

which we recall from the last section is a coproduct in Prop.
bo X &y 1ty x ty if ¢y : tg and ¢y : t; and Py and ¢y are closed, with

[D0 x @1t to x t1] = (PLp)[ebo : to] N (PILy)[¢1 : t1],

which we recall is a product in Prop.

d[A t[Aif ¢t and ¢ is closed, with
[6[A : t[A] = (Pi*)[¢ : t] = {s | s is reachable in [t[A] & s € [¢:]},
where ¢* : [t[A] — [t] is the cartesian lifting of the inclusion 7 : A — L, which

are all those reachable states of the restricted transition system which satisty
¢ in the original transition system.

H(Z) : t(E) if ¢ : t and ¢ is closed, with

[6(E) (] = F=)lo:tl = {s|selo:t]}.

40

(p/a, J): (t/e, J) if ¢ : t and ¢ is closed, with
[p/c, J :t/a, J) =3[:t] ={s| s €]p:t]},

where j : [t] — [t/a, J] is the morphism expressing that [¢] is a subsystem
of [t/cx, J].

We write ¢t = ¢, for a transition system term ¢ and closed assertion
¢ : t, iff [¢] = {s | s is reachable in [t]}. More generally, we write t,I' k& ¢,
for T' = {6y : t,---,0,_1 : t} a possibly empty set of closed assertions, iff
[Bo A ANBpy:t] Clo:t].

We can now complete the description of the syntax for the looping con-
struct t/c, J. Up till now we have not said how the property J is to be built
up. In order to have a complete proof system we arrange that J denotes a
single reachable state. However by building up J solely from constructors like
product on assertions we obtain a notation for reachable states. For instance,
if Jp and J; are assertions satisfied by single reachable states of transition
systems denoted by tg and t; then Jy x J; is satisfied by a single reachable
state of their product, and so can be taken to describe that reachable state.
We give the rules to generate the notation for reachable states. It is intended
that singleton{J : t} holds iff an assertion .J denotes a set consisting of exactly
one reachable state of [¢].

singleton{.J : t}
singleton{aJ : at}

singleton{I : t}

singleton{Jy : to} singleton{Jy : t}
singleton{Jy + ff : to +t1} singleton{ff + Jy : tg + 1}

singleton{Jy : to}, singleton{Jy : t,}
singleton{Jy x Jy :tg X t1}

singleton{J : t} t E=J — Ry
singleton{ J[A : t|A}

where Ry = pX.(I'V \Y/QEAX<0">)

singleton{J : t} singleton{J : t}
singleton{ J(Z) : t(Z)} singleton{J/a, K : t/a, K'}

41

As we have mentioned, strictly speaking the syntax of transition system terms
and their assertions is given by mutual recursion, a term t/«, J being allowed
if singleton{J : t}. In turn the rules for singleton{.J : t} depend on the truth
of assertions t = J — R, when a restriction is involved. We shall provide
proof rules for this relation later, and so correct the seeming dependence of
syntax on a semantic notion. From earlier results characterising reachable
states of constructed transition systems from those of their components we
can justify the above rules by noting:

6.2 Proposition. Let t be a transition system term. If singleton{J : t}
then [J : t] denotes a singleton consisting of a single reachable state of [t].
Conversely, if s is a reachable state of [t] then there is an assertion J for

which singleton{J : t} and [J : t] = {s}.

Now we present the proof rules associated with each operation on transi-
tion system-terms. These are adjoined to the proof rules introduced in section
5, and displayed in Appendix II. We will have the result that, for a closed term
t and assertion ¢, we can prove t F ¢ iff ¢+ = ¢ which we recall means that
¢ : t is valid, i.e. every reachable state of t satisfies ¢. More specifically, each
term t will be associated with rules for deriving sequents t,I" F ¢ interpreted
ast,I' &= ¢. In Appendix II, there are rules for the modal p-calculus, valid for
any term t with the right sort (see Appendix II), and extra rules depending
on the structure of ¢ which express how each term operation interacts with
the logical and modal operations. The latter rules will have the function of
reducing the proof of a property of a compound term to proofs of proper-
ties of its immediate subcomponents. By variable-free assertions we mean
those which do not contain any assertion variables, and so, in particular, can
have no sub-assertions of the form p©X.¢; thus variable-free means closed and
recursion free.

Product: The rules for the product play a fundamental role in proofs about
parallel compositions. For terms ¢, and ¢, they use projection functions

42

T o sort(ty X t1) —, sort(ty), for k =0, 1.

to Xty FI —1x1

to Xty Ftt ot x tt

to x t; F e ([x] V[t x f])

to <ty ([0 x d1] A [y x ¢1]) & ([do A @g] x [é1 A H1])
to x t1 F ([0 X 1] V [by X ¢1]) « [(do V @5) X ¢1]

to x t1 ([0 X ¢1] V [do x ¢1]) < [do x (é1 V ¢})]

to X t1 = X ¢1] & ([do x] V [t X =g])

to x t1 = (a)[do x 1] & [(mo(a))do x (m1(a))d]

to x t1 b [¢o X ¢1]{a) & [¢po(mo(a)) x d1(mi(a))]

to Fdo t1
to X t1 F o X ¢y

The purpose of these rules is to reduce the proof that an assertion is valid
of a product to the proof that certain assertions are valid in its components.
Firstly, all assertions concerning a product can be put into a normal form:

6.3 Lemma. Let ¢:tg x t, be an assertion which is variable-free. Then

to X t1 F \Wke;{%k X Q1
where K is a finite set, indexing variable-free assertions ¢oy : to and ¢1p : t;

fork e K.

Proof. The lemma follows by structural induction on ¢ using basic distribu-
tivity properties of the logical connectives. For example, to deal with the
hardest case of the induction, we show if we assume the proposition holds for
assertion ¢ then it holds for assertion —¢.

Suppose to X t; F p > \Y/ie[qb@i X ¢1;. Then
to X t1 - ‘“'¢ A /X\ielﬁ[%i X ¢1i]7

and so

to X t; F = mef([ﬂqsm X] V[t x —¢y4]).

43

But then ty x t; F - \Y/[’V where W is the set of product assertions

{[/X\ieﬂbgi X mléldﬁz:”
(P8, =i & @7, =tt) or (Pg;, =tt & ¢, = ~¢y;), all ¢ € I},

making ¢ provably equivalent to an assertion of the right form. J

Now it is shown that an assertion in normal form, valid of a product, has a
factorisation into two assertions, valid of the respective components, whose
product provably entails the original assertion:

6.4 Lemma. (The factorisation lemma)
Let tg and t; be transition system terms such that

to X tq }: Wkej(gbﬂk X Qslk)

for variable-free assertions ¢gy, ¢1r. Then there are variable-free assertions
oo : tg and ¢y : t; for which

to Edo & ti =g & to X ti,¢0 X 1 E WhexPor X Pri.

Proof. We argue that ¢ and ¢; exist in a nonconstructive way which shows
there exists a proof, so tg X t1,09 X @1 F \Y/iel%i X ¢1;, without giving it
explicitly. We know tq x t; = \Y/ie ;®0i X ¢1i. Hence there is a function i[, |
so that for any reachable states z : [to] and y : [t;] there is i[x,y] € I such
that :

S [[¢0i[m,y]]] and y € I[gbli[ac,y}]}‘

(Note this does not determine [, | uniquely).
For notational convenience write x : ty and y : {; to mean x is a reachable
state of [to] and y is a reachable state of [¢;] for the duration of this proof.

Now
¢ ondogens € 0 Mo fries

for any @ : tg and y : t;. We use e.g. /X\y:tld)oi[w,y] to mean the finite conjunc-

tion
MNP0z, | ¥ t1}

Clearly
to, /X\y:thﬁgi[m’y] = Poifn,y for z:to and y:¢;, and

t1, A\t:toqﬁli[m,y] = gbli[m,y] for z : to and Yy t1,

44

as e.g. the conjunction /x\-/:tl(po'i[m,y] contains ¢o;[,) as a conjunct. Thus

to X t15 Ry, P0ito) X Nerto Pites) T Poia,) X Pty

for any x : to and y : t;. Write

Po = \Y/ﬂl:to m=f1¢0i[ﬂlay] and @1 = \Wy:tl %z:tod)li[m,y]'

Using the rules expressing the fact that x distributes over V we obtain:

to X tl? (b() X Cbl - m:tg,y:tl[my:hqsﬂi[;c.y] X /An:t0¢1i[:c,y]}‘
Also, obviously,

to Xty Watoyet it Poitenyl X MNecto Pritznt] F Wier®oi x dui.
Therefore tq X t;, ¢ X ¢ \Y/E_,qﬁm x ¢1;. Clearly tg = ¢p and t; & ¢y.

The importance of the above two lemmas is that they reduce the problem of
proving a variable-free assertion ¢ holds of a transition system term £y X ¢; to
showing assertions ¢ : tg and ¢; : ¢; hold of the components. Once ty = ¢y
and t; F ¢, are established, from the rule

to Fdg ti Py
to X t1 ¢ X @1

it can be concluded that ty x t; F ¢g X ¢ and hence tq X t; F ¢.

Restriction: The following rules reduce the proof of the validity of an assertion
@ t[A to the validity of an assertion ¢ : t.

t{A BT I[A

t{A F it o A, t{A Fff — A,

A ~(6[A) o (~6[A)
t[A = (oo M) A(p1[A) & (do A é1)[A

(V(d1[A) & (do V ¢1)[A

{(a)(p[A) « ((a)p)[A, where a € AU {x},
()« (@ A Ry)(a)[A, where a € AU {x},

where Ry = pX.(IV \/,er X (o).

45

6.5 Lemma. For all variable-free v : t[A there is a closed assertion ¢ : t
such that t|A 1 — ¢[A.

Proof. By structural induction on 1 using the rules for restriction. J

In this way establishing ¢[A F 1 is reduced to that of establishing t[A F ¢[A.
But t[A = ¢[Aiff t |= (R — ¢), where Ry = pX.(IV Y/, X(e)). Once
we have proved the appropriate validity for ¢, applying the rule

tFRy — o
t[A FQDI‘A

gives the desired validity for t[A.

Relabelling: The following rules reduce the proof that v : ¢(Z) is valid to the
proof of the validity of an assertion ¢ : t.

t(E) I« IE)

tZ) Ftt e (=), t(Z) Fff = f(Z),
HE) F ~(¢(E)) &« (~¢(E))

t(Z) F do(E) A ¢1(E) & (do A ¢1)(E)
HE) F¢o(Z) V d1(Z) < (o V ¢1)(E)
t(E) F(a)($(Z)) & (Whez-14(0)P)(E),
tE) F (@E)(a) & (Woez-1.90)(E),

6.6 Lemma. For all variable-free ¢ : t(Z) there is a variable-free assertion
¢ : t such that t(Z) F ¢ — ¢(Z).
Proof. By structural induction on 9 using the rules for relabelling.

In this way, establishing the validity of ¥ : ¢(Z) is reduced to establishing
that of ¢(Z) : t(E), for an assertion ¢ : t. But this amounts to establishing
the validity of ¢ : t, as is supported by the rule:

t -o¢
t(E) - ¢(E)

46

To summarise, the rules for the operations associated with parallel com-
position, have a straightforward nature. The rules for restriction express
directly how routinely to convert an assertion 9 : t[A to one ¢[A : t[A which
has the same extension. In this way the proof of validity of ¢ : ¢[A is reduced
to that of Ry — ¢ : t. The rules for relabelling play a very similar role. Those
for product have to cater for the complication that a property of a product
cannot in general be expressed in the form of a single product of properties
Uy xU;. Their form is dictated by the the requirement of displaying a property
of a product as a disjunction of products of properties.

Unfortunately, the rules for sum, looping and prefixing especially are
more ad hoc. This is largely due to the special account that must be taken
of the initial state in reasoning about the these constructions. Again, how-
ever, the motivating idea is to express the extension of an assertion of these
constructions in terms of assertions about the immediate components.

Sum: For the sum construction we provide rules so that an assertion v : to+1;
can be proved equivalent to one of the form ¢ + ¢, : tg + t1. Recall that
the states of £y + t; are copies of states of t; and ¢;, disjoint but for being
identified at the initial states. The extension of an assertion ¢g + ¢ : to + 1
is the union of the copies of the extensions of ¢q : tg and ¢ : t;. As such they
may or may not overlap at the identified initial states. Because of this it is
not necessarily the case that —(¢g + ¢1) : to + ¢, has the same extension as
(=¢po) + (—p1) : to +ti—consider, for example, taking ¢g = tt and ¢; = ff. The
rule for negation depends for its application on an assertion ¢ + ¢ : to + t1
being balanced. This is so when tg =1 — ¢g iff t{ = I — ¢, corresponding
to when the component assertions are either both true at the initial states or
both false there. The rule for conjunction is similar. The rules for negation
and conjunction have the form:

¢do + P1 balanced
to +t1 = (o + ¢1) & (—o) + (1)

¢o + &1, Py + ¢ balanced
to+t1 = ((do+d1) A (86 + ¢1)) = (Do A dp) + (1 A ¢1))

The fact that sums identify initial states of their components compli-
cates the rules for modalities too. We use the notation ji : sort(t;) —.

47

sort(ty +t1), k = 0,1, for injections on label sets. Consider putting an asser-
tion (Jo(ao))(o+¢1), where ag € sort(ty), into the form of a sum of assertions.
Whether (jo(ao))(Po + ¢1) is equivalent to

({ag) (o V I)+ff) or ({(ag)do + ff) depends on whether or not ¢; holds at the
initial state of t;. This explains why, for the forwards modality, we have the
two rules:

ti BI — ¢
to +t1 F (Jo(ao))(do + 1) « ((ag)(¢o V I) + f)

tl }" I — ‘1(]51
to +t1 = (Jolao))(Po + #1) < ((ao)do + ff)

There are, of course, similar rules for the forwards modalities, involving labels
like j1(ay), as well as rules for the backward modality, making a total of 8
rules in all to handle the modalities. A further rule introduces valid sums of
assertions. These and the other rules for reasoning about assertions for sums
are in Appendix II.

The essential facts provided by the rules are summarised in the following
lemma. It shows how, on the assumption that the proof system is complete
for subterms, assertions for a sum can be provably replaced by balanced as-
sertions, and that, in general, such an assertion can be proved equivalent to
a sum of assertions.

6.7 Lemma. Let tg,t; be transition system terms. Assume

<t0 i" Qbo Iﬁfo l': Qbo) and (tl f‘ d)l Iﬁtl }: le)
for all ¢y : ty and ¢ : ty

(i) Let ¢g : to and ¢ : t; be variable-free. Then there is a balanced variable-
free assertion ¢p + ¢} such that

to 4+t F (o + 1) « (5 + &)

(ii) Let ¢ : to + t1 be a variable-free assertion. Then there are variable-free
¢o : to and ¢y : t1 such that

to+ty F o (o + P1).

48

(iii) For variable-free ¢ : to + tq,
t0+t1 i_’(bl.ﬂ'to"f-tl }:lﬁ

Proof.
(1) With the first few rules for sum in Appendix IT it can be proved that

to+t1 F ((do VI)+ 1) = (do + (é1 V I)).

Using this, any unbalanced assertion can be proved equivalent to a balanced
one.

(ii) By structural induction any variable-free assertion ¢ : to+¢; can be proved
equivalent to one of the form ¢¢ + ¢1. In the case of modalities this reduction
depends on what the initial state satisfies in the subterms ¢, and ¢;. In the
case of conjunctions and negations it depends on immediate subassertions of
1 having been previously proved equivalent to balanced assertions. 1§

Prefizing: In the case of prefixing we only expect ¢ : at to be equivalent to
one of the form a¢ : at at non-initial states. The rules for prefixing, presented
in Appendix II, are designed to give a method for replacing an assertion ¥ : at
by an equivalent one a@ assuming —I. They are admittedly somewhat ad hoc.
As the lemma sketches, they are sufficient to prove

at,—1 F Y« ap
and the appropriate one of
at,I ¥ or at,IF -

on the assumption that the proof system is complete for .

6.8 Lemma. Lett be a transition system term. Assume

tEgifft =6

for all variable-free ¢ : t.
(i) Let % : at be a variable-free assertion. Then there is a variable-free asser-
tion ¢ : t such that

at,=I F (¢ & ap).

49

(ii) Let ¢ : at be a variable-free assertion. Then
at,I Fv¥ or at,]F .
(iii) For variable-free v : at,

at E 1 iff at = 1.

Proof. It is a routine matter to show the rules for prefixing in Appendix II
are sound. The conjunction of (i) and (ii), taken as induction hypothesis,
is proved by structural induction on . (The proof of (i) and (ii) has an
elementary, if involved and technical character, similar to that of (iii) below,
and is omitted.) Soundness of the rules gives the “only if” direction of the
proof of part (iii). The “if” direction follows from (i) and (ii) in the following
way: Asssume at = 1. Then by (i) and (ii) we get

at,—I F (¢ & ap) and «at, I .

Soundness of the rules gives at,—[= (¢ < a¢) from which it follows that
t = ¢ sot F ¢ by the assumptions of the lemma. Thust ¢ sot -t — ¢.
The rule gives

at F att — ao.

However by the first two rules we can derive at - —I « att and hence
at, I .

With at, I F 1), established earlier, we obtain at F ¢ as required. §

Looping: The rules for the looping construction, in Appendix I, are sufficient
to reduce an assertion v : t/a,J to an equivalent assertion ¢/, J : t/a, J.
There is then a rule to introduce such assertions when valid. The rules are
similar to those for sum in that, like sum, the reductions for a modal assertion
(a)(p/a, T) = t]a, T, or (@],) () : t/ar, J, depend on whether or not the
initial state, or state specified by J, satisfy ¢. For example, consider an
assertion (¢/a, J)(«). This is satisfied by all states which can be reached
via an « transition from one satisfying ¢ in the original transition system ¢.
There are thus two ways in which the initial state can satisfy (¢/«, J){«); one
is through the initial state of ¢ satisfying ¢(«) and the other through the state

50

specified by J satisfying ¢—remember the looping construction introduces an
« transition from this state back to the initial state. This accounts for the
following two rules:

tEJ— —¢
t/a, J b (d/a, J)(a) « (pla))/a, T

tEJ — o
t/o, J (o), J)a) & (pla) V I)]a, J

Notice that if we did not insist that J specified a single state these two rules
would not cover the possibility of some, but not all, states specified by J
satisfying ¢. In this situation, as well, we would like to be able to deduce that
(p/cv, J){c) was equivalent to (¢{«) V I)/a,J. However to cope with this
case it seems we would need to make use of the extra judgement that J A ¢
is satisfiable by a reachable state of t (or, equivalently, =(J A ¢) is not valid).
This judgement is not available in the present proof system.

6.9 Lemma. Lett be a transition system term. Assume

tkEoifft =¢

for all variable-free ¢ : t.
(i) Let v : t/a,J be a variable-free assertion. Then there is a variable-free
assertion ¢ : t such that

t/a,J F (Y e dfa,).
(ii) For variable-free v : t/«, J,

tla, J oy ifft/a, J = .

Proof. The proof of (i) is by structural induction on ¥ using the rules for
looping of Appendix II. Soundness and application of the final rule gives (ii).§

The previous lemmas, 6.3 to 6.9, reduce the validity of a variable-free
assertion to the validity of assertions for subterms, though the latter need not

51

be variable-free because of the rules for restriction. However, in general, we
can eliminate recursion from closed assertions:

6.10 Lemma. Let ¢ be a transition system term. For any ¢ : t, a closed
assertion, there is a variable-free assertion ¢’ : t such that t t (¢ < ¢).

Proof. Because the transition systems denoted by terms are finite, with only
finite sets of reachable states, any recursively defined assertion is equivalent
to some finite unfolding. Hence by structural induction on closed assertions
for a term we can show that they are provably equivalent to variable-free
assertions. J

Thus ultimately the validity of any assertion at a term is reduced to
that of assertions for nil. However, by structural induction on assertions, we
obtain:

6.11 Lemma. For any variable-free assertion ¢ : nil, using the rules of
appendix II, we have nil - ¢ iff nil = ¢.
Now, by structural induction on terms, combining the lemmas, we obtain

the main result of this section. The proof rules are sound and complete for
all closed assertions including those defined recursively.

6.12 Theorem. (Soundness and completeness)
The rules of Appendix II provide a sound and complete proof system, estab-
lishing t - ¢ iff t = ¢ for any closed assertion ¢ : t.

7. Conclusion.

An extension of the work [W3,4] to include a category theoretic treatment
of event labels has been presented. The understanding of everything here as
constructions in category theory is clearly incomplete: the prefixing and loop-
ing constructions are not characterised as universal constructions or explained
categorically, and the modalities of the logic and some of the rules were pro-
duced in an ad hoc manner. The use of other, categorical constructions has
not been fully explored; for instance, as was remarked, another looping con-
struction can be got from Ay once there is a way to put a transition between
the two states to be identified.

At least some results have been laid down, and the categorical view of
models for parallelism shown to have promise. Several other models can be re-
lated in the same way. Essentially the same ideas go through for labelled Petri
nets. Results analogous to the relation between labelled transition systems
and synchronisation trees hold between labelled safe Petri nets and labelled

52

event structures. There is also a reflection between a category of sets of
Hoare traces and synchronisation trees. However, the analogous relationship
between labelled event structures and Pratt’s pomsets [Pr] is more subtle.

Whether or not the operation of hiding (that of making certain transi-
tions/events internal) can be found a category-theoretic expression remains
to be seen. The naive idea of taking partial labelling functions on transi-
tions/events will not do, at least, not without a revision of the way parallel
compositions are treated (see the acknowledgements). It is likely that a more
refined analysis of the concept of hiding will be needed first and that this will
lead to more structure in the category of labelling sets.

On the more practical side, it is to be hoped that compositional proof
systems like that above will be useful for verifying properties of parallel pro-
cesses, perhaps in model checking (the automation of correctness proofs for
finite state processes). By breaking the verification problem down into smaller
subproblems it may extend the range of model checking, or at least provide a
way to proceed in model checking which follows the structure of the design.
This could involve the user supplying assertions which are believed to hold of
the components of a parallel composition. For all the constructions but prod-
uct the proof rules supply an automatic procedure for reducing the problem
of whether or not an assertion is valid of a compound term to whether or not
assertions are valid in its immediate components. Indeed, for product-free
terms, the rules as they stand can be used to decide validity, so that the rules
for looping can be amended to cope with the construction t/a, ¢ where ¢
does not denote a singleton. Despite the unattractiveness of some of the rules
they code quite neatly in Standard ML to give a reduction of the validity of
nonrecursive assertions for all but products to that in the component pro-
cesses. Because of the nonconstructive nature of its proof, the “factorisation
lemma” 6.4, does not directly yield a method for decomposing the validity of
an assertion about a product to validities of its components. However there
is a related method for deciding validities of product at least for nonrecursive
assertions. Its feasibility along with the problem of how to incorporate re-
cursively defined assertions into such compositional model checking are topics
presently under study.

It remains to extend the proof system to recursively defined processes
where transition-system terms include an operation rec .t instead of a sim-
ple looping construct t/«, J, along the lines of [St] and [W]. Transition system
semantics can be given to such recursive definitions. But obtaining a com-
positional proof system for the assertion language is not a simple matter;

53

current work indicates it may best be done by using an intuitionistic logic on
assertions. A stumbling block to a full semantic treatment of this is that tran-
sition systems, and other categories of models, like synchronisation trees, do
not have the structure to support the notions of convergence and divergence
as were used in e.g. [St, W].

54

Acknowledgements

The use of indexed category theory to incorporate labelling into the cat-
egorical presentation of models for parallel computation was originally sug-
gested by Mike Fourman who proposed that restriction and hiding could be
viewed as some form of generalised universal and existential quantification.
This line was followed up by Valeria de Paiva, Edmund Robinson, and Pino
Rosolini who uncovered some difficulties fulfilling this suggestion for Petri
nets, but checked that with partial labelling functions one obtained a fibra-
tion with functors A* with left adjoint A; between fibres. (Thanks to Edmund
for writing it down.) Their intuition was that an event with an undefined label
was an internal or hidden event. However this does not square with the use
of products to derive parallel compositions. And because I could see no other
way of deriving parallel compositions as categorical constructions, I have used
what amounts to total labelling functions on events. I have benefitted from
helpful remarks and encouragement from Thierry Coquand, Martin Hyland
and Mogens Nielsen. Paul Taylor’s thesis [PT] and Peter Johnstone’s course
notes [PJ] provided useful sources of indexed category theory. I am grateful
to Anders Kock for remarks which led to several improvements. Finally, Yuri
Gurevich and the anonymous referee are to be thanked for not allowing me
to get away with things too easily.

Appendix I: Partial functions

We shall work with a particular representation of the category of sets
with partial functions. Assume that X and Y are sets not containing the
distinguished symbol *. Write f : X —, Y for a function f : XU{x} — YU{x}
such that f(x) = . When f(z) = %, for ¢ € X, we say f(z) is undefined and
otherwise defined. We say f : X —, Y is total when f(z) is defined for all
r € X. Of course, such total morphisms X —, Y correspond to the usual
total functions X — Y, with which they shall be identified. For the category
Set,, we take as objects sets which do not contain *, and as morphisms
functions f : X —, Y, with the composition of two such functions being the
usual composition of total functions (but on sets extended by *). Of course,
Set, is equivalent to the category of sets with partial functions, as usually
presented.

We remark on two categorical constructions in Set,. A coproduct of X
and Y in Set, is the disjoint union X + Y with the obvious injections. A

53

-

product of X and Y in Set, has the form X x,Y =
{(,%) [z e X} U{(xy) |y eY}U{(z,y) |z € X,y €Y}

with projections those partial functions to the left and right coordinates.

56

Appendix II: Proof rules

The logic works on sequents of the form ¢,I" + ¢ where t is a term
denoting a labelled transition system, I' is a finite set of assertions and ¢ :
t an assertion denoting properties of the transition system. Take ¢ — 1
to abbreviate —¢ V ¥, and ¢ < ¥ to abbreviate ¢ — ¥ A Y — P. Let
' = {¢o, -+,0,} be a finite set of assertions. We use /X\F to abbreviate
their conjunction ¢y A --- A ¢, and to abbreviate their disjunction

bo V -V @,. We identify /X\@ with t and \Y/@ with ff.

Rules for the modal logic:
Structural rules:

t7F }_gb t)Aad) i_lb
LA o

(refl) t,'+¢ ifpel (tran)

Propositional logic:

t,T Fo T i t,T FoAYy tT FdA

(AI) tT A (hB) B CE g
e a?£;$w u?£;$¢ (vE) LLECoVy z%ﬁge t,T,¢ -6
(=1 t,ffrﬁq;:% (— E) t,LI' ¢t} %_ wt,r E o

0 %%?ii__tg (-=E) ¢,T,¢,~¢ Ff

(t) T -t () 5%%%%§

Modal rules:
t(a)f e ff, tF({a)oV(a))— (a)(o V),
t = {a)p Alaly — (a)(d A Y),
tH(x)¢ < ¢,
t Ffila) o ff, tF(dla) VY(a) « (¢ V) {a),
t = ¢la) Apla] — (¢ A ¥){a),
t - ¢{x) & ¢,

Rules for recursive assertions:

to[uX.8/X] F X, tﬂjﬁ{/j;f LE 2.

57

Rules for operations:

Product: The rules for the product use the projection functions =y, for k =

0,1.
toxt; FIT—Tx1T
to Xt HFit =t xtt
to X t1 F e ([xt] V[t x f])
to Xty = ([0 x d1] A [dg x ¢1]) < ([0 A @] x [¢1 A ¢1])
to x t1 F ([0 x ¢1] V [¢g X &1]) < [(¢ho V &) x 1]
to Xty F ([¢o x 1] V [do X 1]) < [do X (1 V ¢)]
ty x t1 F [po X d1] > ([o X tt] V [t X =y])
to x t1 = {a)[do x ¢1] & [(mo(a))do x (m1(a))d1]
to x t1 = [¢o X ¢1l(a) & [po(mo(a)) x ¢1(mi(a))]
to Fo t1 F oy
to Xty F o X @1
Restriction:

tA T o ITA

t{A Ftt o A, t{A Fff - f[A,

tA = =(¢[A) « (=4[A)

tIA (o[A) A (1[A) & (do A d1)[A

t[A F (¢o[A) V (&1[A) & (do V ¢1)[A

A (a) ($1A) > ((a)#) A, where a € AU {<},

tIA F (p[A)(a) & (¢ A Rp){a)[A, where a € AU {x},
ttFAR: q;EA(b where Ry = pX.(I'V \f/,erX(@))

58

Relabelling:

t(Z2) FIe I(E)

t(Z) Ftt o t(2), t(2) - fi(Z),
tE) F=(4(E)) « (—¢(E))

HE) () A d1(Z) & (P A ¢1)(E)
HE) F do(Z) V ¢1(Z) « (¢o V ¢1)(E)
HE) F (a)(S(E)) « (\Wbegaa(@éﬁ)(i))
t(E) F (@) {a) & (Woez-1,20)(E),

Sum: We use the notation ji, & = 0,1, for injections on label sets. An
assertion ¢g + @1 : to + t; is balanced when it satisfies: to F I — ¢ iff t;
I — d)l'

t0+t1 FIHI%’ﬁ‘, t0+t1 !"IHE—I—I,
to+t Fttestt+t, to+t; Ffo F4f,
to+t1 (o + d1) V(9 + ¢1)) & ((¢o V &) + (61 V ¢)),

o + b1, Py + ¢ balanced
to+t1 = ((do +d1) A (9 + b)) < ((o A dp) + (1 A @)

59

b0 + ¢; balanced
to +t1 F—(do + d1) — (mgg) + (mpy)
ti 1T — ¢
to +t1 = (jo(ao))(Po + é1) < ({ao)(do V I) +ff)

if ap € sort(to)

ty FI — ¢
to+t1 (b0 + &1)olao)) « ((¢o V I){ag) + ff)

if ag € sort(ty)

f.l |"I—>“1¢1

” L
to +t1 = (Jolag))(do + d1) — ({ag) o +) if ay € sort(ty)

ti T — =gy
to +t1 (o + ¢1){jolao)) < (¢o(ao) + 1)
to F I — ¢
to +t1 F (Ji(a1))(¢o +é1) & (F+ (a1)(¢1 V I))

if ag € sort(ty)

if a1 € sort(¢y)

fo }_I—% (;J)o
to +ty F (¢ + &1)(Gi(ar)) & K+ (&1 V I){ay)

if a1 € sort(t)

tQ }“Iﬁﬁ(ﬁg

: if a; € sort(t
to -t F (n(a0))(d0 + 61) = (Bt (an)dr) 0 © t(t1)

t() F[-Hﬁqﬁo

if a; € sort(ty
to+t; F(po + ¢1)(Ji(ar)) & (E+ di{ay)) € sort(ty)

to = ¢o, t1 =y
to+1t1 F oo+ @1

60

Prefizing:

at Fff « off,

at F (=1 A —ap) « a=¢p),

at Fapy N apy — a(pe A ¢1),

at = ady V apy a(¢o V é1),

at F (=L A (b)(ap)) < a((b)$) where b € sort(t) U {x},
at = —(b)I 1f*7éb#oz

at F1 — ((a)¢ < [a]e),

at FI — =(b)¢if a# b # x,

at - (ad)

at FI{a) & ol

at F¢b) — -1 if b# x,
at F=(I(b)) ifx#£b+#q,
at F1 — («)(al),

(b) «— a(p(b)) where b € sort(t) U {x},

—
—

tEo — ¢
at Fap — ad

61

Looping:

nal:

(t/a, J) Ftt o tt/a,],

(t/a,J) H e f/a, J,

(t/a,J) H I I/a,l,

(t/a, J) Fo/a, J A1/, T & (pg A P1)/ex, J,
(t/a,J) b o/, TV d1/e, J & (o V 1)/ v, J,
() F (=) /e, T = ~(d/a, J),

() = B)(p/a, T) & ((b)d)/a, T if b # v,

/o, J
t/a, J

tI— —g
(t/a, J) F{a)(d/a, T) & ((a)d) /e, T

tHI — ¢
(t/a,) (/. J) = ((a)p v T) /o, T

(t/a,) = (p/c, J)(b) & (#(b))/c, J if b # «,

t=J — ¢
(t/a, J) F(¢/a, J){a) & (¢’<a>)/a?=]’

tJ — ¢
(t/a, J) = (d/c, J){a) & ($le) V I) /e, T

t ¢
(t/a, J) e, T

nil = 1.

62

References
[Ab]Abramsky,S., Domain theory in logical form. LICS’87.

[Ben|Bénabou,J., Fibred categories and the foundations of naive category the-

ory. JSL 50, 1985.
[Br|Brookes, S.D., On the axiomatic treatment of concurrency. LNCS 197,1985.,

[Br1]Brookes, S.D., On the relationship of CCS and CSP. Proc. of ICALP
1983, LNCS 154, Springer, 1983.

[CH|Campbell,R.H, Habermann, A.N, The specification of process synchro-
niation by path expressions. LNCS 16,1973.

[PJ]Johnstone,P, Fibred categories.Lecture notes,Cambridge Univ,1983.

[HBR|Hoare,C.A.R, Brookes,S.D, and Roscoe,A.W, A Theory of Communi-
cating Processes. JACM,1984.

[HO| Hoare,C.A.R, Olderog,E, Specification oriented semantics for communi-
cating processes.LNCS 154,1983.

[Ko|] Kozen,D, Results on the propositional p-calculus.ICALP’82.

[LP] Labella,A, Petterossi,A, Categorical models of process cooperation. LNCS
240,1985.

[LC]Lauer,P, Campbell,R.H, Formal semantics for a class of high level primi-
tives for coordinating concurrent processes. Acta Inf.5,1974.

[Mac] Maclane, S., Categories for the Working Mathematician. Graduate
Texts in Mathematics, Springer (1971).

[Mil]Milner,A.R.G,Calculus of communicating systems.LNCS 92, 1980.
[Mil1]Milner,A.R.G, Communication and concurrency. Prentice Hall, 1989.

[ML]Martin-Lof,P, The domain interpretation of type theory. Lecture notes,
Goteborg, 1983.

[Poi]Poigné,A, Category theory and logic. LNCS 240,1985.

[Pr] Pratt, V.R., Modelling concurrency with partial orders. International
Journal of Parallel Programming, 15,1, p.33-71, Feb. 1986.

[GS|Graf,I, Sifakis,J, A logic for the description of nondeterministic programs
and their properties. Report IMAG RR 551, Grenoble, France, 1985.

[St] Stirling, C, A complete modal proof system for a subset of SCCS. LNCS
185, 1985.

[PT]Taylor,P, Recursive domains, indexed category theory and polymorphism.
PhD thesis,Cambridge Univ,1987.

63

[W]Winskel,G, A complete proof system for SCCS with modal assertions. LNCS
206,1985.

[W1]Winskel,G, Event structure semantics of CCS and related languages.
ICALP ’82, LNCS 140,1982.

[W2]|Winskel,G, Synchronisation trees. TCS, May 1985.
[W3]Winskel,G, Categories of Models for Concurrency. LNCS 197,1984.

[W4]Winskel,G, Petri nets, algebras, morphisms and compositionality. Infor-
mation and Computation, March 1987.
[W5]Winskel,G, Event structures. LNCS 255, 1987.

[W6] Winskel, G., A category of labelled Petri nets and compositional proof
system. In the proceedings of the the conference “Logic in Computer Science”,

Edinburgh, July 1988.

64

