ISSN 0105-8517

Infinite Values in
Hierarchical Imperative Types

Michael I. Schwartzbach

DAIMI PB - 293
September 1989

AARHUS UNIVERSITY
COMPUTER SCIENCE DEPARTMENT]

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK
Telephone: + 4586 12 71 88 Telex: 64767 aausci dk

n=j
—

Infinite Values
in
Hierarchical Imperative Types

Michael I. Schwartzbach

Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Arhus C, Denmark

Abstract

A system of hierarchical imperative types is extended to allow infinite val-
ues. The general structure of value assignments to types in the context
of a hierarchy is considered, and it is shown that a smallest and largest
such exist. A method for obtaining intermediate value assignments is in-
vestigated, and a general characterization of the infinite values allowable
in programming languages is presented. Finally, the set of rational values
is demonstrated to be appropriate for our imperative hierarchy. Programs
can then work on infinite imperative data structures which are allocated
lazily during execution.

1 Introduction

In [7] we presented a system of fully recursive types for an imperative
programming language. The type system is hierarchical, which means
that it has a partial ordering of the types, expressing that any application
written for a small type may be reused for alllarger types without risk of
inconsistencies; static type checking is still possible. Types are specified
through a set of recursive equations, and their value sets are taken to be
the standard least solutions of the induced equations on sets.

In this paper, we consider the introduction of infinite values. The general
idea is that a type equation such as

Type I' = IntxT

no longer denotes the empty type, which is clearly the least solution,
but rather a type of infinite sequences of integers. This is a well-known
idea, which is introduced in the equational programming of [5], as streams
in several functional programming languages such as Miranda [4], and to
some extent by the lazy CONs operator in Lisp [3]. The idea is also present
in constructive type theory, where one distinguishes between recursive and
infinite solutions of more general type equations [1,6]. The aims of our
approach are somewhat different from all of these.

Firstly, in our case we have no interest in equational programming (or
streams). Recursive types are pragmatically useful in conventional im-
perative languages, as they abolish the need for explicit pointer manipu-
lations and the writing of a plethora of little procedures for e.g. copying,
comparing and storing recursive values. However, when using a recursive
tree structure one usually still has to perform a multitude of explicit al-
locations. For example, when inserting into a search tree one repeatedly
replaces an empty leaf by a singleton tree with a node and two empty
leaves. This demolish-and-rebuild approach is both tedious and expen-
sive. The leaves are really redundant and serve only as a device to limit
the recursive unfolding. It is preferable to start out with an infinite search
tree (without values in the nodes) in which no explicit further allocation
is necessary or indeed possible. With this motivation, our use of infinite
values is primarily one of initializing infinite data structures.

Secondly, this is to take place in an imperative setting, where variables
containing structured values are composed of a similar structure of sub-
variables. Also, the type hierarchy is to survive, which requires some
care.

2 Hierarchical Imperative Types

In this section we shall briefly review the type system of [7]. Types are
defined by means of a set of type equations

Type Ny =T
Type N, =T
Type Ny, =T,

where the V;’s are names and the T’s are type expressions, which are
defined as follows

T ::= Int | Bool | simple types
N; | type names
T lists

(n1:Th,...,nt : Ty) | partial products, k > 0, n; € N, n; #n;

Here N is an infinite set of names. Types are denoted by type expressions.
Notice that type definitions may involve arbitrary recursion.

The *-operator corresponds to ordinary finite lists. The partial product is
a generalization of sums and products; its values are partial functions from
the tag names to values of the corresponding types, in much the same
way that products may be regarded as total functions. This partiality is
essential to the consistency of the hierarchy.

Structural Invariants

In [7] the partial product is combined with structural invariants to enable
a technique for specifying (recursive) types, which is more compact and
convenient than the usual sums-and-products or records-and-pointers. A
structural invariant is associated with a partial product and specifies a set
of legal domains for the corresponding partial functions. Often a logical
notation is used, so that for example the type of binary integer trees may
be specified as

Type Tree = (val: Int, left,right: Tree) ! { (left V right) = val }
This invariant actually specifies the set of domains

{{val}, {val,left}, {val,right}, {val, left, right}}

Without the invariant the partiality would allow values that are not tree-
like, e.g. one with a left- but no val-component. Notice that sums and
products may be recovered as partial products with appropriate invari-
ants; in fact, we shall use the usual notation x for the binary partial
product with a Cartesian product-like structural invariant, i.e.

Ty x Ty = (fst : Ty,snd : Ty) ! {fst A snd}
3

Partial products with structural invariants are pragmatically superior to
the standard sums and products for two reasons. Firstly, the use of sums
and products is equivalent to expressing the invariants using only the
XOR and AND operators, which is clearly inconvenient!. Secondly, the
nesting of sums and products force components belonging at the same
conceptual level to appear at different syntactical levels?. The partial
products alleviate these disadvantages.

Another approach could be to employ more type constructors. We can
think of the partial product as the Cartesian product of domain-like sets
with a L element to indicate undefinedness. In [8] a great number of
binary domain constructors are considered for the purposes of specifying
various domains of infinite values. Some of these correspond to logical op-
erators in the above sense; for example, the separated product X, seems
to resemble the OR operator. Since L is always present it is, however,
unclear how to insist on the presence of a component, which is necessary
to define e.g. the AND operator. Also, compositionality seems to break
down, since we at the same time want =4 = {1} and =—A4 = 4. In
any case, with unary or binary constructors the notational disadvantages
remain. The structural invariants provide an n-ary type constructor for
each n-place propositional statement.

Normal Forms and Type Equivalence

We define an equivalence relation ~ on type expressions, which identifies
different type expressions denoting the same type. This equivalence is
defined as the identity of normal forms. To each type expression E we
associate a unique normal form nf(E), which is a possibly-infinite labeled
tree. Informally, the tree is obtained by unfolding the type expression. If
we regard the definitions

Type IL = xInt
Type IS = (leaf: IL, node: «IS)

we would expect the normal form nf(IS) to be the infinite tree indicated
by

LAt the theoretical worst, the size of the notation may expand exponentially.
? Variant records in PASCAL-like languages avoid this problem (while introducing others).

leaf node

7\,
|

Int nf (IS)

This is merely a short-hand notation for the full tree. Formally, we use
the fact that the set of labeled trees form a complete partial order under
the partial ordering T, where t; T ¢,, iff t; can be obtained from to
by replacing any number of subtrees with the singleton tree Q. In this
setting, normal forms can be defined as limits of chains of approximations.
The singleton tree Q is smaller than all other trees and corresponds to
the normal form of the type defined by

Type T =T

which we shall refer to as the vacuous type.

Let us call a type equivalence in this context consistent when: No two
types with a different outermost type constructor may be identified, and
if F(S1,...,8k) is equivalent to F(T,...,T;) then each S; must be equiv-
alent to 7. The former requirement is self-evident; the latter is necessary
to allow consistent selection of subvariables.

Fact 2.1: The equivalence = is the largest consistent one.

Thus, ~ is final and types are deemed equivalent unless there is some
reason for them not to be. As normal forms have a very regular structure,
the equivalence of two type expressions is decidable.

We use the notation |[t| = co and |t| < co to denote whether a tree ¢
is infinite or not. The notation labels(t) denotes the set of labels in t.
Notice that all normal forms of types have finite label sets.

Examples
For the type definitions

Type Tree = (val: Int, left,right: Tree)
Type X = %X
Type Y = %Y

Type Z = (z:Z)

we have the following normalforms

(val,left,right)
nf(Tree) = Int (valleft,right) (val,left,ri<ht)
Int ¢ Int/E
*
nf(X) = nf(Y) = l

nf(Z) = |

The Type Ordering

To obtain our hierarchy we need a partial ordering < on types, which
ensures that if the relation 77 < T3 holds, then all applications written
for the type T7 may be reused for the type Tb.

All types allow the definition and use of variables. Int and Bool come
with the usual operations. Lists and partial products provide expressions
denoting arbitrary constants and the selection of subvariables. Further-
more, the partial products have the usual operations of partial functions,
e.g. test for definedness and inclusion and exclusion of components.

In this setting it is hardly surprising that C may serve as a hierarchi-
cal ordering. This ordering may be refined further, by observing that a
partial product allows all of the manipulations that are possible for prod-
ucts with fewer components, i.e. selection of components and (thanks to
the partiality) formation of constants. Hence, we can obtain a better
hierarchical ordering, <, as the largest consistent refinement of C which

satisfies the rule
(ni) (my)
=
T, S
iff {n;} C {m;} and n;=m; = T; < ;. To illustrate this ordering, we
can observe that the relations

(a,b,c) | (a,b,c)

(a,b)
@ =< /N = JIN = /|
Q T

Q T, T T T, T

are true for all T;. In the presence of structural invariants this ordering
is somewhat more complicated; details are described in [7], where we
also extend the parameter passing mechanism to exploit the hierarchical
structure, essentially by allowing the actual parameters to be larger than
the formal parameters, subject to certain homogeneity conditions.

The least upper bounds of < correspond to the multiple inheritance as-
pect of data values: Two types can be joined by the (recursive) unification
of their components. In fact, we obtain a generalization of the ordinary
multiple inheritance, since we have recursive (infinite) types and the poly-
morphic type 2. Least upper bounds may or may not exist, whereas
greatest lower bounds always exist.

The type ordering is decidable in much the same way as the equivalence,
and least upper bounds as well as greatest lower bounds are computable.

3 Value Assignments

In this setting we define the values to be possibly-infinite labeled trees
(not to be confused with the normal forms of types). To each type T
we must associate a set of values. These value assignments must obey
certain obvious conditions. A value assignment ¢ must be homomorphic
in the following sense

¢(Int) = {...,-1,0,1,2,...}
¢(Bool) = {true,false}
¢(+T) = *¢(T)

¢((ni: i) = (ni:$(T7))

7

where the type constructors have analogous value constructors defined as
follows: Let S,.S; be sets of values. Then

X
xS = /\ |k>0,s, €8
S1 Sk
(nij)
(ni:8i) = [| {ni;} € {ni}, si; € S,
Sz'j

In the presence of structural invariants the allowed subsets {ni;} must
belong to the invariant, which yields the modified value constructor

(nij)
(ni:Si) '7T = ! I{TL,‘].}EI,S,'J. ESi].

Sij

Proposition 3.1: The value constructors are all C-monotonic and w-
continuous functions on sets of trees.
Proof: Immediate. O

The homomorphic requirements are easy to motivate, since they simply
state the intended meaning of the type constructors: The set *S corre-
sponds to lists of S-elements, and the set (n; : S;) corresponds to partial
Junctions from {n;} to the S;’s.

Finally, ¢ must be monotonic with respect to <, that is
T 2Ty = ¢(Th) C o(T)

This requirement is necessary to maintain the hierarchy, since in hierar-

chical applications values of type T may be assigned to variables of type
Ts.

Values of Finite Types

The homomorphic and monotonic requirements are fairly severe, but as
we shall see they allow for more than one value assignment. It is, however,
the case that all value assignments must agree on all finite types, i.e. types
with finite normal forms.

Proposition 3.2: If ¢; and ¢, are value assignments, then

VI : |T| <0 = ¢i(T) = ¢o(T)

Proof: For any value assignment ¢ monotonicity implies that ¢(Q) = 0,
since {) X Int, @ < Bool and hence ¢(2) C ¢(Int) N ¢(Bool) = @. Since
T is a finite type with either Int, Bool, or at the leaves, it follows by
straight-forward structural induction that ¢;(T") = ¢(T). O

We shall use the notation VALppy for this unique value assignment on
finite types. Notice that VALpry is monotonic, since both value construc-
tors are monotonic and) is smaller than all others.

For infinite types this structural induction is no longer well-founded and
several choices become available.

Recursive Values

Definition 3.3: The recursive value assignment to the (infinite) type
given by the equation

Type T = F(T)

1s defined as
VALrec(T) = U F(0)
i>0
where F is the (composite) value constructor derived from the (compos-
ite) type constructor F. This is the standard colimit construction of
the least fixed point, which generalizes in the obvious way to mutually
recursive type equations.

Proposition 3.4: VALRgc is a value assignment.

Proof: The homomorphic requirements are satisfied since the two value
constructors are w-continuous functions on sets. Regarding monotonicity,
we may initially observe that

VALREc(T) = U VALFIN<S)
S=T, |S|<oo

This follows from the facts that all the F”(Q) are finite types, that VALpy
is monotonic, and that any finite S < T'is smaller than some F*(f2). Now,

9

if Ty < T, then

VALREc(Tl) = U VALFIN(S) g U VALFIN(S) = VALREC (Tg)

S<Ty, |S|<co S<T3, |S|<oo

and monotonicity of VALggg follows. O
Using VALRgc we do not get any infinite values. The approximants to
the value set of the type

TypeT'=Int x T

never get any bigger than @, since X is strict on 0. In fact, no value
assignment can be smaller than VALREC.

Proposition 3.5: If ¢ is any value assignment, then

VT : VALREc(T) - ¢(T)

Proof: Let v € VALRec(T') be a value. Now, v belongs to some approx-
imant, say F*(0). The homomorphicity implies v € VALREc (F™(Q)) =
VALpIN(F™(€2)). Then v € ¢(F™(R2)) = VALpIN(F™(2)) and from mono-
tonicity and F"(Q2) < T it follows that v € ¢(T). O

4 Maximal Values

We propose to derive the infinite values through a limit process. Using
the fact that both types and values are (infinite) labeled trees, we shall
define a transition system which transforms a type into any of its values.

Consider the following non-deterministic transition system on finite trees:

I T > Q
* *
II > /\ k>0
T T ...T
k

10

(mi) (n4;)
I1I > {ni;} C {n:}
T, T,
IV Int > 2 ¢ € Int
v Bool > b b € Bool
For products with invariants we have the modified transition:
(i) ! I (ni;)
VI I > {ni} eI
T, T,

The results of these transitions are not values, since they may contain

(Is; we shall call them protovalues®. Protovalues are either just values or
approzimants to infinite values.

Proposition 4.1:

VT, |T| <oo: VALFIN(T) = {v | T >*v A Int,Bool,Q & labels(v)}

Proof: By induction in the structure of T'. It is clearly true for Int, Bool,
and 2. If T = xS we observe that any finite T-value can be obtained
by first securing the appropriate fan-out using the II-transition and then
inductively expanding the S-subtrees. Similarly, if T' = (n; : S;). O

We want to generalize this mechanism to infinite types as well; however,
this confronts us with the problem of performing a countably infinite
number of transition steps. This is, in fact, possible in the present con-
text, since we can perform the transition steps on the directed set (ideal)
of finite predecessors and recombine afterwards.

Definition 4.2:

t >Yw
)

(Vs <t, [s|<oo: Fus: s DFu,) A (Jvs =)

#We do not need the concept of prototypes(!); they are just ordinary types, since Q is a type.

11

A similar method for defining functions is described in [2].

Definition 4.3: The maximal values are defined to be

VALMAX(T) = {v | T >“v A Int,Bool,Q ¢ labels(v)}

We must verify the required properties of this alleged value assignment,
but first we need to establish some natural results.

Lemma 4.4: If t;,t, are finite and t; < t; then #, >* #;.

Proof: By induction in the structure of #. If ¢; is Int or Bool, then
t =ty and we are done. If t; = Q then by transition I we get to > Q = t;.
If tis a list, then ¢, is a larger list, and we proceed by induction on the
subtree. If ¢; is a partial product, then t2 is a larger partial product, so
we can use transition III and continue inductively on the subtrees. O

Lemma 4.5: If ¢; < ¢, then £, >“ ¢;.
Proof: For all finite o < t5 we define

+ o= Qlf&ﬁtl
T la ifa<t

Clearly, o >*t, and Uty < t;. Since every a < #; is also < t5 we get that
Uty >~ t1, so t1 = Ut,. Hence, ty DY ¢;. O

Lemma 4.6: > is reflexive and transitive.
Proof: Reflexivity of >“ follows from the reflexivity of >* since o >* o
and

Vi:t= || «
a=t, la|<oco

For transitivity we look at £ > s and s >“ r, that is

Va <t ol <oo: ab*s,Allse =5
VB =< s,|8|<oo: B rgAlrg="

We must show ¢ >“ r, that is

Va <t o) <oo: a bz, Al]za =1

12

We define z, to be a maximal r5 chosen among all B < sq4,i.e.
VB = sqa: o A1g
Using our assumptions and lemma 4.4 we have that
a sy, DYB DFrg =z,

Clearly, Uzo < 7. Since s, = s every finite 8 < s is smaller than
some S,. As the z, are chosen to be maximal, every rg is smaller than
some x,. Hence, Urg <X Uxq, 50 t DY g = Ur, = r. O

Now we can show the desired properties of the maximal value assignment.

Theorem 4.7: VALyax is homomorphic.

Proof: Regard any value v € VALyax(*T). For every finite s < T we
have o D>* v, such that v, = v. We may ignore all the v,’s which equal
(2, since they cannot contribute to the value. The finite subtrees of *T'
which can yield protovalues different from € are all of the form

*

|

g

where 8 < T'. Hence, we must have

/\, =

%
o= [>*
/8 ’Ué vﬁ

where 8 >* vg. Since all the v,’s have a least upper bound v, we know
that they all have the same fanout, k. Thus,

*

/v]. .« .. ’vk

where v; = LI’UZ;, so T' >“ v;; hence, v € *VALMaX(T). For the other
inclusion we select any v € *VALpaAx(T). It must be of the form

*
v = /\
vVl e Vg

13

where T' D> v;, i.e. VB < T, || < 00 : B p* vh and Uvh = v;. Now, for
any finite a < «T define

Q ifa=0
*
Vo = /\ if a =+
/U,é .o fvg

Then a B* v, and Jvya =v,s0 v € VALMAxX (*T'). By a similar argument
we can demonstrate that VALyax((n; : T3)) = (n; VALMAx(T;)). For
Int, Bool, and Q the result is obvious, so we conclude that VALMAX is
homomorphic. O

Theorem 4.8: VALpax is monotonic.

Proof: Assume Ty = T3; we shall show that if Ty >“ v then T) >“ v. By
lemma 4.5 we have that T} >“ T}, so from lemma 4.6 and T Ty p¥wv
we conclude that T, p¥ v. O

The reason for the term “maximal” is the following result.

Theorem 4.9: If ¢ is any value assignment, then
VT : ¢(T) C VALMAx(T)

Proof: Suppose v € ¢(T'). Let o < T be a finite subtree. We shall define
a(v) <X v, the projection of v on «, as follows

Qv) = Q
Int(v) = v
Bool(v) = w»
T =
'vl/-- . g, T(vy) -+ T(vg)
(m:) (mx)
(n; : Ty) [- l
v; T (vx)

where {n;} = {n;} N {n;}. Since ¢ is homomorphic, this is a well-defined
and complete case analysis. Now, an easy induction in the structure of

14

a shows that a >* a(v). Since each a(v) is a subtree of v they form a
directed set. Also, monotonicity of ¢, in particular #(Q2) = 0, gives that
any finite subtree of v equals a(v) for some finite @ < T'. We conclude
that v = Ja(v) € VALpmax(T). O

With the value assignment VALysx Wwe can rest assured that we have
found all the infinite values that could possible make sense in the context
of the hierarchy.

Examples

The maximal values of
Type A = (head: Int, tail: A) ! {tail = head}

are all finite and infinite lists of integers. In contrast, the values of
Type B = (head: Int, tail: B) ! {head A tail}

are only the infinite lists. In general, any infinite type will contain some
infinite values, and only the vacuous type is empty. In the recursive value
assignment the type B would be empty, too.

Categorical Limits

The standard way of obtaining infinite values is to resolve type equations
by constructing the categorically largest fixed point, which is the limit
of the chain constructed from the final object in the category [6]. This
is almost, but not quite, what we have done. In our case, the value set
associated with the (infinite) type defined by

Type T = F(T)

would be

VALINE (T) = lim Fn({.})

n—oo
where {e} is some singleton set — the final object in the category of sets.
This value function is homomorphic, since all the value constructors are

15

continuous, but it is not monotonic. This is immediately seen, since
VALINF(Q2) = {o} # 0. Hence, we cannot use this as a value assign-
ment. The essence of the problem is that the protovalues of the previous
approach appear as values in this context — an unfortunate technical
mishap. It would be possible to recover the maximal values by explicitly
stripping away all the values that contain the symbol e, but apart from
the lack of elegance, it is much harder to verify its properties in this guise.

Proposition 4.10: If monotonicity was not an issue, then we would not
have a largest value assignment.
Proof: The value function

VALKGR(T) = Jim F7(X)

is homomorphic for any set X, and VALf(NF(Q) = X, so in particular the
set of (J-values can be arbitrarily large. O

5 Intermediate Value Assignments

So far, we have seen the two extreme value assignments VALgrgc and
VALMAX, between which all other value assignments must be contained.
At a glance, it may not be obvious that there are other possibilities, but
in fact we have an infinitude of proper value assignments.

All value sets will be subsets of the maximal ones. Such a subset could
be characterized in the following manner

VaLy(T) = {v € VaLmax(T) | ¥(v)}
where 9 is some predicate on trees; for example, we clearly have

VALREC = {’U c VALMAx(T) l v 18 ﬁm'te}

To find other value assignments, we shall initially explore what the re-
quirements translate to.

Definition 5.1: A predicate v on trees is reducible iff

% holds for ¢ < 1 holds for all proper subtrees of ¢

Theorem 5.2: VALy is a value assignment if and only if 4 is reducible.
Proof: Monotonicity of VALy is automatically inherited from VALppax.

16

The homomorphic properties

VAaLy(Int) = {...,-1,0,1,2,...}
VALy(Bool) = {true,false}

tells us that ¢ must hold for all simple values. But this is equivalent to
the fact that 4 is reducible on singleton trees, since 9 vacuously holds
for the empty collection of proper subtrees. For non-singleton trees we
have two cases. Firstly, we look at the homomorphic property

VALy (xT") = *VAL,(T)

which translates to

{v € VaLmax(*T) | ¥(v)} = *{v € VALmax(T) | ¥(v)}

Neither containment follows automatically, but they combine to the re-
quirement

*
v /N | e Vi)
vy e Vg
Similarly, for the homomorphic property
VaLy((ni : T3)) = (n; : VALy(Ty))
we get the requirement

(m:)
(] l & Vi P(v;)

Vi

By induction in the depth of subtrees it follows that VAL, being homo-
morphic corresponds to ¢ being reducible. O

Proposition 5.3: VAL, is the largest value assignment such that all val-
ues satisfy 1.
Proof: Immediate from maximality of VALyjax. O

Examples of reducible predicates are

17

o If every subtree contains a 0, then every subtree contains a 1.

o Is finite.

e Is computable (in some (additive) time or space bound).
In contrast, the following predicates are not reducible

¢ Does not contain any 0’s.

Contains a path with infinitely many 1’s.

Is infinite.

Is uncomputable.

Notice that it is not possible to have just the infinite values.

Characterizing Infinite Values

The reducible predicates describe value assignments in more general situ-
ations than the present one. Any programming language would presum-
ably insist on homomorphic requirements of its type constructors, which
is enough to allow modified versions of theorem 5.2 to carry through.
The absence of the hierarchy would only invalidate proposition 5.3. It
seems worthwhile to investigate reducible predicates further to obtain an
alternative characterization of infinite values in programming languages.

Proposition 5.4: If 9 is reducible then 1) holds for all finite trees; the
opposite implication is false.

Proof: v must hold for all singleton trees, since they have no proper
subtrees. Hence, by induction v holds for all finite trees. To see that the
opposite implication is false, just consider the predicate “is finite or has
no leaves”, which clearly holds for finite trees but is not reducible. O

This yields a very simple proof for propositions 3.4 and 3.5:

Corollary 5.5: VALRE(is the smallest value assignment.
Proof: Since “is finite” is reducible VALrgc is a value assignment. As
any other value assignment is described by a reducible predicate it follows

18

from proposition 5.4 that it must contain VALrgc. O

Also, the reducible predicates have some obvious closure properties.

Proposition 5.6: The class of reducible predicates is closed under V
and A, but not —.

Proof: Clearly true for V and A. For — just look at “is finite” and “is
infinite”. O

Probably the best way to characterize the reducible predicates is that
they are stable under finite changes.

Definition 5.7: If t4,...,t, are trees, then t is a finite modification of
these, if it is obtained by combining the ¢;’s while changing the labels of
finitely many nodes, making finite insertions or deletions, or rearranging,
copying or deleting finitely many (infinite) subtrees.

Definition 5.8: A predicate %) on trees is finitely stable if whenever
Y(t1),...,9¥(t,) holds and ¢ is a finite modification of the t;’s, then also
(t) holds.

Proposition 5.9: v is reducible iff it is finitely stable.

Proof: Assume v reducible and v (¢). Then 9 holds for all subtrees of
t. The finite modification ¢ may be viewed as a new tree which contains
finitely many (infinite) subtrees from the t;’s. By starting an induction
at the roots of these subtrees it follows, in analogy with proposition 5.4,
that +(t) holds. Now, assume that 1 is finitely stable. If 4(¢) holds, then
1 holds for any subtree, since it can be obtained as a finite modification
of ¢t. If 1 holds for all subtrees of ¢, then it particularly holds for the
finitely many immediate subtrees of t. But ¢ is a finite modification of
these, so 9(¢) holds, too. O

Even so, a reducible predicate can detect an infinite pattern of labels or
tree-structure, as witnessed by the computability predicates.

An intuitive understanding of the situation may be given as follows:

The finite values are always present, since they can be explicitly con-
structed on run-time. The infinite values cannot be computed in finite
time, so they must be given a priori. These infinite values are described
by the predicate). The program is now free to perform any finite mod-

19

ifications of the infinite values. This should not create any unexpected
infinite values. Hence, reducible means: closed under finite computation,
which is exactly what we need to have a consistent value assignment in
any reasonable setting.

6 The Hierarchy Revisited

The maximal value assignment is too large for comfort. In an actual
programming language, we must be able to e.g. copy and compare val-
ues in finite time, which is not possible for all the values in VALpax.
Hence, we would have to abolish these operations for all values, which
is clearly unacceptable. A possible solution is to introduce a new unary
type constructor, co, which indicates that infinite values are allowed, i.e.

VAL(T) = VaLpgc(T)
VAL(OOT) = VALMA)((T)

This is somewhat unsatisfactory, since the whole concept of the type
hierarchy seems to demand that the relation

T < ooT

holds, in which case the problem reappears.

In consequence of our intention to use infinite values to initialize infinite
data structures, we can certainly restrict ourselves to fewer values. We
want the following properties to hold

o All values have finite representations.
¢ Equality of values is decidable.

e The set of values is closed under finite computation.

Decidability of equality forces us to direct our attention below the collec-
tion of all computable values.

Rational Values

An appealing choice is the collection of regular or rational values [2], which
are characterized by having a finite number of different subtrees. Clearly,

20

this predicate is reducible, so by proposition 5.2 we obtain a proper value
assignment by restricting ourselves to these values.

For example, rational infinite lists correspond exactly to the decimal ex-

pansion of rational numbers, i.e. a finite arbitrary prefix followed by a
finite period.

Specifications

The only extension needed to a hierarchical language is a mechanism for
specifying the infinite values; their manipulation is no different from that
of finite values. The rational values can be specified by a finite set of
value equations of the form

{vi = e}
where each e; is a finite constant expression, possibly including the v;’s;

the equations must satisfy the Greibach condition that no e; equals any

v;. This gives us the finite representation; also, equality of rational values
is decidable.

Proposition 6.1: Value equations specify exactly the set of rational,
maximal values.

Proof: In [2] it is shown that such equations generate exactly all rational
trees. Since, “is rational” is reducible it follows from theorems 5.2 and
4.9 that all rational values are maximal. O

We can achieve this quite elegantly by exploiting the idea that infinite
values are used for initializations. Variables are defined as follows

Var Ly . T1
Var Lo © T2

Var z, : T,

Initially, all variables are undefined; only when they are assigned values
is an appropriate structure of subvariables allocated. We extend this to

Var z1: 171 = ¢
Var zs : Ty = ey

21

Var z,: T, = e,

where each e; is a constant expression of type T}, possibly involving the
zj, but not equal to any single ;. In all cases we have initialized the
variables with finite or infinite values. Notice that any rational value may
be expressed as an initial value.

With the type definition
Type L = (head: Int,tail: L) ! {tail = head}
the variable definitions

Var a: L = (head: 0, tail: a)
Var b: L = (head: 1, tail: ¢)
Var c: L = (head: 2, tail: b)

will initialize a to an infinite list of 0’s and b and ¢ to infinite lists of

alternating 1’s and 2’s with different parity.
The definitions

Type Tree = (val: Int, left,right: Tree) ! { left A right }
Var t: Tree = (left,right: t)

allocates an infinite binary tree without values in the nodes. These may
be freely added on later, as the programmer may assume that an infinite
number of nodes have been allocated. An infinite tree with all nodes
initialized to zero is specified by

Var t: Tree = (val: 0, left,right: t)

Implementation

A possible implementation technique is as follows:

A value is a tree, which is in fact implemented using records and pointers.
Products and lists are stored in blocks of words of the appropriate length.
Each word contains either a simple value of type Int or Bool, or it contains
a pointer to a block containing a structured subvalue.

22

Infinite values are, of course, implemented lazily, i.e. at any point of the
execution only a finite prefix of the value has been allocated. This cor-
responds to the internal nodes of the pointer tree. The leaves are special
nodes containing the periodic subvalues in a “rolled-up” representation,

which is just a single variable symbol in a set of equations defining the
value.

As an example, we may look at the following tree values

X = (val:2,left : Y,right : 2)
Y = (val:4,left: Z, right : X)
Z = (val:8,left : X,right : V)

A tree variable with the infinite value X could, after some unfolding, look

like
/ 2 \
/ /N
VA \2 X Y
/N
Y Z
Here 6 infinite subtrees remain rolled-up.

Notice that once a node has been allocated and initialized one may mod-
ify its contents in the usual imperative fashion (including passing it as
a reference parameter), thereby changing the total value. Hence, by as-
signing to some val-components and re-arranging a few subtrees we can

obtain the variable
/ 5\
3 9
7 Z Y X
/\
Y Y

The defining equations for this value would be rather more complicated,
but fortunately we need never concern ourselves with those.

23

These finite representations of infinite values obviously allow copying and
even external I/O-operations.

Equality of infinite values is decidable using a simple algorithm, the exe-
cution time of which depends on the sizes of the finite representations as
well as on the number and sizes of the defining equations.

References

[1]

2]

Constable R.L. et al. “Implementing Mathematics in the NuPrl
Proof Development System”. Prentice-Hall, 1986.

Courcelle B. “Fundamental Properties of Infinite Trees” in The-
oretical Computer Science Vol 25 No 1, North-Holland 1983.

Henderson, P. “Functional Programming: Application and Im-
plementation”. Prentice-Hall, 1980.

Turner, D.A. “Recursion Equations as a Programming Language”
in Functional Programming and Its Application, CUP 1982.

O’Donnell M.J. “Computing in Systems Defined by Equations”
in LNCS Vol 58, Springer-Verlag 1977.

Panangaden P., Mendler N. & Schwartzbach, Michael I.
“Recursively Defined Types in Constructive Type Theory” in Res-
olution of Equations in Algebraic Structures eds. Hassan Ait-Kaci
& Maurice Nivat, Academic Press 1989.

Schmidt, Erik M. & Schwartzbach, Michael I. “An Impera-
tive Type Hierarchy with Partial Products” in Proceedings of Math-
ematical Foundations of Computer Science 1989, LNCS Vol 379,
Springer-Verlag, 1989.

Cartwright, R., Donahue, J. “The Semantics of Lazy (and In-
dustrius) Evaluation” in Proceedings of ACM Symposium on Lisp
and Functional Programming 1982.

24

